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Abstract

Designing quantum circuits for specific compu-
tational tasks remains a fundamental challenge
in quantum computing, because of the exponen-
tial growth of the state space with the number of
qubits. We propose gadget reinforcement learning
(GRL), a framework that integrates reinforcement
learning (RL) with program synthesis by automat-
ically synthesizing composite gates, or “gadgets”,
and incorporating them into the RL agent’s action
space. This enables a more efficient exploration
of the design space for parameterized quantum
circuits (PQCs) that solve complex quantum tasks,
such as approximating ground states of quantum
Hamiltonians—an NP-hard problem.

We test GRL using the transverse field Ising
model (TFIM), a standard testbed for quantum
algorithms, under fixed computational budgets
typical of research settings (e.g., 2-3 days of
GPU runtime). Our experimental results demon-
strate the advantages of GRL over baseline RL
methods, including: (1) Improved accuracy: GRL
achieves ground-state energy estimation up to ma-
chine accuracy; (2) Hardware compatibility: GRL
generates compact PQCs that are more suitable
for implementation on real quantum hardware,
minimizing noise and gate errors; (3) Scalability:
GRL exhibits robust performance as the size and
complexity of the problem increases, even with
constrained computational resources.

By integrating program synthesis into the RL
framework, GRL facilitates the automatic discov-
ery of reusable circuit components, specifically
tuned for a given hardware. This bridges the gap
between algorithmic design and practical quan-
tum implementation. This makes GRL a versatile
and resource-efficient framework for optimizing
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quantum circuits, with potential applications in
hardware-specific optimizations, variational quan-
tum algorithms, and other challenging quantum
tasks.

1. Introduction

Quantum computing has experienced substantial advance-
ments in recent years, unlocking the potential to solve clas-
sically intractable problems. Foundational algorithms like
Shor’s algorithm for integer factorization (Shor, 1999) and
Grover’s algorithm for unstructured search (Grover, 1996)
demonstrate the transformative promise of quantum technol-
ogy. However, practical implementation of these algorithms
faces substantial hurdles due to the limitations of current
quantum hardware, characterized by small qubit counts, sig-
nificant noise, and constrained connectivity (Monz et al.,
2016; Mandviwalla et al., 2018). These challenges require
innovative approaches to bridge the gap between theoretical
breakthroughs and hardware capabilities.

Hybrid quantum-classical algorithms, particularly varia-
tional quantum algorithms (VQAs), have emerged as a
promising solution to this challenge. VQAs operate by
dividing computation between quantum hardware and clas-
sical optimization. Their implementation involves three
main steps: (1) Quantum state preparation: A parameter-
ized quantum circuit (PQC) U (5) containing adjustable
parameters g, is constructed using single-qubit rotations and
non-parameterized two-qubit entangling gates. (2) Mea-
surement: The PQC is executed on quantum hardware to
evaluate the cost function:

—

C(6) = (0[UT(6)HU(9)|0), (1

where H represents the Hamiltonian encoding the problem.
(3) Optimization: Classical algorithms minimize C (5) by
adjusting g. This paradigm transforms the challenge of
solving a quantum problem into finding an optimal PQC

that minimizes the cost function.

However, designing effective PQCs remains difficult due
to the constraints of current quantum hardware. Differ-
ent noise levels, qubit connectivity topologies, and gate
fidelities complicate the process, making hardware-specific
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Figure 1. (left) Sketch of the gadget reinforcement learning algorithm. A reinforcement learning agent sequentially adds gates to a
circuit for the preparation of a quantum state. The expectation value of the energy of a given Hamiltonian is calculated and used as cost.
The parameters 6 of the constructed circuit are optimized to minimize the cost. A reward is provided to the reinforcement learning agent
according to a threshold (: if the cost is smaller, the agent gets a reward r, otherwise —r. Subsequently, the reward is used to improve the
policy. The algorithm stores the top k circuits. After a training loop, those circuits are analyzed with the program synthesis algorithm and
gadgets, i.e. composite gates that are most likely to be useful, are proposed. The best ones are added to the available actions, extending
the action space. The reinforcement learning agent will then start a new training loop. (right) Comparison of the best solutions to
our example application in different regimes. We consider the problem of finding the ground state of a 2-qubit transverse field Ising
model, as defined in Eq. 4. Different regimes are given by varying the magnetic field strength h, with b = 10~ being the simplest task,
and h = 1 the most challenging task. A pure reinforcement learning agent significantly declines in performance as the difficulty of the
problem increases. On the other hand, gadget reinforcement learning can solve also the hardest regime, h = 1, which cannot be solved

with the RL approach.

PQC design particularly challenging. Recent efforts have
focused on adaptive methods (Grimsley et al., 2019; Tang
et al., 2021; Feniou et al., 2023) and advanced optimiza-
tion techniques (Zhou et al., 2020; Zhu et al., 2022; Cheng
et al., 2024; Kundu et al., 2024a) to address these issues.
Additionally, machine learning approaches, particularly re-
inforcement learning (RL), have emerged as promising tools
for automating PQC design (Krenn et al., 2023; Bang et al.,
2014; Ostaszewski et al., 2021; Kundu, 2024).

In conventional RL-based approaches, an agent explores
a fixed action space comprising predefined quantum gates
to construct PQCs. While effective for certain problems,
this approach limits the agent’s adaptability and scalability.
To overcome these limitations, curriculum RL (CRL) has
been introduced, allowing the agent to progress through
tasks of increasing complexity (Patel et al., 2024b). Despite
these advancements, both fixed-action-space RL and CRL
are limited by computational resources. With a fixed action
space, agents often require extensive exploration to identify
optimal solutions, which results in suboptimal utilization of
computational resources. This inefficiency becomes more
apparent in complex tasks, where managing the computa-
tional budget becomes crucial'.

"Due to the limitations of the available cluster, we restricted the
training to 5000 episodes and a maximum of 48 hours of runtime.

Addressing this challenge requires a framework capable of
leveraging insights from simpler problems to solve more
complex ones efficiently, within a fixed computational bud-
get. This paper introduces gadget reinforcement learning
(GRL), a novel approach that combines RL with program
synthesis (PS) to dynamically expand the agent’s action
space. GRL achieves this by synthesizing higher-level com-
posite gates, or “gadgets”, from the solutions of simpler
problem instances and incorporating these gadgets into the
agent’s action space. By doing so, GRL enhances the agent’s
ability to generalize and adapt, optimizing computational
resource utilization.

