

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INCOMPLETE DATA, COMPLETE DYNAMICS: A DIFFUSION APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning physical dynamics from data is a fundamental challenge in machine learning and scientific modeling. Real-world observational data are inherently incomplete and irregularly sampled, posing significant challenges for existing data-driven approaches. In this work, we propose a principled diffusion-based framework for learning physical systems from *incomplete training samples*. To this end, our method strategically partitions each such sample into observed context and unobserved query components through a carefully designed splitting strategy, then trains a conditional diffusion model to reconstruct the missing query portions given available contexts. This formulation enables accurate imputation across arbitrary observation patterns without requiring complete data supervision. Specifically, we provide theoretical analysis demonstrating that our diffusion training paradigm on incomplete data achieves asymptotic convergence to the true complete generative process under mild regularity conditions. Empirically, we show that our method significantly outperforms existing baselines on synthetic and real-world physical dynamics benchmarks, including fluid flows and weather systems, with particularly strong performance in limited and irregular observation regimes. These results demonstrate the effectiveness of our theoretically principled approach for learning and imputing partially observed dynamics.

1 INTRODUCTION

Learning physical dynamics from observational data represents a cornerstone challenge in machine learning and scientific computing, with applications spanning weather forecasting (Conti, 2024; Zhang et al., 2025b), fluid dynamics (Wang et al., 2024; Brunton & Kutz, 2024), biological systems modeling (Qi et al., 2024; Goshisht, 2024), and beyond. Classical physics-based approaches require explicit specification of governing equations and boundary conditions, while data-driven methods offer the promise of discovering hidden dynamics directly from observations (Luo et al., 2025; Meng et al., 2025). However, a fundamental bottleneck persists: real-world observational data are inherently incomplete, irregularly sampled, and subject to various forms of missing information, making it difficult for existing approaches to learn accurate representations of the underlying dynamics.

Inherent sparsity of physical measurements. Physical science data fundamentally differs from typical computer vision datasets. Unlike natural images, where complete pixel grids are the norm, real-world physical measurements are inherently sparse and incomplete. Sensor networks provide observations only at discrete spatial locations, satellite imagery suffers from cloud occlusion, and experimental measurements are constrained by instrumental limitations. This incompleteness is not a temporary inconvenience to be resolved through better data collection—it is an intrinsic characteristic of how we observe physical systems.

Structured observation patterns. Prior approaches to learning from incomplete physical data have largely adopted simplistic assumptions about observation patterns. Most existing methods assume pixel-level independent and identically distributed (i.i.d.) missing patterns, where each spatial location has an equal probability of being observed (Daras et al., 2023; Dai et al., 2024; Simkus & Gutmann, 2025). While some recent works have explored alternative missing patterns in their experimental evaluations, such as row/column missing for tabular data, they still employ the same

054 training strategies regardless of the observation structure (Ouyang et al., 2023). This one-size-fits-
 055 all approach fails to leverage the specific characteristics of different mask distributions. In reality,
 056 observation patterns exhibit strong spatial structure: weather stations capture measurements within
 057 their local coverage areas, creating contiguous blocks of observations; satellite instruments observe
 058 swaths determined by orbital paths; underwater sensor arrays monitor volumes dictated by acoustic
 059 propagation. These structured patterns fundamentally differ from random pixel dropout and demand
 060 specialized training strategies. Our work addresses this gap by developing context-query partition-
 061 ing strategies specifically tailored to the underlying mask distribution, ensuring effective learning
 062 across diverse observation patterns.

063 **Lack of theoretical foundations.** While recent works have proposed various heuristic approaches
 064 for handling missing data in generative modeling, they lack rigorous theoretical foundations. Existing
 065 methods typically rely on empirical design choices without providing convergence guarantees
 066 or understanding of learning dynamics (Ouyang et al., 2023; Daras et al., 2023; Dai et al., 2024;
 067 Simkus & Gutmann, 2025). Moreover, some theoretically-motivated approaches suffer from pro-
 068hibitive computational costs, requiring multiple complete model retraining cycles or complex im-
 069 portance weighting schemes that limit their applicability to low-dimensional toy problems (Chen
 070 et al., 2024b; Givens et al., 2025; Zhang et al., 2025a).

071 **Our solution.** To address these challenges, we develop a theoretically principled diffusion-based
 072 framework that provides rigorous convergence guarantees while maintaining computational effi-
 073 ciency for high-dimensional physical dynamics problems. Our approach answers critical questions
 074 about whether diffusion models trained solely on incomplete data can recover complete data dis-
 075 tributions, how observation patterns affect diffusion training efficiency, and under what conditions
 076 successful reconstruction of unobserved regions is guaranteed. In summary, our contributions are:
 077

- 078 • **Methodical design:** We propose a novel conditional diffusion training paradigm that works
 079 directly with incomplete training samples, featuring a strategically designed context-query par-
 080 titioning scheme tailored for physical dynamics.
- 081 • **Theoretical guarantee:** We provide the first theoretical analysis proving that diffusion-based
 082 training on incomplete data with our paradigm asymptotically recovers the true complete dy-
 083 namical process under mild regularity conditions.
- 084 • **Strong results:** We conduct comprehensive experiments on both synthetic and real-world
 085 datasets, demonstrating substantial improvements in imputation accuracy over competitive
 086 baselines, particularly in challenging sparse observation regimes.

088 2 PRELIMINARIES

090 In Appendix A, we present a review of imputation methods and generative modeling approaches
 091 for missing data, which provides the broader context for our contributions. We also provide a de-
 092 tailed introduction to diffusion models in Appendix B, covering both standard *noise matching* and
 093 the *data matching* formulation that our method primarily employs. In this section, we formally
 094 define the problem of learning physical dynamics from incomplete observations. We establish the
 095 mathematical framework and notation that will be used throughout the paper.

096 We formalize the problem as follows. Let $\mathcal{X} \subset \mathbb{R}^d$ denote the space of complete data samples fol-
 097 lowing an unknown distribution $p_{\text{data}}(\mathbf{x}_0)$. Binary masks $\mathbf{M} \in \{0, 1\}^d$ are drawn from distribution
 098 $p_{\text{mask}}(\mathbf{M})$, where 1 indicates observed elements. We assume that masks are conditionally indepen-
 099 dent of the data given the observation process: $p_{\text{mask}}(\mathbf{M} \mid \mathbf{x}_0) = p_{\text{mask}}(\mathbf{M})$. In practice, we have
 100 prior knowledge about the mask distribution $p_{\text{mask}}(\mathbf{M})$ based on the data collection process (e.g.,
 101 sensor placement patterns, measurement protocols).

102 For each training instance i , we have $\mathbf{x}_{\text{obs}}^{(i)} = \mathbf{M}^{(i)} \odot \mathbf{x}_0^{(i)}$ denoting partially observed data
 103 and $\mathbf{x}_{\text{unobs}}^{(i)} = (1 - \mathbf{M}^{(i)}) \odot \mathbf{x}_0^{(i)}$ representing missing values. Crucially, our training dataset
 104 $\mathcal{D} = \{(\mathbf{x}_{\text{obs}}^{(i)}, \mathbf{M}^{(i)})\}_{i=1}^N$ contains only partial observations, no complete samples $\mathbf{x}_0^{(i)}$ are available
 105 during training. This setting reflects realistic scenarios where complete ground truth is unavailable.
 106 The objective is to learn a conditional generative model $p_{\theta}(\mathbf{x}_0 \mid \mathbf{x}_{\text{obs}}, \mathbf{M})$ that generates complete
 107 samples consistent with the observed elements, despite being trained solely on incomplete data.

108 **3 METHOD**
 109

110 In this section, we present our approach for learning physical dynamics directly from incomplete
 111 observations using diffusion models. Our method addresses the fundamental challenge of training
 112 generative models when both training and test data are partially observed, without access to complete
 113 ground truth during training. Our approach consists of three key components: **(1) Denoising**
 114 **data matching on incomplete training data** (Sec. 3.1): We formulate a theoretically grounded
 115 training loss and establish conditions under which the model learns meaningful conditional ex-
 116 pectations for all dimensions. **(2) Strategic context-query partitioning** (Sec. 3.2): We develop
 117 a principled strategy for partitioning incomplete samples into context and query components, en-
 118 abling reconstruction of originally missing dimensions. **(3) Ensemble sampling for complete data**
 119 **reconstruction** (Sec. 3.3): We bridge the gap between training on context masks and inference on
 120 full observations through ensemble averaging with theoretical convergence guarantees. This unified
 121 framework enables robust learning from incomplete observations while providing strong theoretical
 122 foundations for reconstructing complete data from partial observations.
 123

124 **3.1 DENOISING DATA MATCHING ON INCOMPLETE TRAINING DATA**

125 The fundamental challenge in learning from incomplete data is ensuring that training on incomplete
 126 observations enables the model to recover the complete underlying data distribution, despite never
 127 having access to complete samples during training. To address this, we formulate a training objective
 128 that learns a conditional generative model $p_{\theta}(x_0 | x_{\text{obs}}, M)$ ¹ that generates complete samples con-
 129 sistent with the observed elements, despite being trained solely on incomplete data. Our approach
 130 strategically partitions incomplete samples and deliberately withholds information during training
 131 through a theoretically grounded framework.

