
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Reinforcement learning with learned gadgets to tackle hard quantum problems
on real hardware

Anonymous Authors1

Abstract
Designing quantum circuits for specific compu-
tational tasks remains a fundamental challenge
in quantum computing, because of the exponen-
tial growth of the state space with the number of
qubits. We propose gadget reinforcement learning
(GRL), a framework that integrates reinforcement
learning (RL) with program synthesis by automat-
ically synthesizing composite gates, or “gadgets”,
and incorporating them into the RL agent’s action
space. This enables a more efficient exploration
of the design space for parameterized quantum
circuits (PQCs) that solve complex quantum tasks,
such as approximating ground states of quantum
Hamiltonians—an NP-hard problem.

We test GRL using the transverse field Ising
model (TFIM), a standard testbed for quantum
algorithms, under fixed computational budgets
typical of research settings (e.g., 2–3 days of
GPU runtime). Our experimental results demon-
strate the advantages of GRL over baseline RL
methods, including: (1) Improved accuracy: GRL
achieves ground-state energy estimation up to ma-
chine accuracy; (2) Hardware compatibility: GRL
generates compact PQCs that are more suitable
for implementation on real quantum hardware,
minimizing noise and gate errors; (3) Scalability:
GRL exhibits robust performance as the size and
complexity of the problem increases, even with
constrained computational resources.

By integrating program synthesis into the RL
framework, GRL facilitates the automatic discov-
ery of reusable circuit components, specifically
tuned for a given hardware. This bridges the gap
between algorithmic design and practical quan-
tum implementation. This makes GRL a versatile
and resource-efficient framework for optimizing

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

quantum circuits, with potential applications in
hardware-specific optimizations, variational quan-
tum algorithms, and other challenging quantum
tasks.

1. Introduction
Quantum computing has experienced substantial advance-
ments in recent years, unlocking the potential to solve clas-
sically intractable problems. Foundational algorithms like
Shor’s algorithm for integer factorization (Shor, 1999) and
Grover’s algorithm for unstructured search (Grover, 1996)
demonstrate the transformative promise of quantum technol-
ogy. However, practical implementation of these algorithms
faces substantial hurdles due to the limitations of current
quantum hardware, characterized by small qubit counts, sig-
nificant noise, and constrained connectivity (Monz et al.,
2016; Mandviwalla et al., 2018). These challenges require
innovative approaches to bridge the gap between theoretical
breakthroughs and hardware capabilities.

Hybrid quantum-classical algorithms, particularly varia-
tional quantum algorithms (VQAs), have emerged as a
promising solution to this challenge. VQAs operate by
dividing computation between quantum hardware and clas-
sical optimization. Their implementation involves three
main steps: (1) Quantum state preparation: A parameter-
ized quantum circuit (PQC) U(θ⃗), containing adjustable
parameters θ⃗, is constructed using single-qubit rotations and
non-parameterized two-qubit entangling gates. (2) Mea-
surement: The PQC is executed on quantum hardware to
evaluate the cost function:

C(θ⃗) = ⟨0|U†(θ⃗)HU(θ⃗)|0⟩, (1)

where H represents the Hamiltonian encoding the problem.
(3) Optimization: Classical algorithms minimize C(θ⃗) by
adjusting θ⃗. This paradigm transforms the challenge of
solving a quantum problem into finding an optimal PQC
that minimizes the cost function.

However, designing effective PQCs remains difficult due
to the constraints of current quantum hardware. Differ-
ent noise levels, qubit connectivity topologies, and gate
fidelities complicate the process, making hardware-specific

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

#1

feedback

send

State preparation

top circuits

Environment

Action: add gate Policy

Program synthesis:

extend the action space

State

Reward

Calculate cost

#1 = 0 1000 2000 3000 4000 5000
Episodes

10−9

10−7

10−5

10−3

10−1

T
h

re
sh

ol
d

h: 10−3 (with RL)

h: 5× 10−2 (with RL)

h: 1 (with RL)

h: 1 (with GRL)

Figure 1. (left) Sketch of the gadget reinforcement learning algorithm. A reinforcement learning agent sequentially adds gates to a
circuit for the preparation of a quantum state. The expectation value of the energy of a given Hamiltonian is calculated and used as cost.
The parameters θ⃗ of the constructed circuit are optimized to minimize the cost. A reward is provided to the reinforcement learning agent
according to a threshold ζ: if the cost is smaller, the agent gets a reward r, otherwise −r. Subsequently, the reward is used to improve the
policy. The algorithm stores the top k circuits. After a training loop, those circuits are analyzed with the program synthesis algorithm and
gadgets, i.e. composite gates that are most likely to be useful, are proposed. The best ones are added to the available actions, extending
the action space. The reinforcement learning agent will then start a new training loop. (right) Comparison of the best solutions to
our example application in different regimes. We consider the problem of finding the ground state of a 2-qubit transverse field Ising
model, as defined in Eq. 4. Different regimes are given by varying the magnetic field strength h, with h = 10−3 being the simplest task,
and h = 1 the most challenging task. A pure reinforcement learning agent significantly declines in performance as the difficulty of the
problem increases. On the other hand, gadget reinforcement learning can solve also the hardest regime, h = 1, which cannot be solved
with the RL approach.

PQC design particularly challenging. Recent efforts have
focused on adaptive methods (Grimsley et al., 2019; Tang
et al., 2021; Feniou et al., 2023) and advanced optimiza-
tion techniques (Zhou et al., 2020; Zhu et al., 2022; Cheng
et al., 2024; Kundu et al., 2024a) to address these issues.
Additionally, machine learning approaches, particularly re-
inforcement learning (RL), have emerged as promising tools
for automating PQC design (Krenn et al., 2023; Bang et al.,
2014; Ostaszewski et al., 2021; Kundu, 2024).

In conventional RL-based approaches, an agent explores
a fixed action space comprising predefined quantum gates
to construct PQCs. While effective for certain problems,
this approach limits the agent’s adaptability and scalability.
To overcome these limitations, curriculum RL (CRL) has
been introduced, allowing the agent to progress through
tasks of increasing complexity (Patel et al., 2024b). Despite
these advancements, both fixed-action-space RL and CRL
are limited by computational resources. With a fixed action
space, agents often require extensive exploration to identify
optimal solutions, which results in suboptimal utilization of
computational resources. This inefficiency becomes more
apparent in complex tasks, where managing the computa-
tional budget becomes crucial1.

1Due to the limitations of the available cluster, we restricted the
training to 5000 episodes and a maximum of 48 hours of runtime.

Addressing this challenge requires a framework capable of
leveraging insights from simpler problems to solve more
complex ones efficiently, within a fixed computational bud-
get. This paper introduces gadget reinforcement learning
(GRL), a novel approach that combines RL with program
synthesis (PS) to dynamically expand the agent’s action
space. GRL achieves this by synthesizing higher-level com-
posite gates, or “gadgets”, from the solutions of simpler
problem instances and incorporating these gadgets into the
agent’s action space. By doing so, GRL enhances the agent’s
ability to generalize and adapt, optimizing computational
resource utilization.

A schematic of the GRL algorithm is presented in Fig. 1
(left). The process begins with an RL agent solving a simple
instance of a problem using a basic action space, such as
the native gateset of a specific quantum processor. The
program synthesis component identifies recurring patterns
in the top-performing circuits, synthesizes these patterns
into gadgets, and adds them to the action space. With this
expanded action space, the RL agent retrains to tackle more
challenging problem instances.

To demonstrate the efficacy of GRL, we apply it to the
transverse field Ising model (TFIM), a problem that becomes
increasingly difficult as the magnetic field strength h or the
system size grows. GRL learns gadgets from a simple 2-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

qubit TFIM with h = 10−3 and successfully uses them to
solve more complex instances, including a 3-qubit TFIM
at h = 1, a regime where conventional RL approaches
fail due to computational limitations. The comparison of
performance across regimes is shown in Fig. 1 (right).

Our results highlight the advantages of GRL: (1) Improved
computational efficiency: By learning and leveraging gad-
gets, GRL achieves superior performance within a fixed
computational budget, avoiding the exhaustive exploration
required in fixed-action-space RL. (2) Scalability: GRL
effectively generalizes knowledge from simpler tasks to
more complex ones, reducing the computational burden
associated with solving larger problems. (3) Hardware
compatibility: The PQCs generated by GRL are compact
and hardware-optimized, making them more resilient under
noise and practical for real-world implementation.