A schematic of the GRL algorithm is presented in Fig. 1
(left). The process begins with an RL agent solving a simple
instance of a problem using a basic action space, such as
the native gateset of a specific quantum processor. The
program synthesis component identifies recurring patterns
in the top-performing circuits, synthesizes these patterns
into gadgets, and adds them to the action space. With this
expanded action space, the RL agent retrains to tackle more
challenging problem instances.

To demonstrate the efficacy of GRL, we apply it to the
transverse field Ising model (TFIM), a problem that becomes
increasingly difficult as the magnetic field strength h or the
system size grows. GRL learns gadgets from a simple 2-
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qubit TFIM with h = 1072 and successfully uses them to
solve more complex instances, including a 3-qubit TFIM
at h = 1, a regime where conventional RL approaches
fail due to computational limitations. The comparison of
performance across regimes is shown in Fig. 1 (right).

Our results highlight the advantages of GRL: (1) Improved
computational efficiency: By learning and leveraging gad-
gets, GRL achieves superior performance within a fixed
computational budget, avoiding the exhaustive exploration
required in fixed-action-space RL. (2) Scalability: GRL
effectively generalizes knowledge from simpler tasks to
more complex ones, reducing the computational burden
associated with solving larger problems. (3) Hardware
compatibility: The PQCs generated by GRL are compact
and hardware-optimized, making them more resilient under
noise and practical for real-world implementation.

Specifically, GRL achieves up to a 107-fold improvement in
error reduction for ground-state energy estimation compared
to baseline RL approaches under a fixed computational bud-
get. Moreover, by using gadgets learned from simple TFIM
instances, GRL can solve larger systems with fewer param-
eters and gates, demonstrating its efficiency and scalability.

The remainder of this paper is organized as follows: Sec. 2
reviews prior work on RL and PS in quantum systems; Sec. 3
details the GRL algorithm, and Sec. 4 benchmarks GRL and
shows its advantage over state-of-art RL in solving TFIM
in simulated environment and quantum hardware. Finally,
Sec. 5 discusses the implications of our findings and outlines
future research directions.

2. Related works

Reinforcement learning for quantum computing Rein-
forcement learning (RL) has become one of the most effec-
tive techniques for optimizing parameterized quantum cir-
cuits (PQCs) in variational quantum algorithms. These meth-
ods typically rely on carefully designed reward functions
to train agents for selecting suitable quantum gates. In (Os-
taszewski et al., 2021), double-deep Q-Network (DDQN)
combined with an e-greedy policy was employed to esti-
mate the ground state of chemical Hamiltonians. Similarly,
(Ye & Chen, 2021) proposed a DQN-based framework with
an actor-critic policy and proximal policy optimization to
construct multi-qubit maximally entangled states.

In (Fosel et al., 2021), a novel deep reinforcement learning
approach was introduced for quantum circuit optimization,
demonstrating improved circuit efficiency and supporting
hardware-aware strategies. Expanding on this, (Patel et al.,
2024b) applied curriculum reinforcement learning and ad-
vanced pruning techniques to address PQC challenges on
realistic quantum hardware. The work in (Tang et al., 2024)
integrated reinforcement learning with Monte Carlo tree

search to minimize routing overhead in quantum circuits.

Further, (Fodera et al., 2024) demonstrated how RL could
autonomously generate quantum circuits as ansatzes in vari-
ational quantum algorithms (VQAs), solving diverse prob-
lems and introducing novel ansatz families, such as for the
Maximum Cut problem. Reinforcement learning methods
employing cost explosion strategies to enhance training effi-
ciency and reach optimal quantum circuits were proposed
in (Moflic & Paler, 2023). In (Kundu, 2024), a novel encod-
ing of PQCs, combined with a dense reward function and
e-greedy policy, tackled the quantum state diagonalization
problem. Additionally, RL was shown to address hard in-
stances of combinatorial optimization problems, surpassing
the performance of state-of-the-art algorithms, as evidenced
in (Patel et al., 2024a). Insights from quantum information
theory were leveraged in (Sadhu et al., 2024) to guide RL
agents in prioritizing architectural features for improved
PQC search and optimization.

Despite these advances, a significant limitation of existing
RL approaches lies in their fixed action space, which can
lead to performance degradation as the number of qubits
or problem complexity increases. Moreover, many of these
methods rely on non-native gates that require transpilation
to fit specific hardware constraints, necessitating additional
noise-resilience techniques.

Program synthesis in quantum domain Program syn-
thesis has shown promise for expanding the action space
of reinforcement learning agents, enabling the discovery
of high-level actions, often referred to as option discovery
or skill learning in RL literature. Techniques explored in
this domain include learning multiple policies with a meta-
controller, leveraging information theory, and maximizing
diversity (Bacon et al., 2017; Nachum et al., 2018; Machado
et al., 2024; Krishnan et al., 2017; Frans et al., 2018; Gregor
et al., 2016; Florensa et al., 2017; Eysenbach et al., 2019).

Inspired by recent advancements in program synthesis, such
as DreamCoder (Ellis et al., 2020), simpler task solutions
can be analyzed to extract common fragments as new primi-
tives, thereby reducing search complexity. Even naive enu-
meration approaches benefit significantly from this compres-
sion technique (Dechter et al., 2013). For quantum com-
puting, program synthesis has been successfully applied to
decompose unitary matrices (Sarra et al., 2024). This work
generalizes the synthesis process by replacing brute-force
enumeration with a reinforcement learning agent for the
search step.

Additionally, composite gates, known as gadgets, have been
introduced to simplify quantum circuit searches (Ruiz et al.,
2024). While pattern recognition methods have been used
to extract gadgets for interpretability (Trenkwalder et al.,
2023), their iterative application to enhance the performance
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of RL agents remains underexplored.

3. Methods

We propose a general technique to build circuits that solve
quantum optimization problems. Our approach combines
a reinforcement learning agent to search for the parameter-
ized quantum circuit (PQC) space with a program synthesis
algorithm that analyzes the best circuit to extract gadgets
(i.e., new composite components) that extend the agent’s
action space. This method, which we call gadget reinforce-
ment learning (GRL), is particularly useful when solving
a parametrized class of problems. Especially when the
problem has different degrees of difficulty according to its
parameters, we can learn a set of operations from simpler
problems and use them subsequently to help solve the harder
ones.