132 Our key insight is to reframe the learning problem through a hierarchical masking strategy. For
 133 each incomplete sample (x_{obs}, M) in our training dataset, we treat the partially observed data x_{obs}
 134 as “complete” within the scope of available observations. We then sample context masks $M_{\text{ctx}} \subseteq M$
 135 to represent “observable” portions and query masks $M_{\text{qry}} \subseteq M$ to represent “query” portions
 136 relative to x_{obs} . Given the noisy sample $x_{\text{obs},t} = M \odot (\alpha_t x_{\text{obs}} + \sigma_t \epsilon)$ at time t in the diffusion
 137 process, we train the neural network x_{θ} to predict the *complete* clean data x_0 from the timestep t ,
 138 context-masked noisy observations $M_{\text{ctx}} \odot x_{\text{obs},t}$, and context mask M_{ctx} , with our training loss is
 139 formulated as:

$$\mathcal{L}(t, x_{\text{obs}}, M_{\text{ctx}}, M_{\text{qry}}) = \|M_{\text{qry}} \odot (x_{\theta}(t, M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}) - x_{\text{obs}})\|^2 \quad (1)$$

140 The key architectural choice is that the model receives only the context mask M_{ctx} and correspond-
 141 ing observed values, trying to provide the best estimate for the queried dimensions. A natural ques-
 142 tion arises:

143 *Since we train exclusively on incomplete data, how can this training loss enable the model to predict
 144 the originally missing portions of the data—regions that were never observed during training?*

146 Through the following theoretical analysis, we provide key insights into how training on incomplete
 147 observations can still lead to models capable of reconstructing complete data distributions.

148 **Theorem 1** (Optimal solution under context masking without query information). *Let x_{θ}^* be the*
 149 *optimal solution by minimizing the loss in equation 1. Under the conditional independence of masks*
 150 *and data, we have the following results:*

151 *(i) Optimal solution: The optimal solution is given by*

$$(x_{\theta}(t, M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}))_i = \begin{cases} \mathbb{E}[(x_0)_i | M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}], & P((M_{\text{qry}})_i = 1 | M_{\text{ctx}}) > 0 \\ \text{an arbitrary value,} & P((M_{\text{qry}})_i = 1 | M_{\text{ctx}}) = 0 \end{cases} \quad (2)$$

155 *where i indicates the i -th entry of the vector.* Specially, given the context mask M_{ctx} , if the union of
 156 all possible query mask M_{qry} supports covers all spatial dimensions, we have

$$x_{\theta}(t, M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}) = \mathbb{E}[x_0 | M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}] \quad (3)$$

158 ¹For clarity, we note that in the full diffusion imputation setting, the ideal model would output $\mathbb{E}[x_0 |$
 159 $x_t, x_{\text{obs}}, M]$, conditioning on both the noisy state x_t and observations x_{obs} . Our single-step sampling approach
 160 (Sec. 3.3) simplifies this by using minimal noise ($t = \delta \approx 0$), effectively approximating $\mathbb{E}[x_0 | x_{\text{obs}}, M]$. For
 161 cases requiring diversity generation, we provide a multi-step sampling procedure in Appendix E that combines
 both sources of information through weighted averaging.

(ii) *Gradient magnitude scaling*: The expected squared gradient magnitude with respect to the network output for dimension i scales linearly with the query probability $p_i := P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx})$:

$$\mathbb{E} \left[\left(\frac{\partial \mathcal{L}}{\partial (\mathbf{x}_\theta)_i} \right)^2 \right] = 4p_i \mathbb{E} \left[((\mathbf{x}_\theta)_i - (\mathbf{x}_{obs})_i)^2 \mid (\mathbf{M}_{qry})_i = 1 \right] \quad (4)$$

(iii) *Parameter update frequency*: The frequency of non-zero parameter updates for dimension i is exactly p_i :

$$P(\text{dimension } i \text{ contributes to parameter update}) = P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) = p_i \quad (5)$$

The proof can be found in Appendix F. This theorem reveals a critical insight: the model learns meaningful conditional expectations $\mathbb{E}[(\mathbf{x}_0)_i | \mathbf{M}_{ctx} \odot \mathbf{x}_{obs,t}, \mathbf{M}_{ctx}]$ for dimension i only when $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0$. When this probability is zero, the model’s output for dimension i becomes arbitrary since it never receives gradient updates for that dimension. This theoretical finding directly drives the need for strategic context-query partitioning: given any context mask \mathbf{M}_{ctx} (without information of \mathbf{M}), we must ensure that every dimension outside the context, including dimensions that were originally missing in the raw data (i.e., dimensions i where $\mathbf{M}_i = 0$), has a positive probability of being selected as a query point. In the following section, we detail how to design the context-query mask sampling strategy to guarantee this requirement.

3.2 STRATEGIC CONTEXT-QUERY PARTITIONING

Building on our theoretical analysis, we now address the crucial question: how should we design the context-query partitioning strategy to ensure effective learning? Our approach is guided by a principled design framework that guarantees positive query probabilities for all observable dimensions.

Design principle. Based on Theorem 1, we establish the core design principle for effective context-query partitioning:

Principle 1 (Principle of uniform query exposure). *For effective learning from incomplete data, the context-query partitioning strategy must satisfy:*

1. **Non-zero query probability**: For all unobserved dimensions i , i.e., $(\mathbf{M}_{ctx})_i = 0$,

$$P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0 \quad (6)$$

2. **Uniform exposure**: The query probabilities should be approximately uniform across all observed dimensions to achieve balanced learning:

$$P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) \approx P((\mathbf{M}_{qry})_j = 1 | \mathbf{M}_{ctx}) \quad \forall i, j : (\mathbf{M}_{ctx})_i = (\mathbf{M}_{ctx})_j = 0 \quad (7)$$

To implement this principle, we can decompose the query probability using the law of total probability over all possible observation masks:

$$P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) = \sum_{\mathbf{M}} P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}, \mathbf{M}) \cdot P(\mathbf{M} | \mathbf{M}_{ctx}) \quad (8)$$

This decomposition reveals that the query probability depends on two factors: (1) the conditional query sampling strategy given both context and observation masks $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}, \mathbf{M})$, and (2) the posterior distribution of observation masks given the context $P(\mathbf{M} | \mathbf{M}_{ctx})$. Since $\mathbf{M}_{ctx} \subseteq \mathbf{M}$ by construction, we can always find observation masks \mathbf{M} such that $P(\mathbf{M} | \mathbf{M}_{ctx}) > 0$. However, $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}, \mathbf{M})$ is not guaranteed to be positive for all dimensions i . Fortunately, we can strategically design the sampling mechanism for \mathbf{M}_{ctx} to ensure that there indeed exist observation masks \mathbf{M} where both terms are simultaneously positive, thereby guaranteeing $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0$ for all observed dimensions. To illustrate how different context mask selection strategies affect the query probability $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx})$, we first present a concrete example that demonstrates the critical impact of this design choice.

Illustrate example. Fig. 1 demonstrates how different partitioning strategies affect learning effectiveness using block-structured observation patterns. Consider a scenario where observation masks \mathbf{M} randomly mask 2 out of 9 spatial blocks:

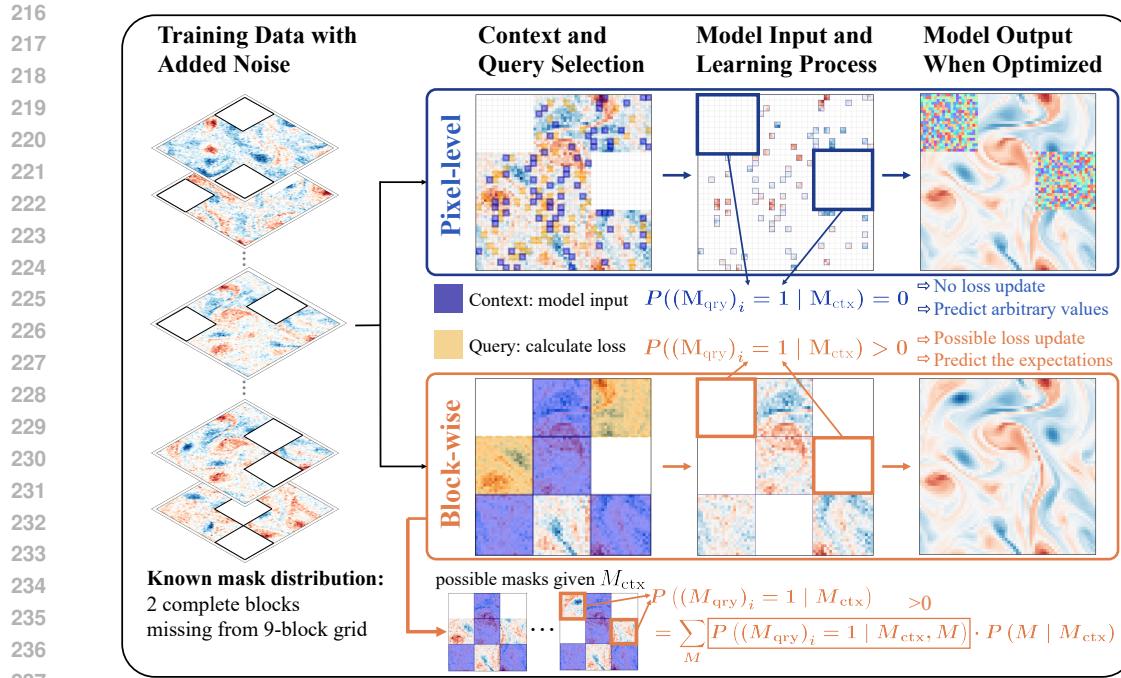


Figure 1: Impact of context-query partitioning strategies on learning effectiveness. Blue regions indicate context (model input), orange regions indicate query (loss calculation). **Top:** Problematic uniform sampling creates zero-query regions. **Bottom:** Effective block-structured sampling ensures balanced learning across all dimensions. See Fig. 10 for the resulting imputation failures.

- Problematic strategy (top): For each partially observed sample \mathbf{x}_{obs} , context points are selected by uniform sampling across all observable dimensions, yielding $\mathbf{M}_{\text{ctx}}^{\text{uni}}$. This strategy is problematic because for such given $\mathbf{M}_{\text{ctx}}^{\text{uni}}$, there exists only one observation mask \mathbf{M} that contains it (i.e., the specific \mathbf{M} from which \mathbf{x}_{obs} was derived). Consequently, for masked dimensions i where $\mathbf{M}_i = 0$, we have $P((\mathbf{M}_{\text{qry}})_i = 1 | \mathbf{M}_{\text{ctx}}^{\text{uni}}, \mathbf{M}) = 0$ because these dimensions are never available for query selection. The regions marked with rectangles represent such zero-probability areas, leading to incomplete learning.
- Effective strategy (bottom): Context masks are sampled by selecting entire blocks according to the same block-structured pattern as the observation masks, yielding $\mathbf{M}_{\text{ctx}}^{\text{block}}$ that typically contains 4 complete blocks. Crucially, for a given $\mathbf{M}_{\text{ctx}}^{\text{block}}$, there exist multiple possible observation masks \mathbf{M} that contain it (see two visualized possible masks in the figure). This multiplicity ensures that for any masked dimensions i , there always exists at least one possible observation mask \mathbf{M} such that $P((\mathbf{M}_{\text{qry}})_i = 1 | \mathbf{M}_{\text{ctx}}^{\text{block}}, \mathbf{M}) > 0$, thereby guaranteeing positive query probabilities across all observable dimensions.

Implementation strategy. Generally speaking, we typically have knowledge about how the data becomes masked (e.g., sensor placement patterns, measurement protocols), which provides us with either explicit estimates or reasonable prior knowledge about $p_{\text{mask}}(\mathbf{M})$. In practice, to satisfy Principle 1, a viable strategy is to design the context mask sampling mechanism \mathbf{M}_{ctx} based on the observation mask distribution $p_{\text{mask}}(\mathbf{M})$. Specifically, we sample \mathbf{M}_{ctx} from \mathbf{M} following the same structural pattern as $p_{\text{mask}}(\mathbf{M})$: for i.i.d. pixel-level observations, we independently sample each observed pixel; for block-structured observations, we sample complete blocks from available blocks in \mathbf{M} . This distribution-preserving strategy ensures that every observed dimension can potentially be excluded from context (and included in query), guaranteeing $P((\mathbf{M}_{\text{qry}})_i = 1 | \mathbf{M}_{\text{ctx}}) > 0$ for all i . Under this design paradigm, the model learns during training to recover \mathbf{x}_0 from context observations while leveraging the structural knowledge embedded in $p_{\text{mask}}(\mathbf{M})$. At inference time, the model can then utilize the complete observation \mathbf{x}_{obs} along with the same distributional knowledge $p_{\text{mask}}(\mathbf{M})$ to reconstruct the full data \mathbf{x}_0 .

270 **Training algorithm and practical considerations.** Building on our theoretical foundation
 271 and design principles, we present our training algorithm in Alg. 1. While ensuring $P((M_{\text{qry}})_i =$
 272 $1 \mid M_{\text{ctx}}) > 0$ is necessary, the choice of context-query ratio involves two critical trade-offs:
 273

- 274 • Information gap trade-off (Theorem 2): When M_{ctx} contains few observed points
 275 relative to M , the large information gap increases approximation variance and slows
 276 down convergence.
- 277 • Parameter update frequency trade-off (equation 5): When M_{ctx} contains too many ob-
 278 served points, query probabilities p_i become small, leading to infrequent parameter up-
 279 dates for reconstructing missing information.

280 These theoretical considerations suggest that moderate context ratios should achieve optimal per-
 281 formance by balancing both trade-offs. Our experimental results confirm this theoretical prediction,
 282 with detailed analysis provided in Appendix H.4 and Tab. 6.

283 3.3 ENSEMBLE SAMPLING FOR COMPLETE DATA RECONSTRUCTION

284 Our trained model approximates the conditional expectation $\mathbb{E}[x_0 \mid M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}]$ given a ran-
 285 domly sampled context mask, rather than the desired full conditional expectation $\mathbb{E}[x_0 \mid x_{\text{obs},t}, M]$
 286 that conditions on the complete observation. To bridge this gap and enable complete data recon-
 287 struction, we leverage ensemble averaging across multiple context masks. This section presents our
 288 sampling procedures and their theoretical guarantees.

289 **Single-step sampling.** In many scientific applications, the observed data are sufficiently informa-
 290 tive to constrain the solutions to a relatively concentrated region in the solution space (Alberti &
 291 Santacesaria, 2021). When the posterior distribution $p(x_0 \mid x_{\text{obs}}, M)$ is highly concentrated with
 292 solutions clustered closely together, it can be well-approximated by a narrow distribution centered at
 293 x^* , where x^* represents the mean of the tightly clustered solutions consistent with the observations.
 294 In such cases, $\mathbb{E}[x_0 \mid x_{\text{obs}}, M] \approx x^*$ provides a good representative solution, reducing the need for
 295 extensive iterative denoising steps.

296 To leverage this property, we implement a single-step sampling procedure. We apply minimal noise
 297 at timestep $t = \delta$ where $0 < \delta \ll 1$:

$$308 \quad x_\delta = \alpha_\delta x_{\text{obs}} + \sigma_\delta \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, I) \quad (9)$$

309 The small noise level ensures $M \odot x_\delta \approx x_{\text{obs}}$. We then approximate the desired conditional
 310 expectation using ensemble averaging over K randomly sampled context masks:

$$312 \quad x^* = \mathbb{E}[x_0 \mid x_{\text{obs}}, M] \approx \frac{1}{K} \sum_{k=1}^K x_\theta \left(\delta, M_{\text{ctx}}^{(k)} \odot x_{\text{obs},\delta}, M_{\text{ctx}}^{(k)} \right), \quad (10)$$

314 where $M_{\text{ctx}}^{(1)}, \dots, M_{\text{ctx}}^{(K)} \subseteq M$ are conditionally independent given M . This approach enables
 315 direct reconstruction in a single denoising step, making it particularly suitable for well-posed inverse
 316 problems where the observations strongly constrain the solution space.

317 We then establish the theoretical foundation that justifies our ensemble averaging approach. Let
 318 $\text{obs} = [M \odot x_{\text{obs},t}, M]$ and $\text{ctx} = [M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}]$ denote the full observation and context
 319 observation respectively.