Specifically, GRL achieves up to a 107-fold improvement in
error reduction for ground-state energy estimation compared
to baseline RL approaches under a fixed computational bud-
get. Moreover, by using gadgets learned from simple TFIM
instances, GRL can solve larger systems with fewer param-
eters and gates, demonstrating its efficiency and scalability.

The remainder of this paper is organized as follows: Sec. 2
reviews prior work on RL and PS in quantum systems; Sec. 3
details the GRL algorithm, and Sec. 4 benchmarks GRL and
shows its advantage over state-of-art RL in solving TFIM
in simulated environment and quantum hardware. Finally,
Sec. 5 discusses the implications of our findings and outlines
future research directions.

2. Related works
Reinforcement learning for quantum computing Rein-
forcement learning (RL) has become one of the most effec-
tive techniques for optimizing parameterized quantum cir-
cuits (PQCs) in variational quantum algorithms. These meth-
ods typically rely on carefully designed reward functions
to train agents for selecting suitable quantum gates. In (Os-
taszewski et al., 2021), double-deep Q-Network (DDQN)
combined with an ϵ-greedy policy was employed to esti-
mate the ground state of chemical Hamiltonians. Similarly,
(Ye & Chen, 2021) proposed a DQN-based framework with
an actor-critic policy and proximal policy optimization to
construct multi-qubit maximally entangled states.

In (Fösel et al., 2021), a novel deep reinforcement learning
approach was introduced for quantum circuit optimization,
demonstrating improved circuit efficiency and supporting
hardware-aware strategies. Expanding on this, (Patel et al.,
2024b) applied curriculum reinforcement learning and ad-
vanced pruning techniques to address PQC challenges on
realistic quantum hardware. The work in (Tang et al., 2024)
integrated reinforcement learning with Monte Carlo tree

search to minimize routing overhead in quantum circuits.

Further, (Foderà et al., 2024) demonstrated how RL could
autonomously generate quantum circuits as ansatzes in vari-
ational quantum algorithms (VQAs), solving diverse prob-
lems and introducing novel ansatz families, such as for the
Maximum Cut problem. Reinforcement learning methods
employing cost explosion strategies to enhance training effi-
ciency and reach optimal quantum circuits were proposed
in (Moflic & Paler, 2023). In (Kundu, 2024), a novel encod-
ing of PQCs, combined with a dense reward function and
ϵ-greedy policy, tackled the quantum state diagonalization
problem. Additionally, RL was shown to address hard in-
stances of combinatorial optimization problems, surpassing
the performance of state-of-the-art algorithms, as evidenced
in (Patel et al., 2024a). Insights from quantum information
theory were leveraged in (Sadhu et al., 2024) to guide RL
agents in prioritizing architectural features for improved
PQC search and optimization.

Despite these advances, a significant limitation of existing
RL approaches lies in their fixed action space, which can
lead to performance degradation as the number of qubits
or problem complexity increases. Moreover, many of these
methods rely on non-native gates that require transpilation
to fit specific hardware constraints, necessitating additional
noise-resilience techniques.

Program synthesis in quantum domain Program syn-
thesis has shown promise for expanding the action space
of reinforcement learning agents, enabling the discovery
of high-level actions, often referred to as option discovery
or skill learning in RL literature. Techniques explored in
this domain include learning multiple policies with a meta-
controller, leveraging information theory, and maximizing
diversity (Bacon et al., 2017; Nachum et al., 2018; Machado
et al., 2024; Krishnan et al., 2017; Frans et al., 2018; Gregor
et al., 2016; Florensa et al., 2017; Eysenbach et al., 2019).

Inspired by recent advancements in program synthesis, such
as DreamCoder (Ellis et al., 2020), simpler task solutions
can be analyzed to extract common fragments as new primi-
tives, thereby reducing search complexity. Even naive enu-
meration approaches benefit significantly from this compres-
sion technique (Dechter et al., 2013). For quantum com-
puting, program synthesis has been successfully applied to
decompose unitary matrices (Sarra et al., 2024). This work
generalizes the synthesis process by replacing brute-force
enumeration with a reinforcement learning agent for the
search step.

Additionally, composite gates, known as gadgets, have been
introduced to simplify quantum circuit searches (Ruiz et al.,
2024). While pattern recognition methods have been used
to extract gadgets for interpretability (Trenkwalder et al.,
2023), their iterative application to enhance the performance

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

of RL agents remains underexplored.

3. Methods
We propose a general technique to build circuits that solve
quantum optimization problems. Our approach combines
a reinforcement learning agent to search for the parameter-
ized quantum circuit (PQC) space with a program synthesis
algorithm that analyzes the best circuit to extract gadgets
(i.e., new composite components) that extend the agent’s
action space. This method, which we call gadget reinforce-
ment learning (GRL), is particularly useful when solving
a parametrized class of problems. Especially when the
problem has different degrees of difficulty according to its
parameters, we can learn a set of operations from simpler
problems and use them subsequently to help solve the harder
ones.

3.1. Gadget reinforcement learning

We provide an overview of the GRL algorithm for construct-
ing PQCs in a VQA task. Consecutively, we provide details
on the state and action representations as well as the reward
function employed in this study.

The GRL algorithm initiates with an empty quantum cir-
cuit. The RL agent, based on a double deep Q-network
and ϵ-greedy policy (for further details see Appendix D.2),
sequentially appends the gates to the circuit until the max-
imum number of actions has been reached. The actions
are chosen from an action space of available elementary
gates. In particular, in our application, it contains RZ, SX,
X as single qubit gates, where RZ is the only parameter-
ized gate in the action space. Furthermore, to entangle the
qubits we use Controlled-Z (CZ) gate. The main motive to
choose such an action space is that all these gates are na-
tive gateset of the newly introduced IBM Heron processor.
Therefore, we do not need to further transpile the circuits,
which is an NP-hard task (IBM Quantum Documentation,
2024), when executing on the processor, apart from remov-
ing possible gate sequences that simplify to identity. We
implement a double deep RL method, where the PQCs are
encoded in a refined binary tensor representation, as intro-
duced in (Kundu et al., 2024b). This encoding is inspired by
the tensor-based encoding introduced in (Patel et al., 2024b).
In the Appendix D.1 we elaborately describe the refined
encoding scheme with an example.

To steer the agent towards the target, we use the same re-
ward function R at every time step t of an episode, as in (Os-
taszewski et al., 2021). The reward function R defined as,

R =


r, if Ct < ζ,

−r if t ≥ Tmax and Ct ≥ ζ,

C, otherwise.
(2)

where C = max
(

Ct−1−Ct

|Ct−1−Cmin| ,−1, 1
)

, r is a real positive
number, Ct represent the value of the cost function C (as
defined in Eq. 1) at step t, and Tmax denote the maximum
number of steps allowed for an episode. Additionally, note
that when the agent receives a positive reward value r, the
episode concludes. In other words, there are two stopping
conditions: either surpassing the threshold ζ or reaching the
maximum number of actions. The agent’s objective is to
estimate the value of Cmin with the desired precision ζ.

In what follows, we utilize a feedback-driven curriculum re-
inforcement learning agent. In particular, the agent updates
its threshold while running the episodes: if we find a ground
state with lower energy than the threshold, we decrease the
threshold, otherwise, we increase it again. The algorithm is
described with more technical detail in Appendix B.

In the next step, we sample the top k PQCs, chosen accord-
ing to how effective they are at estimating the solution to
the problems, i.e., with smaller associated ζ value. These
PQCs are then processed through a program synthesis (PS)
algorithm, as described in Section 3.2. By considering an
appropriate tradeoff between the proposed component usage
frequency and its complexity (simpler components are more
likely to generalize), we can extract composite gates, i.e.,
gadgets, by choosing those with the largest log-likelihood.
We gadgetize the RL algorithm by updating the action space
with the gadgets discovered by the library building module.
Finally, the GRL is executed again with the modified action
space, consisting of the initial gateset corresponding to the
quantum hardware and the gadgets.

