
Under review as a conference paper at ICLR 2023

PARAMETER AVERAGING FOR FEATURE RANKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Networks are known to be sensitive to initialisation. The methods that rely
on neural networks for feature ranking are not robust since they can have variations
in their ranking when the model is initialized and trained with different random
seeds. In this work, we introduce a novel method based on parameter averaging to
estimate accurate and robust feature importance in tabular data setting, referred as
XTab. We first initialize and train multiple instances of a shallow network (referred
as local masks) with different random seeds for a downstream task. We then obtain
a global mask model by averaging the parameters of local masks. We show that
although the parameter averaging might result in a global model with higher loss, it
still leads to the discovery of the ground-truth feature importance more consistently
than an individual model does. We conduct extensive experiments on a variety of
synthetic and real-world data, demonstrating that the XTab can be used to obtain the
global feature importance that is not sensitive to sub-optimal model initialisation.

1 INTRODUCTION

Neural networks (NNs) have gained wide adaption across many fields and applications. However,
one of the major drawback of NNs is their sensitivity to weight initialisation (McMahan et al., 2017).
This drawback is not critical for most classification and regression tasks, and is less obvious in
applications such as explainability in most computer vision (CV) tasks. The problem is more obvious
in settings, in which we pay attention to individual features (e.g., a feature in tabular data, or a pixel
in the image) rather than group of features (e.g., a region in the image). And it becomes critical in
settings, in which we might need to make costly decisions based the explanation that the model gives
for its outcomes. Few such applications include disease diagnosis in clinical setting, drug repurposing
in drug discovery, and sub-population discovery for clinical trials, in all of which the discovery of
important features is critical. In this work, we investigate the robustness of neural networks to model
initialisation in the context of feature ranking, and conduct our experiments in tabular data setting.

The methods developed to explain predictions should ideally be robust to model initialisation. This
is especially important to build trust with stakeholders in fields such as healthcare. In this work,
we define the ”robustness” as one, in which the feature ranking from the model is not sensitive to
sub-optimal model initialisation. Some examples of robust models are seen in tree-based approaches
such as the random forest (Breiman, 2001) and XGBoost (Chen & Guestrin, 2016), especially when
they are used together with methods such as permutation importance. In these methods, each tree is
grown by splitting samples on each decision point by using an impurity metric such as Gini index for
the classification task. The importance of a feature in a single tree is typically computed by how much
splitting on a particular feature reduces the impurity, which is also weighted by the number of samples
the node is responsible for. The importance scores of the features are then averaged across all of the
trees within the model to get their final scores. It is this averaging that might be one of the reasons
why these models are robust and consistent when used for feature ranking. However, we should
make a distinction between the robustness of a method and the correctness of its feature ranking as
tree-based methods are known to have their shortcomings (Strobl et al., 2007; Li et al., 2019; Zhou
& Hooker, 2021). To get a robust explanation using neural networks, we could use an ensemble
approach by training multiple neural network-based models to get feature importance, and use the
majority rule to rank them. However, the ranking of features by using the ensemble of models may
still not be easy in cases where the same feature(s) get ranked equally likely across different positions
by the models. Moreover, the ensemble approach requires us to store all models so that we can use
them to explain a prediction at test time, which is not ideal. Instead, in this work, we propose a novel
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Figure 1: Left: Framework; a) Train the models K-times with different random seeds, b) Obtain the
global mask, c) Final training by using global mask (frozen weights) and a new local mask (trained).
Right: Details of each training instance; d) Generating mask from input, e) Feature bagging using
masked input, f) Aggregating the embeddings of the subsets. E: Encoder, M: Mask, C: Classifier.

method, in which we obtain a single global mask model that is based on averaging the parameters of
multiple instances (local masks) of the same model. We take advantage of the sensitivity of NNs to
initialization by initializing and training each local mask with a different random seed. We show that
although the global model might have a higher loss than an individual model, it ranks features more
correctly and consistently, and hence can be used to extract the feature importance.

Our primary contributions in this work are the following: We obtain a global model by averaging
the parameters of multiple instances of a shallow neural network trained with different random
initialisation and use it to extract feature importance. The global model obtained in this manner
might have a higher loss than any of the individual models (McMahan et al., 2017). We show that
although this is true, the global model is still able to discover the ground-truth feature importance
more consistently than an individual model does. We also demonstrate that weight regularization such
as dropout and weight-clipping can improve the robustness and consistency of the global model. We
show that the existing the state of the art (SOTA) methods proposed for feature ranking or selection
are not robust to model initialisation. Finally, we provide insights via extensive empirical study of
parameter averaging using both synthetic and real tabular datasets.

2 METHOD

Parameter averaging is extensively studied in the context of Federated Learning (McMahan et al.,
2017), in which individual models are trained on datasets stored in different devices, and a global
model is obtained by averaging individual models in various ways. For example, the naive parameter
averaging is shown to give a lower loss on full training set than any individual model trained on
a different subset of the data when the individual models are initialized with same random seed
(McMahan et al., 2017). It is well known that the loss surface for typical neural networks is
non-convex (McMahan et al., 2017) and, hence, averaging parameters of models could result in a
sub-optimal global model, especially when their parameters are initialised differently. However, the
loss surfaces of over-parameterized NNs are shown to be well behaved and less prone to bad local
minima in practice (Choromanska et al., 2015; Dauphin et al., 2014; Goodfellow et al., 2014). In
light of these observations, we investigate settings, in which we can combine multiple models that
are initialized and trained with different random seeds to obtain a global model that is less sensitive
to sub-optimal initialisation of any individual model. So, in this work, we propose a framework to
obtain such a global model that can be used for both feature ranking and selection. We show that
global model is able to extract feature importance correctly and consistently especially when the
network architecture is shallow. We also show that this behaviour breaks down for deep architectures
although regularizing their weights still helps improve them.

2.1 TRAINING

Figure 1 shows our framework, in which we use a shallow neural network as mask generator that in
turn is used to learn important features and their weights for a downstream task. The hidden layer
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of the mask generator has the same number of hidden units as the number of input features. We
use a sigmoid activation at its output to have values in [0, 1] range. In this work, without the loss of
generality, we use the classification task for the experiments as shown in Figure 1 (right). We also
adopt the SubTab framework (Ucar et al., 2021), in which we use a shallow, overcomplete encoder
architecture followed by a classifier and train them together with the mask generator on subsets of the
features. Please note that one can train the mask generator with a simple classifier in a standard way
instead of integrating it into the SubTab framework. We conduct an ablation study to show that our
method is agnostic to whether one uses SubTab or not in Section E of the Appendix. The summary of
model architectures and hyper-parameters is in Section C.1 and Table A1 in the Appendix.

High-level overview: A mask generator, an encoder and a classifier are trained K times using the
same training set. K training runs can be parallelized in a distributed setting, or can be run in series
on the same machine. At the beginning of each run, we change the random seed before initialising all
models (i.e. mask, encoder, and classifier) using Kaiming He uniform initialization (He et al., 2015)
with the gain of

√
5 for linear layers. At the end of each training run, we keep the learned weights of

the mask model referred as the local mask. So we have K different set of weights for the same mask
model at the end of K runs. Then, we average the parameters of K local mask models to obtain the
weights of the global mask model. In Section 3.4, we show that the global mask is good at extracting
feature importance, but it can be sub-optimal for the classification task since it has a higher loss than
an individual model as shown in Figure 6. Thus, we initialise and train the models one final time,
during which we combine the output of global mask model (weights frozen) with the one from a local
mask (trained). The local mask is trained to gain back any potential loss in classification performance.
We should note that one can also choose to fine-tune the global mask, but we prefer to use it as a
reference to improve on in the final training.

Training to obtain a local mask: We train a local mask generator, a classifier and an encoder for a
downstream task. Mask generator, MlMlMl, gets data XXX , and generates a mask mmm =mlmlml. We then mask
the input XXX by using an entry-wise multiplication with mmm2 to generate a masked input XMXMXM . We use
mmm2 instead of mmm to push low values in mmm towards zero. In our experiments, we observed that using
mmm2 works better than mmm.

m = Ml(X), and XM = m2 ⊙X (1)
Inspired by the proposal for subsetting features in SubTab (Ucar et al., 2021), we then generate
subsets of data by dividing the features of XMXMXM : {xixixi,xjxjxj ,xkxkxk, . . . }. Learning from subsets of features
is shown to be effective in learning good representations for downstream tasks such as classification
while enabling parameter sharing between the features of the tabular data (Ucar et al., 2021). We also
add noise to randomly selected features in each subset since we observe that adding noise improves
classification performance and the robustness of feature ranking as discussed in Section L of the
Appendix. To add noise, we first generate a binomial mask, β, and a noise matrix, ϵ, both of which
have the same shape as the subsets, and are re-sampled for each subset. The entries of the mask are
assigned to 1 with probability p, and to 0 otherwise. As an example, the corrupted version, xic of
subset xi is generated as following:

xic = (1− β)⊙ xi + β ⊙ ϵ, where i ∈ {1, 2, ...}. (2)

Please note that different noise types can be used to generate ϵ. In this paper, we mainly experiment
with Gaussian noise, N (0, σ2), except for SynRank100 dataset, for which we use swap noise (Ucar
et al., 2021). The encoder takes each of the corrupted subsets {xic, xjc, xkc, ...xic, xjc, xkc, ...xic, xjc, xkc, ...}, and projects them
up to generate corresponding embeddings, {hi, hj , hk, ...hi, hj , hk, ...hi, hj , hk, ...}. As in SubTab (Ucar et al., 2021), we
aggregate the embeddings by using mean aggregation to get the joint embedding, hhh, as shown in
Figure 1. Finally, the classifier makes a prediction using the joint embedding hhh. We minimize the
total loss by using the objective function in Equation 3 that consists of two loss functions; i) Cross
entropy for the classification task (Equation 4), ii) Mask loss consisting of Gini index and an extra
term taking the mean over the entries of the generated mask to induce sparsity (Equation 5):

Ltotal = Ltask + Lmask (3)

Ltask = 1
N

∑N
i=1 −yi ∗ log(ŷi)− (1− yi) ∗ log(1− ŷi) (4)

Lmask = 1
N

∑N
i=1

1
D

∑D
j=1 gij +

1
N

∑N
i=1

1
D

∑D
j=1 mij , where g = 1−m2 − (1−m)2 (5)

We update the parameters of the local mask, encoder, and classifier using the total loss (Equation 3).
At the end of each kth training run, we collect the parameters of the local mask, MlkMlkMlk .
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Final training: Once the K training runs are completed, we obtain a global mask model by averaging
the parameters of K individual local masks as shown in Equation 6:

MgMgMg =
1

K

K∑
k=1

MlkMlkMlk (6)

where MlkMlkMlk is the local mask generator collected at kth run, and MgMgMg is the global mask. MgMgMg might
give sub-optimal performance in downstream task since it is shown to result in higher loss than a
local mask model (Section 3.4). But, we do not want to lose the benefits that come with averaging the
parameters in MgMgMg by fine-tuning it. So, to avoid the potential degradation in performance, we do one
final training. We change the random seed, and initialize all the models. In this step, we don’t train
the global mask, but rather train a new local mask together with the encoder and classifier as before.
However, the difference from the previous training instances is that the mask used for masking the
input data is obtained by summing the output of global mask (with frozen weights) and local mask
(being trained), followed by scaling this output to make sure that the maximum entry in the mask is 1
as shown in Equations 7, and 8:

mg = Mg(X) and ml = Ml(X) (7)
mf = (mg +ml)/C where C = max(mg +ml) and XM = mf

2 ⊙X. (8)

We should note that C is a scaler, i.e. maximum entry in mg + ml sum. We use the same loss
functions described in equations 3, 4 and 5 to update the parameters of the local mask, encoder
and classifier. We should note that mf can be computed in various ways such as using a gating
mechanism similar to input and forget gates in LSTMs (Hochreiter & Schmidhuber, 1997). We
can also choose to keep updating Mg in a sequential manner rather than averaging parameters of
multiple models all at once. We leave these ideas as future work. Our method is summarized in the
Algorithms 1 and 2 in the Appendix.