320 **Theorem 2** (Ensemble approximation convergence). *Let $\mathbb{E}[x_0 \mid \text{obs}] := \mathbb{E}[x_0 \mid x_{\text{obs},t}, M]$ be
 321 the ground truth conditional expectation and $\mathbb{E}[x_0 \mid \text{ctx}] = \mathbb{E}[x_0 \mid M_{\text{ctx}} \odot x_{\text{obs},t}, M_{\text{ctx}}]$ be the
 322 context-conditioned expectation. The expected squared error between these quantities is:*

$$323 \quad \mathbb{E} [\|\mathbb{E}[x_0 \mid \text{ctx}] - \mathbb{E}[x_0 \mid \text{obs}]\|^2] = \mathbb{E}[\text{Var}[x_0 \mid \text{ctx}]] - \mathbb{E}[\text{Var}[x_0 \mid \text{obs}]] \quad (11)$$

324 Consider a practical model with output $\mathbf{x}_\theta(t, \text{ctx}) = \mathbb{E}[\mathbf{x}_0 \mid \text{ctx}] + \mathbf{b}(\text{ctx}) + \boldsymbol{\epsilon}_{\text{bias}}(\text{ctx})$, where $\mathbf{b}(\text{ctx})$ 325 represents context-dependent deterministic bias and $\boldsymbol{\epsilon}_{\text{bias}}(\text{ctx})$ is random error with $\mathbb{E}[\boldsymbol{\epsilon}_{\text{bias}}] = \mathbf{0}$. 326 Given the ensemble prediction in equation 10 as:

$$327 \hat{\mathbf{\mu}}_K = \frac{1}{K} \sum_{k=1}^K \mathbf{x}_\theta(t, \text{ctx}^{(k)}), \quad (12)$$

330 the expected squared error between the ensemble prediction and ground truth is:

$$331 \mathbb{E} \left[\|\hat{\mathbf{\mu}}_K - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]\|^2 \right] = \underbrace{\mathbb{E}[\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}]] - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]}_{\text{information gap}} + \underbrace{\mathbb{E}[\mathbf{b}(\text{ctx})]}_{\text{model bias}} \\ 332 \\ 333 \\ 334 \\ 335 \\ 336 \quad + \frac{1}{K} \underbrace{\text{Var}[\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}]]}_{\text{data variance}} + \underbrace{\text{Var}[\mathbf{b}(\text{ctx})] + \text{Var}[\boldsymbol{\epsilon}_{\text{bias}}]}_{\text{model variance}} \quad (13)$$

337 As $K \rightarrow \infty$, the ensemble converges to:

$$338 \lim_{K \rightarrow \infty} \mathbb{E} \left[\|\hat{\mathbf{\mu}}_K - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]\|^2 \right] = \|\mathbb{E}[\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}]] - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}] + \mathbb{E}[\mathbf{b}(\text{ctx})]\|^2 \quad (14)$$

340 This theorem demonstrates that ensemble averaging eliminates the variance terms, with the remaining 341 error determined by the information gap between context and full observations, plus any 342 systematic model bias. The proof is provided in Appendix F.2.

343 **Multi-step sampling.** While single-step sampling suffices when observations nearly determine a 344 unique solution, generating diverse imputed samples or handling cases with significant uncertainty 345 requires a multi-step sampling procedure. This approach follows the standard diffusion sampling 346 process but replaces each denoising step with ensemble averaging over multiple context masks. Note 347 that multi-step sampling involves repeated application of the model to generated content, which can 348 lead to slight accumulation of errors compared to the single-step approach (Xu et al., 2023). The 349 detailed multi-step sampling algorithm is provided in Appendix E.

351 4 EXPERIMENT

352 4.1 BASELINES

353 We compare against established baselines, including traditional imputation methods (Temporal 354 Consistency (Huang et al., 2016), Fast Marching (Telea, 2004), Navier-Stokes inpainting (Bertalmio 355 et al., 2001)) and recent diffusion-based approaches, MissDiff (Ouyang et al., 2023), AmbientDiff 356 (Daras et al., 2023). To ensure a fair comparison, we modified MissDiff to use data matching 357 instead of its original noise matching approach, which improves its performance (see Appendix H.3 358 for more detailed discussion). As a result, all three diffusion-based approaches, MissDiff, AmbientDiff, 359 and our method, now employ the data matching paradigm. For all baseline methods, we 360 experimented with both single-step sampling and multi-step sampling strategies, and report the best 361 performance results between these two approaches to ensure optimal baseline comparisons. We 362 also exclude methods by Chen et al. (2024b); Givens et al. (2025); Zhang et al. (2025a) due to 363 their computational limitations: these approaches are designed for low-dimensional data and incur 364 prohibitively high training costs when scaled to high dimensions. See Appendix G for details.

367 4.2 DATASETS

368 We conduct comprehensive experiments to validate our theoretical framework and demonstrate the 369 effectiveness of our approach across diverse scientific domains. Our evaluation encompasses both 370 synthetic PDE datasets: Shallow Water (Klöwer et al., 2018), Advection (Klöwer et al., 2018), and 371 Navier-Stokes (Cao, 2024), and real-world climate data (ERA5) (Hersbach et al., 2020), under varying 372 levels of data sparsity, ranging from 80% to as low as 1% observed points. To simulate realistic 373 scientific measurement scenarios, we construct datasets where each sample contains only a subset 374 of spatial locations with known values, while the remaining locations are permanently unobserved. 375 This reflects the fundamental challenge in scientific applications where complete ground truth data 376 is never available during training, distinguishing our setting from conventional imputation tasks that 377 artificially mask complete observations.

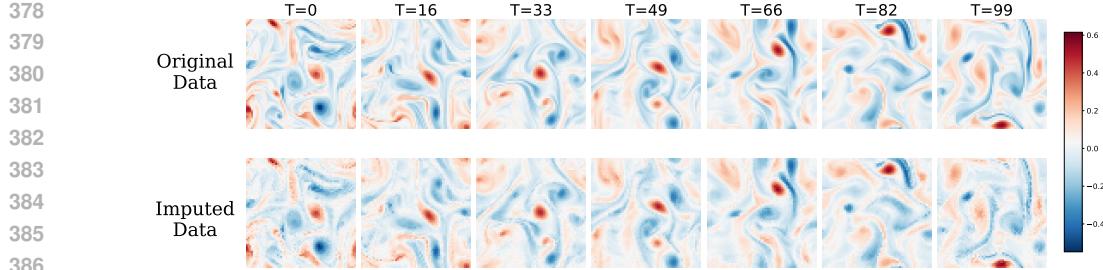


Figure 3: Comparison of original and imputed data from the Navier-Stokes dataset (60% observed points). The upper row shows the original data, while the bottom row shows the results after data imputation. Each sample consists of 100 frames at 64×64 resolution.

Shallow Water and Advection Equations. We consider two fundamental geophysical PDE systems: the shallow water equations governing fluid dynamics with rotation, and the linear advection equation describing scalar transport. Each dataset contains 5k training, 1k validation, and 1k test samples with 32×32 spatial resolution and 50 temporal frames, generated with randomized physical parameters and initial conditions.

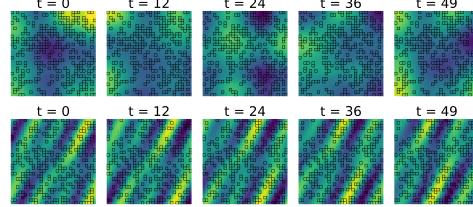
Navier-Stokes Equations. We use incompressible Navier-Stokes simulations of isotropic turbulence, featuring the characteristic Kolmogorov energy cascade. The dataset comprises 1,152 samples at 64×64 resolution with 100-frame sequences, generated using spectral or finite volume methods.

ERA5 Reanalysis. For real-world evaluation, we utilize the ERA5 atmospheric reanalysis from ECMWF, incorporating nine essential meteorological variables. We process one year of hourly data at 103×120 spatial resolution, segmented into 3-hour windows with sparse observations.

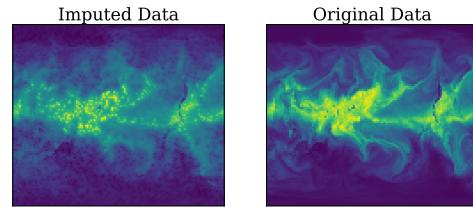
We assess reconstruction quality using physically meaningful metrics: PDE residual errors for shallow water, forward propagation accuracy for advection, and direct MSE for Navier-Stokes and ERA5. Detailed dataset specifications and evaluation protocols are provided in Appendix H.1.

Table 1: Performance comparison on physical dynamics imputation tasks, where masks are sampled pixel-wisely. Column headers indicate the percentage of spatial points observed in the dataset.

Method	Navier-Stokes ($\times 10^{-3}$)			ERA5 ($\times 10^{-2}$)		
	80%	60%	20%	20%	10%	1%
Temporal Consistency	1.341	2.709	5.709	0.967	1.179	9.735
Fast Marching	0.486	1.220	3.737	0.710	0.978	3.053
Navier-Stokes	0.263	0.656	2.989	0.600	0.942	3.074
MissDiff	0.251 ± 0.025	0.611 ± 0.077	3.077 ± 1.046	0.416 ± 0.004	0.676 ± 0.088	1.653 ± 0.296
AmbientDiff	0.238 ± 0.017	0.538 ± 0.024	2.043 ± 0.089	0.256 ± 0.002	0.414 ± 0.031	1.234 ± 0.437
Ours	0.223 ± 0.016	0.507 ± 0.026	1.931 ± 0.092	0.250 ± 0.002	0.408 ± 0.030	1.229 ± 0.437



(a) Visualization of data imputation results on Shallow Water and Advection datasets. The training set contains 30% observed data points. Each example shows a complete sample reconstructed by the model based on partial observations. Observed entries are marked with rectangles, while missing entries are filled in by the model.



