
Action-Constrained Imitation Learning

Chia-Han Yeh * 1 Tse-Sheng Nan * 2 Risto Vuorio† 3 Wei Hung 1 Hung-Yen Wu 1 Shao-Hua Sun 4

Ping-Chun Hsieh 1

Abstract
Policy learning under action constraints plays a
central role in ensuring safe behaviors in various
robot control and resource allocation applications.
In this paper, we study a new problem setting
termed Action-Constrained Imitation Learning
(ACIL), where an action-constrained imitator
aims to learn from a demonstrative expert with
larger action space. The fundamental challenge
of ACIL lies in the unavoidable mismatch of
occupancy measure between the expert and the
imitator caused by the action constraints. We
tackle this mismatch through trajectory alignment
and propose DTWIL, which replaces the original
expert demonstrations with a surrogate dataset
that follows similar state trajectories while ad-
hering to the action constraints. Specifically, we
recast trajectory alignment as a planning problem
and solve it via Model Predictive Control, which
aligns the surrogate trajectories with the expert
trajectories based on the Dynamic Time Warping
(DTW) distance. Through extensive experiments,
we demonstrate that learning from the dataset
generated by DTWIL significantly enhances
performance across multiple robot control tasks
and outperforms various benchmark imitation
learning algorithms in terms of sample efficiency.
Our code is publicly available at https://
github.com/NYCU-RL-Bandits-Lab/
ACRL-Baselines.

1. Introduction
Reinforcement learning (RL) finds policies that maximize

†Work conducted while at the University of Oxford.
*Equal contribution 1National Yang Ming Chiao Tung Univer-

sity, Hsinchu, Taiwan 2University of Illinois at Urbana-Champaign,
Illinois, United States 3Reflection AI 4National Taiwan University,
Taipei, Taiwan. Correspondence to: Ping-Chun Hsieh <pingh-
sieh@nycu.edu.tw>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

cumulative rewards through interactions with environments.
However, in many real-world applications, interacting with
environments can be costly or dangerous, and designing an
effective reward function that consistently encourages the
desired behavior in all situations could pose a significant
challenge. In such cases, imitation learning (IL) (Pomer-
leau & A, 1991; Ho & Ermon, 2016) offers a compelling
alternative. Rather than learning from a reward function
through trial and error, IL learns a policy directly from a set
of pre-collected expert demonstrations, which are transition
data logged from a near-optimal policy.

In many real-world tasks, imposing constraints that define
feasible sets of actions to ensure the safe and proper func-
tioning of agents is necessary. Classic examples include
optimal allocation of network resources under capacity con-
straints (Xu et al., 2018; Gu et al., 2019; Zhang et al., 2020)
and robot control under kinematic limitations that prevent
damage to the physical structure of robots (Pham et al.,
2018; Gu et al., 2017; Jaillet & Porta, 2012; Tsounis et al.,
2020). While there has been substantial research on action-
constrained reinforcement learning (ACRL) (Kasaura et al.,
2023; Lin et al., 2021; Brahmanage et al., 2023; Chen et al.,
2024; Hung et al., 2025), surprisingly, little attention has
been given to its imitation learning counterpart. Hence, in
this work, we propose a novel problem, Action-Constrained
Imitation Learning (ACIL), which concerns learning an
agent under action constraints from a constraint-free expert
demonstration set, e.g., learning to control a robot arm with
a limited power supply from trajectories collected from a
more powerful robot arm (i.e., higher torque limit).

Can we adopt existing ACRL methods to address the ACIL
problem? To ensure that the actions generated by the policy
adhere to specific constraints during both training and evalu-
ation, most existing ACRL methods incorporate a projection
layer on top of the policy network (Chow et al., 2018; Liu
et al., 2020; Gu et al., 2017). However, such an approach can
cause problems in IL. Most IL approaches aim to minimize
the discrepancy between the occupancy measure of the ex-
pert demonstrations and that of the imitator (Pomerleau & A,
1991; Ho & Ermon, 2016). When expert actions are outside
the feasible action set, the projection layer can prevent the
imitator from accurately matching the occupancy measure
of the expert, especially in cases with more restrictive action

1

https://github.com/NYCU-RL-Bandits-Lab/ACRL-Baselines
https://github.com/NYCU-RL-Bandits-Lab/ACRL-Baselines
https://github.com/NYCU-RL-Bandits-Lab/ACRL-Baselines


Action-Constrained Imitation Learning

(a) Expert-imitator Performance Gap (b) Expert (c) BC Policy (d) Ours

Figure 1. (a) illustrates the performance gap due to the mismatch between the action spaces of the strong expert and the weak imitator. (b)
shows the expert trajectory in a Maze2d goal-reaching task, which serves as the reference for imitation. (c) demonstrates the trajectory of
the action-constrained BC policy, which fails to execute a timely left turn due to the restricted action space. (d) depicts the trajectory
generated by DTWIL alignment, where the agent adapts to the constrained action space by adjusting its pace, enabling it to accurately
follow the expert trajectory.

sets. This issue leads to a problem we term “occupancy
measure distortion.” Figure 1 illustrates the issue of occu-
pancy measure distortion caused by the mismatch between
the action spaces of a strong expert and a weak imitator.
The expert’s trajectory highlights the optimal behavior, as
shown in the data. However, the action-constrained behavior
cloning policy fails to reproduce this trajectory due to the
restricted action space, leading to suboptimal performance
and collisions.

The most effective way to eliminate occupancy measure
distortion is to ensure that both the expert and the imitator
share the same feasible action set. However, since we can-
not access the expert’s policy to generate action-constrained
expert demonstrations, we can only align to the expert’s tra-
jectories with constrained actions and learn from the align-
ment. This alignment is crucial to enable the imitator to
accurately maintain consistency with the demonstrated tra-
jectories. To address this challenge, we introduce Dynamic
Time Warping Imitation Learning (DTWIL), an algorithm
specifically designed to bridge this gap by generating sur-
rogate action-constrained demonstrations and learning a
corresponding policy that respects the constraints of the
imitator. By aligning constrained trajectories with expert
demonstrations, DTWIL provides a robust solution to miti-
gate occupancy measure distortion.

Our contributions can be summarized as follows: (1) We for-
malize the Action-Constrained Imitation Learning (ACIL)
problem and identify the challenge of occupancy measure
distortion. (2) We propose DTWIL, a novel framework for
generating surrogate expert demonstrations and learning
action-constrained policies. (3) We reformulate trajectory
alignment as a planning problem, leveraging MPC for con-
strained trajectory generation. Moreover, we employ the
DTW distance as the similarity metric and design practical
implementations to enhance alignment efficiency. (4) Our
experiments show that DTWIL outperforms the baseline IL
algorithms in MuJoCo locomotion, navigation, and robot

arm manipulation tasks, excelling in sample efficiency and
robustness to occupancy measure distortion.

2. Related Work
Action-Constrained Reinforcement Learning (ACRL).
ACRL studies learn a policy under action constraints.
Kasaura et al. (2023) provides benchmarks for evaluating
existing ACRL approaches. Pham et al. (2018); Bhatia et al.
(2019); Dalal et al. (2018) ensure safe and compliant behav-
ior by incorporating a differentiable projection layer at the
end of the policy network to meet action constraints. How-
ever, Lin et al. (2021); Brahmanage et al. (2023) highlight
issues with this approach, particularly the zero gradient and
longer training times, and propose alternative methods. No-
tably, Brahmanage et al. (2023); Chen et al. (2024) employ
normalizing flows to directly generate actions that comply
with the constraints, thereby circumventing the drawbacks
associated with projection layers. Hung et al. (2025) pro-
poses an efficient approach that significantly reduces the
need for quadratic programs by using acceptance-rejection
sampling and constructing an augmented Markov decision
process. Yet, adapting existing ACRL techniques to ACIL
is non-trivial.