3.1. Gadget reinforcement learning

We provide an overview of the GRL algorithm for construct-
ing PQCs in a VQA task. Consecutively, we provide details
on the state and action representations as well as the reward
function employed in this study.

The GRL algorithm initiates with an empty quantum cir-
cuit. The RL agent, based on a double deep Q-network
and e-greedy policy (for further details see Appendix D.2),
sequentially appends the gates to the circuit until the max-
imum number of actions has been reached. The actions
are chosen from an action space of available elementary
gates. In particular, in our application, it contains RZ, SX,
X as single qubit gates, where RZ is the only parameter-
ized gate in the action space. Furthermore, to entangle the
qubits we use Controlled-Z (CZ) gate. The main motive to
choose such an action space is that all these gates are na-
tive gateset of the newly introduced IBM Heron processor.
Therefore, we do not need to further transpile the circuits,
which is an NP-hard task (IBM Quantum Documentation,
2024), when executing on the processor, apart from remov-
ing possible gate sequences that simplify to identity. We
implement a double deep RL method, where the PQCs are
encoded in a refined binary tensor representation, as intro-
duced in (Kundu et al., 2024b). This encoding is inspired by
the tensor-based encoding introduced in (Patel et al., 2024b).
In the Appendix D.1 we elaborately describe the refined
encoding scheme with an example.

To steer the agent towards the target, we use the same re-
ward function R at every time step ¢ of an episode, as in (Os-
taszewski et al., 2021). The reward function R defined as,

r, if Ct < C,
R=4q—r ift>Tyxand Cy >, 2)
C, otherwise.

Ci_1—Ch
[Ct—1—Chinl’
number, Cy represent the value of the cost function C' (as
defined in Eq. 1) at step ¢, and T},,,x denote the maximum
number of steps allowed for an episode. Additionally, note
that when the agent receives a positive reward value 7, the
episode concludes. In other words, there are two stopping
conditions: either surpassing the threshold ¢ or reaching the
maximum number of actions. The agent’s objective is to
estimate the value of Cyy;, with the desired precision (.

where C = max ( -1, 1), r is a real positive

In what follows, we utilize a feedback-driven curriculum re-
inforcement learning agent. In particular, the agent updates
its threshold while running the episodes: if we find a ground
state with lower energy than the threshold, we decrease the
threshold, otherwise, we increase it again. The algorithm is
described with more technical detail in Appendix B.

In the next step, we sample the top £ PQCs, chosen accord-
ing to how effective they are at estimating the solution to
the problems, i.e., with smaller associated ¢ value. These
PQCs are then processed through a program synthesis (PS)
algorithm, as described in Section 3.2. By considering an
appropriate tradeoff between the proposed component usage
frequency and its complexity (simpler components are more
likely to generalize), we can extract composite gates, i.e.,
gadgets, by choosing those with the largest log-likelihood.
We gadgetize the RL algorithm by updating the action space
with the gadgets discovered by the library building module.
Finally, the GRL is executed again with the modified action
space, consisting of the initial gateset corresponding to the
quantum hardware and the gadgets.

3.2. Library building

To update the action space in GRL, a library-building algo-
rithm that leverages a program synthesis framework inspired
by (Sarra et al., 2024; Ellis et al., 2020) is employed. The
algorithm analyzes the top-k PQCs to identify and extract
common, useful gate sequences and structures. The PQCs
are expressed as programs in a typed-A-calculus formal-
ism (Pierce, 2002), where the gates act as functions that
take a quantum circuit and the target qubits as inputs and
return the updated PQC with the gate applied. For example,
a function that applies an X gate on the first qubit and then
a controlled-Z gate can be represented as

f(I2) = cz(x(12,0),0,1) 3)

where I5 is a 2-qubit empty circuit. Each circuit program
is organized into a syntax tree. The algorithm decomposes
each circuit into fragments, i.e. sets of operations, and looks
for the most common fragments in the input set. We use the
fragment grammar formalism to evaluate each fragment’s
usefulness based on a grammar score. In this context, a
grammar ¢ consists of elementary gates (primitives) with
usage probabilities estimated from the given set of k top
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circuits. The grammar score function prioritizes grammars
that are most likely to produce effectively the given set of
circuits, while balancing complexity.

We then modify the action space of the RL agent by adding
the highest scoring fragments, which are expected to help
find more compact PQCs with a smaller number of gates. In
our experiments, we show that, although the library is built
upon problems that are small and simple, these libraries
generalize effectively and can be utilized to gadgetize RL
and solve harder instances of the given problem iteratively.
For further details on grammar scoring, fragment grammar
structure, and hyperparameter settings, refer to Appendix C.

The GRL runs iteratively by first considering a small system,
(e.g. in our case a 2-qubit Ising model in a weak transverse
field, h = 10~3) and finding the solution within a pre-
defined threshold (). The agent then finds the ground state
within the compute budget, expressed by a fixed number of
episodes. Subsequently, we try to solve an intermediately
difficult problem (in our case, the Ising model with a larger
transverse field, h = 5 x 1072).

4. Results

As an example application for our algorithm, we consider
the transverse field Ising model (TFIM). The goal is to
design a circuit which finds the ground state of the system,
i.e. the system with the lowest energy. This problem is
well-known to be NP-Hard (O’Connor et al., 2022). The
system is defined by

N
H=-J> oioi—hY of @
(i.5) i

where N is the number of qubits, .J is the coupling constant
between neighboring spins, h is the strength of the trans-
verse field, o7 and o are the Pauli matrices acting on the
i-th spin in the z- and z-direction, respectively, and (3, j)
denotes summation over nearest neighbors. This model
presents a ferromagnetic phase transition at J > h and has
been studied thoroughly in the literature, for example, with
hybrid quantum-classical approaches (Sumeet et al., 2023)
where they utilize numerical linked-cluster expansions with
the variational quantum eigensolver (VQE) for TFIM with
one-dimensional chains and the two-dimensional square
lattice.

The primary motivation for using the transverse field Ising
model (TFIM) in this problem is the increasing difficulty
in finding the ground state as the magnetic field strength
h varies from small values (on the order of 10~3) towards
1, which is defined as the phase change point. This diffi-
culty arises due to the degeneracy between the ground and
first excited states that emerge as h approaches the critical

value (Curro et al., 2024; Pfeuty, 1970). As shown in Ap-
pendix A the degeneracy phenomenon is a key feature of
the quantum phase transition in the TFIM and significantly
impacts the behavior of the system near the critical point.