(b) Visualization of data imputation results for the “total column water vapor” variable in the ERA5 dataset (20% observed data points).

Figure 2: Data imputation visualization

432 Table 2: Performance comparison on PDE imputation tasks, where masks are sampled block-wisely.
 433 Column headers indicate the fraction of observed blocks. The last two rows demonstrate our method
 434 using incorrect pixel-level versus correct block-wise context-query partitioning strategies.

436	437	Method	Shallow Water		Advection		Navier-Stokes
			8/9	5/9	8/9	5/9	8/9
438	Temporal Consistency		0.6974	2.5486	0.4758	1.0940	1.4287
439	Fast Marching		0.8454	3.3718	0.5042	1.4434	1.7391
440	Navier-Stokes		0.4753	1.7565	0.4418	1.3594	1.7274
441	MissDiff	0.0285 ± 0.0024	0.1166 ± 0.0066	0.1202 ± 0.0047	0.1979 ± 0.0228	1.4357 ± 0.1132	
442	AmbientDiff	0.0217 ± 0.0063	0.0925 ± 0.0017	0.1077 ± 0.0009	0.1524 ± 0.0137	1.4954 ± 0.2609	
443	Ours	pixel-level (incorrect)	0.0215 ± 0.0035	0.0989 ± 0.0007	0.1171 ± 0.0041	0.1894 ± 0.0179	1.4925 ± 0.2609
		block-wise (correct)	0.0203 ± 0.0059	0.0865 ± 0.0014	0.1065 ± 0.0009	0.1407 ± 0.0116	0.7592 ± 0.0386

444 4.3 EXPERIMENT RESULTS

445 **Pixel-level observation.** Individual spatial points are randomly masked throughout the domain,
 446 simulating sparse sensor networks or measurement failures. We test observation rates from 80%
 447 down to 1%, challenging the model to reconstruct scattered missing points using local spatial cor-
 448 relations. Tab. 1 and Tab. 10 demonstrate that our method achieves superior performance in the
 449 majority of evaluation scenarios.

450 **Block-wise observation.** This more challenging setting masks entire contiguous spatial regions,
 451 reflecting realistic constraints such as sensor placement limitations, regional measurement failures,
 452 or structured occlusions in observational systems. For instance, in the 5/9 block configuration, only
 453 5 out of 9 spatial blocks contain observations, while 4 complete blocks remain entirely unobserved.
 454 This requires the model to reconstruct entire spatial regions without any local observations, relying
 455 solely on distant context and learned physical priors. Our results, shown in Tab. 2, demonstrate
 456 that the proposed strategic context-query partitioning, which adapts to the observation pattern dur-
 457 ing training, is essential. When the partitioning strategy matches the observation structure (block
 458 masks), our method effectively learns to reconstruct complete fields. Conversely, mismatched strate-
 459 gies lead to degraded performance, validating our theoretical analysis.

460 **Cross-distribution generalization.** Beyond evaluating on matching train-test distributions, we
 461 also investigate cross-distribution generalization where models trained with one observation ratio
 462 (e.g., 80%) are tested on data with different observation densities (e.g., 60% or 20%). We provide
 463 detailed experiment results and analysis of this cross-distribution setting and our adaptive context
 464 sampling strategy in Appendix H.5.

465 4.4 ABLATION STUDY

466 We conduct comprehensive ablation studies to analyze the contribution of key components in our
 467 framework: (1) test-time gap introduced by replacing M_{ctx} with M , (2) the choice of backbone
 468 architecture, (3) the context and query mask ratio selection guided by our theoretical analysis,
 469 and (4) the influence of the ensemble size K . Detailed results and analysis are provided in Ap-
 470 pendix H.4. Through systematic ablation studies, we validate our key theoretical insights. The
 471 results demonstrate that our method consistently outperforms existing approaches while providing
 472 theoretical guarantees for convergence to the desired conditional expectations.

473 5 CONCLUSION

474 We presented a principled framework for learning physical dynamics from incomplete observations
 475 using diffusion models trained directly on partial data through strategic context-query partitioning.
 476 Our theoretical analysis proves that training on incomplete data recovers the complete distribution
 477 with convergence guarantees, validated empirically with substantial improvements over baselines
 478 on synthetic PDEs and ERA5 climate data, especially in sparse regimes (1-20% coverage). The
 479 method’s effectiveness across diverse physical systems demonstrates practical applicability for real-
 480 world scenarios where complete observations are inherently unavailable.

486

6 REPRODUCIBILITY STATEMENT

488 To ensure the reproducibility of our work, we will make all experimental code and datasets publicly
 489 available upon publication. The complete implementation, including model architectures, training
 490 procedures, and evaluation scripts, will be provided as supplementary materials with detailed doc-
 491 umentation. All datasets used in our experiments will be released, with the exception of the ERA5
 492 dataset, which requires individual registration and download from the official ECMWF website due
 493 to licensing restrictions.

495

REFERENCES

497 Michael S Albergo, Mark Goldstein, Nicholas M Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
 498 Stochastic interpolants with data-dependent couplings. *arXiv preprint arXiv:2310.03725*, 2023.

500 Giovanni S Alberti and Matteo Santacesaria. Infinite dimensional compressed sensing from
 501 anisotropic measurements and applications to inverse problems in pde. *Applied and Compu-
 502 tational Harmonic Analysis*, 50:105–146, 2021.

503 Marcelo Bertalmio, Andrea L Bertozzi, and Guillermo Sapiro. Navier-stokes, fluid dynamics, and
 504 image and video inpainting. In *Proceedings of the 2001 IEEE Computer Society Conference on
 505 Computer Vision and Pattern Recognition. CVPR 2001*, volume 1, pp. I–I. IEEE, 2001.

507 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, vol-
 508 ume 4. Springer, 2006.

509 Steven L Brunton and J Nathan Kutz. Promising directions of machine learning for partial differen-
 510 tial equations. *Nature Computational Science*, 4(7):483–494, 2024.

512 Shuhao Cao. Navier-stokes dataset of isotropic turbulence in a periodic box, 2024. URL <https://huggingface.co/datasets/scaomath/navier-stokes-dataset>. Funded by
 513 National Science Foundation: NSF award DMS-2309778.

515 Hanyang Chen, Yang Jiang, Shengnan Guo, Xiaowei Mao, Youfang Lin, and Huaiyu Wan. Dif-
 516 flight: a partial rewards conditioned diffusion model for traffic signal control with missing data.
 517 *Advances in Neural Information Processing Systems*, 37:123353–123378, 2024a.

519 Zhichao Chen, Haoxuan Li, Fangyikang Wang, Odin Zhang, Hu Xu, Xiaoyu Jiang, Zhihuan Song,
 520 and Hao Wang. Rethinking the diffusion models for missing data imputation: A gradient flow
 521 perspective. *Advances in Neural Information Processing Systems*, 37:112050–112103, 2024b.

523 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
 524 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.

525 Silvia Conti. Artificial intelligence for weather forecasting. *Nature Reviews Electrical Engineering*,
 526 1(1):8–8, 2024.

528 Ciprian Corneanu, Raghudeep Gadde, and Aleix M Martinez. Latentpaint: Image inpainting in latent
 529 space with diffusion models. In *Proceedings of the IEEE/CVF winter conference on applications
 530 of computer vision*, pp. 4334–4343, 2024.

532 Zongyu Dai, Emily Getzen, and Qi Long. Sadi: Similarity-aware diffusion model-based imputa-
 533 tion for incomplete temporal ehr data. In *International Conference on Artificial Intelligence and
 534 Statistics*, pp. 4195–4203. PMLR, 2024.

535 Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.
 536 Ambient diffusion: Learning clean distributions from corrupted data. *Advances in Neural Infor-
 537 mation Processing Systems*, 36:288–313, 2023.

539 Yilun Du, Katie Collins, Josh Tenenbaum, and Vincent Sitzmann. Learning signal-agnostic mani-
 folds of neural fields. *Advances in Neural Information Processing Systems*, 34:8320–8331, 2021.

540 Yifan Duan, Jian Zhao, Junyuan Mao, Hao Wu, Jingyu Xu, Caoyuan Ma, Kai Wang, Kun Wang,
 541 Xuelong Li, et al. Causal deciphering and inpainting in spatio-temporal dynamics via diffusion
 542 model. *Advances in Neural Information Processing Systems*, 37:107604–107632, 2024.

543

544 Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From
 545 data to functa: Your data point is a function and you can treat it like one. *arXiv preprint*
 546 *arXiv:2201.12204*, 2022.