Learning from Demonstration. IL focuses on deriving
a policy using only the information from expert demon-
strations, and this paradigm is also termed Learning from
Demonstration (LfD). BC (Pomerleau & A, 1991) ap-
proaches this by treating a policy as a state-to-action map-
ping, learning it in a supervised manner. Adversarial Imita-
tion Learning (AIL), on the other hand, focuses on matching
the state-action distribution between expert and imitator
through adversarial training. GAIL (Ho & Ermon, 2016) is
a foundational method in this domain, using a discrimina-
tor to distinguish between expert and imitator transitions,
and providing rewards based on this discrimination. Var-
ious AIL extensions (Kostrikov et al., 2019a;b; Lai et al.,

2



Action-Constrained Imitation Learning

2024) improve upon GAIL, tailoring the method to different
environments and goals. A comprehensive review of IL
techniques can be found in (Zare et al., 2024), but ACIL,
where a capability gap exists between the expert and the
learner, remains unexplored.

Learning from Observation (LfO). An alternative ap-
proach to avoid the undesirable effects of the projected pol-
icy results after imitating expert actions is to learn only from
expert observation data, which falls under the scenario of
LfO (Lee et al., 2021; Huang et al., 2024). GAIfO (Torabi
et al., 2018b) and IDDM (Yang et al., 2019) follow the
principles of GAIL by training a state-only discriminator.
OPOLO (Zhu et al., 2020) further improves on this by relax-
ing the on-policy requirement, speeding up the learning pro-
cess. BCO (Torabi et al., 2018a) directly learns an inverse
dynamics model to infer missing expert actions from obser-
vations and then applies BC to learn a policy. CFIL (Freund
et al., 2023) and DIFO (Huang et al., 2024) use a generative
model to capture state or state-action distributions. There
also exists a line of work that focuses on state trajectory
alignment. Liu et al. (2019); Gangwani & Peng (2020) aim
to address the transition dynamics mismatch between the
expert and the learner. Radosavovic et al. (2021) matches
the state distributions in the context of dexterous manipula-
tion, and Boborzi et al. (2023) proposes a non-adversarial
framework for state-only imitation.

However, none of the existing LfO methods addresses the
capability gap between the expert and the imitator. They
attempt to mimic the trajectories induced by unconstrained
actions, although such trajectories can be fundamentally
infeasible for an action-constrained imitator to reproduce.

3. Action-Constrained Imitation Learning:
Problem Statement and Challenges

In this section, we formalize the proposed ACIL problem
and delineate the main challenges in achieving ACIL.

Notation. For any set Z , we use ∆(Z) to denote the set
of all probability distributions over Z . Given any subset
X ⊂ Rn and any vector x ∈ Rn, we let ΓX (x) denote the
L2 projection of x onto the set X . For any sequence x =
(x0, x1, · · · ), we use xt:t′ to denote the partial sequence
(xt, · · · , xt′).

3.1. Problem Statement

Action-constrained Markov decision process. We model
the environment as an action-constrained Markov de-
cision process (AC-MDP) defined by a tuple M :=
(S,A, T , µ, γ, C), where S and A are the state space and
action space, respectively; T : S ×A → ∆(S) denotes the
transition dynamics of the environment, with T (s′|s, a) in-

dicating the conditional distribution of the next state s′ ∈ S
given the current state s ∈ S and action a ∈ A; µ ∈ ∆(S)
is the initial state distribution; γ ∈ [0, 1) is the discount
factor. For each state s ∈ S , C(s) ⊆ A denotes the feasible
action set induced by the action constraints. Equivalently,
under an AC-MDP, no actions that fall outside the feasible
set C(s) can be employed to the environment at both train-
ing time and test time. Moreover, we impose no assumption
on the structure of C(s), i.e., C(s) can be an arbitrary subset
of the action space. Notably, the above setting of AC-MDP
is standard in the ACRL literature (Lin et al., 2021; Kasaura
et al., 2023; Brahmanage et al., 2023).

Action-constrained imitation learning. In ACIL, an
action-constrained imitator is trained to perform similarly
to an unconstrained expert from a set of expert demon-
stration trajectories De generated under an expert policy
πe : S → ∆(A). For ease of exposition, we let T and TC
denote the sets of state-action trajectories that consist of
unconstrained actions and constrained actions, respectively.
Due to the gap in the action capability between the expert
and the imitator, it is generally infeasible for the imitator to
exactly reproduce an expert state-action trajectory τe ∈ T
or match the state-action distribution (also known as occu-
pancy measure) of the expert. As a result, the standard IL
methods, which focus on matching the state-action distribu-
tions, are not directly applicable in the action-constrained
setting.

Therefore, in ACIL, our focus is on a more relaxed imita-
tion learning setting: An action-constrained imitator learns
to produce a state sequence as similar to the expert state
sequence as possible. That is, in ACIL, the behavioral simi-
larity is captured through state sequence similarity. Specifi-
cally, we use σ(τ) = (s0, s1, · · · ) to denote the state se-
quence induced by a state-action trajectory τ ∈ T and
let σt:t′(τ) := (st, · · · , st′) denote the partial sequence
of σ(τ). Similarly, we use a(τ) to denote the action se-
quence included in τ . Moreover, we let S denote the set
of all possible state sequences (either of finite or countably
infinite steps). For any pair of state sequences σ, σ′ ∈ S
(possibly of different lengths), we use d(σ, σ′) to denote the
discrepancy between σ and σ′, and the d(·, ·) is to be con-
figured in the sequel. Our goal is to learn a feasible imitator
policy π∗ ∈ ΠC that minimizes the expected discrepancy
from the expert, i.e.,

π∗ := argmin
π∈ΠC

Eτe∼πe,τ∼π

[
d(σ(τ), σ(τe))|s0 ∼ µ

]
. (1)

3.2. Challenges of ACIL

Due to the action constraints, solving ACIL naturally in-
volves the following two salient technical challenges com-
pared to the conventional unconstrained IL settings:

Aligning state sequences of different lengths. To mimic

3



Action-Constrained Imitation Learning

an expert state sequence of T time steps, the imitator could
possibly require more than T steps to generate a similar
state sequence, mainly due to the limited action capability.
For example, as illustrated by the Maze2D navigation task
in Figure 1, the imitator in Figure 1d takes several more
steps than the expert to reach the goal state, despite their
similarity in the state sequences. This issue would be more
significant as the action constraints become tighter.

Trajectory misalignment under projection. To enforce
the action constraints required by the imitator, one direct
approach is to employ an off-the-shelf unconstrained IL
algorithm and apply an additional action projection step,
which identifies the nearest feasible action to the original
unconstrained action generated by the policy. Notably, the
action projection step has been widely adopted by the ACRL
algorithms, either as a post-processing subroutine (Lin et al.,
2021; Kasaura et al., 2023) or as a differentiable layer at
the policy output for end-to-end training (Pham et al., 2018;
Bhatia et al., 2019). Despite its effectiveness in ACRL,
action projection can lead to severe trajectory misalignment
as the action discrepancies could quickly compound the
state discrepancies. Such trajectory misalignment has also
been illustrated in Figure 1c. The misalignment issue further
highlights that ACIL and ACRL are fundamentally different
problems in spite of their high-level resemblance. As a
result, ACIL cannot be tackled simply by action projection,
and an alternative solution is needed.

4. Methodology
In this section, we formally introduce the proposed trajec-
tory alignment method for addressing ACIL. We start by
presenting the overall framework and then describe the two
main modules, namely MPC-based trajectory optimization
and dynamic time warping.