2.2 TEST TIME

At test time, we use mgmgmg shown in Equations 7 to infer the feature importance. mgmgmg is shown to give
a robust global ranking of features in our experiments. In XTab, the importance score for a feature
is the mask weight in the final generated mask. The mask weight indicates the feature’s relative
importance, and we rank the features based on their mask weights. We extract the global feature
importances for test set by getting mask values for all samples and computing the mean values over
the samples for each feature:

f̂i = Mg(xi) and F̂ =
1

N

N∑
i=1

f̂i, (9)

where f̂îfîfi ∈ Rd represents mask weights (i.e. feature importance) for the d number of features in
samplexixixi ∈ Rd, hence f̂îfîfi gives an instance-wise feature importance for ith sample. F̂̂F̂F ∈ Rd gives the
mean of mask weights over N samples and we use it when computing the global feature importance.
Please note that ”global” is an overloaded term in the sense that ”global” refers to a feature’s overall
importance across all samples in a dataset in the context of feature ranking i.e. it is not related to the
term ”global” in the global mask model. Finally, when ranking the categorical features, we can rank
individual one-hot encoded features to show importance of each sub-category. We can also sum the
weights of each one-hot encoded feature to get the overall weight for the parent category. We use
both when comparing our method to other methods in Sections L.4 and L.5 of the Appendix.

3 EXPERIMENTS

We conduct extensive experiments on diverse set of tabular datasets including six syntetic datasets as
well as real world datasets such as UCI Adult Income (Income) (Kohavi, 1996), and UCI BlogFeed-
back (Blog) (Buza, 2014). We conduct our initial experiments on synthetic datasets since their
ground-truth important features are known. We also compare global feature rankings obtained by
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the proposed method for synthetic datasets to those given by recently published neural network-
based methods such as Invase (Yoon et al., 2018), L2X (Chen et al., 2018), TabNet (Arık & Pfister,
2021), and Saliency Maps (Simonyan et al., 2013). We report the detailed results on Income and
Blog datasets in Sections L and M while additional experiments using synthetic datasets from L2X
(Chen et al., 2018) are in Sections J of the Appendix respectively. For completeness, we also make
comparisons with methods such as permutation feature importance used together with random forest
(Breiman, 2001) and gradient boosting classifier (Pedregosa et al., 2011) in Section F of the Appendix.

3.1 DATA

SynRank dataset: We generate a synthetic dataset, referred as SynRank, consisting of training and
test sets with 10k samples each for a binary classification to evaluate whether our method can rank
important features in correct order. We first generate data XXX from 10-dimensional standard Gaussian
with no correlations across the features N (0, I0, I0, I). We then shift the sixth feature , f6, to be centered
around −10 for the first 45% of samples. For the next 35% of the samples, we shift the first feature
f1 to be centered around 10. The remaining 20% of the samples are kept same as is. We generate
the label YYY by sampling it as a Bernoulli random variable with P (Y = 1|XXX) = 1/(1 + g(XXX)).
In this case, g(XXX) is defined as exp(f6), exp(f1) and exp(f2) for the 45%, 35% and 20% of the
samples respectively. So the first 45% and 35% of the samples will be labeled as 1 and 0 with a high
probability, respectively. For the remaining 20% samples, we can expect the proportions of class
labels to be similar since f2 is from a standard Gaussian with µ = 0. Based on this dataset, we expect
that our method discovers the global feature importance ranking as f6 > f1 > f2.

SynRank100 dataset: This dataset is same as the SynRank, but it has 100 features instead of 10.
The features f100, f1, and f75 are the equivalents of f6, f1, f2 in SynRank respectively, and hence
the feature ranking is f100 > f1 > f75 while the remaining 97 features are uninformative.

Synthetic datasets from L2X: We run experiments on four synthetic datasets used for binary
classification in L2X (Chen et al., 2018). For each dataset, we have 10k training and 10k test
set. In first three datasets, we generate data XXX from 10-dimensional standard Gaussian and assign
labels using P (Y = 1|XXX) = 1/(1 + g(XXX)) in each dataset, where g(XXX) is defined in the following
way: i) XOR: exp(f1 ∗ f2), ii) Orange Skin: exp(

∑4
i=1 fi

2 − 4), and iii) Nonlinear Additive:
exp(−100 ∗ sin(2 ∗ f1) + 2 ∗ |f2|+ f3 + exp(−f4)). In the fourth dataset, iv) Switch: We generate
f10 from a mixture of two Gaussians centered at ±3 respectively with equal probability. If f10 is from
the N (3, 1), then we use {f1, f2, f3, f4} to generate Y from the Orange Skin model. Otherwise, we
use {f5, f6, f7, f8} to generate Y from the Nonlinear Additive model. f9 is not used when generating
labels. We include some results for L2X Switch in the main paper while the results on other datasets
can be found in Section H, I and J of the Appendix.

Income: Income is a public dataset based on the 1994 Census database (Kohavi, 1996). It is used
for a classification task of predicting whether the income of a person exceeds $50K/yr by using
heterogeneous features such as age, gender, education level and so on. It contains 32.5k and 16k
samples for training and test sets respectively. The dataset has 14 attributes consisting of 8 categorical
and 6 continuous features. We dropped the rows with missing values, and encoded categorical
features using one-hot encoding. Once we encode the categorical features as one-hot, we end up with
105 features in total.

BlogFeedback: Referred as Blog in this work, it is a UCI dataset (Dua & Graff, 2017) and contains
the number of comments in the upcoming 24 hours for blog posts. It includes 281 variables consisting
of 280 integer and real valued features and 1 target variable indicating the number of comments a
blog post received in the next 24 hours relative to the basetime. We converted the target to a binary
variable to use the data for a classification task of predicting whether there is a comment for a post.

The more details on Income and Blog datasets are added in Section B of the Appendix.

3.2 COMPARING GLOBAL MODEL TO LOCAL MODELS

We start our experiments with the classification task on SynRank dataset to get insights into how
parameter averaging works for extracting feature importance1 as shown in Figure 2. The results for

1Unless specified otherwise, when we say feature importance, we refer to global feature importance.
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(a) (b) (c) (d)

Figure 2: SynRank dataset: a) Feature rankings from each of 10 local masks MlkMlkMlk , referred as lklklk in
the figure, obtained at a particular training run for 10 separate runs. b) Feature rankings from the
global model, obtained by averaging the parameters of individual models up to a specific run i.e.
cumulative average (CA). For example, g3g3g3 corresponds to the global model obtained by averaging the
parameters of first 3 local masks (l1l1l1, l2l2l2, l3l3l3). c) The feature importance weights from MgMgMg obtained
by averaging the parameters of all local masks. d) Instance-wise feature importance: Comparing
ground-truth top feature to predicted top feature from MgMgMg for each sample (shown in percentages).

L2X datasets (Chen et al., 2018) can be found in Section H while the details on hyperparameters such
as p used for generating the binomial mask, β, and the variance of Gaussian noise, ϵ ∼ N (0, σ2),
can be found in Section C.1 of the Appendix. We train our models on the whole training set for the
downstream task 10 times, each time with a different random seed. We store the parameters of the
trained masks, referred as local masks, from each training and denote them as {Ml1 ,Ml2 , . . . ,Ml10}.
We examine the feature importance obtained from each of 10 local masks for the test set (Figure 2a).
We observe that each local mask gives a slightly different ranking. More specifically, we can have
different ranking, depending on which seed is used when training the models. The main reason for
this variation is the model initialisation since everything else are kept same across different trainings.
We then evaluate the effect of averaging over the parameters of the local masks on feature ranking
in a progressive way. To do this, we obtain a global mask MgkMgkMgk as a cumulative average (CA) over
the k local masks, i.e. MgkMgkMgk = 1/k

∑k
i=1MlkMlkMlk as shown in Figure 2b. For example, Mg3Mg3Mg3 corresponds

to averaging the parameters of the first three local masks i.e., Ml1Ml1Ml1 ,Ml2Ml2Ml2 ,Ml3Ml3Ml3 shown in Figure 2a.
We refer to Mg10Mg10Mg10 as MgMgMg for simplicity in the rest of the paper. We can see that the feature ranking
becomes more stable as we use more local masks in the parameter averaging to obtain the global
mask model (Figure 2b).

3.3 EVALUATING THE CORRECTNESS OF FEATURE RANKING

Figure 2c shows the feature weights obtained from MgMgMg = Mg10Mg10Mg10 . We first note that the weights
of the features are correlated with the frequency and position of their ranks across all local masks.
Specifically, f6 is ranked a little higher on average than f1 is (since f1 occasionally takes 3rd rank).
Hence, MgMgMg correctly gives f6 a little more weight than f1 and suggests f2 as the 3rd most important
feature as shown in Figure 2c. Moreover, we investigate the instance-wise feature importance for
XTab. Since we optimize our models using a global objective function (Equation 3), we expect
MgMgMg to be biased towards globally important features when estimating the feature importance for an
individual sample as confirmed in Figure 2d. We see that MgMgMg is biased towards the globally important
features, and fails to rank f2 as the most important feature for 20% of the samples in the test set, for
which we generate labels using P (Y = 1|XXX) = 1/(1 + exp(f2)) and f2 is sampled from N (0, 1).

3.4 THE ROBUSTNESS AND CONSISTENCY OF PARAMETER AVERAGING

We compare the robustness and consistency of the global feature importance extracted from various
methods by running each method 10 times with different random seeds on SynRank and L2X
Switch datasets in Figure 3. XTab discovers the top three features as ”f6 > f1 > f2” for SynRank
consistently while the rankings from TabNet, Invase, L2X and Saliency Maps are not robust to
initialisation (Figure 3a). For example, TabNet has a wide variation in its rankings whereas L2X gets
the ranking completely wrong. Please note that Invase and L2X are originally proposed as feature
selection methods. So, we use the feature-selection probabilities for Invase and the frequency of a
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(a) Rankings of f6, f1, and f2 from SynRank (b) Ranking of f10 from L2X Switch

Figure 3: Comparing different models for the consistency and correctness of their feature rankings by
using SynRank and L2X Switch datasets. f6 > f1 > f2 is the correct feature ranking for SynRank
while f10 is the most important feature for L2X Switch. Abbreviations; SM: Saliency Maps.

feature being selected for L2X when computing the feature rankings. Moreover, in Figure 3b, we
repeat the same experiment for L2X Switch dataset and show the ranking of the most important
feature f10 by the same models. XTab ranks f10 as the most important feature consistently while
others fail. Please note that this is the hardest synthetic dataset in a way that the effect of f10 on the
sample labels is not direct, rather it influences the labels indirectly by deciding which features to be
used for label generation. The details of the training for the models as well as the ranking results for
all L2X datasets are in Sections C and J of the Appendix, respectively.