547 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Associa-*
 548 *tion*, 106(496):1602–1614, 2011.

549

550 Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal
 551 learners. *Advances in neural information processing systems*, 35:35946–35958, 2022.

552

553 Josh Givens, Song Liu, and Henry WJ Reeve. Score matching with missing data. *arXiv preprint*
 554 *arXiv:2506.00557*, 2025.

555

556 Manoj Kumar Goshisht. Machine learning and deep learning in synthetic biology: Key architectures,
 557 applications, and challenges. *ACS omega*, 9(9):9921–9945, 2024.

558

559 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 560 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 561 *vision and pattern recognition*, pp. 16000–16009, 2022.

562

563 Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
 564 Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis.
 565 *Quarterly journal of the royal meteorological society*, 146(730):1999–2049, 2020.

566

567 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 568 *neural information processing systems*, 2020.

569

570 Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. Temporally coherent com-
 571 pletion of dynamic video. *ACM Transactions on Graphics (ToG)*, 35(6):1–11, 2016.

572

573 Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. Diffusionpde: Generative pde-
 574 solving under partial observation. *arXiv preprint arXiv:2406.17763*, 2024.

575

576 Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-miiae: Deep generative mod-
 577 elling with missing not at random data. *arXiv preprint arXiv:2006.12871*, 2020.

578

579 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
 580 ing and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF*
 581 *Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.

582

583 Kwanyoung Kim and Jong Chul Ye. Noise2score: tweedie’s approach to self-supervised image
 584 denoising without clean images. *Advances in Neural Information Processing Systems*, 34:864–
 585 874, 2021.

586

587 M. Klöwer, M. F. Jansen, M. Claus, R. J. Greatbatch, and S. Thomsen. Energy budget-based
 588 backscatter in a shallow water model of a double gyre basin. *Ocean Modelling*, 132, 2018. doi:
 589 10.1016/j.ocemod.2018.09.006.

590

591 Jean-Marie Lemercier, Julius Richter, Simon Welker, Eloi Moliner, Vesa Välimäki, and Timo Gerk-
 592 mann. Diffusion models for audio restoration: A review [special issue on model-based and data-
 593 driven audio signal processing]. *IEEE Signal Processing Magazine*, 41(6):72–84, 2025.

594

595 Steven Cheng-Xian Li and Benjamin Marlin. Learning from irregularly-sampled time series: A
 596 missing data perspective. In *International Conference on Machine Learning*, pp. 5937–5946.
 597 PMLR, 2020.

598

599 Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Misgan: Learning from incomplete data
 600 with generative adversarial networks. *arXiv preprint arXiv:1902.09599*, 2019.

594 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 595 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 596 equations. *arXiv preprint arXiv:2010.08895*, 2020.

597 Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
 598 Anandkumar. $I^2\text{sb}$: Image-to-image schrödinger bridge. *arXiv preprint arXiv:2302.05872*, 2023.

600 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 601 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 602 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

603 Kuang Luo, Jingshang Zhao, Yingping Wang, Jiayao Li, Junjie Wen, Jiong Liang, Henry Soekmadji,
 604 and Shaolin Liao. Physics-informed neural networks for pde problems: a comprehensive review.
 605 *Artificial Intelligence Review*, 58(10):1–43, 2025.

606 Chao Ma, Sebastian Tschiatschek, Richard Turner, José Miguel Hernández-Lobato, and Cheng
 607 Zhang. Vaem: a deep generative model for heterogeneous mixed type data. *Advances in Neural*
 608 *Information Processing Systems*, 33:11237–11247, 2020.

609 Chuizheng Meng, Sam Griesemer, Defu Cao, Sungyong Seo, and Yan Liu. When physics meets
 610 machine learning: A survey of physics-informed machine learning. *Machine Learning for Com-*
 611 *putational Science and Engineering*, 1(1):20, 2025.

612 Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models
 613 on tabular data with missing values. *arXiv preprint arXiv:2307.00467*, 2023.

614 Xin Qi, Yuanchun Zhao, Zhuang Qi, Siyu Hou, and Jiajia Chen. Machine learning empowering drug
 615 discovery: Applications, opportunities and challenges. *Molecules*, 29(4):903, 2024.

616 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
 617 Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH*
 618 *2022 conference proceedings*, pp. 1–10, 2022.

619 Vaidotas Simkus and Michael U Gutmann. Cfmi: Flow matching for missing data imputation. *arXiv*
 620 *preprint arXiv:2506.09258*, 2025.

621 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 622 *Advances in neural information processing systems*, 32, 2019.

623 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 624 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 625 *arXiv:2011.13456*, 2020.

626 Alexandru Telea. An image inpainting technique based on the fast marching method. *Journal of*
 627 *graphics tools*, 9(1):23–34, 2004.

628 Haixin Wang, Yadi Cao, Zijie Huang, Yuxuan Liu, Peiyan Hu, Xiao Luo, Zezheng Song, Wanja
 629 Zhao, Jilin Liu, Jinan Sun, et al. Recent advances on machine learning for computational fluid
 630 dynamics: A survey. *arXiv preprint arXiv:2408.12171*, 2024.

631 Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
 632 sampling for improving generative processes. *Advances in Neural Information Processing Sys-*
 633 *tems*, 36:76806–76838, 2023.

634 Kaiwen Xue, Yuhao Zhou, Shen Nie, Xu Min, Xiaolu Zhang, Jun Zhou, and Chongxuan Li. Unify-
 635 ing bayesian flow networks and diffusion models through stochastic differential equations. *arXiv*
 636 *preprint arXiv:2404.15766*, 2024.

637 Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyuan Du, Pengxu Wei, and Dongyu Zhang. Im-
 638 age restoration through generalized ornstein-uhlenbeck bridge. *arXiv preprint arXiv:2312.10299*,
 639 2023.

640 Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S Yu. Diffputer: Empowering diffusion
 641 models for missing data imputation. In *The Thirteenth International Conference on Learning*
 642 *Representations*, 2025a.

648 Huijun Zhang, Yaxin Liu, Chongyu Zhang, and Ningyun Li. Machine learning methods for weather
649 forecasting: A survey. *Atmosphere*, 16(1):82, 2025b.
650

651 Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved techniques for maximum likelihood
652 estimation for diffusion odes. In *International Conference on Machine Learning*, pp. 42363–
653 42389. PMLR, 2023.

654 Zihan Zhou, Xiaoxue Wang, and Tianshu Yu. Generating physical dynamics under priors. *arXiv*
655 preprint *arXiv:2409.00730*, 2024.
656

657 Peiye Zhuang, Samira Abnar, Jiatao Gu, Alex Schwing, Joshua M Susskind, and Miguel Angel
658 Bautista. Diffusion probabilistic fields. In *The Eleventh International Conference on Learning*
659 *Representations*, 2023.

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A RELATED WORK
703704 A.1 IMPUTATION
705

706 Imputation, the task of filling missing or corrupted regions in data with plausible content, has been
707 revolutionized by diffusion models across various modalities (Corneau et al., 2024; Lemercier
708 et al., 2025; Duan et al., 2024). Current imputation approaches follow three primary paradigms.
709 Palette (Saharia et al., 2022) established conditioning on partially observed data by incorporating
710 known regions at each denoising timestep. RePaint (Lugmayr et al., 2022) introduced a training-free
711 method that leverages pretrained unconditional models by resampling known regions while generating
712 content only for masked areas. Bridge-based methods (Liu et al., 2023; Yue et al., 2023; Albergo
713 et al., 2023) design specialized diffusion processes between original and masked data distributions,
714 requiring models trained to condition directly on masked inputs. DiffusionPDE (Huang et al., 2024)
715 introduces a diffusion model to solve PDEs under partial observation by learning the joint distribution
716 of coefficient and solution spaces. A critical limitation shared by all these approaches is their
717 reliance on complete, unmasked data during training to learn the underlying data distribution before
718 performing inference-time imputation on partially observed inputs. This assumption fundamentally
719 conflicts with scientific applications where training data itself consists only of partial observations.
720

721 A.2 GENERATIVE MODELING WITH MISSING DATA
722

723 Deep generative models tackle missing data through various approaches, including VAE-based
724 methods (Ipsen et al., 2020; Ma et al., 2020) and GAN-based methods (Li et al., 2019; Li & Marlin,
725 2020). Some diffusion-based (Ouyang et al., 2023; Daras et al., 2023; Dai et al., 2024; Simkus &
726 Gutmann, 2025) generative models generate clean samples from missing data, though they rely on
727 heuristic intuition and lack rigorous convergence analysis. DiffLight (Chen et al., 2024a) leverages
728 a partial rewards conditioned diffusion model to prevent missing rewards from interfering with the
729 learning process. Zhang et al. (2025a) presents a theoretically sound framework combining diffusion
730 models with EM algorithm for imputation, but its requirement of multiple complete model retraining
731 cycles limits its scalability to complex and large datasets. More recently, Givens et al. (2025) pro-
732 posed score matching with missing data, providing theoretical guarantees but facing computational
733 scalability challenges due to high complexity in their importance weighting method and requiring
734 auxiliary network training for their variational approach. Their experimental validation is limited to
735 low-dimensional synthetic data and simple graphical models, raising questions about scalability to
736 high-dimensional real-world scenarios.
737