4.1. Surrogate Expert Demonstrations

To imitate the expert state sequence and enforce the action
constraints simultaneously, we propose to decompose the
imitation process of ACIL into two stages:

• Stage 1: Generate action-constrained surrogate
demonstrations from unconstrained expert demon-
strations. Given the original expert demonstrations De,
the main purpose here is to construct a surrogate dataset
Dsur such that similar state sequences can be reproduced
solely by using feasible actions. Specifically, for each
state-action trajectory τ = (s0, a0, s1, a1, · · · ) in De, we
create a surrogate trajectory τsur = (s′0, a

′
0, s

′
1, a

′
1, · · · )

that satisfies: (i) s′0 = s0; (ii) a′i ∈ C(s′i), for all i; (iii)
The discrepancy of the state sequences induced by τ and
τsur is small.

• Stage 2: Employ any IL method with surrogate demon-
strations. Given the surrogate dataset Dsur that involves
only feasible actions, one can simply leverage any off-the-
shelf IL algorithm to imitate the surrogate demonstrations
to enforce the action constraints. In the subsequent exper-
iments, we showcase this flexibility by using both BC and
inverse RL methods to achieve effective ACIL.

Through this framework, we nicely decouple the constraint
satisfaction from the downstream imitation learning method.

4.2. Trajectory Alignment via Model Predictive Control

Trajectory alignment as trajectory optimization. To con-
struct the surrogate demonstrations (i.e., Stage 1 described
in Section 4.1), we propose to recast trajectory alignment
as a planning problem and solve it by trajectory optimiza-
tion. Specifically, for each expert state-action trajectory
τe = (s0, a0, s1, a1, · · · ) in De, the problem of finding a
surrogate trajectory of feasible actions can be formulated as

τsur = argmin
τ∈TC

d(σ(τ), σ(τe)), (2)

where d(·, ·) is the state sequence discrepancy defined
in Section 3.1. If we focus on the sequence of actions
in τsur (denoted by a∗0, a

∗
1, · · · ), the problem in (2) can be

reformulated as a trajectory optimization problem

a∗0:K∗−1 := argmin
τ :a(τ)∈CK ,K≥1

d(σ(τ), σ(τe)), (3)

where the minimization is over all feasible action sequences.
Notably, directly solving (3) can be difficult for two reasons:
(i) The optimal length of the surrogate trajectory (i.e., , K∗

in (3)) can be hard to determine a priori. (ii) Even if K∗ is
known, it is known that directly handling a large planning
problem of large length K∗ in a non-adaptive manner can
be rather sub-optimal.

Model predictive control for alignment. To adaptively
solve (3), we leverage MPC, which addresses (3) by se-
quentially solving finite-horizon planning subproblems with
the help of a forward dynamics model. Specifically, we
use MPC to determine the surrogate action at each step se-
quentially. For each step t of τsur, MPC configures a fixed
planning horizon H and approximately minimizes a finite-
horizon objective function d(σ(τ ′), σt:t+H(τe)) by first (i)
generating a set of H-step synthetic rollouts {τ ′} with the
help of a forward dynamics model, (ii) selecting the rollout
with the smallest d(σ(τ ′), σt:t+H(τe)), and then (iii) assign-
ing a∗t to be the first action of the selected rollout. This
a∗t would be applied to the environment to obtain the next
state. This design of taking only the first action ensures that
each step of the alignment process can better adapt to the
remaining part of the demonstration.

4



Action-Constrained Imitation Learning

4.3. Dynamic Time Warping as the Alignment Criterion

To substantiate the ACIL objective function in Equation (1)
and the trajectory optimization problem in Equation (3), we
leverage the DTW distance (Hiroaki & Chiba, 1978) as the
state sequence discrepancy metric. Recall from Section 3.2
that one main challenge of ACIL is the need to align state
sequences of different lengths, and DTW naturally addresses
this issue as a distance that can “warp” time over the space
of time sequences.

We describe the concept of DTW in the context of ACIL
as follows: Consider any two state sequences σ, σ′ ∈ S
of lengths m and n. Let ∆ be the pairwise ℓ2 distance
matrix of size m × n, where ∆i,j = ∥σi − σ′

j∥2. We use
A to denote an m× n alignment matrix, which satisfies the
following three properties: (i) A is a binary matrix, i.e., it
only has elements 0 or 1; (ii) The ones in A shall induce
a path from the top-left to the bottom-right of the matrix;
(iii) This path only involves three possible moves, i.e., right,
down, and lower right. We also let A be the set of all such
matrices. Then, the DTW distance between σ and σ′ is
defined as

dDTW(σ, σ′) := min
A∈A
⟨∆,A⟩F, (4)

where ⟨·, ·⟩F denotes the Frobenius inner product. Moreover,
it is known that the DTW distance in Equation (4) can
be found by dynamic programming through the following
recursion

dDTW(σ0:i, σ
′
0:j) = ∥σi − σj∥2 +min

{
dDTW(σ0:i−1, σ

′
0:j),

dDTW(σ0:i, σ
′
0:j−1), dDTW(σ0:i−1, σ

′
0:j−1)

}
,

(5)

where the minimum operation reflects the three possible
moves (i.e., right, down, and lower right) described above.

4.4. Putting Everything Together: DTWIL

We are ready to present the the proposed algorithm, namely
Dynamic Time Warping Imitation Learning. We substan-
tiate the generation process of surrogate demonstrations
described in Section 4.1 by integrating MPC-based trajec-
tory alignment with the DTW distance. Specifically: (i)
Alignment target: We choose one expert trajectory τi ∈ De

at a time as the alignment target. (ii) MPC-based align-
ment with DTW: At the beginning of an alignment episode,
MPC is initialized to the 0-th state of the selected expert
trajectory. After initialization, MPC aligns with the tar-
get trajectory at each step sequentially until the episode is
finished. To utilize DTW as the criterion, we introduce a
progression parameter, tpg, which indicates the timestep
of the expert state with which the action-constrained agent
is currently aligned. For example, if the current progress
is at tpg and the planning horizon is set to H , the targeted

Figure 2. An illustration of the DTWIL framework. MPC aligns
the action-constrained trajectories with expert demonstrations, gen-
erating surrogate demonstrations for downstream imitation (e.g.,
behavior cloning). The trained policy is then deployed during
inference with actions projected onto the feasible action space.

segment of the expert state sequence for alignment would
be σtpg:(tpg+H)(τi). Suppose the current MPC timestep is t,
the current progress is tpg, and the planning horizon is H .
Then, MPC approximately finds an H-step planning trajec-
tory τ ′ such that dDTW(σ(τ ′), σtpg:(tpg+H)(τi)) is minimized
by generating a set of synthetic rollouts with the help of the
learned dynamics model.

These surrogate expert demonstrations are then used to train
a policy via any off-the-shelf IL method, e.g., BC). An
overview of DTWIL is provided in Figure 2, and the pseudo
code can be found in Algorithm 1 and Algorithm 2.
Remark 4.1. In typical RL planning tasks, the objective func-
tion of MPC is to maximize the cumulative reward (Chua
et al., 2018; Hansen et al., 2022). By contrast, in the ACIL
setting, we use DTW distance as the criterion in aligning
the state sequences of the expert and the surrogate one.
Remark 4.2. To facilitate the rollout generation in MPC, we
also incorporate the cross-entropy method (CEM) optimizer,
which iteratively refines the search for optimal actions by
sampling, evaluating, and updating the distribution of candi-
date actions (Chua et al., 2018). Moreover, to ensure that
the candidate synthetic rollouts in MPC are all feasible, we
employ rejection sampling to enforce the action constraints.
Other details about our MPC implementation can be found
in Appendix A.1.