3.2. Library building

To update the action space in GRL, a library-building algo-
rithm that leverages a program synthesis framework inspired
by (Sarra et al., 2024; Ellis et al., 2020) is employed. The
algorithm analyzes the top-k PQCs to identify and extract
common, useful gate sequences and structures. The PQCs
are expressed as programs in a typed-λ-calculus formal-
ism (Pierce, 2002), where the gates act as functions that
take a quantum circuit and the target qubits as inputs and
return the updated PQC with the gate applied. For example,
a function that applies an X gate on the first qubit and then
a controlled-Z gate can be represented as

f(I2) = cz(x(I2, 0), 0, 1) (3)

where I2 is a 2-qubit empty circuit. Each circuit program
is organized into a syntax tree. The algorithm decomposes
each circuit into fragments, i.e. sets of operations, and looks
for the most common fragments in the input set. We use the
fragment grammar formalism to evaluate each fragment’s
usefulness based on a grammar score. In this context, a
grammar g consists of elementary gates (primitives) with
usage probabilities estimated from the given set of k top

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

circuits. The grammar score function prioritizes grammars
that are most likely to produce effectively the given set of
circuits, while balancing complexity.

We then modify the action space of the RL agent by adding
the highest scoring fragments, which are expected to help
find more compact PQCs with a smaller number of gates. In
our experiments, we show that, although the library is built
upon problems that are small and simple, these libraries
generalize effectively and can be utilized to gadgetize RL
and solve harder instances of the given problem iteratively.
For further details on grammar scoring, fragment grammar
structure, and hyperparameter settings, refer to Appendix C.

The GRL runs iteratively by first considering a small system,
(e.g. in our case a 2-qubit Ising model in a weak transverse
field, h = 10−3) and finding the solution within a pre-
defined threshold (ζ). The agent then finds the ground state
within the compute budget, expressed by a fixed number of
episodes. Subsequently, we try to solve an intermediately
difficult problem (in our case, the Ising model with a larger
transverse field, h = 5× 10−2).

4. Results
As an example application for our algorithm, we consider
the transverse field Ising model (TFIM). The goal is to
design a circuit which finds the ground state of the system,
i.e. the system with the lowest energy. This problem is
well-known to be NP-Hard (O’Connor et al., 2022). The
system is defined by

H = −J
N∑

⟨i,j⟩

σz
i σ

z
j − h

∑
i

σx
i (4)

where N is the number of qubits, J is the coupling constant
between neighboring spins, h is the strength of the trans-
verse field, σz

i and σx
i are the Pauli matrices acting on the

i-th spin in the z- and x-direction, respectively, and ⟨i, j⟩
denotes summation over nearest neighbors. This model
presents a ferromagnetic phase transition at J ≫ h and has
been studied thoroughly in the literature, for example, with
hybrid quantum-classical approaches (Sumeet et al., 2023)
where they utilize numerical linked-cluster expansions with
the variational quantum eigensolver (VQE) for TFIM with
one-dimensional chains and the two-dimensional square
lattice.

The primary motivation for using the transverse field Ising
model (TFIM) in this problem is the increasing difficulty
in finding the ground state as the magnetic field strength
h varies from small values (on the order of 10−3) towards
1, which is defined as the phase change point. This diffi-
culty arises due to the degeneracy between the ground and
first excited states that emerge as h approaches the critical

value (Curro et al., 2024; Pfeuty, 1970). As shown in Ap-
pendix A the degeneracy phenomenon is a key feature of
the quantum phase transition in the TFIM and significantly
impacts the behavior of the system near the critical point.

The primary objective of employing gadget reinforcement
learning (GRL) is to derive gadgets from easily solvable
instances (in our case, where h ≪ J) through program
synthesis within an RL framework. These gadgets are then
utilized to modify the action space in the RL framework, en-
abling efficient solutions for more challenging instances. We
quantify this efficiency through two key metrics: (1) Agent
performance: This is evaluated by analyzing the cumulative
reward, the nature of agent-environment interactions, and
the total training duration. (2) Training accuracy: We assess
how accurately the GRL agent performs in comparison to
state-of-the-art RL agents. Our focus is on quantifying the
number of 1- and 2-qubit gates required to achieve a speci-
fied accuracy, both in simulated environments and on actual
quantum hardware.

4.1. Improved performance

We recall that GRL runs iteratively, with the agent and
environment specifications as provided in Appendix D.3.
Additionally, in Appendix H we provide an elaboration of
the training time by both the RL- and GRL-agents.

Agent accuracy and success frequency Fig. 2 summa-
rizes the performance of RL and GRL agents in finding the
TFIM ground state. The RL-only framework starts with
a small system in an easy regime (e.g., weak transverse
field, h = 10−3) and achieves machine precision within a
fixed compute budget (up to 48 hours). For the intermediate
regime (h = 5× 10−2), the agent finds an approximation,
but the PQCs are large, and the errors are relatively high
compared to their size. Notably, the RL-agent fails to give
us a good approximation of the ground state for h = 1 and
the number of successful episodes2 drastically reduces as
we increase the precision.

To improve efficiency, we analyze the top k PQCs from
earlier cases and extract key components as new primitive
composite gates, or gadgets. By adding the most likely gad-
get to the RL agent’s action space, we achieve significantly
better approximations of the ground state. As additional
gadgets are included, the agent experiences increasingly
frequent successful episodes, achieving progressively lower
error in estimating the ground state.

Compared to a state-of-the-art curriculum-based RL ap-
proach (Patel et al., 2024b), the gadget-based GRL agent
is more effective, particularly in harder regimes. Gadget

2An episode is deemed successful if the agent approximates
the ground state within a predefined threshold ζ.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

N
um

be
r o

f s
uc

ce
ss

es

Transverse field strength Number of episodes

Reward threshold

average

range

Performance

a b

c d

Elementary gates
(RL only) Elementary gates + one gate (GRL)

+

Elementary gates + two gates (GRL)

+ +

Legend

Figure 2. Results for the 2-qubit transverse field Ising model (TFIM). We compare reinforcement learning-only (blue) with gadget
reinforcement learning (GRL) using one (reddish orange) and two (green) extracted components, as shown in the legend. (a) and (b) show
the number of successful episodes (agent finds the ground state within predefined accuracy) for h = 5× 10−2 and h = 1 (phase change
point), respectively. (c) compares error scaling with varying transverse field strength under a fixed compute budget (48-hour GPU run).
Solid lines show averages over multiple runs; shaded areas indicate solution ranges (smallest values are most relevant). GRL achieves
high accuracy for h = 1. (d) plots RL reward thresholds during training for h = 1, showing GRL finds circuits with lower cost. Without
gadget extraction, accuracy is limited to 10−3, while GRL achieves machine precision.

100 101 102 103 104

Number of Episodes

10−11

10−8

10−5

10−2

101

104

E
rr

or
th

re
sh

ol
d

/R
ew

ar
d

/R
et

u
rn

RL

Cumulative reward

Error threshold

100 101 102 103 104

Number of Episodes

GRL + one gadget

100 101 102 103 104

Number of Episodes

GRL + two gadgets

Figure 3. For N = 2 TFIM, GRL with one and two gadgets improves the cumulative reward growth compared to RL. The
RL-agent struggles with consistent cumulative rewards and positive returns. GRL with one gadget improves performance, achieving
steady cumulative reward growth and frequent positive returns but experiences a notable drop around the 1000th episode, reaching the
machine precision error threshold. GRL with two gadgets resolves this drop and further enhances performance.

extraction is performed on easier tasks, and the resulting modified action space is used to tackle more challenging

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

Problem Method Metric #CZ #RZ #SX #X

2-qubit
TFIM

GRL Average 2.0 6.0 4.43 2.0
GRL Minimum 2 5 4 1
RL Average 2.0 8.08 6.62 1.75
RL Minimum 1 6 4 1

3-qubit
TFIM

GRL Average 6.0 11.0 11.0 1.0
GRL Minimum 2 9 7 1
RL Average 8.83 21.67 22.67 1.0
RL Minimum 7 27 27 1

Table 1. Length and composition of constructed circuits. We
compare gadget reinforcement learning (GRL) with state-of-the-
art curriculum reinforcement learning in the hardest regime (h =
1). Results are based on transpiling top-performing circuits for
the IBM Heron processor. GRL achieves smaller gate counts
compared to RL-only. The averages reflect PQCs with similar
errors, while the minimum metric represents the most compact
transpiled PQC with comparable performance.

problems, such as h = 1. This demonstrates the utility of
the approach, especially for complex scenarios.