The primary objective of employing gadget reinforcement
learning (GRL) is to derive gadgets from easily solvable
instances (in our case, where h < J) through program
synthesis within an RL framework. These gadgets are then
utilized to modify the action space in the RL framework, en-
abling efficient solutions for more challenging instances. We
quantify this efficiency through two key metrics: (1) Agent
performance: This is evaluated by analyzing the cumulative
reward, the nature of agent-environment interactions, and
the total training duration. (2) Training accuracy: We assess
how accurately the GRL agent performs in comparison to
state-of-the-art RL agents. Our focus is on quantifying the
number of 1- and 2-qubit gates required to achieve a speci-
fied accuracy, both in simulated environments and on actual
quantum hardware.

4.1. Improved performance

We recall that GRL runs iteratively, with the agent and
environment specifications as provided in Appendix D.3.
Additionally, in Appendix H we provide an elaboration of
the training time by both the RL- and GRL-agents.

Agent accuracy and success frequency Fig. 2 summa-
rizes the performance of RL and GRL agents in finding the
TFIM ground state. The RL-only framework starts with
a small system in an easy regime (e.g., weak transverse
field, h = 10~3) and achieves machine precision within a
fixed compute budget (up to 48 hours). For the intermediate
regime (h = 5 x 1072), the agent finds an approximation,
but the PQCs are large, and the errors are relatively high
compared to their size. Notably, the RL-agent fails to give
us a good approximation of the ground state for h = 1 and
the number of successful episodes’ drastically reduces as
we increase the precision.

To improve efficiency, we analyze the top £ PQCs from
earlier cases and extract key components as new primitive
composite gates, or gadgets. By adding the most likely gad-
get to the RL agent’s action space, we achieve significantly
better approximations of the ground state. As additional
gadgets are included, the agent experiences increasingly
frequent successful episodes, achieving progressively lower
error in estimating the ground state.

Compared to a state-of-the-art curriculum-based RL ap-
proach (Patel et al., 2024b), the gadget-based GRL agent
is more effective, particularly in harder regimes. Gadget

2An episode is deemed successful if the agent approximates
the ground state within a predefined threshold (.
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Figure 2. Results for the 2-qubit transverse field Ising model (TFIM). We compare reinforcement learning-only (blue) with gadget
reinforcement learning (GRL) using one (reddish orange) and two (green) extracted components, as shown in the legend. (a) and (b) show
the number of successful episodes (agent finds the ground state within predefined accuracy) for h = 5 x 10~ and h = 1 (phase change
point), respectively. (c) compares error scaling with varying transverse field strength under a fixed compute budget (48-hour GPU run).
Solid lines show averages over multiple runs; shaded areas indicate solution ranges (smallest values are most relevant). GRL achieves
high accuracy for h = 1. (d) plots RL reward thresholds during training for h = 1, showing GRL finds circuits with lower cost. Without
gadget extraction, accuracy is limited to 103, while GRL achieves machine precision.
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Figure 3. For N = 2 TFIM, GRL with one and two gadgets improves the cumulative reward growth compared to RL. The
RL-agent struggles with consistent cumulative rewards and positive returns. GRL with one gadget improves performance, achieving
steady cumulative reward growth and frequent positive returns but experiences a notable drop around the 1000th episode, reaching the
machine precision error threshold. GRL with two gadgets resolves this drop and further enhances performance.

extraction is performed on easier tasks, and the resulting modified action space is used to tackle more challenging
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Problem | Method Metric #CZ #RZ #SX #X
GRL  Average 20 60 443 20
2-qubit GRL  Minimum 2 5 4 1
TFIM RL Average 2.0 808 6.62 1.75
RL Minimum 1 6 4 1
GRL  Average 60 11.0 110 1.0
3-qubit GRL Minimum 2 9 7 1
TFIM RL Average 8.83 21.67 22.67 1.0
RL  Minimum 7 27 27 1

Table 1. Length and composition of constructed circuits. We
compare gadget reinforcement learning (GRL) with state-of-the-
art curriculum reinforcement learning in the hardest regime (h =
1). Results are based on transpiling top-performing circuits for
the IBM Heron processor. GRL achieves smaller gate counts
compared to RL-only. The averages reflect PQCs with similar
errors, while the minimum metric represents the most compact
transpiled PQC with comparable performance.

problems, such as h = 1. This demonstrates the utility of
the approach, especially for complex scenarios.

Cumulative rewards and returns Fig. 3 shows that the
RL-only agent struggles with consistent rewards and posi-
tive returns, while GRL with one gadget steadily improves
but plateaus around the 1000th episode, reaching machine
precision. Adding a second gadget resolves this drop and
enhances performance. It is worth noting that for the N = 2
qubit problem, machine precision can be achieved with just
one extracted gadget, making the second gadget redundant
in this case. The two-gadget implementation for N = 2
serves to illustrate the potential for performance improve-
ment when additional gadgets are introduced in more com-
plex systems. A similar observation is recorded for N = 3
qubit TFIM and is in Appendix F.

Generalization of extracted gadgets Fig. 4 demonstrates
the performance of GRL agents using 2-qubit gadgets for
N = 3. While one gadget achieves machine precision for
N = 2, it only reaches an error of 10~ for N = 3. Adding
a second gadget dramatically improves performance, en-
abling machine precision in both easy and hard regimes. In
contrast, the RL-only agent fails to learn due to the search
depth required, especially in the hard regime (h = 1), where
it produces high-error solutions likely assembled randomly.
Additional gadgets allow RL to find significantly better so-
lutions. For a comprehensive analysis of our ablation study
and detailed numerical results, please refer to Appendix E.

4.2. Found circuits are suitable for real hardware

More compact circuit for real hardware We compare
PQCs from gadget reinforcement learning (GRL) with state-
of-the-art RL methods for finding the TFIM ground state.

We benchmark against curriculum reinforcement learn-
ing (Patel et al., 2024b) using a universal gateset (RX, RY,
RZ, CX) as in (Patel et al., 2024b; Kundu, 2024), comparing
it to GRL with an extended action space including gadgets.
The GRL action space incorporates the IBM Heron pro-
cessor’s native gateset and composite gates derived from
top-performing PQCs for 2-qubit TFIM at h = 103 and
h = 5 x 1072, We estimate the ground state of 2-qubit
and 3-qubit TFIM at the phase change point (h = 1). GRL-
obtained circuits achieve similar error to RL but the circuits
are more compact when transpiled for real quantum hard-
ware. Table 1 summarizes results after transpiling in ITBMQ
Torino (part of IBM Heron processor).

