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ABSTRACT

Generative models implicitly learn underlying dynamics of data and can do more
than just reconstruction. By leveraging output gradients with respect to the latent
dimensions, we explore a simple approach to infer arbitrary perturbation effects
which generates interpretive flow maps within high-dimensional biological datasets.
By applying this method to several cases in single-cell RNA-sequencing, we demon-
strate its use in inferring effects from knockdown, overexpression, toxin response
and embryonic development. This approach can further add global structure to di-
mensionality reductions which normally only preserve local patterns. Needing only
a decoder, our method simplifies analyses, is applicable to already trained models,
and offers clearer insights into cellular dynamics without complex setups. In turn,
this gives a more straightforward interpretation of results, making it easier to discern
underlying biological pathways with easily understandable visual representations.
Code available on https://github.com/yhsure/perturbations.

1 BACKGROUND

Modeling perturbation response in cells is essential for understanding gene function, regulatory effects,
and drug response. Single-cell RNA sequencing (scRNA-seq) provides high-resolution snapshots of
cellular states and captures implicit gene-gene interactions. Although knockout experiments coupled
with scRNA-seq can reveal gene function, these experiments are prone to biases (Hicks et al., 2015)
and costly across multiple conditions. Computational approaches can simulate perturbations, offering
a scalable alternative for systematic analyses.

Here we study single-cell data to understand arbitrary perturbations for individual cells as well as
populations, providing practical clues for regulatory mechanisms and gene function. Generative
models are typically used for modeling this type of data, resulting in a latent space with a structure
reflecting cell type differences (Lopez et al., 2020). Implicitly, such a model may learn underlying
biological interactions between genes, cellular trajectories during development or disease, and
responses to unseen perturbations. Recent works have introduced several ways of thinking about
perturbations (Lotfollahi et al., 2019; 2020; Kamimoto et al., 2023; Bunne et al., 2023; Jiang et al.,
2024; Klein et al., 2025), most commonly in a supervised fashion — we take a step backwards to
explore what generative models have already learned.

We study a simple method for simulating perturbations based on decoder gradients as a first step of
learning more from such generative models, and apply it to three diverse perturbation scenarios.

2 METHODS

2.1 DATA

The data utilized for this study comprises three single-cell RNA sequencing (scRNA-seq) datasets: C.
elegans embryogenesis (Packer et al., 2019), Irf8-cKO mouse brains (Van Hove et al., 2019), and
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cardiotoxin mouse injury (Takada et al., 2022). Preprocessing and filtering protocols are consistent
across datasets and are detailed in Appendix A. Datasets were partitioned into 82% for training, 9%
for validation, and 9% for testing. An overview of the used data is provided in Table 1.

Dataset Cells Transcripts HVG Reference

Irf8-cKO mouse brains 13, 931 14, 581 3, 451 Van Hove et al. (2019)
Cardiotoxin mouse injury 53, 230 21, 809 1, 950 Takada et al. (2022)
C. elegans embryogenesis 85, 951 17, 711 1, 832 Packer et al. (2019)

Table 1: Overview of scRNA-seq datasets applied in this study. HVG refers to highly variable genes.

2.2 BASE MODEL

Gene expression data was analyzed in an unsupervised approach with β-VAEs (Higgins et al., 2017).
Using a negative binomial (NB) distribution, the posterior was modeled to account for overdispersion
observed in such expression data (Robinson & Smyth, 2007; Oshlack et al., 2010; Grønbech et al.,
2020). The NB is parameterized by the mean m and the dispersion parameter r:

NB(k;m, r) =
Γ(k + r)
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where k is the observed count for a gene. The model outputs m scaled by the mean count for the
sample and r is learned for each gene, i.e., sample independent.

The training procedure maximizes the ELBO (with NB negative log likelihood as reconstruction
error) and was implemented in Pytorch with early stopping to prevent overfitting. Compared to
the NB approach, VAEs with other posteriors result in lower accuracy (Grønbech et al., 2020;
Bjerregaard, 2023). The factor β which scales the Kullback–Leibler divergence was annealed over
10 warmup epochs and stopped at a low β, resulting in almost an autoencoder. The encoder used
ReLU activations, two hidden linear layers with sizes 512 and 256, and a latent dimensionality of
32 or 2. The β-VAE had a mirrored decoder and was trained on one dataset at a time with Adam
(Kingma, 2014); refer to Appendix B. Note that the NB posterior accurately models raw count values
for the decoder output but is non-trivial to design for the encoder, which in turn uses log-transformed
mean-scaled counts. Pretrained models from hubs like scvi-hub (Ergen et al., 2024) are similar
and can easily be utilized as base models.