Cumulative rewards and returns Fig. 3 shows that the
RL-only agent struggles with consistent rewards and posi-
tive returns, while GRL with one gadget steadily improves
but plateaus around the 1000th episode, reaching machine
precision. Adding a second gadget resolves this drop and
enhances performance. It is worth noting that for the N = 2
qubit problem, machine precision can be achieved with just
one extracted gadget, making the second gadget redundant
in this case. The two-gadget implementation for N = 2
serves to illustrate the potential for performance improve-
ment when additional gadgets are introduced in more com-
plex systems. A similar observation is recorded for N = 3
qubit TFIM and is in Appendix F.

Generalization of extracted gadgets Fig. 4 demonstrates
the performance of GRL agents using 2-qubit gadgets for
N = 3. While one gadget achieves machine precision for
N = 2, it only reaches an error of 10−4 for N = 3. Adding
a second gadget dramatically improves performance, en-
abling machine precision in both easy and hard regimes. In
contrast, the RL-only agent fails to learn due to the search
depth required, especially in the hard regime (h = 1), where
it produces high-error solutions likely assembled randomly.
Additional gadgets allow RL to find significantly better so-
lutions. For a comprehensive analysis of our ablation study
and detailed numerical results, please refer to Appendix E.

4.2. Found circuits are suitable for real hardware

More compact circuit for real hardware We compare
PQCs from gadget reinforcement learning (GRL) with state-
of-the-art RL methods for finding the TFIM ground state.

We benchmark against curriculum reinforcement learn-
ing (Patel et al., 2024b) using a universal gateset (RX, RY,
RZ, CX) as in (Patel et al., 2024b; Kundu, 2024), comparing
it to GRL with an extended action space including gadgets.
The GRL action space incorporates the IBM Heron pro-
cessor’s native gateset and composite gates derived from
top-performing PQCs for 2-qubit TFIM at h = 10−3 and
h = 5 × 10−2. We estimate the ground state of 2-qubit
and 3-qubit TFIM at the phase change point (h = 1). GRL-
obtained circuits achieve similar error to RL but the circuits
are more compact when transpiled for real quantum hard-
ware. Table 1 summarizes results after transpiling in IBMQ
Torino (part of IBM Heron processor).

Moreover, Appendix I details hardware topology and in
Appendix G we show GRL uses 3× fewer CZ, RZ, and
SX gates for similar error (in the order of ∼ 10−4) in 3-
qubit TFIM. This suggests an advantage in solving problems
directly with GRL consisting of target hardware components
and gadgets, rather than first finding solutions in a universal
gateset and then transpiling for the target hardware.

Improved performance on real hardware In Ap-
pendix G we further show that the circuits obtained in the
noiseless scenario by GRL provide better approximation
to the ground state estimation for both the 2- and 3-qubit
TFIM across multiple quantum hardware modules on the
IBM Heron and IBM Eagle processors. We emphasize
that no constraint on the circuit depth has been enforced in
the GRL agent, even though this can be considered in future
applications to encourage shorter circuits, or avoid using
expensive gates.

5. Outlook
In this paper, we have shown how to learn reusable compo-
nents from different regimes for efficiently building quan-
tum circuits that solve some given problems. Instead of
considering a single specific problem, we start from a trivial
regime and gradually tackle the harder one. By finding the
ground state in the low transverse field regime, we discover
sequences of gates that are recurrent, and we can extract
them as gadgets and use them to extend the action space
of subsequent iterations. This proves to be very effective
because it largely reduces the required depth of the circuit at
the cost of a slightly increased breadth of the search. In other
words, the extracted gates serve as a data-driven inductive
bias for solving the given class of problems.

In terms of shortcomings of our approach, the main over-
head to consider is the necessity of performing multiple
iterations. In particular, it is important that the target class
of problems has a structure with different degrees of dif-
ficulty: if the problem is too difficult, the reinforcement
learning agent does not receive any signal, it will only learn

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

N
um

be
r o

f s
uc

ce
ss

es

Transverse field strength Number of episodes

Reward threshold

average
range

Performance

a b

c d

Elementary gates
(RL only) Elementary gates + one gate (GRL)

+

Elementary gates + two gates (GRL)

+ +

Legend

Figure 4. GRL with two gadgets (green) overcomes the training bottleneck of RL-only (blue) and GRL with one gadget (red). As in
Fig. 2, subplots (a) and (b) show successful episodes, while (c) and (d) compare error scaling and RL reward thresholds. Under a fixed
compute budget and varying transverse field strength, RL and GRL with one gadget achieve accuracies around 0.1, whereas GRL with
two gadgets attains machine precision. It should be noted that the gadgets that are used in this simulation are the same ones extracted
while solving the N = 2 qubit TFIM.

to produce random circuits and the extracted gates will not
be necessarily useful. On the other hand, if one regime is
trivial and the other one is too hard, there is a low chance
of generalization. Also, to extend the actions of the rein-
forcement learning agent multiple approaches are possible.
In our example, we reinitialized the agent after extending
the action space. However, smarter approaches, for example
by just adding extra output neurons at the last layer of the
policy, associating them to the added gadgets, may allow
starting from the previous policy, while adding a small bias
to encourage the exploration of the new action.

Our technique is general and can be extended to other quan-
tum problems. For instance, we can efficiently solve chal-
lenging correlated quantum chemistry instances by lever-
aging gadgets from simpler ones. Easy instances involve
smaller action spaces, and as the action space grows or
accuracy requirements for the ground state increase, the
problem becomes more difficult (McCaskey et al., 2019;
de Gracia Triviño et al., 2023). This approach can also be

applied to quantum optimization, simulation, and machine
learning, where easy instances help address more complex
scenarios. Furthermore, it may be suitable for real hardware
optimizations. Indeed, it allows to explicitly define the ele-
mentary gates to use for the decomposition, as opposed to
finding the solution in a high-level gate set first (e.g. rotation
gates RX, RY, and RZ) and transpiling them later. This can
arguably produce more efficient circuits. Also, penalties
for the length of the circuit or for the use of specific gates
could be enforced, encouraging gates that are more reliable
or cheap to implement on real hardware. In addition, the
elementary components could also be modified to include
some model of the noise on the real hardware, thus possibly
finding a solution for some quantum problem that already
includes some noise mitigation effects.

Reproducibility The code used to generate the results are
under preparation.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

6. Impact statement
This work advances the field of quantum computing and ma-
chine learning by introducing gadget reinforcement learning
(GRL) for efficient quantum circuit design. The potential
broader impacts include:

• Design hard problems by learning gadgets: GRL could
significantly speed up the design of computationally
complex problems by learning gadgets from easy-to-
solve ones, potentially leading to breakthroughs in
various fields such as cryptography, drug discovery,
and materials science.

• Democratization of quantum computing: The auto-
mated circuit design process could make quantum al-
gorithm development more accessible to researchers
without deep expertise in quantum physics, broadening
participation in the field.

• Energy efficiency: GRL can tackle difficult quantum
tasks in a fixed computation budget, providing more
efficient quantum circuits. This may lead to reduced
energy consumption in quantum computations, con-
tributing to sustainable computing practices.

• Ethics and safety: This work enhances the capabilities
of reinforcement learning agents, which are general-
purpose algorithms that can be used for different pur-
poses than quantum computing.

References
Bacon, P.-L., Harb, J., and Precup, D. The option-

critic architecture. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17, pp.
1726–1734. AAAI Press, 2017.

Bang, J., Ryu, J., Yoo, S., Pawłowski, M., and Lee, J. A
strategy for quantum algorithm design assisted by ma-
chine learning. New Journal of Physics, 16(7):073017,
2014.

Cheng, L., Chen, Y.-Q., Zhang, S.-X., and Zhang, S. Quan-
tum approximate optimization via learning-based adap-
tive optimization. Communications Physics, 7(1):83,
2024.

Curro, N., Danesh, K., and Singh, R. R. Quantum criticality
in the infinite-range transverse field ising model. Physical
Review B, 110(7):075112, 2024.

de Gracia Triviño, J. A., Delcey, M. G., and Wendin, G.
Complete active space methods for nisq devices: The
importance of canonical orbital optimization for accuracy
and noise resilience. Journal of Chemical Theory and
Computation, 19(10):2863–2872, 2023.