4.5. Practical Implementation

4.5.1. PROGRESSION MANAGEMENT

The progression parameter, tpg, is initialized to 0 at the start
of every trajectory alignment, indicating that the alignment
begins from the 0-th state of the expert trajectory. At the be-
ginning of each alignment step, we update tpg by analyzing

5



Action-Constrained Imitation Learning

the warping map to determine how many expert states the
agent’s action has advanced. Consequently, if the agent’s
first planning state, s1, is not sufficiently close to the next
expert state, se

1, it is more likely to be matched with the cur-
rent expert state, se

0. Figure 3 shows how this advancement
value is determined. The value of tpg is updated after every
MPC step. For how this mechanism affects the alignment,
please refer to Appendix A.6.

Algorithm 1 Dynamic Time Warping Imitation Learning

1: Input: Expert demonstration De = {τi}Ni=1, number
of episodes M

2: Surrogate demonstration dataset Dsur ← {}
3: Dynamics model training dataset D ← De

4: for iteration m = 1 to M do
5: Select an expert trajectory τi from De

6: Train the dynamics model ensemble with D
7: τ ′i ← Trajectory Alignment(τi)
8: D ← D ∪ τ ′i
9: if dDTW(τ ′i , τi) < dDTW(Dsur[i], τi) then

10: Dsur[i]← τ ′i
11: end if
12: end for
13: Learn an imitator policy from Dsur by an off-the-shelf

imitation learning algorithm

Algorithm 2 Trajectory Alignment

1: Input: Planning horizon H , ERC horizon herc, i-th
expert trajectory τi = {(sit, ait)}

length=l
t=0 ∈ De, action

constraint C.
2: Output: τ ′i ← {}
3: Agent’s initial state s0 ← si

0, tpg ← 0
4: for time step t = 0, 1, . . . do
5: for Actions sampled at:t+H from CEM, 1 to NSam-

ples do
6: Apply ERC(at:t+H , H, herc, C)
7: Propagate τ ′ from st using dynamics models
8: Evaluate at:t+H as dDTW(σ(τ ′), σtpg:(tpg+H)(τi))
9: Update CEM distribution

10: end for
11: Execute a∗t
12: τ ′i ← τ ′i ∪ (st, a

∗
t )

13: if Progression has advanced in the warping path then
14: tpg ← tpg + 1
15: end if
16: end for

4.5.2. EXPERT REGULARIZED CONTROL

In environments that require precise movements, even small
errors can cause significant disturbances. Inspired by Actor
Regularized Control (ARC) (Sikchi et al., 2021), we mix

(a) Progression Advance-
ment = 0

(b) Progression Advance-
ment = 1

Figure 3. Since the MPC controller executes only the first planning
step per iteration, we focus on the number of expert states the
agent advances after the initial action a0. The figure shows two
DTW warping path cases (patches in gray). In Figure 3a, the agent
transitions from s0 to s1 while staying aligned with se

0 causing no
progression (tpg unchanged). In Figure 3b, the agent advances to
the next expert state, updating tpg to tpg + 1.

expert actions with sampled actions to serve as guidance, a
mechanism that we refer to as Expert Regularized Control
(ERC). Specifically, the first few actions used to roll out
the planning trajectories in the MPC controller become the
weighted average of the actions sampled and the correspond-
ing segment of the actions of the experts. The details of the
implementation can be found in Appendix A.7.

For other implementation details, please refer to Ap-
pendix A.4 and Appendix A.5.

5. Experiments
We evaluate our proposed method in various continuous con-
trol domains, including navigation, locomotion, and robot
arm manipulation, subject to a variety of action constraints.

5.1. Setup

Environments. To evaluate our method, we conducted
experiments on four benchmark tasks: Maze2d, HalfChee-
tah, Hopper, and Table-Wiping. Maze2d-Medium-v1 (Fu
et al., 2020), a point-mass agent navigates a 2D maze from
a random start location to a goal, with a 2-dimensional
action space [a1, a2] ∈ [−1.0, 1.0]. The state informa-
tion includes v1 and v2, representing the agent’s velocity
in the x- and y-directions. We collected 100 demonstra-
tions, yielding 18,525 state-action pairs. In HalfCheetah
(Brockman et al., 2016), a bipedal cheetah runs forward
by applying torque through a 6-dimensional action space
[a1, a2, . . . , a6] ∈ [−1.0, 1.0]. The state includes wi, the
angular velocity of each joint. For this task, we use 5 ex-
pert demonstrations of 1000 steps each. In Hopper (Brock-
man et al., 2016), a robot hops forward by controlling a
3-dimensional action space [a1, a2, a3] ∈ [−1.0, 1.0]. Sim-
ilarly, the state contains wi, the angular velocity of each

6



Action-Constrained Imitation Learning

Figure 4. We evaluate the impact of action constraints on DTWIL
and baseline methods across three environments: Maze2d-
Medium-v1, HalfCheetah-v3, Hopper-v2, and Robosuite Table-
Wiping task.

Table 1. Experiment environments and constraints

Environment Task Constraint

Maze2d M+B |ai| < 0.1, ∀i

M+O
∑2

i=1 |viai| ≤ 0.5

Hopper H+B |ai| < 0.9, ∀i

H+M
∑3

i=1 max{wiai, 0} ≤ 10

HalfCheetah HC+B |ai| < 0.5, ∀i

HC+O
∑6

i=1 |wiai| ≤ 10

Table-Wiping
W+B |ai| < 0.3, ∀i

W+L2 a21 + a22 + a23 ≤ 0.5,
a24 + a25 + a26 ≤ 0.05

joint. For Hopper, we use 5 expert demonstrations of 1000
steps each for training. In Table-Wiping from Robosuite
(Zhu et al., 2025), a robot arm controlled by a 6-dimensional
action space aims to wipe a stained table. The expert dataset
consists of ten 500-step demonstrations. The constraints
considered for each environment are summarized in Table 1,
including box constraints (+B), state-dependent power limit
constraints (+M and +O), and L2 constraints (+L2).

Baselines. We compare our method to various baselines
in learning from demonstration (LfD), i.e., state-action se-
quences, and learning from observation (LfO), i.e., state-
only sequences.

• BCO (Torabi et al., 2018a) is an LfO method, learning
an inverse dynamics model to infer actions from state-
only data and applying BC to learn a policy.

• GAIL (Ho & Ermon, 2016) is an LfD method that uti-
lizes a generative adversarial network (GAN) to infer
the underlying reward function.

• GAIfO (Torabi et al., 2018b) resembles the idea of
GAIL, but its discriminator only learns from state tran-
sitions (s, s′) instead of state-action pairs (s, a).

• OPOLO (Zhu et al., 2020) is an off-policy LfO method
and is among the most effective LfO techniques.

• SAIL (Liu et al., 2019) learns a reward function to
align the agent and the expert state trajectories.

• CFIL-s & CFIL-sa (Freund et al., 2023) utilize a
flow-based model to capture state or state-action dis-
tributions. CFIL-s learns from state-only sequences
(LfO), while CFIL-sa learns from both states and ac-
tions (LFD).

• DIFO (Huang et al., 2024) learns a diffusion discrimi-
nator and learns the policy with the diffusion reward.

Note that we project output actions to feasible sets with a
projection layer to avoid constraint violation for all methods.

5.2. Experimental Results

Since we aim to investigate sample efficiency, we only al-
low 50K environment steps during the training of all the
online methods, including ours, on all tasks. All results are
evaluated with randomly initialized starting states. Follow-
ing this, the best-performing model from each algorithm
during these interactions was selected for final evaluation.
This ensures that the results reflect the effectiveness of each
method in a small-sample regime.