Moreover, Appendix I details hardware topology and in
Appendix G we show GRL uses 3x fewer CZ, RZ, and
SX gates for similar error (in the order of ~ 10~%) in 3-
qubit TFIM. This suggests an advantage in solving problems
directly with GRL consisting of target hardware components
and gadgets, rather than first finding solutions in a universal
gateset and then transpiling for the target hardware.

Improved performance on real hardware In Ap-
pendix G we further show that the circuits obtained in the
noiseless scenario by GRL provide better approximation
to the ground state estimation for both the 2- and 3-qubit
TFIM across multiple quantum hardware modules on the
IBM Heron and IBM Eagle processors. We emphasize
that no constraint on the circuit depth has been enforced in
the GRL agent, even though this can be considered in future
applications to encourage shorter circuits, or avoid using
expensive gates.

5. Outlook

In this paper, we have shown how to learn reusable compo-
nents from different regimes for efficiently building quan-
tum circuits that solve some given problems. Instead of
considering a single specific problem, we start from a trivial
regime and gradually tackle the harder one. By finding the
ground state in the low transverse field regime, we discover
sequences of gates that are recurrent, and we can extract
them as gadgets and use them to extend the action space
of subsequent iterations. This proves to be very effective
because it largely reduces the required depth of the circuit at
the cost of a slightly increased breadth of the search. In other
words, the extracted gates serve as a data-driven inductive
bias for solving the given class of problems.

In terms of shortcomings of our approach, the main over-
head to consider is the necessity of performing multiple
iterations. In particular, it is important that the target class
of problems has a structure with different degrees of dif-
ficulty: if the problem is too difficult, the reinforcement
learning agent does not receive any signal, it will only learn
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Figure 4. GRL with two gadgets (green) overcomes the training bottleneck of RL-only (blue) and GRL with one gadget (red). As in
Fig. 2, subplots (a) and (b) show successful episodes, while (c) and (d) compare error scaling and RL reward thresholds. Under a fixed
compute budget and varying transverse field strength, RL and GRL with one gadget achieve accuracies around 0.1, whereas GRL with
two gadgets attains machine precision. It should be noted that the gadgets that are used in this simulation are the same ones extracted

while solving the N = 2 qubit TFIM.

to produce random circuits and the extracted gates will not
be necessarily useful. On the other hand, if one regime is
trivial and the other one is too hard, there is a low chance
of generalization. Also, to extend the actions of the rein-
forcement learning agent multiple approaches are possible.
In our example, we reinitialized the agent after extending
the action space. However, smarter approaches, for example
by just adding extra output neurons at the last layer of the
policy, associating them to the added gadgets, may allow
starting from the previous policy, while adding a small bias
to encourage the exploration of the new action.

Our technique is general and can be extended to other quan-
tum problems. For instance, we can efficiently solve chal-
lenging correlated quantum chemistry instances by lever-
aging gadgets from simpler ones. Easy instances involve
smaller action spaces, and as the action space grows or
accuracy requirements for the ground state increase, the
problem becomes more difficult (McCaskey et al., 2019;
de Gracia Trivifo et al., 2023). This approach can also be

applied to quantum optimization, simulation, and machine
learning, where easy instances help address more complex
scenarios. Furthermore, it may be suitable for real hardware
optimizations. Indeed, it allows to explicitly define the ele-
mentary gates to use for the decomposition, as opposed to
finding the solution in a high-level gate set first (e.g. rotation
gates RX, RY, and RZ) and transpiling them later. This can
arguably produce more efficient circuits. Also, penalties
for the length of the circuit or for the use of specific gates
could be enforced, encouraging gates that are more reliable
or cheap to implement on real hardware. In addition, the
elementary components could also be modified to include
some model of the noise on the real hardware, thus possibly
finding a solution for some quantum problem that already
includes some noise mitigation effects.

Reproducibility
under preparation.

The code used to generate the results are
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6. Impact statement

This work advances the field of quantum computing and ma-
chine learning by introducing gadget reinforcement learning
(GRL) for efficient quantum circuit design. The potential
broader impacts include:

* Design hard problems by learning gadgets: GRL could
significantly speed up the design of computationally
complex problems by learning gadgets from easy-to-
solve ones, potentially leading to breakthroughs in
various fields such as cryptography, drug discovery,
and materials science.

e Democratization of quantum computing: The auto-
mated circuit design process could make quantum al-
gorithm development more accessible to researchers
without deep expertise in quantum physics, broadening
participation in the field.

e Energy efficiency: GRL can tackle difficult quantum
tasks in a fixed computation budget, providing more
efficient quantum circuits. This may lead to reduced
energy consumption in quantum computations, con-
tributing to sustainable computing practices.

e Ethics and safety: This work enhances the capabilities
of reinforcement learning agents, which are general-
purpose algorithms that can be used for different pur-
poses than quantum computing.
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A. The Transverse Field Ising Model: different regimes

As shown in Fig. 5, by looking at the ground state energy gap, we can identify three different regimes in the Transverse
Field Ising Model:

1. in the low external field, the first excited state is almost degenerate with the ground state, therefore it is easy to find a
low-energy state;

2. the regime where h ~ 0.1, where the energy gap increases and the ground state starts to have a visibly different energy
from the first excited state;

3. h > 0.1 where the energy gap is larger and the ground state energy is much smaller than that of the first excited state.

-®- qubits: 2
1.2

1.01

0.8

0.4

0.29

0.0 T-0---0--9

1073 1072 107! 100

Figure 5. Energy gap between first excited state and ground state of the TFIM model as a function of the transverse field strength. The
separation A F is negligible till » = 10!, Hence, due to energy degeneracy, it is easy to find a good energy approximation for b, < 107*.
The problem becomes harder when we choose h > 10" as A E becomes non-negligible.