Dechter, E., Malmaud, J., Adams, R. P., and Tenenbaum,
J. B. Bootstrap learning via modular concept discov-
ery. In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI ’13, pp.
1302–1309. AAAI Press, 2013. ISBN 9781577356332.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary,
L., Morales, L., Hewitt, L., Solar-Lezama, A., and
Tenenbaum, J. B. Dreamcoder: growing general-
izable, interpretable knowledge with wake–sleep
bayesian program learning. Philosophical Transactions
of the Royal Society A, 381, 2020. URL https:
//api.semanticscholar.org/CorpusID:
219687434.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SJx63jRqFm.

Feniou, C., Hassan, M., Traoré, D., Giner, E., Maday, Y.,
and Piquemal, J.-P. Overlap-adapt-vqe: practical quan-
tum chemistry on quantum computers via overlap-guided
compact ansätze. Communications Physics, 6(1):192,
2023.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neu-
ral networks for hierarchical reinforcement learning. In
International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=B1oK8aoxe.

Foderà, S., Turati, G., Nembrini, R., Dacrema, M. F., and
Cremonesi, P. Reinforcement learning for variational
quantum circuits design. preprint arXiv:2409.05475,
2024.

Fösel, T., Niu, M. Y., Marquardt, F., and Li, L. Quantum
circuit optimization with deep reinforcement learning.
arXiv preprint arXiv:2103.07585, 2021.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. META LEARNING SHARED HIERARCHIES. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=SyX0IeWAW.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control, 2016. URL https://arxiv.org/
abs/1611.07507.

Grimsley, H. R., Economou, S. E., Barnes, E., and May-
hall, N. J. An adaptive variational algorithm for exact
molecular simulations on a quantum computer. Nature
communications, 10(1):3007, 2019.

9

https://api.semanticscholar.org/CorpusID:219687434
https://api.semanticscholar.org/CorpusID:219687434
https://api.semanticscholar.org/CorpusID:219687434
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=B1oK8aoxe
https://openreview.net/forum?id=B1oK8aoxe
https://openreview.net/forum?id=SyX0IeWAW
https://openreview.net/forum?id=SyX0IeWAW
https://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1611.07507

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

Grover, L. K. A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pp.
212–219, 1996.

IBM Quantum Documentation. transpiler —
docs.quantum.ibm.com. https://docs.quantum.
ibm.com/api/qiskit/transpiler, 2024.
[Accessed 30-10-2024].

Kingma, D. P. Adam: A method for stochastic optimization.
preprint arXiv:1412.6980, 2014.

Krenn, M., Landgraf, J., Foesel, T., and Marquardt,
F. Artificial intelligence and machine learning
for quantum technologies. Phys. Rev. A, 107:
010101, Jan 2023. doi: 10.1103/PhysRevA.107.
010101. URL https://link.aps.org/doi/10.
1103/PhysRevA.107.010101.

Krishnan, S., Fox, R., Stoica, I., and Goldberg, K. Ddco:
Discovery of deep continuous options for robot learn-
ing from demonstrations. preprint arXiv:1710.05421,
2017. URL https://api.semanticscholar.
org/CorpusID:11787854.

Kundu, A. Reinforcement learning-assisted quantum ar-
chitecture search for variational quantum algorithms.
preprint arXiv:2402.13754, 2024.

Kundu, A., Botelho, L., and Glos, A. Hamiltonian-oriented
homotopy quantum approximate optimization algorithm.
Physical Review A, 109(2):022611, 2024a.

Kundu, A., Sarkar, A., and Sadhu, A. Kanqas: Kolmogorov
arnold network for quantum architecture search. preprint
arXiv:2406.17630, 2024b.

Machado, M. C., Barreto, A., Precup, D., and Bowling, M.
Temporal abstraction in reinforcement learning with the
successor representation. J. Mach. Learn. Res., 24(1),
March 2024. ISSN 1532-4435.

Mandviwalla, A., Ohshiro, K., and Ji, B. Implementing
grover’s algorithm on the ibm quantum computers. In
2018 IEEE international conference on big data (big
data), pp. 2531–2537. IEEE, 2018.

McCaskey, A. J., Parks, Z. P., Jakowski, J., Moore, S. V.,
Morris, T. D., Humble, T. S., and Pooser, R. C. Quan-
tum chemistry as a benchmark for near-term quantum
computers. npj Quantum Information, 5(1):99, 2019.

Melo, F. S. Convergence of q-learning: A simple proof.
Institute Of Systems and Robotics, Tech. Rep, pp. 1–4,
2001.

Moflic, I. and Paler, A. Cost explosion for efficient reinforce-
ment learning optimisation of quantum circuits. In 2023
IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–5. IEEE, 2023.

Monz, T., Nigg, D., Martinez, E. A., Brandl, M. F.,
Schindler, P., Rines, R., Wang, S. X., Chuang, I. L., and
Blatt, R. Realization of a scalable shor algorithm. Science,
351(6277):1068–1070, 2016.

Nachum, O., Gu, S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 3307–3317, Red Hook,
NY, USA, 2018. Curran Associates Inc.

O’Connor, D. T., Fry-Bouriaux, L., and Warburton, P. A.
Perturbed ferromagnetic chain: Tunable test of hard-
ness in the transverse-field ising model. Phys. Rev. A,
105:022410, Feb 2022. doi: 10.1103/PhysRevA.105.
022410. URL https://link.aps.org/doi/10.
1103/PhysRevA.105.022410.

Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W.,
Scerri, E., and Dunjko, V. Reinforcement learning for
optimization of variational quantum circuit architectures.
Advances in Neural Information Processing Systems, 34:
18182–18194, 2021.

Patel, Y. J., Jerbi, S., Bäck, T., and Dunjko, V. Reinforce-
ment learning assisted recursive qaoa. EPJ Quantum
Technology, 11(1):6, 2024a.

Patel, Y. J., Kundu, A., Ostaszewski, M., Bonet-Monroig,
X., Dunjko, V., and Danaci, O. Curriculum reinforce-
ment learning for quantum architecture search under
hardware errors. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL https:
//openreview.net/forum?id=rINBD8jPoP.

Pfeuty, P. The one-dimensional ising model with a trans-
verse field. ANNALS of Physics, 57(1):79–90, 1970.

Pierce, B. C. Types and programming languages. MIT Press,
Cambridge, Mass, 2002. ISBN 978-0-262-16209-8. URL
10.5555/509043.

Powell, M. J. A direct search optimization method that
models the objective and constraint functions by linear
interpolation. Springer, 1994.

Ruiz, F. J. R., Laakkonen, T., Bausch, J., Balog, M.,
Barekatain, M., Heras, F. J. H., Novikov, A., Fitzpatrick,
N., Romera-Paredes, B., van de Wetering, J., Fawzi, A.,
Meichanetzidis, K., and Kohli, P. Quantum Circuit Opti-
mization with AlphaTensor. preprint arXiv:2402.14396,
2 2024.

10

https://docs.quantum.ibm.com/api/qiskit/transpiler
https://docs.quantum.ibm.com/api/qiskit/transpiler
https://link.aps.org/doi/10.1103/PhysRevA.107.010101
https://link.aps.org/doi/10.1103/PhysRevA.107.010101
https://api.semanticscholar.org/CorpusID:11787854
https://api.semanticscholar.org/CorpusID:11787854
https://link.aps.org/doi/10.1103/PhysRevA.105.022410
https://link.aps.org/doi/10.1103/PhysRevA.105.022410
https://openreview.net/forum?id=rINBD8jPoP
https://openreview.net/forum?id=rINBD8jPoP
10.5555/509043

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

Sadhu, A., Sarkar, A., and Kundu, A. A quantum informa-
tion theoretic analysis of reinforcement learning-assisted
quantum architecture search. preprint arXiv:2404.06174,
2024.

Sarra, L., Ellis, K., and Marquardt, F. Discovering quantum
circuit components with program synthesis. Machine
Learning: Science and Technology, 5(2):025029, may
2024. doi: 10.1088/2632-2153/ad4252. URL https:
//dx.doi.org/10.1088/2632-2153/ad4252.

Shor, P. W. Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer.
SIAM review, 41(2):303–332, 1999.

Sumeet, Hörmann, M., and Schmidt, K. P. Hybrid quantum-
classical algorithm for the transverse-field Ising model in
the thermodynamic limit. preprint arXiv:2310.07600, 10
2023.