738 B DATA MATCHING DIFFUSION MODELS
739

740 Diffusion models (Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020) generate samples from
741 a target data distribution by defining a forward process that gradually adds noise to data $\mathbf{x}_0 \sim p_0$
742 according to the stochastic differential equation:

$$743 d\mathbf{x}_t = f(t)\mathbf{x}_t dt + g(t)d\mathbf{w}_t, \quad \mathbf{x}_0 \sim p_0, \quad (15)$$

744 where $\mathbf{w}_t \in \mathbb{R}^d$ represents standard Brownian motion, $f(t) = \frac{d \log \alpha_t}{dt}$, $g^2(t) = \frac{d \sigma_t^2}{dt} - 2 \frac{d \log \alpha_t}{dt} \sigma_t^2$,
745 and α_t , σ_t are predefined time-dependent functions. This process has the analytical solution
746 $p_t(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$.
747

748 The reverse process generates samples by integrating backward from noise to data using:

$$749 \frac{d\mathbf{x}_t}{dt} = f(t)\mathbf{x}_t - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), \quad \mathbf{x}_T \sim p_T(\mathbf{x}_T). \quad (16)$$

750 Since the terminal distribution $p_T(\mathbf{x}_T)$ becomes approximately Gaussian through appropriate
751 parameter choices, sampling from it and reversing the process yields samples from p_0 . The score
752 function $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ is computationally intractable but can be estimated using neural networks
753 via noise matching and data matching approaches (Zheng et al., 2023):
754

$$755 \mathcal{J}_{\text{noise}}(\boldsymbol{\theta}) = \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[w(t) \|\epsilon_{\boldsymbol{\theta}}(\mathbf{x}_t, t) - \epsilon\|^2 \right], \quad \epsilon_{\boldsymbol{\theta}}^*(\mathbf{x}_t, t) = -\sigma_t \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t); \quad (17a)$$

$$756 \mathcal{J}_{\text{data}}(\boldsymbol{\theta}) = \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[w(t) \|\mathbf{x}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) - \mathbf{x}_0\|^2 \right], \quad \mathbf{x}_{\boldsymbol{\theta}}^*(\mathbf{x}_t, t) = \frac{1}{\alpha_t} \mathbf{x}_t + \frac{\sigma_t^2}{\alpha_t} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), \quad (17b)$$

756 where $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and $w(t)$ is a loss weight function. By Tweedie’s
 757 formula (Efron, 2011; Kim & Ye, 2021; Chung et al., 2022), we also have $\mathbf{x}_\theta^*(\mathbf{x}_t, t) = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$.
 758

759 C METHOD COMPARISON AND THEORETICAL ANALYSIS

760 C.1 DIFFUSION PROBABILISTIC FIELDS

761 Several prior studies have proposed training generative models using field representations (Du et al.,
 762 2021; Dupont et al., 2022; Zhuang et al., 2023). Similarly, our approach trains a model to predict
 763 $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_{\text{obs},t}, \mathbf{M}]$ and applies the loss function to several randomly selected points across the entire
 764 set of coordinates. However, three main differences distinguish our approach from DPF: (1) Loss
 765 objective: Our method uses data matching while DPF uses noise matching, providing more flexible
 766 input requirements; (2) Model architecture: DPF requires both context and query inputs, whereas
 767 our method trains using only context, leading to different optimal solutions; (3) Theoretical foundation:
 768 DPF relies on heuristic designs without convergence guarantees, while our approach provides
 769 rigorous theoretical analysis. As shown in Appendix D, DPF’s optimal solution depends on specific
 770 context-query mask combinations and may predict values differing from target predictions, whereas
 771 our method guarantees convergence to desired objectives through sufficient context mask sampling.
 772

773 C.2 AMBIENT DIFFUSION

774 While ambient diffusion (Daras et al., 2023) shares the fundamental principle of our approach—incorporating masks during training to predict clean data—several critical distinctions
 775 emerge upon closer examination. First, ambient diffusion lacks a theoretical analysis of how different
 776 mask distributions affect the learning dynamics, whereas our work provides a rigorous characteriza-
 777 tion through Theorem 1 parts (ii) and (iii). The most significant difference lies in the sampling
 778 methodology. Ambient diffusion employs a fixed mask sampling strategy and directly approximates
 779 $\mathbb{E}[\mathbf{x}_0 | \mathbf{M}_{\text{ctx}} \odot \mathbf{x}_{\text{obs},t}, \mathbf{M}_{\text{ctx}}]$ to approximate $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_{\text{obs},t}, \mathbf{M}]$. As we demonstrate in Theorem 2,
 780 this approximation introduces a distribution gap proportional to the variance of information provided
 781 by the conditioning terms, leading to suboptimal sample quality. In contrast, our method leverages
 782 the Martingale convergence theorem to approximate the true conditional expectation, providing
 783 theoretical convergence guarantees and eliminating the distribution gap inherent in the ambient diffu-
 784 sion approach.
 785

786 C.3 SCORE MATCHING WITH MISSING DATA

787 Our approach differs from this prior work (Givens et al., 2025) in a key way: we employ data
 788 matching rather than score matching due to its superior input flexibility and computational efficiency.
 789 In data matching, the optimal solution is $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_{\text{obs},t}, \mathbf{M}]$, which requires only the observed data
 790 $\mathbf{x}_{\text{obs},t}$ and mask \mathbf{M} as inputs. By contrast, noise matching and velocity matching require computing
 791 the score term $\nabla_{\mathbf{x}_{\text{unobs},t}} \log p_t(\mathbf{x}_{\text{unobs},t} | \mathbf{x}_{\text{obs}}, \mathbf{M})$, which depends on the unobserved data $\mathbf{x}_{\text{unobs},t}$
 792 that is unavailable during training. To address this limitation, the score matching approach relies
 793 on a Monte Carlo approximation, significantly increasing computational cost. Additionally, prior
 794 work (Zhou et al., 2024) has shown that data matching achieves superior performance compared to
 795 noise matching for PDE solution generation. Therefore, we focus exclusively on the data matching
 796 framework.
 797

800 C.4 EXTENSION TO OTHER SCORE-BASED MODELS

801 Our approach can be extended to other score-based generative models through established theore-
 802 tical connections. The equivalence between diffusion models and flow matching (Albergo et al.,
 803 2023), as well as between diffusion models and Bayesian flow networks (Xue et al., 2024), pro-
 804 vides a foundation for this extension. Through Tweedie’s formula (Efron, 2011), we can es-
 805 tablish the connection between the score function $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ and the conditional expectation
 806 $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t]$. Leveraging this connection via the parameterization trick, we can train a model to learn
 807 $\mathbb{E}[\mathbf{x}_0 | \mathbf{x}_{\text{obs},t}, \mathbf{M}]$ using our proposed method, which can then be converted to output the score
 808 function for the denoising process (Zhou et al., 2024).
 809

810 C.5 COMPARISON TO MASKED SELF-SUPERVISED LEARNING
811812 Our context-query partitioning strategy is conceptually related to masked signal modeling, such as
813 Masked Autoencoders (MAEs) (He et al., 2022). However, our approach differs fundamentally in
814 its problem setting, data assumptions, and theoretical goals.
815816
817 • **Data Completeness Assumption (Most Critical):** MAEs and related self-supervised methods
818 train on *complete data* that is *artificially* masked. The full ground truth is always available
819 during training. Our framework is designed for a different, and common, scientific scenario:
820 the training data is **inherently incomplete** (e.g., from sparse sensors or cloud occlusion). No
821 complete ground truth samples exist in our training dataset.
822
823 • **Primary Objective:** MAE uses masking as a pretext task to learn *robust representations* for
824 downstream applications (Feichtenhofer et al., 2022). Our goal is to learn the *complete generative*
825 *distribution* $p_{\text{data}}(\mathbf{x}_0)$ from these partial observations to perform accurate imputation of
826 the true physical fields.
827
828 • **Masking Strategy and Theory:** MAE’s random masking is an empirical choice for representa-
829 tion learning. Our *strategic* context-query partitioning is a direct consequence of our theoretical
830 analysis in Theorem. 1. It is specifically designed to solve the core challenge of our setting:
831 how to ensure that dimensions *permanently missing* in the training set still receive a positive
832 query probability ($P((\mathbf{M}_{\text{qry}})_i = 1 \mid \mathbf{M}_{\text{ctx}}) > 0$) and meaningful gradient updates. As shown in
833 Theorem. 1, without this, the model learns arbitrary values for these unobserved regions. This
834 is a problem MAE does not encounter, as it always has access to the complete ground truth for
835 its loss calculation.
836
837838 C.6 METHOD COMPARISON AND THEORETICAL ANALYSIS
839840 We provide additional method comparisons in Tab. 3 and summarize the key feature comparisons
841 with the most related methods, contrasting our approach with three existing methods: (1) Ambi-
842 entDiff (Daras et al., 2023), (2) Diffusion Probabilistic Fields (DPF) (Zhuang et al., 2023), and (3)
843 Score Matching with Missing Data (Givens et al., 2025).
844845
846 Table 3: Comparison of the most related methods.
847