The experimental results in Table 2 indicate that online al-
gorithms, such as GAIL and OPOLO, face two primary
challenges: poor sample efficiency and action constraints,
leading to consistently suboptimal performance in all tasks.
CFIL also struggles to achieve competitive performance
under limited sample conditions. Despite their ability to in-
teract with the environment, these methods fail to bridge the
expert-imitator performance gap within the given number of
interaction steps, resulting in persistently low scores. While
BCO shows competitive performance in simpler tasks like
Maze2d M+O, it falls short in more complex environments.

In contrast, DTWIL, which learns from surrogate expert
data and adopts a BC approach to learn the policy, performs
well in all tasks. By learning from the surrogate demon-
strations to match the expert trajectories and using BC for
policy learning, DTWIL manages to replicate expert per-
formance while maintaining sample efficiency. As a result,
it successfully reproduces expert-like trajectories across
tasks, without being adversely affected by the constraints
that cripple other methods. The results of training the var-
ious baseline methods for sufficient steps are included in
Appendix A.3.

5.3. Ablation Study

DTW distance and ℓ2 distance as alignment criteria. We
investigate the impact of using different alignment criteria,
specifically comparing ℓ2 distance and DTW distance, on
the performance of the DTWIL framework. The ℓ2 distance
evaluates the pointwise differences between trajectories,
while the DTW distance captures temporal misalignment,
providing a more flexible measure for trajectory alignment.

7



Action-Constrained Imitation Learning

Table 2. Evaluation performance of the proposed method and baseline algorithms across various tasks, with results expressed as the mean
and standard deviation calculated from three seeds.

Task Metric GAIL BCO GAIfO OPOLO CFIL-s CFIL-sa SAIL DIFO DTWIL (Ours)

M+B return 0.22 ± 0.0 0.14 ± 0.05 0.07 ± 0.02 0.2 ± 0.06 0.23 ± 0.06 0.23 ± 0.21 0.45 ± 0.06 0.27 ± 0.04 0.77 ± 0.04
dDTW 10.8 ± 0.4 7.8 ± 0.5 7.3 ± 0.2 8.2 ± 0.5 10.5 ± 0.6 10.9 ± 1.8 16.0 ± 0.61 7.2 ± 0.1 4.0 ± 0.1

M+O return 0.14 ± 0.05 0.88 ± 0.06 0.19 ± 0.08 0.64 ± 0.13 0.45 ± 0.12 0.47 ± 0.10 0.46 ± 0.15 0.45 ± 0.09 0.87 ± 0.04
dDTW 10.4 ± 0.8 8.8 ± 0.5 8.5 ± 0.2 8.8 ± 0.3 10.8 ± 1.1 10.2 ± 0.7 15.1 ± 0.3 7.2 ± 0.0 3.6 ± 0.1

HC+B return -163 ± 47 -4 ± 4 -74 ± 32 -605 ± 390 -172 ± 738 -95 ± 515 1222 ± 260 8 ± 60 2669 ± 4
dDTW 32.5 ± 0.0 58.7 ± 11.9 56.3 ± 6.6 39.5 ± 7.3 37.9 ± 3.0 56.2 ± 11.8 26.5 ± 0.4 43.7 ± 1.9 7.4 ± 0.0

HC+O return -185 ± 66 6 ± 31 -163 ± 33 -9 ± 80 1422 ± 1830 1674 ± 1316 2666 ± 55 -87 ± 55 2637 ± 26
dDTW 37.0 ± 0.7 43.1 ± 17.8 76.8 ± 6.5 35.1 ± 4.2 27.9 ± 1.9 43.0 ± 21.6 19.7 ± 0.1 44.4 ± 1.8 7.8 ± 0.4

H+B return 360 ± 59 219 ± 20 197 ± 30 1068 ± 952 866 ± 249 1485 ± 677 1375 ± 790 331 ± 29 2844 ± 57
dDTW 36.3 ± 1.6 33.1 ± 2.1 33.2 ± 1.4 33.7 ± 2.8 32.9 ± 2.8 29.8 ± 4.2 21.7 ± 0.5 34.3 ± 1.9 5.8 ± 0.1

H+M return 261 ± 81 224 ± 32 206 ± 19 228 ± 33 1443 ± 547 1553 ± 1096 1273 ± 495 333 ± 32 2873 ± 240
dDTW 37.1 ± 0.4 33.1 ± 2.2 32.4 ± 0.9 31.8 ± 0.9 29.4 ± 2.3 31.0 ± 4.2 24.9 ± 0.8 33.3 ± 1.2 6.6 ± 1.5

W+B return 12 ± 6 59 ± 20 30 ± 14 29 ± 20 0 ± 0 1 ± 0 61 ± 9 6 ± 1 61 ± 3
dDTW 32.5 ± 2.6 29.6 ± 1.2 36.3 ± 2.7 38.8 ± 7.6 39.2 ± 8.9 38.4 ± 5.5 22.1 ± 3.9 37.5 ± 4.3 11.8 ± 2.3

W+L return 19 ± 12 91 ± 17 21 ± 9 42 ± 34 0 ± 0 1 ± 1 58 ± 3 7 ± 1 70 ± 4
dDTW 37.9 ± 1.7 22.9 ± 1.3 30.1 ± 2.9 31.1 ± 4.3 34.6 ± 3.7 36.4 ± 6.2 19.9 ± 0.8 41.6 ± 2.4 9.6 ± 0.4

Table 3. Comparison of policy performance using ℓ2 distance and
DTW distance as alignment criteria across different tasks.

Task ℓ2 DTW

HC+B 2157.52 ± 60.84 2669.41 ± 4.56
HC+O 2279.12 ± 51.18 2637.34 ± 26.82
H+B 1054.49 ± 227.64 2844.68 ± 57.77
H+M 1245.61 ± 47.05 2873.88 ± 240.46

Table 4. Performance comparison of BC and DTWIL.

Task BC DTWIL (Ours)

M+B 0.61 ± 0.05 0.77 ± 0.04
M+O 0.81 ± 0.05 0.87 ± 0.04
H+B 2204.83 ± 753.32 2844.68 ± 57.77
H+M 1233.96 ± 211.87 2873.88 ± 240.46

Figure 5. Performance comparison of CFIL with and without
DTWIL-generated surrogate data across multiple tasks.

We conduct experiments on HalfCheetah and Hopper. For
each task, we train policies using surrogate demonstrations
generated with both alignment criteria and evaluate the poli-
cies on their ability to reproduce expert-like behavior.

The results, summarized in Table 3, demonstrate that the
DTW distance significantly outperforms ℓ2 distance as an
alignment criterion. Policies trained using DTW-aligned sur-
rogate demonstrations achieve higher task performance and
exhibit trajectories that more closely resemble expert behav-
iors. This highlights the importance of a flexible alignment
metric in addressing temporal distortions and occupancy
measure discrepancies in action-constrained environments.

DTWIL-Augmented IL. A key advantage of our approach
is its versatility — the surrogate demonstrations generated
by DTWIL can be integrated with any online or offline IL
method. Table 4 compares our method to the original BC
under action constraints, illustrating that DTWIL, which ap-
plies BC learning with surrogate data, consistently achieves
superior performance across multiple tasks. Furthermore,
we apply CFIL to the surrogate data and observe a notable
performance boost, as shown in Figure 5. These results
demonstrate that the surrogate data effectively mitigates
occupancy measure distortion, a fundamental challenge in
action-constrained imitation learning. They also suggest
that our approach is broadly applicable and can enhance the
performance of various IL methods in constrained environ-
ments.