The effect of weight regularization on the robustness. We run additional experiments on SynRank
under three conditions: We apply i) No weight regularization to the weights of the mask model i.e.,
our original setting so far, ii) Dropout with p = 0.2 for the layers with leaky ReLU activation, iii)
Weight-clipping ([−0.2, 0.2]) to limit the magnitude of the weights in each layer. For each of the three
cases, we train 20 separate models and compare two different settings. In the first setting, we compute
the variation in the feature rankings given by 20 local mask models (top row in Figure 4a-c). In the
second setting, we obtain 100 global models, each of which is obtained by averaging the parameters
of 10 local models bootstrapped from 20 models. We compare the variation in feature rankings given
by global models (second setting – bottom row in Figure 4a-c) to that of 20 local models (first setting –
top row). We observe that: i) Regularization methods such as dropout and weight-clipping has a little
effect in improving the variation across 20 local models (e.g., comparing f1, f2 and f6 across three
cases at the top row). ii) They do not improve the robustness of the parameter averaging significantly
(e.g., comparing same features across three cases at the bottom row). iii) Parameter averaging results
in more robust estimation of feature rankings (comparing top and bottom rows). Overall, the global
models are able to discover important features in the correct order (e.g., f6 > f1 > f2), and the
variation in feature ranking across global models is small (almost zero) for ground truth important
features (e.g., f1, f2 and f6 at the bottom row in Figure 4c). We should note that we conduct the
same experiment for SynRank100 (Figure 4d), L2X Switch, Income, and Blog datasets, for the latter
three of which the weight regularization helps improve robustness of parameter averaging (Figures 5,
A8, A18, and A22 respectively). Thus, the weight regularization can help improve the robustness and
weight-clipping works better than dropout in our experiments. We also observe that the parameter
averaging itself pushes the magnitude of the weights towards a tight range around zero as shown in
Figure A9 (Section I.1 of the Appendix), indicating a potential relationship between robustness and a
tighter weight distribution.

Exploring the mask generator with deeper architecture. We re-run the robustness experiments by
replacing the shallow mask model with a deeper model (5 hidden layers) and show that the weight
regularization also helps with the robustness of parameter averaging in deeper networks although the
parameter averaging does not work as well as the shallow networks especially if weight regularization
is not used (see Figure A16(f) for Income dataset in the Appendix). Additional results for SynRank,
L2X Switch, and Income can be found in Section F.2, I.2 and L.3 of the Appendix respectively.

Comparing the loss and solution space of local and global models. We consider two sets of
parameters: θl for a local model and θg for the global model. We can compare the possible loss and
solution space by interpolating from local to the global model: θ∗ = (1− α) ∗ θl + α ∗ θg, where
α is swept from 0 to 1 in 50 steps. Figure 6a-b shows two separate examples of such interpolation
done using SynRank dataset. In Figure 6a, the local model (α = 0) has the wrong feature ranking of
f1 > f6 > f2. As we move from local model (α = 0) to the global model (α = 1), the estimate
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(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping (WC) (d) WC - SynRank100

Figure 4: SynRank and SynRank100 datasets: The important features are f6 > f1 > f2 and
f100 > f1 > f75 for SynRank and SynRank100 respectively while the rest of the features is not
informative. Top row: Variations in feature rankings across 20 local mask models when we apply a)
no weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]) for SynRank
dataset. Bottom row: Variations in feature rankings in 100 global models, each of which is obtained
by averaging the parameters of 10 models bootstrapped from 20 local models for the same three cases.
d) Same as (c) i.e. weight-clipping (WC), but the experiment is repeated for SynRank100 dataset.

(a) Income-Local (b) Income-Global (c) Blog-Local (d) Blog-Global

Figure 5: Income and Blog datasets: Repeat of the experiment in Figure 4c, showing variations in
feature rankings across 20 local mask models in (a) and (c) as well as variations across 100 global
models in (b) and (d) (Please see Section L.3 and M.1 for more results). Abbreviations used for
features in Income are; ms: marital status, en: education-num, cg: capital-gain, hpw: hours-per-
week, occ: occupation, rel: relationship, cl: capital-loss, nc: native-country.

of feature ranking gets better. The global model estimates the ranking correctly (f6 > f1 > f2).
Similarly, in Figure 6b, a different local model has the wrong feature ranking of f6 > f2 > f1
while the global model again gives the correct ranking. Moreover, for SynRank, the expected global
feature importance weights are FFF = [F1F1F1,F2F2F2, ...,F6F6F6, ...,F10F10F10] = [0.35, 0.2, 0, ..., 0.45, ..., 0]. So, we
can compute the loss of the mask model by using mean squared error between expected weights and
the model’s estimate: L = 1

10

∑10
d=1(FdFdFd − F̂d̂Fd̂Fd)

2, where F̂̂F̂F is defined in Equation 9. Thus, we plot
how this loss changes as we interpolate from local to global model in Figure 6c, which corresponds
to the interpolations in Figure 6a-b. It indicates that the loss increases as we move towards the global
model, which is mainly due to the fact that the noise floor (nf) increases in both cases as shown in
Figure 6a-b and that the weight of f6 moves away from 0.45 in the case of Figure 6b. Averaging
parameters of the multiple models with different initialisation is known to give a global model that
might have a higher loss than any of the local models (McMahan et al., 2017). However, we show that
the global model is still better at estimating feature ranking and more robust than the local models.

4 RELATED WORKS

Parameter averaging Averaging parameters to get a global model has been extensively studied in
the Federated Learning setting under different assumptions; i) The convex optimisation under IID
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(a) (b) (c)

Figure 6: SynRank: (a-b): Two examples showing the changes in the weights of features estimated
by a model that is obtained by interpolating between a single local model and the global model:
θ∗ = (1− α) ∗ θl + α ∗ θg . As we move from local model (α = 0) to the global model (α = 1), the
estimate of feature ranking gets better (i.e., f6 > f1 > f2) even though the loss of the model gets
worse as shown in (c). nf: Noise floor, referring to average weight of the rest of the uninformative
features i.e., f3− f5, f7− f10. The plots show the mean and 95% confidence intervals computed
by repeating the experiments with 100 global models, each of which is obtained by bootstrapping 10
out of 20 local models. In (a-b), global models are interpolated with two different local models.

data assumption, in which it is shown that the global model is no better than a single model in the
worst-case (Arjevani & Shamir, 2015; Zinkevich et al., 2010; Zhang et al., 2012). ii) The non-convex
optimisation under IID and non-IID data assumptions, in which individual models are initialized
from the same random initialization to avoid bad local minima before training each independently
(McMahan et al., 2017). Parameter averaging using models with same initialisation is studied under
different contexts as well (Wortsman et al., 2022; Polyak & Juditsky, 1992; Izmailov et al., 2018).
In Wortsman et al. (2022), the authors average the parameters of multiple models, each of which
is obtained by fine-tuning a pre-trained model by using different hyper-parameters. In this case,
the fine-tuning process starts from the same initial model i.e., pre-trained model. The parameter
averaging in (Polyak & Juditsky, 1992; Izmailov et al., 2018) is done by averaging the parameters
of the same model along the trajectory of stochastic optimisation during the training. Moreover,
dropout method is previously shown to approximate model averaging implicitly (Srivastava et al.,
2014; Goodfellow et al., 2013). However, we show that the dropout alone is not enough to achieve
robustness in Section 3.4. In this work, we study non-convex setting under the IID assumption, and
consider averaging model parameters obtained across multiple training runs to produce the final
global model. What differentiates our method from aforementioned works is that we initialise the
models with different random seeds. Although averaging the parameters of the models trained with
different random seeds is shown to lead to a bad local minima (McMahan et al., 2017), we show that
the global model obtained in this way gives a robust estimate of the feature importance and can be
used for feature ranking. We review other related works in Section D of the Appendix.

5 CONCLUSION

In this work, we show that a global model obtained by averaging the parameters of multiple instances
of a shallow network trained with different random seeds can be used to estimate global feature
importance and that its estimates are not sensitive to sub-optimal initialisation of individual models.
Furthermore, regularization methods can enhance the robustness of parameter averaging. We give
insights into how parameter averaging can be useful for feature ranking through extensive experiments
using synthetic and real tabular datasets. Our method can also be extended to other modalities such
as images, graph etc. and we leave it as a future work. Finally, the following are some of the
shortcomings of our approach; i) The global model is biased towards globally important features and
hence instance-wise feature importance will be biased, ii) We still need to do hyper-parameter search
for feature bagging, noise etc., iii) The features in the real world datasets can have more intricate
relationships such as multicollinearity, making the ranking of the features difficult, in which case
our method can be used for feature selection rather than feature ranking, and iv) Our method needs
additional compute during training, but this can be eliminated by integrating our method into K-fold
cross validation, assuming K ≥ 10.
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A ALGORITHM

Algorithm 1: Main learning algorithm
input: batch size N, the structure of encoder (e), classifier (c), mask (m);

# Set the seed and do train-test split
seed = 57;
# Training and test sets.
Xtrain, Xtest = get data(random seed = seed);
# Initialize a list to hold mask models from each of K-training
instances.
masks list = [] ;

# Train models K-times, each time with a different random seed.
for ik in {K} do

# Change random seed and initialize models
seed = seed+ 17;
initialize all models (e, c, m) with new seed;
# Train mask, classifier & encoder and return trained mask
model.
, ,Mlk , = train for downstream(training = (Xtrain, ytrain))
# Collect parameters of the local mask model.
masks list.append(Mlk);

end

# Average the parameters of the masks collected to obtain
global mask

Mg = 1
K

∑K
k=1 Mlk ;

# Change the random seed and initialize models
seed = seed+ 17;
initialize all models (e, c, m) with new seed;
# Train mask, classifer and encoder while using global mask
(frozen)
eee, ccc,MlMlMl,MgMgMg = train for downstream(training = (Xtrain, ytrain),Mg = Mg);
# Return Encoder (e), Classifier (c), Local and Global masks
return eee, ccc, MlMlMl, MgMgMg ;
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Algorithm 2: Training routine used for the downstream task
def train for downstream(training, val=None, MgMgMg=None)

Xtrain, ytrain = training
foreach epoch e ∈ Epochs do

foreach batch (Xb, yb) ∈ (Xtrain, ytrain) do
# Get the output from the local mask
m = Ml(Xb)
# If the global mask is provided, get its output
if Mg ̸= None : then

with no gradient:
mg = Mg(Xb).detach()

# Final mask is the sum of local and global masks,
scaled by the max entry in the sum.
m = (m+mg)/max(m+mg)

# Get the masked input using the square of the mask
XM = m2 ⊙Xb

# Generate subsets of data (i.e. feature bagging)
xi, xj , xk, ... = generate subsets(XM )
# Obtain embeddings
hi, hj , hk, ... = [encoder(x) for x in [xi, xj , xk, ...]]
# Aggregate embeddings to get the joint embedding
h = aggregate(hi, hj , hk, ...)
# Get predictions using the joint embedding
ypred = classifier(h)
# Compute losses
Ltask = CrossEntropy(ypred, yb)
Lmask = Gini(m)
L = Ltask + Lmask

# Update models. Note that the global mask is not
trained.
backprop and update local mask, encoder and classifier

# If validation set is provided, run validation using the
steps above (no loss computation).

# Return Encoder, Classifier, Local and Global masks
return encoder, classifier,MlMlMl,MgMgMg
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B DATA

B.1 ADULT INCOME DATASET

Adult Income (Income) is a public dataset based on the 1994 Census database (Kohavi, 1996). It is
used for a classification task of predicting whether the income of a person exceeds $50K/yr by using
heterogeneous features such as age, gender, education level and so on. It contains 32.5k and 16k
samples for training and test sets respectively.

Train-Validation-Test Split: Training and test sets are provided separately (Kohavi, 1996). We split
the training set into training and validation sets using 80-20% split to search for hyper-parameters.
Once hyper-parameters was fixed, we trained the model on the whole training set.