2.3 PERTURBATION FLOWS

The generative decoder learns how to interpret influences of gene expressions in relation to a latent
cellular space. We simulate perturbations by following the gradient of gene expression from an
initial latent representation. Specifically, for a latent sample zt, the perturbed sample is given by
zt+1 = zt + δ∇yi(zt) where δ is the perturbation stepsize and yi(z) is the gene expression output
of gene i. A negative δ thus simulates decreasing gene expression (knockdown), while a positive δ
simulates overexpression.

Rather than selecting a specific starting cell, gradients are uniformly sampled across the latent space
for visualization. Regions distant from training samples are masked away using morphological
operations on a discretized grid.

Arbitrary perturbations can be constructed similarly by introducing an auxiliary output variable and
a loss term in a multi-task setup. For treatment analysis, this could be a categorical or continuous
variable indicating the treatment type or dosage. Existing models can be adapted either through
finetuning or by adding a new linear layer. For higher dimensional latent spaces, subsampling existing
data for starting points helps managing the exponential growth in latent volume. Dimensionality
reduction is subsequently used to project samples and perturbation vectors. Here, PCA allows
projection of the perturbation gradients directly while UMAP requires encoding perturbed endpoints
into a new list, concatenating it to the data, and using this list to reconstruct the perturbation vector.
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(a) Gradients on a 2-dimensional latent space. (b) PCA of 32-dimensional latent space.

(c) UMAP of 32-dimensional latent space. (d) UMAP when taking 400 gradient steps from sampled
start points.

Figure 1: Perturbation flow maps for gene perturbations on the Irf8-cKO mouse brain dataset of
Van Hove et al. (2019). Arrows illustrate directions of the negative mean gradient of a small subset of
six genes inferred to be co-regulated with Irf8. Only 10% of cKO training samples were used.

3 RESULTS

Predicting knockout response To evaluate the utility of the perturbation flows, a case study on
the Irf8-cKO dataset (Van Hove et al., 2019) is performed. Visualizing the negative gradient of
Irf8-expression in latent space shows the effect of gradual knockdown going from the wild type to
the knockout population (Figure 1a), more evident for a higher dimensional latent space (Figure 1b).
Similarly, effects of gene overexpression are successfully simulated (see Supplementary Figure S1).

Predicting injury response Next, we consider the dataset of cardiotoxin-induced mouse injury
(Takada et al., 2022). A binary variable is added to the output features to indicate cardiotoxin injury.
This output variable is included in the objective function with a scaled binary cross entropy loss term,
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(a) Cardiotoxin-induced injury in mice. (b) Time series data of C. elegans embryos.

Figure 2: Perturbation flow maps for more general perturbations. Gradients are computed from the
output of cardiotoxin classification or embryo time regression.

αLCTX. Training with just 10% of injury labels, the model still achieves 99.0% accuracy in predicting
the cardiotoxin label on the held out test set. Visualizing the gradient of the cardiotoxin prediction
in latent space (Figure 2a) shows how toxin affects the latent samples, simulating changes in their
expression profiles. As expected, perturbation vectors strictly go from wild type to experimentally
perturbed samples.

Predicting temporal dynamics Dimensionality reduction on the C. elegans embryogenesis dataset
was found to distinctly subcluster celltypes according to the age of the embryo sample (Packer et al.,
2019). Adding this embryo time as a continuous output feature enables the inclusion of an additional
L1 loss term αLtime in our objective function. Again training with just 10% of available time labels,
Figure 2b shows that the gradient of time predictions can be used to infer how cells develop, and is
well aligned with the observed sample times. The latent space further stays subdivided in distinct cell
types (illustrated by Figure S2).