B. Feedback-driven curriculum reinforcement learning

During learning, the agent maintains a pre-defined threshold (5 representing the lowest energy observed so far, updating it
based on defined rules. Initially, (- is set to a hyperparameter (;. When a lower threshold is found, (5 is updated to this new
value. A fake minimum energy hyperparameter, 1, serves as a target energy, approximated by the following:

fake minimum energy = (N — 1) x (—=J) + N x (—h), 5)

where N is the number of interacting spins, J is the coupling strength between the spins and h is the strength of the magnetic
field.

Without amortization, the threshold updates to | — (2| when (5 changes; with amortization, it becomes | — (2| + J, where
d is an amortization hyperparameter. The agent then explores subsequent actions and records successes.

Two threshold adjustment rules apply: a greedy shift to | — (2| after G episodes (where G is a hyperparameter) and a
gradual decrease by §/k with each successful episode, where « is a shift radius hyperparameter. If repeated failures occur
after setting the threshold to | — (o, it reverts to |u — (2| + J, allowing the agent to backtrack if stuck in a local minimum.

C. Detailed description of the Library Building algorithm

The library building algorithm analyzes a set of circuits D in relation to a given set of elementary gates g, called grammar.
In this framework, each grammar g consists of elementary gates (also called “primitives”) with assigned probabilities based
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on usage frequency in the dataset. When we consider whether we should add a new gadget to our set of elementary gates,
we compare the grammar with and without the new gadget, and accept the new gate if we improve the grammar score. This
quantity evaluates how good a grammar is to represent the given dataset D, trading off the likelihood of sampling circuits
from the dataset with an approximation of the complexity of the grammar itself. In particular, given a set of circuits D, we
define the grammar score S, representing the grammar’s efficiency in describing the circuits, as

Sp(g) = Ly(D) = gl =k Y _ pl, ©6)

peyg

where:

* |g|: the number of components in grammar g,
* p: a component or building block in the grammar,
* |p|: the number of elementary gates in p,

e A =1and k = 1 are hyperparameters.

The first term represents the likelihood of reproducing the observed circuits, while the last two terms are complexity
regularizers, inspired by the minimum description length principle. The likelihood Ly(D) of a grammar is approximated
with the probability of randomly sampling the circuits in the dataset using the grammar gate probabilities. Each circuit is
weighted by the accuracy in solving the task (measured as the opposite of the energy).

The main hyperparameters that we consider to tune the algorithm are:

1. Arity: This controls the maximum number of arguments a component can have, or equivalently, the maximum number
of qubits an extracted gate can act on. Here, we set arity = 2.

2. Pseudocounts: A constant shift in the usage frequency, which adjusts the log-likelihood estimation by ensuring each
component is treated as though it is used at least once, even if unobserved. This allows patterns to be considered useful
only if they appear frequently in the dataset. We set pseudocounts = 10.

3. Structure Penalty k: This regularizes the tradeoff between grammar likelihood and complexity. Lower penalties yield
higher likelihoods but may overfit, while higher penalties result in simpler grammars that generalize better. We set
structurePenalty = 1.

For a more technical descriptions of the A-calculus tree structures and their efficiency, see (Ellis et al., 2020; Sarra et al.,
2024).

D. Implementation details
D.1. Quantum circuit encoding

We employ a refined version of the tensor-based binary encoding introduced in (Kundu et al., 2024b), which is inspired by
the encoding presented in (Patel et al., 2024b), to capture the architecture of a parametric quantum circuit (PQC), specifically
by encoding the sequence and arrangement of quantum gates. Unlike the encoding presented in (Patel et al., 2024b), which
is only the function of the number of qubits IV, the refined encoding is a function of N and the number of 1-qubit gates
Niq. This makes it suitable for the encoding of a broad range of action spaces and enables the agent to access a complete
description of the circuit. To ensure a consistent input size across varying circuit depths, we construct the tensor for the
maximum anticipated circuit depth.

To build this tensor, we define the hyperparameter 7i,.x, wWhich restricts the number of allowable gates (actions) across
all episodes. A moment in a PQC refers to all simultaneously executable gates, corresponding to the circuit’s depth. We
represent PQCs as three-dimensional tensors where, at the start of each episode, an empty circuit of depth T}, is initialized.
This tensor is dimensioned as [Tiax X ((N + Nigq) x N)|, where N denotes the number of qubits and N4 the number of
1-qubit gates. Each matrix slice within the tensor contains N rows that specify control and target qubit locations in CNOT

13



Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware
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Figure 6. The refined encoding of a parameterized quantum circuits (PQCs) into a tensor. This is the observable for the reinforcement
learning algorithm. The 2-qubit gates are encoded into a matrix whose dimension is dependent on the number of qubits. Meanwhile, the
1-qubit gates are encoded into the remaining /Viq rows, which define the number of different 1-qubit gates present in the action space.
After the program synthesis algorithm (described in 3.2) finds the most common patterns of gates, i.e. gadgets, in the top performing
PQCs, the action space is then updated with the extracted gadget. In the gadgetized reinforcement learning, the dimension of the tensor is
then increased. The increase in dimension depends on whether the gadget is a 1- or 2-qubit gate.

gates, followed by either 3 rows (for RX, RY and RZ) or 3 rows (for SX, X, RZ) to indicate the positions of 1-qubit gates.
When we update the action space by incorporating the gadgets, (which are the composite gateset found using the program
synthesis algorithm) then, depending on the added gadget, we update the size of the tensor. After gadgetizing the action
space, we rerun the RL agent with the extended encoding of the PQCs as shown in Fig. 6.

D.2. Double Deep Q-Network (DDQN)

Deep Reinforcement Learning (RL) methods employ Neural Networks (NNs) to refine the agent’s policy in order to
maximize the cumulative return:

o0
Gi=> ikt )
k=0
where v € [0, 1) denotes the discount factor. An action value function is assigned to each state-action pair (s, a), capturing
the expected return when action a is taken in state s at time ¢ under policy 7:
Gr(8,a) = E;[Gilsy = s,a: = al. 8

The objective is to find an optimal policy that maximizes the expected return. This can be achieved through the optimal
action-value function ¢, which satisfies the Bellman optimality equation:

q«(s,a) =E|repr + H}IE}XQ*(StH,a/HSt =s,at=al. ©

Rather than solving the Bellman equation directly, value-based RL focuses on approximating the optimal action-value
function through sampled data. Q-learning, a widely used value-based RL algorithm, initializes with arbitrary Q-values for
each (s, a) pair and iteratively updates them to approach g.. The update rule for Q-learning is:

Qst,ar) + Q(se,ar) +a(riyr + VH}IE}XQ(SHMG') — Q(s¢,a4)), (10)

where « is the learning rate, ;1 is the reward received at step ¢ + 1, and s, is the resulting state after taking action a
in state s;. Convergence to the optimal Q-values is guaranteed under the tabular setup if all state-action pairs are visited
infinitely often (Melo, 2001). To promote exploration in Q-learning, an e-greedy policy is adopted, defined as:

r(als) = {1—@ if a = max, Q(s,a'), (1n

€ otherwise.
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This e-greedy policy adds randomness during learning, while the policy becomes deterministic after training.