Tang, H. L., Shkolnikov, V., Barron, G. S., Grimsley,
H. R., Mayhall, N. J., Barnes, E., and Economou, S. E.
qubit-adapt-vqe: An adaptive algorithm for constructing
hardware-efficient ansätze on a quantum processor. PRX
Quantum, 2(2):020310, 2021.

Tang, W., Duan, Y., Kharkov, Y., Fakoor, R., Kessler,
E., and Shi, Y. Alpharouter: Quantum circuit routing
with reinforcement learning and tree search. preprint
arXiv:2410.05115, 2024.

Trenkwalder, L. M., López-Incera, A., Nautrup, H. P.,
Flamini, F., and Briegel, H. J. Automated gadget dis-
covery in the quantum domain. Machine Learning:
Science and Technology, 4(3):035043, sep 2023. doi:
10.1088/2632-2153/acf098. URL https://dx.doi.
org/10.1088/2632-2153/acf098.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature
methods, 17(3):261–272, 2020.

Ye, E. and Chen, S. Y.-C. Quantum architecture
search via continual reinforcement learning. preprint
arXiv:2112.05779, 2021.

Zhou, L., Wang, S.-T., Choi, S., Pichler, H., and Lukin,
M. D. Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-
term devices. Physical Review X, 10(2):021067, 2020.

Zhu, L., Tang, H. L., Barron, G. S., Calderon-Vargas, F.,
Mayhall, N. J., Barnes, E., and Economou, S. E. Adaptive
quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer. Physical
Review Research, 4(3):033029, 2022.

11

https://dx.doi.org/10.1088/2632-2153/ad4252
https://dx.doi.org/10.1088/2632-2153/ad4252
https://dx.doi.org/10.1088/2632-2153/acf098
https://dx.doi.org/10.1088/2632-2153/acf098

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

A. The Transverse Field Ising Model: different regimes
As shown in Fig. 5, by looking at the ground state energy gap, we can identify three different regimes in the Transverse
Field Ising Model:

1. in the low external field, the first excited state is almost degenerate with the ground state, therefore it is easy to find a
low-energy state;

2. the regime where h ≃ 0.1, where the energy gap increases and the ground state starts to have a visibly different energy
from the first excited state;

3. h≫ 0.1 where the energy gap is larger and the ground state energy is much smaller than that of the first excited state.

10 3 10 2 10 1 100

h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E

qubits: 2

Figure 5. Energy gap between first excited state and ground state of the TFIM model as a function of the transverse field strength. The
separation ∆E is negligible till h = 10−1. Hence, due to energy degeneracy, it is easy to find a good energy approximation for h ≤ 10−1.
The problem becomes harder when we choose h ≥ 10−1 as ∆E becomes non-negligible.

B. Feedback-driven curriculum reinforcement learning
During learning, the agent maintains a pre-defined threshold ζ2 representing the lowest energy observed so far, updating it
based on defined rules. Initially, ζ2 is set to a hyperparameter ζ1. When a lower threshold is found, ζ2 is updated to this new
value. A fake minimum energy hyperparameter, µ, serves as a target energy, approximated by the following:

fake minimum energy = (N − 1)× (−J) +N × (−h), (5)

where N is the number of interacting spins, J is the coupling strength between the spins and h is the strength of the magnetic
field.

Without amortization, the threshold updates to |µ− ζ2| when ζ2 changes; with amortization, it becomes |µ− ζ2|+ δ, where
δ is an amortization hyperparameter. The agent then explores subsequent actions and records successes.

Two threshold adjustment rules apply: a greedy shift to |µ − ζ2| after G episodes (where G is a hyperparameter) and a
gradual decrease by δ/κ with each successful episode, where κ is a shift radius hyperparameter. If repeated failures occur
after setting the threshold to |µ− ζ2|, it reverts to |µ− ζ2|+ δ, allowing the agent to backtrack if stuck in a local minimum.

C. Detailed description of the Library Building algorithm
The library building algorithm analyzes a set of circuits D in relation to a given set of elementary gates g, called grammar.
In this framework, each grammar g consists of elementary gates (also called “primitives”) with assigned probabilities based

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

on usage frequency in the dataset. When we consider whether we should add a new gadget to our set of elementary gates,
we compare the grammar with and without the new gadget, and accept the new gate if we improve the grammar score. This
quantity evaluates how good a grammar is to represent the given dataset D, trading off the likelihood of sampling circuits
from the dataset with an approximation of the complexity of the grammar itself. In particular, given a set of circuits D, we
define the grammar score S, representing the grammar’s efficiency in describing the circuits, as

SD(g) = Lg(D)− λ|g| − k
∑
p∈g

|p|, (6)

where:

• |g|: the number of components in grammar g,

• p: a component or building block in the grammar,

• |p|: the number of elementary gates in p,

• λ = 1 and k = 1 are hyperparameters.

The first term represents the likelihood of reproducing the observed circuits, while the last two terms are complexity
regularizers, inspired by the minimum description length principle. The likelihood Lg(D) of a grammar is approximated
with the probability of randomly sampling the circuits in the dataset using the grammar gate probabilities. Each circuit is
weighted by the accuracy in solving the task (measured as the opposite of the energy).

The main hyperparameters that we consider to tune the algorithm are:

1. Arity: This controls the maximum number of arguments a component can have, or equivalently, the maximum number
of qubits an extracted gate can act on. Here, we set arity = 2.

2. Pseudocounts: A constant shift in the usage frequency, which adjusts the log-likelihood estimation by ensuring each
component is treated as though it is used at least once, even if unobserved. This allows patterns to be considered useful
only if they appear frequently in the dataset. We set pseudocounts = 10.

3. Structure Penalty k: This regularizes the tradeoff between grammar likelihood and complexity. Lower penalties yield
higher likelihoods but may overfit, while higher penalties result in simpler grammars that generalize better. We set
structurePenalty = 1.

For a more technical descriptions of the λ-calculus tree structures and their efficiency, see (Ellis et al., 2020; Sarra et al.,
2024).

D. Implementation details
D.1. Quantum circuit encoding

We employ a refined version of the tensor-based binary encoding introduced in (Kundu et al., 2024b), which is inspired by
the encoding presented in (Patel et al., 2024b), to capture the architecture of a parametric quantum circuit (PQC), specifically
by encoding the sequence and arrangement of quantum gates. Unlike the encoding presented in (Patel et al., 2024b), which
is only the function of the number of qubits N , the refined encoding is a function of N and the number of 1-qubit gates
N1q. This makes it suitable for the encoding of a broad range of action spaces and enables the agent to access a complete
description of the circuit. To ensure a consistent input size across varying circuit depths, we construct the tensor for the
maximum anticipated circuit depth.

To build this tensor, we define the hyperparameter Tmax, which restricts the number of allowable gates (actions) across
all episodes. A moment in a PQC refers to all simultaneously executable gates, corresponding to the circuit’s depth. We
represent PQCs as three-dimensional tensors where, at the start of each episode, an empty circuit of depth Tmax is initialized.
This tensor is dimensioned as [Tmax × ((N +N1q)×N)], where N denotes the number of qubits and N1q the number of
1-qubit gates. Each matrix slice within the tensor contains N rows that specify control and target qubit locations in CNOT

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

Figure 6. The refined encoding of a parameterized quantum circuits (PQCs) into a tensor. This is the observable for the reinforcement
learning algorithm. The 2-qubit gates are encoded into a matrix whose dimension is dependent on the number of qubits. Meanwhile, the
1-qubit gates are encoded into the remaining N1q rows, which define the number of different 1-qubit gates present in the action space.
After the program synthesis algorithm (described in 3.2) finds the most common patterns of gates, i.e. gadgets, in the top performing
PQCs, the action space is then updated with the extracted gadget. In the gadgetized reinforcement learning, the dimension of the tensor is
then increased. The increase in dimension depends on whether the gadget is a 1- or 2-qubit gate.

gates, followed by either 3 rows (for RX, RY and RZ) or 3 rows (for SX, X, RZ) to indicate the positions of 1-qubit gates.
When we update the action space by incorporating the gadgets, (which are the composite gateset found using the program
synthesis algorithm) then, depending on the added gadget, we update the size of the tensor. After gadgetizing the action
space, we rerun the RL agent with the extended encoding of the PQCs as shown in Fig. 6.