Features: The dataset has 14 attributes consisting of 8 categorical and 6 continuous features. We
dropped the rows with missing values, and encoded categorical features using one-hot encoding.
Once we encode the categorical features as one-hot, we end up with 105 features in total. Features
are normalized by subtracting the mean and dividing by the standard deviation, both of which are
computed using training set.

Class imbalance: It is an imbalanced dataset, with only 25% of the samples being positive.

B.2 UCI BLOGFEEDBACK DATASET

Referred as Blog in this work, it contains the number of comments in the upcoming 24 hours for blog
posts. Although the dataset can be used for regression, we turn it to a binary classification task to
predict whether there is a comment for a post or not.

Train-Validation-Test Split: UCI (Dua & Graff, 2017) provides one training set, and 60 small test
sets. We combined all the test sets into one test set. We split training set to training and validation
using 80-20% split to search for hyper-parameters. We trained the final model using all of the training
set.

Features: It includes 281 variables consisting of 280 integer and real valued features and 1 target
variable indicating the number of comments a blog post received in the next 24 hours relative to
the basetime. We converted the target (the last column in the dataset) to a binary variable, in which
0/1 indicates whether the blog post received any comments. Similarly to Income dataset, we used
standard scaling to normalize the features.

Class imbalance: ∼ 36% of the samples are positive in training set while it is ∼ 30% in the test set.

B.3 SYNTHETIC DATASETS FROM L2X:

We run experiments on four synthetic datasets used for binary classification in L2X (Chen et al.,
2018). For each dataset, we have 10k training and 10k test set. In first three datasets, we generate data
XXX from 10-dimensional standard Gaussian and assign labels using P (Y = 1|XXX) = 1/(1 + g(XXX)) in
each dataset, where g(XXX) is defined in the following way: i) XOR: exp(f1 ∗ f2), ii) Orange Skin:
exp(

∑4
i=1 fi

2−4), and iii) Nonlinear Additive: exp(−100∗sin(2∗f1)+2∗|f2|+f3+exp(−f4)).
In the fourth dataset, iv) Switch: We generate f10 from a mixture of two Gaussians centered at
±3 respectively with equal probability. If f10 is from the N (3, 1), then we use {f1, f2, f3, f4} to
generate Y from the Orange Skin model. Otherwise, we use {f5, f6, f7, f8} to generate Y from the
Nonlinear Additive model. f9 is not used when generating labels.

B.4 DATA LICENSE

Aduld Income and BlogFeedback are under Open Data Commons Public Domain Dedication and
License (PDDL).
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C DETAILS OF THE EXPERIMENTS IN THE MAIN PAPER

C.1 MODEL ARCHITECTURES AND HYPER-PARAMETERS FOR XTAB

The classifier has three linear layers, two of which are followed by a leakyReLU and dropout (p=0.2).
For the mask generator, we use two architectures; i) shallow: A linear layer followed by leakyReLU
and a final linear layer, ii) deep: five linear layers, each followed by leakyReLU, and a final linear
layer. The last layer for both mask generator and classifier uses sigmoid activation. The number of
hidden units in each layer in the mask generator is same as the number of features in the input while
we use 1024 units in each hidden layers of classifier. During training, a learning rate of 0.001 is used
for all experiments and we optimize the batch size and total number of epochs.

Table A1: Architectures & hyper-parameters used in our framework for each dataset. Abbreviations
are; σ: Standard deviation used for Gaussian noise, MR: Mask ratio p.

Dataset Mask Encoder Classifier Subsets / Overlap σ/MR (p) Noise Batch/Epoch
SynRank [10, 10] [1024] [1024, 1024, 1024] 3 / 75% 0.5/0.5 Gaussian 1024, 40
SynRank100 [100, 100] [1024] [1024, 1024, 1024] 2 / 75% NA/0.5 Swap 1024, 40
Income [105, 105] [1024] [1024, 1024, 1024] 3 / 25% 0.3/0.2 Gaussian 1024, 40
Blog [280, 280] [1024] [1024, 1024, 1024] 7 / 75% 0.3/0.2 Gaussian 256, 20
L2X XOR [10, 10] [1024] [1024, 1024, 1024] 2 / 75% 0.05/0.2 Gaussian 1024, 40
L2X Orange [10, 10] [1024] [1024, 1024, 1024] 2 / 75% 0.05/0.2 Gaussian 1024, 40
L2X N. Additive [10, 10] [1024] [1024, 1024, 1024] 2 / 75% 0.01/0.2 Gaussian 1024, 40
L2X Switch [10, 10] [1024] [1024, 1024, 1024] 2 / 75% 0.05/0.3 Gaussian 1024, 40

C.2 IMPLEMENTATION AND RESOURCES

We implemented our work using PyTorch (Paszke et al., 2019). AdamW optimizer (Loshchilov &
Hutter, 2017) with betas = (0.9, 0.999) and eps = 1e− 07 is used for all of our experiments. We
used a compute cluster consisting of Volta GPUs throughout this work.

C.3 DETAILS FOR TRAINING L2X, INVASE, TABNET, SALIENCY MAPS AND INTEGRATED
GRADIENTS (IG)

L2X: We used the official implementation of L2X2. We set all of hyperparameters, following the
instruction in L2X paper (Chen et al., 2018). For each data set, we trained a neural network model
with three hidden layers. The explainer is a neural network composed of two hidden layers. The
variational family is based on three hidden layers. All layers are linear with dimension 200. The
number of desired features is set to the number of true features. We fixed the step size to be 0.001
across experiments. The temperature for Gumbel-softmax approximation is fixed to be 0.1. Since the
model is proposed for feature selection, we used the average number of selected features for each
sample in the test set to rank them.

Invase: We followed the hyperparameter selection as instructed in Invase paper (Yoon et al., 2018)
and all the experiments are based on the official Keras implementation3. We fixed the learning rate
and λ as 0.0001 and 0.1, respectively. The actor and critic models are three layer neural networks
with hidden state dimensions 100 and 200, respectively. L2 regularization is set to be 0.001 and
activation function is ReLU. We used the feature selection probability, which is the output of the
actor model, to rank the features.

TabNet: We used the well established PyTorch implementation of TabNet4. We set the hyper-
parameters as Na = Nb = 8, λsparse = 0.001, B = 1024, Bv = 128, γ = 0.3, and learning rate
= 0.02. For all experiments, we used sparsemax as the masking function and OneCycleLR as the
learning rate scheduler. The other parameters are set to be same as the default choices.

Saliency Maps and Integrated Gradients (IG): For Saliency Maps (Simonyan et al., 2013) and IG
(Sundararajan et al., 2017), we used the same architecture as XTab and trained the models using SGD

2https://github.com/Jianbo-Lab/L2X
3https://github.com/jsyoon0823/INVASE
4https://github.com/dreamquark-ai/tabnet
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with learning rate of 0.01. For Saliency Map, we considered absolute value of each sample gradient
for ranking. For IG, we used Captum PyTorch library5.

D MORE ON RELATED WORKS

Explainability The literature in explainability and model interpretation is extensive and we refer
the reader to the survey papers (Linardatos et al., 2020; Nielsen et al., 2021; Tjoa & Guan, 2020)
for a more complete review. In this work, we compare our method to the commonly used methods
(Random Forest (Breiman, 2001), Gradient Boosting Classifier (Friedman, 2001; Pedregosa et al.,
2011)), to those based on the gradients and/or activations (Saliency Maps (Simonyan et al., 2013) and
Integrated Gradients (IG) (Sundararajan et al., 2017)), to the ones that rely on the learnable masks
(TabNet (Arık & Pfister, 2021), Invase (Yoon et al., 2018)) and to some of the recently published
feature selection methods (L2X (Chen et al., 2018), Invase (Yoon et al., 2018)). What distinguishes
our work from the aforementioned works is that we focus on the sensitivity of the feature rankings to
model initialisation in neural networks. Our goal is to achieve the robustness of tree-based methods
such as Random Forest (Breiman, 2001) in neural network setting. In this regard, we compare our
results to neural network-based methods both in the main paper as well as in the Appendix.

Explainability in Federated Learning There is some recent work in the intersection of explainable
AI (XAI) and Federated Learning (FL) such as the application of Gradient-weighted Class Activation
Mapping (Grad-CAM) (Selvaraju et al., 2017) to explain the classification results in electrocardiogra-
phy (ECG) monitoring healthcare system (Raza et al., 2022). However, it still remains to be an open
problem. Lastly, although our method is not proposed for Federated Learning setting, we believe that
it can still be used in this area.

E ABLATION STUDY ON ARCHITECTURE

Figure A1: Standard architecture that uses only mask generator and a simple MLP-based classifier.

Figure A2: Repeating the experiment in Figure 4a, using a standard architecture shown in Figure A1.
The important features are f6 > f1 > f2 for SynRank while the rest of the features is not informative.
Left: Variations in feature rankings across 20 local mask models Right: Variations in feature
rankings in 100 global models, each of which is obtained by averaging the parameters of 10 models
bootstrapped from 20 local models for the same three cases. Comparing it to our original architecture
based on SubTab (Ucar et al., 2021), we see that the robustness of feature ranking achieved via
parameter-averaging is agnostic to the choice of architecture used for the downstream task.

5https://github.com/pytorch/captum
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F ADDITIONAL RESULTS FOR SYNRANK DATASET

F.1 RANKING COMPARISON OF DIFFERENT MODELS IN TABLE FORMAT
Table A2: Comparison of feature ranking obtained from 10 runs of different methods for SynRank.
Expected ranking is f6>f1>f2, and incorrect rankings are shown in bold. This is the same result
shown as a figure in Figure 3a in the main paper.

SynRank dataset
Ranking from XTab (no weight regularization is used)

Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f6 f1 f2 f9 f5 f4 f3 f8 f7 f10 0.9971
2 f6 f1 f2 f9 f5 f3 f8 f4 f7 f10 0.9965
3 f6 f1 f2 f5 f9 f3 f4 f8 f7 f10 0.9969
4 f6 f1 f2 f9 f5 f4 f3 f8 f7 f10 0.9951
5 f6 f1 f2 f9 f5 f4 f3 f8 f10 f7 0.9955
6 f6 f1 f2 f5 f9 f3 f4 f8 f7 f10 0.9972
7 f6 f1 f2 f9 f5 f3 f4 f8 f10 f7 0.9964
8 f6 f1 f2 f5 f9 f4 f3 f8 f7 f10 0.9964
9 f6 f1 f2 f5 f9 f4 f3 f8 f7 f10 0.9971
10 f6 f1 f2 f9 f5 f3 f4 f8 f7 f10 0.9973

Rankings from GBCP & RFP
GBCP f6 f1 f2 f10 f9 f8 f7 f5 f4 f3 0.9996
RFP f6 f1 f2 f10 f9 f8 f7 f5 f4 f3 0.9999

Rankings from TabNet
1 f1 f6 f2 f5 f8 f7 f9 f10 f4 f3 0.9990
2 f1 f6 f2 f8 f7 f3 f10 f5 f4 f9 0.9988
3 f6 f1 f2 f10 f9 f3 f5 f8 f4 f7 0.9980
4 f6 f1 f2 f4 f7 f10 f9 f5 f3 f8 0.9978
5 f6 f1 f8 f2 f3 f10 f9 f4 f5 f7 0.9984
6 f6 f1 f3 f2 f4 f8 f10 f5 f9 f7 0.9988
7 f6 f1 f3 f2 f7 f9 f10 f8 f5 f4 0.9999
8 f1 f2 f6 f8 f9 f7 f10 f3 f4 f5 0.9963
9 f6 f1 f2 f9 f5 f8 f10 f4 f7 f3 0.9995
10 f6 f1 f2 f7 f3 f5 f10 f4 f8 f9 0.9979