To handle large state and action spaces, NN-based function approximations are used to extend Q-learning. Since NN
training relies on independently and identically distributed samples, this requirement is met through experience replay. With
experience replay, transitions are stored and randomly sampled in mini-batches, reducing the correlation between samples.
For stable training, two NNs are employed: a policy network that is frequently updated, and a target network, which is a
delayed copy of the policy network. The target value Y used in updates is given by:

Ypon = re41 +ymax Quarget(5t41,a"). (12)

In the double DQN (DDQN) approach, the action used for estimating the target is derived from the policy network,
minimizing the overestimation bias observed in standard DQN. The target is thus defined as:

YbDQN = Ti41 + YQuarget (141, arg max Qpolicy (St+1,a")). (13)

This target value is then approximated through a loss function, which in our work is chosen to be the smooth L1-norm given
by
0.522 if |x| < 1,

14
|| — 0.5 otherwise. 14

SmoothL1(z) = {

D.3. Reinforcement learning agent hyperparameters

The hyperparameters of the double deep-Q network algorithm were selected through coarse-grain search, and the employed
network architecture depicts a feed-forward neural network whose hyperparameters are provided in Tab. 2.

Table 2. GRL and RL agent hyperparameters.

Parameter Value
Batch size 1000
Memory size 20000
Neurons 1000
Hidden layers 5
Dropout 0.0
Network optimizer Adam (Kingma, 2014)
Learning rate 1074
Update target network 500
Final gamma 5% 1073
Epsilon decay 0.99995
Minimum epsilon 5x 1072

In the implemented agents, we greedily update the threshold (¢) after 2000 episodes, with an amortization radius set at 1074,
This amortization radius decreased by 10~° after every 50 successfully solved episode, beginning from an initial threshold
value of (; = 5 x 10~3. Moreover, in each episode, we set the total number of steps Ti,x = 20 for 2-qubit TFIM and
Timax = 50 for 3-qubit TFIM.

Throughout this paper, we utilize a gradient-free COBYLA optimizer (Powell, 1994) with hyperparameter settings similar
to ref. (Virtanen et al., 2020) and 1000 iterations at each step of an episode to optimize the PQCs.
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E. Ablation study
Table 3 gives a more detailed overview of the results of our experiments.

. Fiel Avg. Avag. Avg. Avg. Min. Min. Min. Min.
Settings Problem sfr.Cl e\lj;g. thge 2q \éite dep%h err. gate 2q gate depth

) h=10"% |1.0x10712% 2533 80 2233|6.67x10°1% 21 3 19

Z'T'%‘I‘ll\’/}‘ h=5x10"2 |1.5x 107** 180 367 150 | 1.8x10°'2 8 2 7

2-gate h=1 31x 107" 13.67 333 100 | 1.4x 107" 9 3 7

GRL ] h=10"3 6x10°° 205 25 120 | 26x107% 19 1 12

3%%‘;;’; h=5x10"2| 1.3x107* 420 11.67 290 | 1.3x107* 33 3 19

h=1 0.10 410 833 280 | 72x107? 35 5 25

] h=10""3 2.1x 1071 1833 533 1467 | 39x 10" 8 2 6

QT'%‘I‘E/}t h=5x 1072 | 5.3 x 107 1433 333 110 | 23x107'° 11 2 9

1-gate h=1 1.5x 107" 1167 167 80 | 66x107"" 8 1 6

GRL ) h=10"3 12x10°7 430 115 285 | 12x107° 38 6 26

3T'%‘I‘§/}‘ h=5x10"2| 9.6 x10°* 160 3.67 1033| 1.3x10°% 11 2 6

h=1 0.34 40.67 25.67 31.0 0.26 36 19 27

] h=10"3 6.4x 1077 1433 30 11.33] 9.5x107° 11 2 9

Z'T'%‘I‘ll\’/}‘ h=5x 1072 | 1.3x10™% 21.67 533 1633| 16x10°% 21 3 15

RL h=1 57%x107% 2033 30 13.67| 7.4x10°¢ 14 2 10

only ] h=10"3 75x1077 180 95 135 | 7.5x10°7 11 3 6

3%%‘;;’; h=5x10"2| 1.7x 1073 1567 7.0 11.67| 1.0x 1073 12 3 9

h=1 0.53 360 7.0 243 0.39 29 2 18

Table 3. Results of the gadget reinforcement learning (GRL) agent on finding the ground state of transverse field Ising model (TFIM) for
two and three qubits in three different regimes (low, intermediate and strong transverse field). We compare the performance with one
and two extracted gadgets and RL only. The average is taken over different initializations of the neural network and the minimum is the
best-performing instance. By looking at the best solution, we see that GRL produces better approximations and sometimes even shorter
circuits than RL only, especially in the hardest regimes.

F. Cumulative rewards and return: 3-qubit TFIM

The Fig. 7 illustrates the cumulative performance of RL and GRL agents over a series of episodes for solving the 3-qubit
transverse field Ising model (TFIM). Key metrics, such as error threshold, rewards, and returns, are plotted against the
number of episodes to evaluate the effectiveness of each approach.

RL GRL + one gadget GRL + two gadgets

—— Cumulative reward
10714 . Return
---- Error threshold

Error threshold/Reward/Return

10° 10! 102 10° 10t 100 10! 102 10° 100 10° 10! 10? 10° 10"
Number of Episodes Number of Episodes Number of Episodes

Figure 7. Comparative performance of RL and GRL agents in solving the 3-qubit TFIM. The plots show cumulative rewards, error
scaling, and success rates over episodes for RL-only, GRL with one gadget, and GRL with two gadgets. GRL agents demonstrate
improved stability, faster convergence, and higher success rates, particularly when multiple gadgets are incorporated

The RL-only agent struggles to achieve stable rewards across episodes, showing significant fluctuations and slow convergence.
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In contrast, GRL agents exhibit steady improvements in cumulative rewards, particularly when gadgets are incorporated into
the action space. Error Scaling:

For GRL with one gadget, the error decreases significantly in early episodes but plateaus at a higher value, indicating limited
capability to reach machine precision. GRL with two gadgets further reduces the error, demonstrating the benefits of adding
more extracted gadgets for addressing complex regimes. Success Rates:

The frequency of successful episodes (defined by achieving the ground state approximation within a predefined threshold)
increases with the number of gadgets in the GRL setup. The RL-only agent rarely achieves success, particularly in the
harder regimes.