6. Conclusion
ACIL has the potential to greatly influence real-world robot
training, where constrained action spaces arise from power
limits, mechanical imperfections, or wear and tear - chal-

8



Action-Constrained Imitation Learning

lenges that previous methods have not effectively addressed.
In this paper, we identify occupancy measure distortion as
a key issue when learning from expert demonstrations un-
der action constraints. We further introduce DTWIL, the
first ACIL method, which leverages the DTW distance for
alignment to generate surrogate expert demonstrations for
downstream IL methods. DTWIL outperforms projection-
based methods, demonstrating that a dedicated algorithm
for the ACIL problem is both effective and necessary.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
This material is based upon work partially supported by
the National Science and Technology Council (NSTC),
Taiwan, under Contract No. NSTC 113-2628-E-A49-026,
and the Higher Education Sprout Project of the National
Yang Ming Chiao Tung University and the Ministry of Ed-
ucation, Taiwan. We also thank the National Center for
High-performance Computing (NCHC) for providing com-
putational and storage resources. We appreciate the finan-
cial support from the Featured Area Research Center Pro-
gram within the framework of the Higher Education Sprout
Project by the Ministry of Education (NTU-114L900901).
Shao-Hua Sun was supported by the Yushan Fellow Pro-
gram by the Ministry of Education, Taiwan.

References
Bhatia, A., Varakantham, P., and Kumar, A. Resource

constrained deep reinforcement learning. In Interna-
tional Conference on Automated Planning and Schedul-
ing, 2019.

Boborzi, D., Straehle, C.-N., Buchner, J. S., and Mikelsons,
L. Imitation learning by state-only distribution matching.
Applied Intelligence, 53(24):30865–30886, 2023.

Brahmanage, J., Ling, J., and Kumar, A. FlowPG: Action-
constrained Policy Gradient with Normalizing Flows. Ad-
vances in Neural Information Processing Systems, 2023.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv:1606.01540, 2016.

Chen, C., Karunasena, R., Nguyen, T., Sinha, A., and
Varakantham, P. Generative modelling of stochastic ac-
tions with arbitrary constraints in reinforcement learn-

ing. Advances in Neural Information Processing Systems,
2024.

Chow, Y., Nachum, O., Duenez-Guzman, E., and
Ghavamzadeh, M. A Lyapunov-based approach to safe re-
inforcement learning. In Advances in Neural Information
Processing Systems, 2018.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. Advances in Neural Informa-
tion Processing Systems, 2018.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru,
C., and Tassa, Y. Safe exploration in continuous action
spaces. arXiv:1801.08757, 2018.

Freund, G. J., Sarafian, E., and Kraus, S. A coupled flow ap-
proach to imitation learning. In International Conference
on Machine Learning, 2023.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv:2004.07219, 2020.

Gangwani, T. and Peng, J. State-only imitation
with transition dynamics mismatch. arXiv preprint
arXiv:2002.11879, 2020.

Gu, L., Zeng, D., Li, W., Guo, S., Zomaya, A. Y., and Jin,
H. Intelligent VNF orchestration and flow scheduling
via model-assisted deep reinforcement learning. IEEE
Journal on Selected Areas in Communications, 2019.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In IEEE International Con-
ference on Robotics and Automation, 2017.

Hansen, N. A., Su, H., and Wang, X. Temporal difference
learning for model predictive control. In International
Conference on Machine Learning, 2022.

Hiroaki, S. and Chiba, S. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 1978.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems, 2016.

Huang, B.-R., Yang, C.-K., Lai, C.-M., Wu, D.-J., and Sun,
S.-H. Diffusion imitation from observation. In Neural
Information Processing Systems, 2024.

Hung, W., Sun, S.-H., and Hsieh, P.-C. Efficient
action-constrained reinforcement learning via acceptance-
rejection method and augmented mdps. In International
Conference on Learning Representations, 2025.

9



Action-Constrained Imitation Learning

Jaillet, L. and Porta, J. M. Path planning under kinematic
constraints by rapidly exploring manifolds. IEEE Trans-
actions on Robotics, 2012.

Kasaura, K., Miura, S., Kozuno, T., Yonetani, R., Hoshino,
K., and Hosoe, Y. Benchmarking actor-critic deep rein-
forcement learning algorithms for robotics control with
action constraints. Robotics and Automation Letters,
2023.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and
Tompson, J. Discriminator-actor-critic: Addressing sam-
ple inefficiency and reward bias in adversarial imitation
learning. In International Conference on Learning Rep-
resentations, 2019a.

Kostrikov, I., Nachum, O., and Tompson, J. Imitation learn-
ing via off-policy distribution matching. In International
Conference on Learning Representations, 2019b.

Lai, C.-M., Wang, H.-C., Hsieh, P.-C., Wang, Y.-C. F., Chen,
M.-H., and Sun, S.-H. Diffusion-reward adversarial imita-
tion learning. In Neural Information Processing Systems,
2024.

Lee, Y., Szot, A., Sun, S.-H., and Lim, J. J. Generalizable
imitation learning from observation via inferring goal
proximity. In Neural Information Processing Systems,
2021.

Lin, J.-L., Hung, W., Yang, S.-H., Hsieh, P.-C., and Liu,
X. Escaping from zero gradient: Revisiting action-
constrained reinforcement learning via Frank-Wolfe pol-
icy optimization. In Uncertainty in Artificial Intelligence,
2021.

Liu, A., Shi, G., Chung, S.-J., Anandkumar, A., and Yue,
Y. Robust regression for safe exploration in control. In
Learning for Dynamics and Control, 2020.

Liu, F., Ling, Z., Mu, T., and Su, H. State alignment-based
imitation learning. arXiv preprint arXiv:1911.10947,
2019.

Pham, T.-H., De Magistris, G., and Tachibana, R. Optlayer
- Practical constrained optimization for deep reinforce-
ment learning in the real world. In IEEE International
Conference on Robotics and Automation, 2018.

Pomerleau and A, D. Efficient training of artificial neural
networks for autonomous navigation. Neural computa-
tion, 1991.

Radosavovic, I., Wang, X., Pinto, L., and Malik, J. State-
only imitation learning for dexterous manipulation. In
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 7865–7871. IEEE, 2021.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy with
online planning. In Conference of Robot Learning, 2021.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning
from observation. In International Joint Conference on
Artificial Intelligence, 2018a.

Torabi, F., Warnell, G., and Stone, P. Generative ad-
versarial imitation from observation. arXiv preprint
arXiv:1807.06158, 2018b.

Tsounis, V., Alge, M., Lee, J., Farshidian, F., and Hutter,
M. Deepgait: Planning and control of quadrupedal gaits
using deep reinforcement learning. IEEE Robotics and
Automation Letters, 2020.

Xu, Z., Tang, J., Meng, J., Zhang, W., Wang, Y., Liu, C. H.,
and Yang, D. Experience-driven networking: A deep rein-
forcement learning based approach. In IEEE Conference
on Computer Communications, 2018.

Yang, C., Ma, X., Huang, W., Sun, F., Liu, H., Huang, J.,
and Gan, C. Imitation learning from observations by
minimizing inverse dynamics disagreement. Advances in
Neural Information Processing Systems, 2019.

Zare, M., Kebria, P. M., Khosravi, A., and Nahavandi, S. A
survey of imitation learning: Algorithms, recent develop-
ments, and challenges. IEEE Transactions on Cybernet-
ics, 2024.

Zhang, J., Ye, M., Guo, Z., Yen, C.-Y., and Chao, H. J. CFR-
RL: Traffic engineering with reinforcement learning in
SDN. IEEE Journal on Selected Areas in Communica-
tions, 2020.