Rankings from Invase
1 f1 f6 f2 f5 f8 f3 f10 f9 f4 f7 0.9988
2 f1 f6 f2 f5 f9 f4 f10 f3 f7 f8 0.9989
3 f1 f6 f2 f3 f8 f4 f5 f9 f7 f10 0.9989
4 f6 f1 f2 f7 f8 f4 f10 f9 f5 f3 0.9986
5 f6 f1 f2 f4 f5 f8 f10 f7 f9 f3 0.9989
6 f1 f6 f2 f3 f7 f4 f8 f9 f10 f5 0.9992
7 f1 f6 f2 f9 f7 f4 f5 f10 f8 f3 0.9985
8 f1 f6 f2 f4 f5 f9 f3 f7 f10 f8 0.9993
9 f1 f6 f2 f10 f3 f5 f7 f8 f4 f9 0.9996
10 f6 f1 f2 f4 f3 f5 f8 f9 f10 f7 0.9991

Rankings from L2X
1 f1 f2 f6 f5 f3 f4 f7 f8 f9 f10 0.9977
2 f1 f2 f6 f3 f5 f10 f4 f7 f8 f9 0.9983
3 f1 f2 f6 f4 f10 f3 f9 f5 f7 f8 0.9969
4 f1 f2 f6 f3 f5 f10 f4 f7 f8 f9 0.9975
5 f1 f2 f6 f3 f5 f7 f4 f8 f9 f10 0.9976
6 f1 f6 f2 f3 f4 f5 f7 f8 f9 f10 0.9978
7 f1 f2 f6 f5 f3 f4 f7 f8 f9 f10 0.9985
8 f1 f2 f6 f3 f5 f8 f4 f7 f9 f10 0.9976
9 f1 f6 f2 f4 f10 f8 f5 f3 f7 f9 0.9984
10 f1 f2 f6 f3 f5 f8 f4 f7 f9 f10 0.9979

Rankings from Saliency Maps
1 f6 f1 f2 f5 f4 f7 f3 f9 f10 f8 0.9817
2 f1 f6 f2 f10 f3 f5 f7 f8 f4 f9 0.9820
3 f1 f6 f2 f10 f3 f8 f7 f9 f5 f4 0.9816
4 f6 f1 f2 f10 f8 f4 f5 f3 f7 f9 0.9824
5 f1 f6 f2 f9 f8 f3 f10 f5 f7 f4 0.9812
6 f6 f1 f2 f3 f5 f8 f7 f4 f9 f10 0.9817
7 f1 f6 f2 f5 f7 f4 f9 f3 f10 f8 0.9814
8 f1 f6 f2 f5 f10 f3 f4 f8 f7 f9 0.9817
9 f6 f1 f2 f8 f5 f10 f7 f9 f3 f4 0.9821
10 f6 f1 f2 f3 f8 f7 f5 f10 f4 f9 0.9813
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F.2 RESULTS FOR DEEP NETWORK

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping ([-0.2, 0.2])

Figure A3: Measuring the robustness of parameter averaging for deep networks (5 layers). We use
SynRank dataset, in which the important features are f6 > f1 > f2 while the rest is not informative.
Top row: Variations in feature rankings across 20 local mask models when we apply a) no weight
regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Bottom row: Variations
in feature rankings in 100 global models, each of which is obtained by averaging the parameters of
10 models bootstrapped from 20 local models for the same three cases. Weight-clipping helps global
models discover important features in the correct order consistently (see the last column, bottom row)

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A4: Measuring the weight distribution for deep networks (5 layers) when we apply a) no
weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Top row: The
weight distribution of a single local mask model selected at random. Bottom row: The weight
distribution of a global mask model obtained by averaging the parameters of 10 models bootstrapped
from 20 local models.
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F.3 RESULTS FOR SHALLOW NETWORK

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A5: Measuring the weight distribution for shallow networks when we apply a) no weight
regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Top row: The weight
distribution of a single local mask model selected at random. Bottom row: The weight distribution
of a global mask model obtained by averaging the parameters of 10 models bootstrapped from 20
local models.

G ADDITIONAL RESULTS FOR SYNRANK100

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping ([-0.2, 0.2])

Figure A6: SynRank100 dataset: The important features are f100 > f1 > f75 while the rest
of the features is not informative. Top row: Variations in feature rankings across 20 local mask
models when we apply a) no weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping
([−0.2, 0.2]). Bottom row: Variations in feature rankings in 100 global models, each of which is
obtained by averaging the parameters of 10 models bootstrapped from 20 local models for the same
three cases. We use a shallow network for the mask model.
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H FEATURE IMPORTANCE RESULTS FOR L2X DATASETS

(a) L2X XOR (b) L2X Orange (c) L2X Additive (d) L2X Switch

Figure A7: Top row: Feature rankings from each of 10 local masks MlkMlkMlk , referred as lklklk in the figure,
obtained at a particular training run for 10 separate runs. Middle row: Feature rankings from the
global model, obtained by averaging the parameters of individual models up to a specific run i.e.
cumulative average (CA). For example, g3g3g3 corresponds to the global model obtained by averaging the
parameters of first 3 local masks (l1l1l1, l2l2l2, l3l3l3). Bottom row: The feature importance weights from MgMgMg

obtained by averaging the parameters of all local masks.

We note that the weights of the features are correlated with the frequency and position of their ranks
across all local masks. Specifically, f1 and f2 in L2X XOR dataset keep switching positions between
1st and 2nd ranks across all ten runs (top row in Figure A7(a)). Therefore, MgMgMg computes their
importance weights to be similar, giving a slight edge to f2 since it is ranked as #1 by six out of ten
local masks (the first and third rows in Figure A7(a)).

In the L2X Switch dataset, f10 is used as the switch feature to change whether the label is determined
by the features f1 − f4 or by f5 − f8 and is discovered as the most important global feature by MgMgMg

(the bottom row in Figure A7(d)). Please note that this is the hardest synthetic dataset in a way that
the effect of f10 on the sample labels is not direct, rather it influences the labels indirectly by deciding
which features to be used for label generation. This might be the main reason why a commonly used
method such as permutation feature importance fails, ranking f1 as the most important feature in
our experiments with random forest and gradient boosting classifier used together with permutation
feature importance (please see the results in Section J.1 of the Appendix). Consistent with the ground
truth, MgMgMg also discovers f9 as an uninformative feature (bottom row in Figure A7(d)).

In L2X Orange dataset, our method correctly discovers the first four features as the most important
ones with almost equal weights while it indicates f1 and f4 as the most important features in L2X
Nonlinear Additive.

20



Under review as a conference paper at ICLR 2023

I ADDITIONAL RESULTS FOR L2X SWITCH

I.1 RESULTS FOR SHALLOW NETWORK

We run additional experiments on L2X Switch under three conditions: We apply i) No weight
regularization to the weights of the mask model, ii) Dropout with p = 0.2 for the layers with leaky
ReLU activation, iii) Weight-clipping ([−0.2, 0.2]) to limit the magnitude of the weights in each layer.
For each of the three cases, we train 20 separate models and compare two different settings. In the
first setting, we compute the variation in the feature rankings given by 20 local mask models (top
row in Figure A8). In the second setting, we obtain 100 global models, each of which is obtained
by averaging the parameters of 10 local models bootstrapped from 20 models. We compare the
variation in feature rankings given by global models (second setting – bottom row in Figure A8)
to that of 20 local models (first setting – top row). We observe that: i) Regularization methods
such as dropout and weight-clipping help improve the variation across 20 local models, but the
improvement is not substantial (e.g., comparing f9 and f10 across three cases at the top row). ii)
However, they help improve the robustness of the parameter averaging significantly (e.g., comparing
f9 and f10 across three cases at the bottom row). We also observe that the parameter averaging
itself pushes the magnitude of the weights towards a tight range around zero as shown in Figure A9
(Section I.1 of the Appendix), indicating a potential relationship between robustness and a tighter
weight distribution. Overall, the global models are able to discover important features in the correct
order, and the variation in feature ranking across global models is small (almost zero) for ground truth
important features when we apply weight regularization (please see f9 and f10 at the bottom row in
Figure A8b and Figure A8c). iii) Weight-clipping works better than dropout in our experiments, but
dropout results could perhaps be improved by hyper-parameter search on the p variable.

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping ([-0.2, 0.2])

Figure A8: Measuring the robustness of parameter averaging for shallow networks. We use L2X
Switch dataset, in which the most and the least important features are f10 and f9 respectively. Top
row: Variations in feature rankings across 20 local mask models when we apply a) no weight
regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Bottom row: Variations
in feature rankings in 100 global models, each of which is obtained by averaging the parameters of
10 models bootstrapped from 20 local models for the same three cases.
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(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A9: The weight distribution for shallow networks when we apply a) no weight regularization,
b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Top row: The weight distribution of a
single local mask model selected at random. Bottom row: The weight distribution of a global mask
model obtained by averaging the parameters of 10 models bootstrapped from 20 local models.

Figure A10: Two separate examples showing the weights of the features from a model that is
obtained by interpolating between a single local model and the global model, which is obtained by
bootstrapping 10 local models out of 20: θ∗ = (1−α)∗θl+α∗θg , where α is swept from 0 to 1 in 50
steps. The figure on the left uses a local model that ranks features as f1 > f10 > rest > f9 while
the one on the right uses a local model that ranks features as f10 > f1 > rest > f9. As we move
from local model (α = 0) to the global model (α = 1), the estimate of feature ranking gets better
(Expected feature rank: f10 > f1 > rest > f9). The plots show the mean and 95% confidence
intervals for the weights of the features obtained by repeating the experiments with 100 bootstrapped
global models, each of which is interpolated with the same local model. In both examples, we see
that the global model predicts the rankings of the features correctly even when the initial ranking
from the local model might be incorrect (e.g., left plot). ”rest” refers to average weight of the rest of
the informative features i.e., f2− f8.
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I.2 RESULTS FOR DEEPER NETWORK

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping ([-0.2, 0.2])

Figure A11: Measuring the robustness of parameter averaging for deeper networks (5 layers). We use
L2X Switch dataset, in which the most and the least important features are f10 and f9 respectively.
Top row: Variations in feature rankings across 20 local mask models when we apply a) no weight
regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Bottom row: Variations
in feature rankings in 100 global models, each of which is obtained by averaging the parameters
of 10 models bootstrapped from 20 local models for the same three cases. Although the weight
regularization helps improve the robustness, we still see variations for feature f10 when the model
is deep (see last two columns at the bottom row). Also, weight-clipping works better than dropout
again.

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A12: Measuring the weight distribution for deep networks (5 layers) when we apply a) no
weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping ([−0.2, 0.2]). Top row: The
weight distribution of a single local mask model selected at random. Bottom row: The weight
distribution of a global mask model obtained by averaging the parameters of 10 models bootstrapped
from 20 local models.
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J MORE RESULTS FOR SYNTHETIC DATASETS FROM L2X

In this section, we show the robustness of our method, XTab, by listing the global feature impor-
tance from MgMgMg using test set for L2X (Chen et al., 2018) datasets across 10 separate runs of our
method. Please note that we don’t use weight regularization for XTab in any of these experiments.
We also list global feature importance obtained by using permutation importance together with
random forest (RFP), and gradient boosting classifier (GBCP). For L2X Nonlinear Additive and
L2X Switch datasets, we also compare XTab to other approaches such as TabNet(Arık & Pfister,
2021), Invase(Yoon et al., 2018), L2X(Chen et al., 2018), Saliency Maps(Simonyan et al., 2013), and
Integrated Gradients(Sundararajan et al., 2017) for comparison.