4 DISCUSSION

Generative decoders can be queried to infer the effects of perturbations on gene expression. This is
evidenced by the perturbation flow maps of Figures 1 and 2, demonstrating an intuitive and visual
interpretation of these perturbation effects. For each dataset, the generative model converges with
low reconstruction error (Supplementary Table S1). The decoder’s knockdown predictions for the
Irf8-cKO dataset align with findings by Van Hove et al. (2019) emphasizing Irf8’s significance
in microglia. Flows point from WT samples to cKO samples when decreasing expression of Irf8
(Figures 1a, 1b). Similarly, flows approximately reverse when considering the mean gradient of
genes which are differentially overexpressed in the cKO set (Supplementary Figure S1). Further,
the perturbation concept is easily generalized as demonstrated in the cases of cardiotoxin injury and
embryonic development. In these contexts, the gradients highlight different cellular dynamics —
e.g., transitions from control to cardiotoxin-altered states, and temporal patterns during development.
Even small amounts of labeled data can be used to achieve a general understanding of the whole
dataset — and thus simulate perturbation trajectories for new unlabeled cells. Differential expression
analysis along the perturbation trajectory could lead to insights relevant for, e.g., drug design.

While more intuitive for 2-dimensional latent spaces, larger latent dimensionalities can be used.
Figure 1b shows how a larger dimensionality could better encode the effect of Irf8 for CP-BAM cells.
Notably, the inferred perturbations also provide a means to visualize relationships between clusters in
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a UMAP-reduced space. As UMAP largely discards global stucture, this is an interesting direction
for recovering cell dynamics between clusters.

This study shows that generative models can be utilized to a larger degree when considering, e.g.,
output gradients. Future work will compare the quality and fidelity of the in-silico results with other
available tools, and explore the use of decoder gradients in inferring gene regulatory networks.
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A FILTERING AND PREPROCESSING

Uniformly across datasets, cells were retained only if they had 1) at least 200 non-zero genes 2) at
least 500 counts across genes, and 3) less than 5000 non-zero genes. Transcripts expressed in fewer
than 5 cells were removed. Raw counts were scaled by mean counts per cell and log-transformed to
annotate highly variable genes with Scanpy, and then inversely transformed to recover the original
raw counts. For the cKO mouse brains, the parameter n_top_genes for HVG selection was tuned
via binary search to ensure inclusion of Irf8.

B SUPPLEMENTARY TABLES

Train set Test set
Instance ARI RMSE MAE Task ARI RMSE MAE Task

Irf8 cKO 0.72± 0.02 0.19± 0.00 0.23± 0.00 - 0.74± 0.02 0.19± 0.00 0.23± 0.00 -
32D Irf8 cKO 0.87± 0.02 0.16± 0.00 0.21± 0.00 - 0.71± 0.17 0.17± 0.00 0.21± 0.00 -

cardiotoxin 0.77± 0.05 0.27± 0.00 0.31± 0.00 1.00± 0.00 0.76± 0.05 0.27± 0.00 0.31± 0.00 0.99± 0.00

embryogenesis 0.33± 0.04 0.31± 0.01 0.25± 0.00 11.37± 3.81 0.33± 0.04 0.31± 0.01 0.26± 0.00 32.04± 1.75

Table S1: Tabular overview of the trained models. Each row shows results based on 5 runs. Root mean
squared error (RMSE) and mean absolute error (MAE) compare log-transformed model outputs to
log-transformed mean-scaled counts. The task column denotes either decimal accuracy (cardiotoxin
prediction task) or mean L1 norm (embryogenesis regression task). Adjusted rand index (ARI) is
computed for sampling timepoint for the cardiotoxin dataset and for cell type for the other datasets,
and relies on k-means clustering. The 32-dimensional latent variables of the high-dimensional model
were reduced to 2D via UMAP before clustering.
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C SUPPLEMENTARY FIGURES

(a) Mean negative gradient of differentially underex-
pressed genes.

(b) Mean negative gradient of differentially overexpressed
genes.

Figure S1: Perturbation flow maps for gene perturbations on the Irf8-cKO dataset. Gradient is
aggregated as the mean over genes which are differentially under- or overexpressed when comparing
wild type and cKO populations.

(a) Re-print of Figure 2b for easier comparison. (b) Cell type annotations for the C. elegans latent space.

Figure S2: Latent space representations for the C. elegans embryogenesis dataset. Latent variables are
shown with two different labeling schemes: embryo measurement time and cell type. This illustrates
how the model captures continuous development while maintaining distinct cellular populations.
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