Zhu, Y., Wong, J., Mandlekar, A., Martı́n-Martı́n, R., Joshi,
A., Lin, K., Maddukuri, A., Nasiriany, S., and Zhu, Y.
robosuite: A modular simulation framework and bench-
mark for robot learning, 2025.

Zhu, Z., Lin, K., Dai, B., and Zhou, J. Off-policy imi-
tation learning from observations. Advances in Neural
Information Processing Systems, 2020.

10



Action-Constrained Imitation Learning

A. Detailed Implementation of DTWIL
A.1. CEM Optimizer

Our implementation of the CEM optimizer closely follows the approach used in PETS (Chua et al., 2018), where a
momentum term is added into the update calculations, and bounds are imposed on the standard deviations in addition to the
standard CEM optimization.

Specifically, if a distribution at CEM iteration i, N (µi, σ
2
i ), is updated toward a target distribution N (µtarget, σ

2
target), the

resulting updated distribution at iteration i+ 1, N (µi+1, σ
2
i+1), will be given by:

N (µi+1, σ
2
i+1) = N ( αµi + (1− α)µtarget, ασ

2
i + (1− α)σ2

target ), α ∈ [0, 1] , (6)

and the value of σ2
i is further constrained by 1

2w, where w represents the minimum distance from µi to the bounds of the
feasible action space.

Moreover, to adapt the CEM optimizer for our action-constrained setting, we employ rejection sampling to ensure that all
sampled actions strictly adhere to the predefined constraints.

A.2. Dynamics Model

In this work, we train an ensemble of probabilistic neural networks to model the system’s dynamics. Specifically, we utilize
ensembles of five dynamics models, where the bth model, fθb , is parameterized by θb. Each network in the ensemble is
trained to minimize the negative log-likelihood of the predicted outcomes, optimizing the following objective:

L(θb) = −
N∑

n=1

log fθb(sn+1|sn, an). (7)

Referring to the ensembles used in PETS (Chua et al., 2018), we define our network to output a Gaussian distribution with di-
agonal covariance parameterized by θ and conditioned on sn and an, i.e.: f = Pr(st+1|st, at) = N (µθ(st, at),

∑
θ(st, at)).

In this specific case, Equation (7) becomes:

LG(θb) =

N∑
n=1

[µθb(sn, an)− sn+1]
⊤
Σ−1

θb
(sn, an) [µθb(sn, an)− sn+1] + log detΣθb(sn, an), (8)

The next states are obtained in the same manner as TS∞ described in PETS.

Additionally, to mitigate the risk of over-fitting that can occur when a dynamics model is trained solely on expert trajectories,
we augment the training data with online agent experiences and iteratively retrain the dynamics models.

A.3. Training Curves for Baseline Methods with Additional Steps

In Section 5.2, we presented the performance of DTWIL and various baseline methods when interacting with the environment
for up to 50K steps, focusing on sample efficiency. In Figure 6, we showcase the training curves of baseline methods over
500K steps, which is 10 times the original limit. These results reveal that methods like CFIL and OPOLO can train effective
policies on multiple tasks when granted sufficient interaction steps. However, compared to DTWIL, which requires only
the training of an MPC dynamics model to generate surrogate expert demonstrations, these online LfO methods demand
significantly more interaction steps, highlighting their inefficiency relative to DTWIL.

A.4. DTW Input Normalization

To address variations in scale across different dimensions, we normalize both the planned trajectory and the corresponding
expert trajectory segment before computing the DTW distance. Specifically, we apply min-max normalization, which
linearly transforms each dimension so that its values are scaled to fall within a consistent range. This is achieved by
subtracting the minimum value and dividing by the range (maximum value minus minimum value) of the expert trajectory
for each dimension. We analyze the impact of this normalization. Table 5 shows an ablation study on HalfCheetah and
Hopper with their respective box constraints. We observe a performance drop in both environments when this normalization
step is omitted from DTWIL. This is because, without normalization, DTW becomes disproportionately influenced by

11



Action-Constrained Imitation Learning

Figure 6. Training curves for baseline methods over 500K interaction steps across multiple tasks.

dimensions with larger scales, leading to poor generalization. Conversely, when the states are normalized in advance, DTW
treats each dimension equally, resulting in more effective warping.

Table 5. Impact of DTW input normalization on performance. “W/o N” indicates results obtained without applying DTW input
normalization.

Task HalfCheetah Box HalfCheetah Box w/o N Hopper Box Hopper Box w/o N

Return-S 2576.20 ± 61.62 1667.46 ± 51.13 2527.63 ± 572.53 608.18 ± 208.20
Return-BC 2669.41 ± 4.56 1893.90 ± 71.56 2844.68 ± 57.77 281.13 ± 31.88

A.5. Excluding the Final Expert State

Notably, when constructing the warping path, the final expert state in the segment is excluded from the matching calculation
to prevent unintended progression when the agent exhibits minimal movement across consecutive actions. Specifically,
when two trajectories have an equal number of states, DTW often tends to align states in a strictly 1-to-1 manner, which can
mislead progression. By excluding the final expert state, the DTW algorithm is encouraged to create a 2-to-1 alignment
during the matching process. Given the constrained actions, which naturally take smaller steps than expert actions, this
2-to-1 alignment often occurs in the initial few states. This concept is illustrated in Figure 7. Including the final expert
state (Figure 7a) leads to a 1-to-1 alignment since both trajectories have the same number of states. Excluding it Figure 7b
prevents state from advancing, yielding a more desirable matching.

As demonstrated in Table 6, this adjustment significantly enhances performance in the Maze2d-Medium environment under
box constraints. Specifically, excluding the final expert state when determining the DTW warping path improves the returns
obtained during both the trajectory alignment phase and the subsequent behavioral cloning (BC) phase. These results
validate the effectiveness of the proposed modification in stabilizing and optimizing the alignment process.

12



Action-Constrained Imitation Learning

(a) Final expert state is not excluded (b) Final expert state is excluded

Figure 7. Effect of excluding the final expert state on the DTW warping path.

Table 6. Results comparison of whether the final
expert state is excluded when calculating the
warping path in Maze2d-Medium under the box
constraint.

Excluded Not Excluded

DTW-S 2.99 ± 0.75 2.99 ± 0.82
Return-S 0.76 ± 0.00 0.69 ± 0.00

Return-BC 0.77 ± 0.04 0.72 ± 0.03

A.6. Progression Management

In this section, we compare two approaches to progression management. The first is asynchronous progression, where the
parameter tpg is updated in tandem with the warping path. This method is used in our algorithm. The second is synchronous
progression, where tpg increases by 1 with each step of the imitator, matching the expert’s pace. Given that agents with
action constraint typically take longer to replicate expert behavior, asynchronous progression is more sensible. Table 7
presents the full experimental results for both methods. DTW-S denotes the DTW distance between the generated surrogate
trajectories and the expert trajectories, Return-S indicates the average return of the surrogate expert data, and Return-BC
represents the average return of BC policy trained on this surrogate expert data. While the differences on HalfCheetah are
minimal, asynchronous progression significantly outperforms on Hopper.

Table 7. Comparison of results between asynchronous and syn-
chronous progression methods.

Task Metric Asynchronous Synchronous

HC+B
DTW-S 15.17 ± 0.24 15.06 ± 0.12

Return-S 2576.20 ± 61.62 2590.31 ± 24.07
Return-BC 2669.41 ± 4.56 2594.28 ± 29.80

H+B
DTW-S 11.70 ± 6.02 27.68 ± 0.26

Return-S 2527.63 ± 572.53 418.73 ± 89.35
Return-BC 2844.68 ± 57.77 153.52 ± 1.20

Table 8. Comparison of results with and without ERC applied during
action sampling in Hopper.