J.1 COMPARING XTAB TO OTHER METHODS USING L2X SWITCH DATASET

Table A3: Comparing XTab to other methods using L2X Switch dataset by listing global feature
importance rankings across 10 separate runs with different set of random seeds.

L2X Switch
Ranking from XTab (no weight regularization is used)

Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f10 f1 f2 f4 f5 f3 f7 f6 f8 f9 0.9768
2 f10 f2 f5 f1 f4 f3 f7 f8 f6 f9 0.975
3 f10 f1 f2 f5 f4 f3 f7 f8 f6 f9 0.9742
4 f10 f1 f2 f4 f5 f3 f7 f6 f8 f9 0.9733
5 f10 f5 f1 f2 f4 f3 f6 f7 f8 f9 0.9737
6 f10 f1 f4 f5 f2 f3 f7 f6 f8 f9 0.9741
7 f10 f1 f2 f5 f4 f3 f7 f9 f8 f6 0.9729
8 f10 f1 f2 f4 f5 f3 f7 f8 f6 f9 0.9682
9 f10 f1 f5 f4 f2 f3 f7 f6 f8 f9 0.9725
10 f10 f1 f2 f4 f5 f3 f7 f6 f8 f9 0.9757
GBCP f1 f10 f4 f2 f3 f5 f7 f8 f6 f9 0.9676
RFP f1 f10 f5 f4 f3 f2 f8 f7 f6 f9 0.9575

Ranking from TabNet
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f4 f1 f10 f2 f3 f5 f6 f8 f9 f7 0.9606
2 f5 f10 f4 f1 f2 f3 f7 f9 f8 f6 0.9733
3 f4 f1 f10 f2 f3 f9 f8 f5 f7 f6 0.9646
4 f1 f4 f2 f10 f5 f3 f6 f7 f9 f8 0.9723
5 f10 f5 f2 f4 f3 f7 f1 f9 f6 f8 0.9623
6 f1 f2 f4 f10 f3 f5 f9 f6 f8 f7 0.9669
7 f1 f2 f4 f3 f10 f5 6 f8 f7 f9 0.9723
8 f10 f4 f3 f1 f5 f2 f8 f7 f6 f9 0.9683
9 f4 f1 f2 f10 f3 f5 f9 f6 f7 f8 0.9695
10 f1 f10 f3 f4 f2 f5 f8 f7 f6 f9 0.9723

Ranking from Invase
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f4 f10 f2 f1 f3 f5 f6 f8 f9 f7 0.982
2 f3 f4 f10 f2 f1 f5 f9 f8 f6 f7 0.978
3 f1 f10 f3 f2 f4 f5 f8 f9 f7 f6 0.979
4 f10 f1 f2 f3 f4 f5 f8 f9 f6 f7 0.979
5 f10 f2 f1 f3 f4 f5 f9 f6 f8 f7 0.981
6 f10 f2 f4 f1 f3 f5 f9 f8 f6 f7 0.979
7 f10 f4 f3 f1 f2 f5 f7 f6 f9 f8 0.982
8 f4 f3 f10 f1 f2 f5 f9 f7 f8 f6 0.981
9 f10 f1 f4 f3 f2 f5 f6 f7 f9 f8 0.982
10 f10 f2 f4 f1 f3 f5 f7 f8 f6 f9 0.982

Ranking from L2X
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f7 f3 f5 f2 f10 f9 f6 f8 0.9869
2 f1 f9 f2 f7 f3 f4 f10 f8 f6 f5 0.9913
3 f1 f4 f2 f3 f9 f5 f10 f6 f7 f8 0.9943
4 f1 f4 f2 f8 f3 f10 f9 f7 f6 f5 0.9876
5 f1 f3 f2 f4 f10 f8 f7 f5 f6 f9 0.9891
6 f1 f10 f5 f2 f4 f3 f8 f7 f6 f9 0.9925
7 f1 f4 f3 f5 f2 f7 f6 f10 f9 f8 0.9896
8 f1 f4 f8 f2 f3 f10 f9 f6 f7 f5 0.9905
9 f1 f4 f2 f8 f3 f7 f9 f6 f10 f5 0.9923
10 f1 f4 f2 f3 f6 f10 f7 f5 f8 f9 0.9906

Ranking from Saliency Maps
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f10 f5 f4 f2 f3 f8 f7 f6 f9 0.9334
2 f1 f10 f5 f2 f4 f3 f7 f6 f8 f9 0.9355
3 f1 f10 f5 f4 f2 f3 f7 f6 f8 f9 0.9378
4 f1 f10 f5 f4 f2 f3 f7 f6 f8 f9 0.9372
5 f1 f10 f5 f4 f2 f3 f7 f8 f6 f9 0.9372
6 f1 f10 f5 f4 f2 f3 f7 f8 f6 f9 0.9378
7 f1 f10 f5 f4 f2 f3 f7 f6 f8 f9 0.9346
8 f1 f10 f5 f4 f2 f3 f7 f8 f6 f9 0.9337
9 f1 f10 f5 f4 f2 f3 f7 f8 f6 f9 0.9377
10 f1 f10 f5 f2 f4 f3 f8 f7 f6 f9 0.9331

Ranking from Integrated Gradients (IG)
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f2 f5 f1 f4 f8 f3 f6 f7 f10 f9 0.9334
2 f2 f5 f1 f3 f4 f6 f7 f8 f10 f9 0.9355
3 f2 f5 f1 f3 f4 f8 f6 f10 f7 f9 0.9378
4 f2 f5 f1 f3 f6 f4 f7 f8 f10 f9 0.9372
5 f2 f5 f4 f1 f3 f6 f8 f10 f7 f9 0.9372
6 f2 f5 f4 f1 f8 f3 f10 f7 f6 f9 0.9378
7 f2 f5 f1 f3 f4 f10 f7 f8 f6 f9 0.9346
8 f2 f5 f1 f4 f3 f6 f8 f7 f10 f9 0.9337
9 f5 f2 f4 f1 f8 f3 f6 f7 f10 f9 0.9377
10 f2 f5 f1 f4 f3 f8 f6 f10 f7 f9 0.9331
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J.2 COMPARING XTAB TO OTHER METHODS USING L2X NON-LINEAR ADDITIVE DATASET
Table A4: Comparing XTab to other methods using L2X Non-Linear Additive dataset by listing
feature importance rankings across 10 separate runs with different set of random seeds.

L2X Nonlinear Additive
Ranking from XTab (no weight regularization is used)

Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f3 f5 f7 f9 f2 f8 f6 f10 0.9805
2 f1 f4 f3 f5 f9 f7 f8 f2 f6 f10 0.9775
3 f1 f4 f3 f5 f8 f2 f9 f7 f10 f6 0.9814
4 f1 f4 f3 f2 f5 f9 f7 f8 f6 f10 0.9854
5 f1 f4 f3 f5 f7 f9 f8 f6 f2 f10 0.9844
6 f1 f4 f3 f5 f9 f7 f8 f2 f6 f10 0.9835
7 f1 f4 f3 f7 f5 f8 f9 f2 f6 f10 0.9822
8 f1 f4 f3 f5 f9 f7 f2 f6 f10 f8 0.9761
9 f1 f4 f3 f5 f7 f9 f8 f2 f6 f10 0.9835
10 f1 f4 f3 f5 f9 f2 f7 f6 f8 f10 0.9775
GBCP f1 f4 f3 f2 f10 f6 f5 f9 f8 f7 0.9924
RFP f1 f4 f3 f2 f10 f5 f7 f9 f6 f8 0.9853

Ranking from TabNet
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f5 f6 f8 f10 f2 f7 f3 f9 0.9785
2 f1 f4 f5 f6 f3 f8 f9 f7 f2 f10 0.9752
3 f1 f5 f4 f6 f8 f10 f2 f3 f9 f7 0.9751
4 f1 f4 f5 f6 f8 f3 f2 f10 f7 f9 0.9785
5 f1 f5 f4 f6 f8 f10 f2 f3 f9 f7 0.9737
6 f1 f5 f4 f3 f6 f8 f2 f10 f9 f7 0.9758
7 f1 f5 f4 f6 f3 f2 f8 f10 f7 f9 0.9760
8 f1 f4 f5 f6 f8 f10 f2 f7 f3 f9 0.9758
9 f1 f4 f6 f5 f2 f10 f8 f3 f9 f7 0.9758
10 f1 f5 f4 f6 f3 f2 f8 f10 f7 f9 0.9751

Ranking from Invase
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f3 f2 f7 f9 f8 f10 f6 f5 0.987
2 f1 f4 f3 f2 f5 f9 f6 f10 f7 f8 0.987
3 f1 f4 f3 f2 f8 f10 f9 f6 f5 f7 0.986
4 f1 f4 f3 f2 f9 f8 f7 f5 f6 f10 0.987
5 f1 f3 f4 f2 f8 f7 f6 f5 f9 f10 0.987
6 f1 f4 f3 f2 f9 f8 f10 f5 f6 f7 0.988
7 f1 f4 f3 f2 f8 f7 f10 f6 f9 f5 0.988
8 f1 f4 f3 f2 f8 f9 f6 f7 f5 f10 0.988
9 f1 f4 f3 f2 f9 f10 f8 f5 f7 f6 0.986
10 f1 f4 f3 f2 f7 f5 f8 f9 f10 f6 0.986

Ranking from L2X
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f5 f6 f8 f10 f2 f7 f3 f9 0.9785
2 f1 f4 f5 f6 f3 f8 f9 f7 f2 f10 0.9752
3 f1 f5 f4 f6 f8 f10 f2 f3 f9 f7 0.9751
4 f1 f4 f5 f6 f8 f3 f2 f10 f7 f9 0.9785
5 f1 f5 f4 f6 f8 f10 f2 f3 f9 f7 0.9737
6 f1 f5 f4 f3 f6 f8 f2 f10 f9 f7 0.9758
7 f1 f5 f4 f6 f3 f2 f8 f10 f7 f9 0.9760
8 f1 f4 f5 f6 f8 f10 f2 f7 f3 f9 0.9758
9 f1 f4 f6 f5 f2 f10 f8 f3 f9 f7 0.9758
10 f1 f5 f4 f6 f3 f2 f8 f10 f7 f9 0.9751

Ranking from Saliency Maps
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f3 f2 f4 f10 f5 f7 f9 f8 f6 0.9884
2 f1 f3 f2 f4 f5 f10 f9 f6 f7 f8 0.9870
3 f1 f3 f4 f2 f10 f9 f5 f6 f7 f8 0.9876
4 f1 f3 f4 f5 f7 f10 f2 f6 f8 f9 0.9878
5 f1 f3 f2 f4 f5 f7 f10 f6 f9 f8 0.9880
6 f1 f3 f4 f2 f10 f7 f5 f6 f9 f8 0.9874
7 f1 f3 f2 f4 f7 f9 f10 f6 f5 f8 0.9881
8 f1 f3 f4 f5 f2 f10 f6 f9 f7 f8 0.9869
9 f1 f3 f4 f5 f2 f10 f6 f9 f7 f8 0.9883
10 f1 f3 f4 f7 f10 f5 f2 f9 f6 f8 0.9880

Ranking from Integrated Gradients (IG)
Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f3 f2 f8 f5 f9 f6 f10 f7 0.9884
2 f1 f4 f3 f2 f5 f7 f9 f6 f10 f8 0.9870
3 f1 f4 f3 f2 f6 f9 f7 f10 f8 f5 0.9876
4 f1 f4 f3 f8 f2 f6 f10 f7 f9 f5 0.9878
5 f1 f4 f3 f9 f2 f8 f6 f10 f5 f7 0.9880
6 f1 f4 f3 f2 f9 f8 f6 f10 f7 f5 0.9874
7 f1 f4 f3 f10 f2 f6 f9 f8 f7 f5 0.9881
8 f1 f4 f3 f5 f2 f6 f10 f9 f8 f7 0.9869
9 f1 f4 f3 f2 f9 f8 f5 f10 f6 f7 0.9883
10 f1 f4 f3 f2 f6 f9 f10 f5 f7 f8 0.9880
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J.3 THE RESULTS FROM L2X XOR AND ORANGE DATASETS FOR XTAB
Table A5: Showing the robustness of our method, XTab, by listing the global feature importance
from MgMgMg using test set for L2X XOR and Orange datasets across 10 separate runs of our method. We
also listed global feature importance obtained by using permutation importance together with random
forest (RFP), and gradient boosting classifier (GBCP) for comparison. In L2X XOR, we expect f1
and f2 to be equally likely to be top 1 and 2 features and vice versa. For L2X Orange, we expect the
first four features to be the top four features in no particular order.