D.2. Double Deep Q-Network (DDQN)

Deep Reinforcement Learning (RL) methods employ Neural Networks (NNs) to refine the agent’s policy in order to
maximize the cumulative return:

Gt =

∞∑
k=0

γkrt+k+1, (7)

where γ ∈ [0, 1) denotes the discount factor. An action value function is assigned to each state-action pair (s, a), capturing
the expected return when action a is taken in state s at time t under policy π:

qπ(s, a) = Eπ[Gt|st = s, at = a]. (8)

The objective is to find an optimal policy that maximizes the expected return. This can be achieved through the optimal
action-value function q∗, which satisfies the Bellman optimality equation:

q∗(s, a) = E
[
rt+1 +max

a′
q∗(st+1, a

′)
∣∣st = s, at = a

]
. (9)

Rather than solving the Bellman equation directly, value-based RL focuses on approximating the optimal action-value
function through sampled data. Q-learning, a widely used value-based RL algorithm, initializes with arbitrary Q-values for
each (s, a) pair and iteratively updates them to approach q∗. The update rule for Q-learning is:

Q(st, at) ← Q(st, at) + α
(
rt+1 + γmax

a′
Q(st+1, a

′)−Q(st, at)
)
, (10)

where α is the learning rate, rt+1 is the reward received at step t+ 1, and st+1 is the resulting state after taking action at
in state st. Convergence to the optimal Q-values is guaranteed under the tabular setup if all state-action pairs are visited
infinitely often (Melo, 2001). To promote exploration in Q-learning, an ϵ-greedy policy is adopted, defined as:

π(a|s) :=
{
1− ϵt if a = maxa′ Q(s, a′),

ϵt otherwise.
(11)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

This ϵ-greedy policy adds randomness during learning, while the policy becomes deterministic after training.

To handle large state and action spaces, NN-based function approximations are used to extend Q-learning. Since NN
training relies on independently and identically distributed samples, this requirement is met through experience replay. With
experience replay, transitions are stored and randomly sampled in mini-batches, reducing the correlation between samples.
For stable training, two NNs are employed: a policy network that is frequently updated, and a target network, which is a
delayed copy of the policy network. The target value Y used in updates is given by:

YDQN = rt+1 + γmax
a′

Qtarget(st+1, a
′). (12)

In the double DQN (DDQN) approach, the action used for estimating the target is derived from the policy network,
minimizing the overestimation bias observed in standard DQN. The target is thus defined as:

YDDQN = rt+1 + γQtarget
(
st+1, argmax

a′
Qpolicy(st+1, a

′)
)
. (13)

This target value is then approximated through a loss function, which in our work is chosen to be the smooth L1-norm given
by

SmoothL1(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(14)

D.3. Reinforcement learning agent hyperparameters

The hyperparameters of the double deep-Q network algorithm were selected through coarse-grain search, and the employed
network architecture depicts a feed-forward neural network whose hyperparameters are provided in Tab. 2.

Table 2. GRL and RL agent hyperparameters.

Parameter Value

Batch size 1000

Memory size 20000

Neurons 1000

Hidden layers 5

Dropout 0.0

Network optimizer Adam (Kingma, 2014)

Learning rate 10−4

Update target network 500

Final gamma 5× 10−3

Epsilon decay 0.99995

Minimum epsilon 5× 10−2

In the implemented agents, we greedily update the threshold (ζ) after 2000 episodes, with an amortization radius set at 10−4.
This amortization radius decreased by 10−5 after every 50 successfully solved episode, beginning from an initial threshold
value of ζ1 = 5 × 10−3. Moreover, in each episode, we set the total number of steps Tmax = 20 for 2-qubit TFIM and
Tmax = 50 for 3-qubit TFIM.

Throughout this paper, we utilize a gradient-free COBYLA optimizer (Powell, 1994) with hyperparameter settings similar
to ref. (Virtanen et al., 2020) and 1000 iterations at each step of an episode to optimize the PQCs.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

E. Ablation study
Table 3 gives a more detailed overview of the results of our experiments.

Settings Problem Field
str.

Avg.
err.

Avg.
gate

Avg.
2q gate

Avg.
depth

Min.
err.

Min.
gate

Min.
2q gate

Min.
depth

2-gate
GRL

2-qubit
TFIM

h=10−3 1.0× 10−12 25.33 8.0 22.33 6.67× 10−16 21 3 19
h=5× 10−2 1.5× 10−11 18.0 3.67 15.0 1.8× 10−12 8 2 7

h=1 3.1× 10−11 13.67 3.33 10.0 1.4× 10−11 9 3 7

3-qubit
TFIM

h=10−3 6× 10−9 20.5 2.5 12.0 2.6× 10−9 19 1 12
h=5× 10−2 1.3× 10−4 42.0 11.67 29.0 1.3× 10−4 33 3 19

h=1 0.10 41.0 8.33 28.0 7.2× 10−9 35 5 25

1-gate
GRL

2-qubit
TFIM

h=10−3 2.1× 10−10 18.33 5.33 14.67 3.9× 10−11 8 2 6
h=5× 10−2 5.3× 10−10 14.33 3.33 11.0 2.3× 10−10 11 2 9

h=1 1.5× 10−10 11.67 1.67 8.0 6.6× 10−11 8 1 6

3-qubit
TFIM

h=10−3 1.2× 10−7 43.0 11.5 28.5 1.2× 10−8 38 6 26
h=5× 10−2 9.6× 10−4 16.0 3.67 10.33 1.3× 10−4 11 2 6

h=1 0.34 40.67 25.67 31.0 0.26 36 19 27

RL
only

2-qubit
TFIM

h=10−3 6.4× 10−7 14.33 3.0 11.33 9.5× 10−9 11 2 9
h=5× 10−2 1.3× 10−4 21.67 5.33 16.33 1.6× 10−6 21 3 15

h=1 5.7× 10−3 20.33 3.0 13.67 7.4× 10−6 14 2 10

3-qubit
TFIM

h=10−3 7.5× 10−7 18.0 9.5 13.5 7.5× 10−7 11 3 6
h=5× 10−2 1.7× 10−3 15.67 7.0 11.67 1.0× 10−3 12 3 9

h=1 0.53 36.0 7.0 24.3 0.39 29 2 18

Table 3. Results of the gadget reinforcement learning (GRL) agent on finding the ground state of transverse field Ising model (TFIM) for
two and three qubits in three different regimes (low, intermediate and strong transverse field). We compare the performance with one
and two extracted gadgets and RL only. The average is taken over different initializations of the neural network and the minimum is the
best-performing instance. By looking at the best solution, we see that GRL produces better approximations and sometimes even shorter
circuits than RL only, especially in the hardest regimes.

F. Cumulative rewards and return: 3-qubit TFIM
The Fig. 7 illustrates the cumulative performance of RL and GRL agents over a series of episodes for solving the 3-qubit
transverse field Ising model (TFIM). Key metrics, such as error threshold, rewards, and returns, are plotted against the
number of episodes to evaluate the effectiveness of each approach.

100 101 102 103 104

Number of Episodes

10−2

10−1

100

101

102

103

E
rr

or
th

re
sh

ol
d

/R
ew

ar
d

/R
et

u
rn

RL

Cumulative reward

Return

Error threshold

100 101 102 103 104

Number of Episodes

GRL + one gadget

100 101 102 103 104

Number of Episodes

GRL + two gadgets

Figure 7. Comparative performance of RL and GRL agents in solving the 3-qubit TFIM. The plots show cumulative rewards, error
scaling, and success rates over episodes for RL-only, GRL with one gadget, and GRL with two gadgets. GRL agents demonstrate
improved stability, faster convergence, and higher success rates, particularly when multiple gadgets are incorporated

The RL-only agent struggles to achieve stable rewards across episodes, showing significant fluctuations and slow convergence.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

In contrast, GRL agents exhibit steady improvements in cumulative rewards, particularly when gadgets are incorporated into
the action space. Error Scaling:

For GRL with one gadget, the error decreases significantly in early episodes but plateaus at a higher value, indicating limited
capability to reach machine precision. GRL with two gadgets further reduces the error, demonstrating the benefits of adding
more extracted gadgets for addressing complex regimes. Success Rates:

The frequency of successful episodes (defined by achieving the ground state approximation within a predefined threshold)
increases with the number of gadgets in the GRL setup. The RL-only agent rarely achieves success, particularly in the
harder regimes.