Without ERC With ERC

Return-S 820.7 ± 84.8 2527.6 ± 572.5
Return-BC 889.7 ± 5.4 2844.7 ± 57.8

A.7. Implementation Details of ERC

In DTWIL, ERC acts as a stabilizer to guide sampled actions in environments requiring precise control. To implement
this, we first extract a specific segment ae

tpg:(tpg+herc)
, from the expert actions ae, where herc is the horizon over which expert

actions are blended. Then, given the dynamics model ensembles fθ(s, a), a specific weight β ∈ [0, 1], and the projection
function ΓC(s)(a), which projects an action a onto a specific constrained action space C(s), ERC guides the trajectory
generation with the following functions:

For h = 0, 1, ..,H :

aeproj = ΓC(sh)(a
e
tpg+h)

ah =

{
β ∗ aeproj + (1− β) ∗ asampled

h , if h <= herc

asampled
h , if h > herc

sh+1 = fθ(sh, ah) (9)

where ah is the hth action step in an H-step planning trajectory, asampled
h is the hth action directly sampled from a CEM

optimizer, and sh is the hth state of the planning trajectory.

13



Action-Constrained Imitation Learning

The performance of our algorithm in environments where agents are highly susceptible to deviations—such as Hopper, where
falling results in early termination—is significantly enhanced by incorporating ERC. Table 8 demonstrate a clear performance
difference: without ERC, the agent frequently falls, leading to significantly lower rewards and shorter trajectories. In
contrast, incorporating ERC stabilizes the agent’s behavior, allowing it to generate surrogate trajectories of appropriate
length and maintain consistent performance throughout the task. This highlights the importance of ERC in enabling robust
and reliable imitation under action-constrained settings. Refer to Appendix A.8 for detailed hyperparameter tuning.

A.8. Hyperparameters in ERC

We explore the influence of the hyperparameter β, which regulates the balance between expert actions and MPC-sampled
actions in the ERC method. Additionally, we examine the effect of the horizon length herc, which determines how many
steps to blend MPC-sampled actions with expert actions. We conducted experiments on the Hopper with H+M constraints,
varying β from 0 to 0.2 and herc from 0 to 20, while keeping all other hyperparameters fixed at their optimal values identified
in prior tuning. As shown in Table 9, setting β to 0.05 results in the highest performance. A lower β leads to instability in
the sampled actions, while higher values negatively impact the MPC optimization process. Regarding herc, a value of 5
provides the best results. Extending the horizon does not improve performance, as expert actions taken too far in the future
become less informative due to the action constraints.

Table 9. Impact of varying β and herc values on performance in the Hopper task with H+M constraints. The table highlights the optimal
balance between expert actions and MPC sampling, showing the best-performing configurations for stability and action guidance.

β = 0 β = 0.02 β = 0.05 β = 0.1 β = 0.2

Return-S 820.71 ± 84.78 1492.97 ± 144.35 2527.63 ± 572.53 1657.47 ± 286.44 670.72 ± 328.28
Return-BC 889.65 ± 5.39 1138.85 ± 56.35 2844.68 ± 57.77 2167.30 ± 360.73 723.95 ± 345.70

herc = 0 herc = 5 herc = 10 herc = 20

Return-S 820.71 ± 84.78 2527.63 ± 572.53 2425.25 ± 370.40 2166.99 ± 351.04
Return-BC 889.65 ± 5.39 2844.68 ± 57.77 2686.85 ± 135.64 2616.09 ± 102.90

A.9. Number of MPC Steps per Planning

Our MPC implementation executes only the first step of the planned trajectory after each action sampling. This design allows
the alignment process to adapt more precisely to the remaining expert trajectory at every timestep. However, re-planning at
every step can be computationally expensive. A common strategy to reduce the time complexity is to execute multiple steps
per planning cycle, thereby amortizing the planning cost over several environment steps. This introduces a trade-off between
computational efficiency and alignment fidelity. We conducted an ablation study by varying the number of execution steps
taken before re-planning. We report the results in Table 10.The results indicate that as the number of steps increases,
the alignment performance degrades. In particular, in the Hopper environment, poor alignment resulting from infrequent
re-planning significantly increases the risk of falling.

Table 10. Ablation study on the number of steps executed per MPC planning cycle. Executing more steps before re-planning reduces
alignment quality, leading to degraded performance.

Steps \ Task HC+B HC+O H+B H+M

1 step 2669 ± 4 2637 ± 26 2844 ± 57 2873 ± 240
3 steps 2427 ± 0 2324 ± 28 810 ± 21 753 ± 43
5 steps 1270 ± 464 2123 ± 6 579 ± 2 579 ± 10

A.10. Different Level of Constraints

We have shown that the imitator may suffer from occupancy measure distortion under action constraints. Beyond the type of
constraint, the tightness of the constraint bounds also plays a critical role, as it directly determines the size of the imitator’s
feasible action space. If the constraints are loose, their impact on the learner’s ability to replicate expert trajectories is
minimal. In the extreme case where the constraints do not restrict any of the expert’s actions, direct imitation learning

14



Action-Constrained Imitation Learning

can still achieve strong performance. In our main experiments, we adopt moderately tight constraints to ensure that they
meaningfully affect the learning process. In this section, we further investigate the performance of our method under both
looser and tighter constraint levels. Corresponding results are shown in Table 11. The experimental results show that across
nearly all cases, DTWIL consistently outperforms baseline methods, demonstrating robustness to varying levels of constraint
tightness.

Table 11. Ablation study on the strength of action constraints. We vary the constraint bounds across Maze2D (M+B) and HalfCheetah
(HC+O) environments. Results show that DTWIL maintains strong performance under both looser and tighter constraint settings,
indicating robustness to constraint tightness.

Task (Constraint Level) CFIL-s CFIL-sa BCO OPOLO DTWIL (Ours)

M+B (0.3) 0.20 ± 0.14 0.21 ± 0.03 0.44 ± 0.34 0.44 ± 0.16 0.86 ± 0.04
M+B (0.1) – paper 0.22 ± 0 0.23 ± 0.21 0.14 ± 0.05 0.20 ± 0.06 0.77 ± 0.04
M+B (0.07) 0.05 ± 0.02 0.06 ± 0.01 0.26 ± 0.10 0.34 ± 0.13 0.68 ± 0.01

HC+O (15) 2065 ± 714 2796 ± 247 -151 ± 13 47 ± 673 2785 ± 17
HC+O (10) – paper 1422 ± 1830 1674 ± 1316 6 ± 31 -9 ± 80 2637 ± 26
HC+O (7) 54 ± 671 354 ± 1587 -130 ± 9 99 ± 941 1408 ± 25

A.11. Number of Expert Demonstrations

To evaluate the generalization ability of our method, we conduct an ablation study by varying the number of expert
demonstrations used for training. Specifically, we investigate whether DTWIL can still learn effective policies when
provided with fewer expert trajectories, which limits coverage of the initial state distribution.

As shown in Table 12, DTWIL consistently achieves strong performance across different demonstration sizes, indicating
that it can generalize well even with limited access to expert data. This suggests the surrogate demonstrations generated by
our method capture essential structure for learning, beyond merely replicating observed trajectories.

Table 12. Ablation study on the number of expert demonstrations. We vary the number of expert trajectories provided for training to
evaluate the generalization ability of DTWIL. Results show that DTWIL maintains strong performance even with limited demonstrations,
indicating its robustness and sample efficiency.

Number of Demos \ Task HC+B H+M

5 Demos 2669 ± 4 2873 ± 240
3 Demos 2585 ± 26 2994 ± 35
1 Demo 2618 ± 28 2685 ± 457

15