L2X XOR
Ranking from XTab (no weight regularization is used)

Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f2 f4 f3 f6 f8 f5 f7 f9 f10 0.9911
2 f1 f2 f4 f3 f5 f6 f8 f7 f9 f10 0.9924
3 f1 f2 f4 f3 f8 f5 f6 f7 f9 f10 0.9922
4 f1 f2 f4 f3 f5 f8 f6 f9 f7 f10 0.9865
5 f1 f2 f4 f3 f5 f8 f6 f7 f9 f10 0.9843
6 f1 f2 f4 f3 f8 f5 f9 f6 f7 f10 0.9926
7 f1 f2 f4 f3 f8 f7 f5 f6 f9 f10 0.986
8 f1 f2 f4 f3 f5 f6 f8 f7 f9 f10 0.9797
9 f1 f2 f4 f3 f5 f8 f7 f6 f9 f10 0.9915
10 f1 f2 f4 f3 f6 f5 f8 f9 f7 f10 0.989
GBCP f1 f2 f10 f9 f8 f7 f6 f5 f4 f3 0.9999
RFP f1 f2 f8 f7 f9 f10 f4 f3 f6 f5 0.9995

L2X Orange
Ranking from XTab (no weight regularization is used)

Runs 1 2 3 4 5 6 7 8 9 10 Test Acc.
1 f1 f4 f2 f3 f7 f6 f8 f9 f5 f10 0.954
2 f1 f4 f2 f3 f7 f9 f8 f6 f5 f10 0.9471
3 f1 f4 f2 f3 f8 f7 f9 f6 f5 f10 0.9695
4 f1 f4 f2 f3 f9 f5 f8 f6 f7 f10 0.9747
5 f1 f4 f2 f3 f7 f8 f5 f9 f6 f10 0.9598
6 f1 f4 f2 f3 f8 f7 f9 f5 f6 f10 0.9689
7 f1 f4 f2 f3 f8 f7 f9 f6 f5 f10 0.9658
8 f1 f4 f2 f3 f7 f6 f5 f8 f9 f10 0.9718
9 f1 f4 f2 f3 f8 f7 f9 f5 f6 f10 0.9691
10 f1 f4 f2 f3 f8 f9 f7 f6 f5 f10 0.9735
GBCP f3 f1 f4 f2 f9 f8 f6 f5 f10 f7 0.9752
RFP f3 f1 f4 f2 f10 f9 f7 f6 f5 f8 0.9461

K THE EFFECT OF NOISE ON THE TEST ACCURACY AND FEATURE RANKING

(a) Test accuracy (b) Feature ranking from MgMgMg

Figure A13: L2X Switch dataset: At each noise level, we ran our framework 10 times with different
set of random seeds to compare how a) the test accuracy and b) the rankings of the top two features
from MgMgMg , i.e. f10 and f1, changes. Test accuracy improves when Gaussian noise with low variance is
added. Compared to some other datasets, the feature ranking is stable with no, or low noise. Please
note that we show 95% confidence interval only for feature f10 for clarity.
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L EXPERIMENTS ON ADULT INCOME DATASET

L.1 ARCHITECTURE SEARCH VIA CROSS-VALIDATION AND FINAL TEST ACCURACY RESULTS

(a) # of layers in the Mask (b) # of hidden units in the Classifier (c) Final test accuracy

Figure A14: a) Comparing average cross validation accuracy for 10-fold cross validation (CV) by
using mask generator architectures with different number of hidden layers. 10-fold CV is repeated
ten times with different starting random seeds i.e. each run corresponds to one 10-fold CV run.
’Linear’ means that the mask model has a single linear layer while ’2xLReLU’ means two hidden
layers with leaky ReLU activation. In all cases, the final layer of the mask is a linear layer with
sigmoid activation. b) Same experiment repeated for the 1xLReLU mask generator while increasing
the number of the hidden units used in the classifier. c) The final test accuracy obtained once we
settled on 1xLReLu mask and classifier with 1024 units in hidden layers and re-run the experiments
using our framework i.e. training models on the full training set multiple times. For comparison, we
included the results for other architectural choices for the mask.

We first search for the optimum number of layers for mask generator, keeping the classifier architecture
fixed as [1024, 1024, 1024]. The classifer has three linear layers, two of which are followed by a
leaky ReLU and dropout(p=0.2). The last layer uses sigmoid activation. We compare four choices
for mask generator; i) A single linear layer with sigmoid activation, ii) A linear layer followed by
leaky ReLU and another linear layer with sigmoid activation (referred as 1xLReLU) iii) two linear
layers, each of which is followed by leaky ReLU, and one linear layer with sigmoid, i.e. 2xLReLU
and iv) 3xLReLU. The number of hidden units in each layer in the mask generator is same as the
number of features in the input (i.e. 105 in the case of Income dataset). We modified our framework
to accommodate K-fold cross validation (CV). We first generated a 10-fold CV dataset from the
training set. For each fold, we changed the random seed before initialising and training our models on
the training fold. We obtained the validation accuracy using the corresponding validation fold. This
is a slight change to our original framework, in which we train models K-times on the same training
set. We repeated this experiment with 10-fold CV for 10 times with different set of random seeds.
As shown in Figure A14a, 1xLReLU gives the best performance for all 10 repeated experiments.
Please note that we also ran experiments on 1xLReLU with wider hidden layer and observed that the
standard deviation in validation accuracy increases with wider mask model (not shown). Thus, we
choose the number of hidden units to be same as the number of input features for all datasets and
experiments throughout the paper.

We then repeated the first experiment. In this case, we used the mask generator with 1xLReLU, and
varied the number of units for the hidden layers of the classifier. With everything else kept same,
over-parameterised classifiers with 1024 and 2048 hidden units give the best performance. We used
1024 for the remainder of our experiments. These choices for the mask generator and the classifier
are used for all other datasets and experiments since they work well as shown and discussed in the
main and supplementary sections of the paper.
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(a) Local Masks (Mlk ’s) (b) Global Mask as CA (c) MgMgMg (d) MfMfMf

Figure A15: Using a shallow mask architecture for Income dataset. Feature importance extracted
from a) Each local mask model MlkMlkMlk , referred as lklklk in the figure, obtained at a particular training run
for 10 separate runs, b) Global model obtained by averaging the parameters of individual models up to
specific run i.e. cumulative average (CA). For example, g3g3g3 corresponds to averaging the parameters of
first 3 local masks (l1l1l1, l2l2l2, l3l3l3) to obtain the global mask, from which we obtain the feature importance,
c) Feature importance from the global mask model obtained by averaging all 10 individual models,
i.e. MgMgMg in (b), d) Feature importance from MfMfMf .

(a) Local Masks (Mlk ’s) (b) Global Mask as CA (c) MgMgMg (d) MfMfMf

(e) Local Masks (Mlk ’s) (f) Global Mask as CA (g) MgMgMg (h) MfMfMf

Figure A16: First Row: Same experiment as in Figure A15, but without noise at the input. Removing
noise makes the rankings less robust. Second Row: Same experiment as in Figure A15, i.e. using
noisy input, but the mask architecture is deeper (5 hidden layers). Parameter averaging breaks down
with deeper mask model architecture (e-h).

L.2 AVERAGING PARAMETERS OF SHALLOW NETWORKS

We start our experiments with the classification task on Income dataset to get insights into how
parameter averaging works on a well-studied, real world dataset for extracting feature importance6.
We used p = 0.2 when generating the binomial mask, β, and considered ϵ ∼ N (0, σ2) with σ = 0.3.

6Unless specified otherwise, when we say feature importance, we refer to global feature importance.
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As shown in Figure 1, we train our models on the whole training set for the downstream task
10 times, each time with a different random seed. We store the parameters of the trained masks,
referred as local masks, from each training and denote them as {Ml1 ,Ml2 , . . . ,Ml10}. We examine
the feature importance obtained from each of 10 local masks across all samples for the test set
(Figure A15a). We observe that each local mask gives a slightly different ranking, especially for lower
ranked features. More specifically, we could have different ranking (e.g., ”age”>”maritual-status”
vs ”maritual-status”>”age” as top two features), depending on which seed is used when training
the models. The possible reasons of this variation can be both the model initialisation as well as
multicollinearity among the features of the Income dataset.

We then evaluate the effect of averaging over the parameters of the local masks on feature importance
in a progressive way. To do this, we obtain a global mask MgkMgkMgk as a cumulative average (CA) over
the k local masks, i.e. MgkMgkMgk = 1/k

∑k
i=1MlkMlkMlk . For example, Mg3Mg3Mg3 corresponds to averaging the

parameters of the first three local masks (i.e. Ml1Ml1Ml1 ,Ml2Ml2Ml2 ,Ml3Ml3Ml3 in Figure A15a). We refer to Mg10Mg10Mg10 as
MgMgMg for simplicity in the rest of the paper. Figure A15b shows the results for the global masks MgkMgkMgk ,
in which we can observe that the feature ranking becomes more stable as we use more local masks in
the parameter averaging.

Figures A15c and A15d show the feature importance from MgMgMg = Mg10Mg10Mg10 and the final mask MfMfMf ,
respectively. We first note that the weights of the features are correlated with the frequency and
position of their ranks across all local masks. For example, ”age” is ranked at the top more often
than ”marital-status” in Figure A15a, hence its weight given by MgMgMg is relatively higher than that of
”maritual-status”. We also observe that MfMfMf moves both ”capital-gain” and ”capital-loss” up in the
ranking.

Effect of noise. We further investigate the effect of removing Gaussian noise from the subsets of the
masked input in Equation 2. To this end, we set β = 0, and follow the same procedure described
above (Figure A15a-d). Comparing Figures A15b and A16b, we can conclude that adding noise
to the input makes the global rankings more robust (a detailed comparison is in Section L.6 of the
Appendix).
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L.3 ROBUSTNESS OF PARAMETER AVERAGING

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A17: Shallow network - Top row: Variations in feature rankings across 20 local mask
models when we apply a) no weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping
([−0.2, 0.2]). Bottom row: Variations in feature rankings in 100 global models, each of which is
obtained by averaging the parameters of 10 models bootstrapped from 20 local models for the same
three cases.