The results highlight the scalability and robustness of GRL agents. Incorporating gadgets not only accelerates the learning
process but also enables the agent to achieve lower error thresholds and higher success rates, even for challenging
configurations like the 3-qubit TFIM.

This analysis demonstrates the potential of gadget-based reinforcement learning to significantly enhance agent performance.
The inclusion of additional gadgets systematically reduces errors and increases the frequency of successful episodes, making
this approach a viable solution for tackling more complex quantum systems.

G. Performance comparison of the transpiled circuits
Here we compare the length and the performance of the circuits obtained to solve the 2 and 3-qubit TFIM ground state at the
phase change point (h = 1) using the RL agent with a universal gateset (i.e. RX, RY, RZ and CX) and GRL agent with an

Backend name
GRL RL

Avg. Min. Avg. Min.

fake torino −3.309 −3.366 −3.287 −3.351

fake kawasaki −3.370 −3.397 −3.235 −3.319

fake quebec −3.318 −3.379 3.266 −3.318

Backend name
GRL RL

Avg. Min. Avg. Min.

fake torino −2.188 −2.213 −2.164 −2.1992

fake kawasaki −2.162 −2.196 −2.123 -2.1592

fake quebec −2.118 −2.145 −2.084 -2.1597

Table 4. Performance comparison of GRL and RL agents for 2-qubit (right table) and 3-qubit (left table) TFIM ground state
preparation at the phase transition point (h = 1). The table presents the average and minimum energy values obtained using simulated
noisy quantum hardware. GRL, leveraging an extended action space with gates from the IBM Heron processor and an additional gadget,
demonstrates consistently better performance compared to RL. This is reflected in lower (more negative) energy values across all backends,
highlighting GRL’s enhanced optimization capabilities and robustness in circuit design. It should be noted that the true minimum energies
for 2- and 3-qubit cases are −2.236 and −3.494 respectively.

extended action space consisting of gateset of IBM Heron and processor and one additional gadget. The performance of the
GRL and RL are summarized in the Tab. 4. From the table we note the following observations:

1. Consistent outperformance: GRL consistently achieves better results than RL across multiple simulated backends. This
is evident from the lower (more negative) energy values for GRL in both the 2-qubit and 3-qubit cases.

2. Improved minimum values: GRL not only shows better average performance but also achieves lower minimum energy
values, indicating its ability to find better solutions more consistently.

3. Versatility across backends: The advantage of GRL is maintained across various noisy backends of IBM Heron and
IBM Eagle processors, suggesting its robustness to different quantum hardwares.

4. Potential for real hardware: While these results are from simulated noisy environments, they suggest that GRL could
offer significant advantages when applied to real quantum hardware, potentially leading to more efficient quantum
circuit designs for solving TFIM ground state problems.

GRL’s extended action space, which includes the IBM Heron processor’s gateset and an additional gadget, likely contributes
to its ability to find more optimal circuit configurations.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

q0

q1

q2

q0

q1

q2

3.54
RZ

0.17
RY

1.03
RY

0.52
RX

1.62
RY

0.26
RX

0.233
RY

0.57
RZ

0.12
RX

2.06
RX

0.65
RY

0.007
RX

1.04
RZ

0.16
RX

0.7
RZ

0.11
RX

0.31
RY

0.009
RZ

0.57
RY

0.39
RX

0.05
RY

0.27
RY

0.04
RY

0.01
RX

0.31
RZ

0.16
RY

0.24
RY

0.19
RX

0.49
RZ

0.57
RY

0.36
RX

0.39
RX

0.15
RX

0.07
RZ

0.1
RZ

0.09
RX

0.4
RX

0.01
RZ

0.03
RX

Figure 8. Best-performing circuit obtained from curriculum reinforcement learning (RL) agent in solving N = 3 TFIM using a
universal gate set. We train the agent for 5000 episodes and choose the circuit that provides the lowest error in estimating the ground
state energy.

In Fig. 8 we illustrate one of the best-performing circuits by the RL. On the other hand, in Fig. 9, we show the best circuit

q0

q1

q2

q0

q1

q2

#1
2.74
RZ

#1

#1

#1

0

1
#2

2.43
RZ

0

1
#2

#1

0

1
#2

2.06
RZ

X

X

#1

X

2.39
RZ

7.85
RZ

#1
0.2

RZ X

#1

#1

X #1 X #1

#1

#1

0

1
#2

#1
2.05
RZ #1

3.14
RZ

(1)

=
=

(2)

Figure 9. (1) Best-performing circuit obtained from the gadget reinforcement learning (GRL) agent with two gadgets in finding the
ground state of a 3-qubit TFIM. Similar to Fig. 8 we train the GRL agent for 5000 episode and then choose the circuit that gives the
lowest error in ground state estimation. In (2) we illustrate the extracted gadgets from easier problems with 2-qubit TFIM.

obtained for solving the same problem using our GRL agent.

Before implementation on real hardware, we would need to transpile the circuits to only use the instructions available on the
specific platform. Figure 10 compares the transpiled circuit obtained through the RL agent with a universal gate set with that
of our GRL agent with two extracted gadgets. We show a single example as an illustration, please refer to Table 1 in the
main text for more quantitative details.

H. Summary of training time
In Fig. 11 we compare the training time of reinforcement learning (RL) and gadget reinforcement learning (GRL). With a
fixed computational budget of 5000 episodes, the GRL agent identified the optimal solution—represented by a parameterized
quantum circuit that approximates the TFIM ground state—much faster than the RL-only agent. This demonstrates GRL’s
ability to achieve the desired accuracy with fewer interactions between the agent and the environment. This advantage
makes GRL particularly effective in noisy environments. Moreover, by completing the task in less time, GRL significantly
reduces energy consumption and computational resource requirements, making it a practical and efficient solution for
resource-constrained scenarios.

I. IBM Heron processor: IBMQ Torino
Figure 12 shows the topology of the IBMQ Torino platform.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

q0

q1

q2

q0

q1

q2

/2
RZ

/2
RZ

X

X

X

1.08
RZ

1.25
RZ

X
1.22
RZ

X

/2
RZ

1.23
RZ

X

X

0.79
RZ

3.91
RZ

X

X

X

1.84
RZ X X

X

2.24
RZ X

0.64
RZ

0.71
RZ

X

X

1.2
RZ

0.33
RZ

X

X

1.48
RZ

4.45
RZ

X

X

2.91
RZ

0.2
RZ

X X

X

3.13
RZ X

1.53
RZ

1.21
RZ

X

X

1.61
RZ

1.57
RZ

X

X

3
RZ

1.32
RZ

(1)

q0

q1

q2

X

2.09
RZ

RZ

X

X

1.08
RZ

/2
RZ

X

1.57
RZ

1.57
RZ

X
/2

RZ

X

X

RZ

/2
RZ

1
RZ

X

X

X

X

X

2.05
RZ

X

X

X

3.14
RZ

X

X

(2)

Figure 10. Comparison between the transpiled circuit obtained from (1) reinforcement learning (RL) using a universal gate set, (2)
gadget reinforcement learning (GRL) using the native gateset for the IBM Heron processor and two gadgets. After transpilation in
real hardware, the circuit produced by GRL is more compact compared to the RL-agent circuit.

0 1000 2000 3000 4000 5000
Episodes

0

10

20

30

T
im

e
(i

n
h

ou
rs

)

N = 2

0 1000 2000 3000 4000 5000
Episodes

N = 3

RL

RL (best)

GRL + one gadget

GRL + one gadget (best)

GRL + two gadgets

GRL + two gadgets (best)

Figure 11. Gadget reinforcement learning (GRL) outperforms RL-only agents in finding the optimal solution more quickly for
both the N = 2 and N = 3 qubit transverse field Ising model (TFIM). The agent was trained with a fixed computational budget,
equivalent to 5000 episodes. The GRL agent identifies the optimal solution, represented by a parameterized quantum circuit that generates
a state closest to the TFIM ground state, much faster than the RL-only agent. This demonstrates that GRL is resource-efficient and can be
executed within a limited time frame.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Reinforcement Learning with learned gadgets to tackle hard quantum problems on real hardware

Figure 12. The topology of the IBMQ Torino which operates on IBM Heron processor.

20