The results highlight the scalability and robustness of GRL agents. Incorporating gadgets not only accelerates the learning
process but also enables the agent to achieve lower error thresholds and higher success rates, even for challenging
configurations like the 3-qubit TFIM.

This analysis demonstrates the potential of gadget-based reinforcement learning to significantly enhance agent performance.
The inclusion of additional gadgets systematically reduces errors and increases the frequency of successful episodes, making
this approach a viable solution for tackling more complex quantum systems.

G. Performance comparison of the transpiled circuits

Here we compare the length and the performance of the circuits obtained to solve the 2 and 3-qubit TFIM ground state at the
phase change point (h = 1) using the RL agent with a universal gateset (i.e. RX, RY, RZ and CX) and GRL agent with an

GRL RL GRL RL
Backend name Backend name

Avg. Min. Avg. Min. Avg. Min. Avg. Min.

fake_torino -3.309 -3.366 —3.287 —3.351 fake_torino —2.188 —2.213 -2.164 —2.1992

fake kawasaki | —3.370 —3.397 —-3.235 —3.319 fake kawasaki | —2.162 —2.196 —2.123 -2.1592

fake_quebec -3.318 -3.379  3.266 —3.318 fake_quebec —2.118 —-2.145 —-2.084 -2.1597

Table 4. Performance comparison of GRL and RL agents for 2-qubit (right table) and 3-qubit (left table) TFIM ground state
preparation at the phase transition point (b = 1). The table presents the average and minimum energy values obtained using simulated
noisy quantum hardware. GRL, leveraging an extended action space with gates from the IBM Heron processor and an additional gadget,
demonstrates consistently better performance compared to RL. This is reflected in lower (more negative) energy values across all backends,
highlighting GRL’s enhanced optimization capabilities and robustness in circuit design. It should be noted that the true minimum energies
for 2- and 3-qubit cases are —2.236 and —3.494 respectively.

extended action space consisting of gateset of IBM Heron and processor and one additional gadget. The performance of the
GRL and RL are summarized in the Tab. 4. From the table we note the following observations:

1. Consistent outperformance: GRL consistently achieves better results than RL across multiple simulated backends. This
is evident from the lower (more negative) energy values for GRL in both the 2-qubit and 3-qubit cases.

2. Improved minimum values: GRL not only shows better average performance but also achieves lower minimum energy
values, indicating its ability to find better solutions more consistently.

3. Versatility across backends: The advantage of GRL is maintained across various noisy backends of IBM Heron and
IBM Eagle processors, suggesting its robustness to different quantum hardwares.

4. Potential for real hardware: While these results are from simulated noisy environments, they suggest that GRL could
offer significant advantages when applied to real quantum hardware, potentially leading to more efficient quantum
circuit designs for solving TFIM ground state problems.

GRL’s extended action space, which includes the IBM Heron processor’s gateset and an additional gadget, likely contributes
to its ability to find more optimal circuit configurations.
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Figure 8. Best-performing circuit obtained from curriculum reinforcement learning (RL) agent in solving N = 3 TFIM using a
universal gate set. We train the agent for 5000 episodes and choose the circuit that provides the lowest error in estimating the ground
state energy.

In Fig. 8 we illustrate one of the best-performing circuits by the RL. On the other hand, in Fig. 9, we show the best circuit

——

& = BHE

q; g-"=r

(1) 2

Figure 9. (1) Best-performing circuit obtained from the gadget reinforcement learning (GRL) agent with two gadgets in finding the
ground state of a 3-qubit TFIM. Similar to Fig. 8 we train the GRL agent for 5000 episode and then choose the circuit that gives the
lowest error in ground state estimation. In (2) we illustrate the extracted gadgets from easier problems with 2-qubit TFIM.

obtained for solving the same problem using our GRL agent.

Before implementation on real hardware, we would need to transpile the circuits to only use the instructions available on the
specific platform. Figure 10 compares the transpiled circuit obtained through the RL agent with a universal gate set with that
of our GRL agent with two extracted gadgets. We show a single example as an illustration, please refer to Table 1 in the
main text for more quantitative details.

H. Summary of training time

In Fig. 11 we compare the training time of reinforcement learning (RL) and gadget reinforcement learning (GRL). With a
fixed computational budget of 5000 episodes, the GRL agent identified the optimal solution—represented by a parameterized
quantum circuit that approximates the TFIM ground state—much faster than the RL-only agent. This demonstrates GRL’s
ability to achieve the desired accuracy with fewer interactions between the agent and the environment. This advantage
makes GRL particularly effective in noisy environments. Moreover, by completing the task in less time, GRL significantly
reduces energy consumption and computational resource requirements, making it a practical and efficient solution for
resource-constrained scenarios.

I. IBM Heron processor: IBMQ Torino

Figure 12 shows the topology of the IBMQ Torino platform.
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(@3]
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Figure 10. Comparison between the transpiled circuit obtained from (1) reinforcement learning (RL) using a universal gate set, (2)
gadget reinforcement learning (GRL) using the native gateset for the IBM Heron processor and two gadgets. After transpilation in

real hardware, the circuit produced by GRL is more compact compared to the RL-agent circuit.
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Figure 11. Gadget reinforcement learning (GRL) outperforms RL-only agents in finding the optimal solution more quickly for
both the N = 2 and N = 3 qubit transverse field Ising model (TFIM). The agent was trained with a fixed computational budget,
equivalent to 5000 episodes. The GRL agent identifies the optimal solution, represented by a parameterized quantum circuit that generates
a state closest to the TFIM ground state, much faster than the RL-only agent. This demonstrates that GRL is resource-efficient and can be

executed within a limited time frame.
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Figure 12. The topology of the IBMQ Torino which operates on IBM Heron processor.
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