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A18: Deep network - Top row: Variations in feature rankings across 20 local mask
models when we apply a) no weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping
([−0.2, 0.2]). Bottom row: Variations in feature rankings in 100 global models, each of which is
obtained by averaging the parameters of 10 models bootstrapped from 20 local models for the same
three cases. Please note that the global model in the case of deeper networks results in a feature
ranking that is not consistent with local model estimations, indicating that the parameter averaging
does not work as well as it does for the shallow networks.
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L.4 VARIATIONS IN GLOBAL FEATURE IMPORTANCE OBTAINED FROM MgMgMg AND COMPARING IT
TO THE ONES FROM TABNET(ARIK & PFISTER, 2021)

Table A6: Comparing variations in global feature importance obtained from MgMgMg across 10 different
runs of our framework with different sets of random seeds to those obtained from TabNet. The
rankings from TabNet are not as consistent across multiple training runs as ours. Abbreviations
are; ms: marital status, en: education-num, cg: capital-gain, hpw: hours-per-week, race: race,
occ: occupation, rel: relationship, cl: capital-loss, nc: native-country. Please note that no weight
regularization is used for XTab.

Global Feature Importance from MgMgMg of XTab
Runs 1 2 3 4 5 6 7 8 9 10
1 age ms hpw en cg occ race rel cl nc
2 age ms hpw en cg occ race rel cl nc
3 age ms hpw en cg occ race rel cl nc
4 age ms hpw en cg occ race rel cl nc
5 age ms hpw en cg occ race rel cl nc
6 age ms hpw en cg occ race rel cl nc
7 age ms hpw en cg occ race rel cl nc
8 age ms hpw en cg occ race cl rel nc
9 age ms hpw cg en race occ rel cl nc
10 age ms hpw cg en occ race rel cl nc

Global Feature Importance from TabNet
Runs 1 2 3 4 5 6 7 8 9 10
1 age cg en rel hpw ms sex cl occ wc
2 en ms cg age cl occ hpw fw sex race
3 en ms cg sex rel cl ed age nc hpw
4 ms ed en rel cg occ cl hpw age race
5 cl ms cg rel age occ en hpw wc nc
6 ms cg rel fw en nc cl race wc sex
7 ms cg en rel wc occ nc hpw cl sex
8 ms rel occ cg ed hpw en cl race nc
9 ms cg age rel occ en cl hpw race nc
10 ms rel cg wc cl nc en sex ed hpw

Please note that we choose to compare Xtab and TabNet here since we can compute the rankings
of the high-level categorical features in both methods. For the remaining methods, it is not easy to
compute the importance score of a parent category such as ”maritual-status”, so we instead rank the
individual categories (e.g., ”single” or ”married”) directly as shown in Section L.5 of the Appendix.
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L.5 COMPARING XTAB TO OTHER METHODS FOR ADULT INCOME DATASET

Please note that, for categorical features, since it is difficult to compute the importance of a parent
category from its one-hot encoded features for other methods, we compare the rankings by the
individual categories (e.g., showing the importance of ”single”, or ”married” instead of the importance
of their parent category ”maritual-status”). Abbreviations in the tables are; mcs: Married civ spouse,
en: education-num, cg: capital-gain, hpw: hours-per-week, cl: capital-loss, em: Exec-managerial,
nm: never-married, oc: own-child, os: other-service, fw: Final-Weight, mx: Mexico, hn: Holand-
Netherlands, unm: unmarried, nm: never-married, phl: Philippines, tt: Trinadad&Tobago, nif:
not-in-family, ts: tech-support , seni: self-emp-not-inc.

Global Feature Importance using XTab (No weight regularization is used)
Runs 1 2 3 4 5 6 7 8 9 10
1 age mcs hpw cg en em cl white husband nm
2 age mcs hpw cg en cl em white husband nm
3 age mcs hpw cg en em cl white husband nm
4 age mcs hpw en cg cl em white husband nm
5 age mcs hpw cg en cl em white husband nm
6 age mcs hpw cg en em cl white husband nm
7 age mcs hpw cg en cl em white husband nm
8 age mcs hpw cg en cl em white husband nm
9 age mcs hpw cg en cl em white husband nm
10 age mcs hpw cg en em cl white husband nm

Global Feature Importance using Saliency Maps
Runs 1 2 3 4 5 6 7 8 9 10
1 mcs cg en age cl hpw em ps seni os
2 cg hpw age mcs nm oc wife en os cl
3 cg age hpw nm oc mcs wife os em cl
4 cg age hpw nm oc en mcs wife os cl
5 cg age hpw mcs oc nm wife cl en os
6 cg hpw age nm mcs oc wife cl os ps
7 cg hpw age mcs nm wife oc os cl en
8 cg age hpw oc mcs wife husband os cl em
9 cg age mcs nm os oc wife en cl husband
10 cg age mcs hpw nm en oc wife os cl

Global Feature Importance using Integrated Gradient
Runs 1 2 3 4 5 6 7 8 9 10
1 cg mcs age nm husband hpw en oc male os
2 cg mcs age nm hpw husband oc en female os
3 cg mcs age nm hpw en husband oc os male
4 cg mcs nm age hpw en husband oc os female
5 cg mcs age nm en hpw husband oc male os
6 cg mcs age hpw nm husband oc en female os
7 cg mcs age hpw nm en husband oc female os
8 cg mcs nm age hpw en husband oc female male
9 cg mcs nm age hpw en husband oc female male
10 cg mcs age nm husband hpw en oc female os

Global Feature Importance using L2X
Runs 1 2 3 4 5 6 7 8 9 10
1 cg nm divorced female mcs en mx male uk us
2 hpw age divorced nm en hs-grad nif unm mcs Greece
3 cg mcs Columbia en nm oc unm Italy phl Honduras
4 cg age hpw nm em os fg male hn Italy
5 cg age nm hpw en South mcs female Italy phl
6 nm mafs cg female Cambodia em Iran Poland Italy phl
7 cg nm oc ts en male tt ps mcs hc
8 cg os age nm en ff divorced af mx Italy
9 cg age nm hpw en South mcs female Italy phl
10 cg oc age unm en Doctorate Hong nm hn South

Global Feature Importance using INVASE
Runs 1 2 3 4 5 6 7 8 9 10
1 mcs cg age en hpw husband private em wife cl
2 en age mcs cg hpw husband private cl fw em
3 cg en age hpw female wife nif divorced us cl
4 mcs cg en age hpw em private male cl fl
5 cg mcs en age hpw us em private nif cl
6 cg mcs en age hpw fw em female husband bachelor
7 cg age en hpw mcs female us wife em husband
8 cg em mcs hpw age cl private husband em seni
9 en cg age hpw mcs white husband fw nm private
10 mcs em age cg private hpw female fw husband em
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L.6 COMPARING VARIATIONS IN GLOBAL FEATURE IMPORTANCE OBTAINED FROM MgMgMg WITH
AND WITHOUT NOISE AT THE INPUT

Table A7: Consistency of the ranking across multiple runs of our framework using the following two
cases; Gaussian noise added to the input (top table) and the input without the noise (bottom table).
Abbreviations are; ms: marital status, en: education-num, cg: capital-gain, hpw: hours-per-week,
race: race, occ: occupation, rel: relationship, cl: capital-loss, nc: native-country

Gaussian noise, p = 0.2 & N (0, σ = 0.3), added to the input
Runs 1 2 3 4 5 6 7 8 9 10
1 age ms hpw en cg occ race rel cl nc
2 age ms hpw en cg occ race rel cl nc
3 age ms hpw en cg occ race rel cl nc
4 age ms hpw en cg occ race rel cl nc
5 age ms hpw en cg occ race rel cl nc
6 age ms hpw en cg occ race rel cl nc
7 age ms hpw en cg occ race rel cl nc
8 age ms hpw en cg occ race cl rel nc
9 age ms hpw cg en race occ rel cl nc
10 age ms hpw cg en occ race rel cl nc

No noise added to the input
Runs 1 2 3 4 5 6 7 8 9 10
1 cg age ms hpw en occ race cl rel nc
2 cg ms age hpw en occ cl rel race nc
3 cg age ms hpw en race occ cl rel nc
4 ms age cg hpw en occ race rel nc cl
5 cg ms age hpw en occ race cl rel nc
6 age ms cg hpw en occ race rel cl nc
7 ms age cg hpw en occ race rel cl nc
8 ms age cg hpw en occ cl race rel nc
9 ms age cg hpw en occ cl rel race nc
10 cg ms age hpw en occ race rel cl nc

L.7 EXAMPLES OF INSTANCE-WISE IMPORTANCE FROM MfMfMf FOR SIX SAMPLES FROM ADULT
INCOME

Figure A19: Examples of instance-wise feature importance for five random samples from Adult
Income dataset.
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L.8 SHOWING ROBUSTNESS FOR THE INSTANCE-WISE IMPORTANCE FROM MfMfMf FOR A SINGLE
SAMPLE FROM ADULT INCOME ACROSS 10 DIFFERENT EXPERIMENTS

Figure A20: The robustness for the instance-wise importance from MfMfMf for a single sample from
Adult Income across 10 different experiments
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M RESULTS FOR BLOG DATASET.

(a) Local Masks (b) Global Mask as CA (c) MgMgMg

Figure A21: Blog dataset: Repeating the experiment with Income dataset (i.e. using shallow network,
noisy input data) in Figure A15 (a-c) for Blog dataset. We also use weight-clipping ([−0.2, 0.2]).

We repeated the experiment that we did for Income dataset (using shallow network and noisy input
data) in Figure A15 (a-d) for Blog dataset. Looking at the Figure A21 (a-c), features f52 (number
of comments in the last 24 hours before the basetime), f54 (number of comments in the first 24
hours after the publication of the blog post, but before basetime), f51 (total number of comments
before basetime), and f20 (the median of f54) are discovered to be the most important for classifying
whether a blog post would receive a comment.

M.1 ROBUSTNESS OF PARAMETER AVERAGING

(a) No regularization (b) Dropout (p=0.2) (c) Weight-clipping

Figure A22: Shallow network - Top row: Variations in feature rankings across 20 local mask
models when we apply a) no weight regularization, b) Dropout (p = 0.2), and c) Weight-clipping
([−0.2, 0.2]). Bottom row: Variations in feature rankings in 100 global models, each of which is
obtained by averaging the parameters of 10 models bootstrapped from 20 local models for the same
three cases.
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N OTHER WAYS OF IMPLEMENTING OUR PROPOSED METHOD

In the final training in our framework, we use MgMgMg as a reference mask while introducing another
mask model to compensate for the potential sub-optimality introduced in MgMgMg:

mg = Mg(X) and ml = Ml(X) (10)
mf = (mg +ml)/C where C = max(mg +ml) and XM = mf

2 ⊙X (11)

However, the final mask, mfmfmf , is only a scaled summation of the outputs from MgMgMg and MlMlMl. A better
way to do this update can be using a gating mechanism similar to input and forget gates in LSTM
(Hochreiter & Schmidhuber, 1997). This would enable the model to forget the weights of some
features in mgmgmg while adding more weights to others through mlmlml in the following way:

mf = σ(f ⊙mg + i⊙ml) (12)

where σ is the sigmoid function. We leave the idea of gated masks as a future work.

O BROADER IMPACT

The estimation of feature ranking in many areas such as in healthcare, finance and insurance is critical
in decision making process. While taking advantage of neural nets in these applications is important,
we should be mindful of consistency and robustness of our methods. Our proposed method makes a
contribution towards achieving a robust estimation of feature ranking. However, we should be aware
of the limits and shortcomings of our approach as well as other similar approaches.
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