Aspect	Ours	Ambient Diffusion	DPF	MissDiff
Training Objective	Data matching	Data matching	Noise matching	Noise matching
Model Input	Context only	Fixed mask sampling	Both context and query	Masked tabular data
Query Mask Usage	Hidden during training	Hidden during training	Provided to model	Provided to model
Mask Sampling	Random subsets: $\mathbf{M}_{\text{ctx}} \subseteq \mathbf{M}$	Fixed distribution	Both \mathbf{M}_{ctx} and \mathbf{M}_{qry}	$\mathbf{M}_{\text{ctx}} = \mathbf{M}_{\text{qry}} = \mathbf{M}$
Expectation Approx.	Ensemble: $\frac{1}{n} \sum_i \mathbf{x}_{\theta}(t, \text{ctx})$	Direct: $\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}]$	Incorrect	Direct: $\mathbb{E}[\mathbf{x}_0 \mid \text{obs}]$
Theoretical Guarantees	✓ Convergence proofs (Thm. 1 & 2)	✗ Lacks rigorous analysis	✗ Heuristic design	✗ Lacks rigorous analysis
Distribution Gap	✓ Minimized via ensemble	✗ Gap \propto Var[conditioning]	✗ Not addressed	✗ Not addressed
Learning Dynamics	✓ Gradient scaling analysis	✗ No analysis	✗ No analysis	✗ No analysis

855
856
857 D METHOD COMPARISON: DIFFUSION PROBABILISTIC FIELDS
858
859860 We summarize the training and sampling algorithms for diffusion probabilistic fields (DPF) (Zhuang
861 et al., 2023) in Alg. 2, 3. We cannot directly adopt DPF for our dynamic completion tasks because
862 we lack access to the ground truth value of qry during training. However, we can still compare
863 several high-level ideas with those in DPF.

864

Algorithm 2 DPF training process (Zhuang et al., 2023)

```

1: repeat
2:    $\mathbf{x}_0 \sim p_{\text{data}}, t \sim \text{Uniform}(0, 1)$ 
3:    $\epsilon_{\text{ctx}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \epsilon_{\text{qry}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
4:   Sample  $M_{\text{ctx}}, M_{\text{qry}}$ 
5:    $\text{ctx} = [M_{\text{ctx}}, M_{\text{ctx}} \odot (\alpha_t \mathbf{x}_0 + \sigma_t \epsilon_{\text{ctx}})]$ 
6:    $\text{qry} = [M_{\text{qry}}, M_{\text{qry}} \odot (\alpha_t \mathbf{x}_0 + \sigma_t \epsilon_{\text{qry}})]$ 
7:   Optimize the loss function
      $\mathcal{L} = \|M_{\text{qry}} \odot (\epsilon_{\theta}(t, \text{ctx}, \text{qry}) - \epsilon_{\text{qry}})\|^2$ 
8: until converged

```

874

There are three main difference between our proposed method and DPF:

875

1. Diffusion loss objective: our methods use data matching while DPF uses noise matching. Using data matching to predict conditional expectation has a more flexible requirement on model input (see Sec. C.6 for details).
2. The DPF method suggests we should take M_{qry} to be the full observed mask, which is impossible to implement in our task.
3. DPF trains a model that takes both ctx and qry as inputs. In contrast, our method trains a model using only ctx as input. This difference leads the model to converge to a different optimal solution.

885

In the following analysis, we will assume that we have the fully observed sample during the training session. We will analyze the output of the model optimized by Alg. 2 and demonstrate that it does not yield the desired solution for the denoising process.

888

We reparameterize the loss function as

889

$$\mathcal{L}(\boldsymbol{\theta}) = \|M_{\text{qry}} \odot (\mathbf{x}_{\boldsymbol{\theta}}(t, \text{ctx}, \text{qry}) - \mathbf{x}_0)\|^2 \quad (18)$$

891

When optimized,

892

$$M_{\text{qry}} \odot (\alpha_t \mathbf{x}_{\boldsymbol{\theta}}^*(t, \text{ctx}, \text{qry}) + \sigma_t \epsilon_{\boldsymbol{\theta}}^*(t, \text{ctx}, \text{qry}) - \text{qry}[1]) = \mathbf{0} \quad (19)$$

893

In the following, we will analyze the optimal solution given by equation 18. The conditional expectation $\mathbb{E}[\mathbf{x}_0 | \text{ctx}, \text{qry}]$ minimizes the expected squared error (Bishop & Nasrabadi, 2006). Hence, we have

896

$$M_{\text{qry}} \odot \mathbf{x}_{\boldsymbol{\theta}}^*(t, \text{ctx}, \text{qry}) = M_{\text{qry}} \odot \mathbb{E}[\mathbf{x}_0 | \text{ctx}, \text{qry}] \quad (20)$$

897

For simplicity, we consider a simple distribution $\mathbf{x}_0 \sim p_{\text{data}} = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. The noisy observations are defined as: $\mathbf{z}_{\text{ctx}} = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon_{\text{ctx}}, \mathbf{z}_{\text{qry}} = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon_{\text{qry}}$. We have a joint Gaussian distribution:

899

$$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{z}_{\text{ctx}} \\ \mathbf{z}_{\text{qry}} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu} \\ \alpha_t \boldsymbol{\mu} \\ \alpha_t \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma} & \alpha_t \boldsymbol{\Sigma} & \alpha_t \boldsymbol{\Sigma} \\ \alpha_t \boldsymbol{\Sigma} & \alpha_t^2 \boldsymbol{\Sigma} + \sigma_t^2 \mathbf{I} & \alpha_t^2 \boldsymbol{\Sigma} \\ \alpha_t \boldsymbol{\Sigma} & \alpha_t^2 \boldsymbol{\Sigma} & \alpha_t^2 \boldsymbol{\Sigma} + \sigma_t^2 \mathbf{I} \end{bmatrix} \right) \quad (21)$$

902

Let \mathbf{y} denote the observed entries selected by the masks: $\mathbf{y} = \mathbf{S} \begin{bmatrix} \mathbf{z}_{\text{ctx}} \\ \mathbf{z}_{\text{qry}} \end{bmatrix}$, where \mathbf{S} is the selection matrix that extracts the masked entries from \mathbf{z}_{ctx} and \mathbf{z}_{qry} . By the property of linear transformation of multivariate Gaussian, suppose we have a joint Gaussian distribution of the form:

906

$$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{z} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_z \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xz} \\ \boldsymbol{\Sigma}_{zx} & \boldsymbol{\Sigma}_{zz} \end{bmatrix} \right) \quad (22)$$

909

then the joint distribution of \mathbf{x}_0 and \mathbf{y} is given by

910

$$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{S} \mathbf{z} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_x \\ \mathbf{S} \boldsymbol{\mu}_z \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xz} \mathbf{S}^\top \\ \mathbf{S} \boldsymbol{\Sigma}_{zx} & \mathbf{S} \boldsymbol{\Sigma}_{zz} \mathbf{S}^\top \end{bmatrix} \right) \quad (23)$$

911

Using the above property, the joint distribution of \mathbf{x}_0 and \mathbf{y} is then:

913

$$\begin{bmatrix} \mathbf{x}_0 \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{S} \begin{bmatrix} \mathbf{z}_{\text{ctx}} \\ \mathbf{z}_{\text{qry}} \end{bmatrix} \end{bmatrix} \quad (24a)$$

914

915

$$\sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu} \\ \alpha_t \mathbf{S} (\mathbf{1}_2 \otimes \mathbf{I}) \boldsymbol{\mu} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \alpha_t (\mathbf{1}_2^\top \otimes \boldsymbol{\Sigma}) \mathbf{S}^\top \\ \alpha_t \mathbf{S} (\mathbf{1}_2 \otimes \boldsymbol{\Sigma}) & \mathbf{S} (\alpha_t^2 (\mathbf{1}_2 \mathbf{1}_2^\top \otimes \boldsymbol{\Sigma}) + \sigma_t^2 \mathbf{I}) \mathbf{S}^\top \end{bmatrix} \right) \quad (24b)$$

916

917

918 Thus, the conditional expectation is:
 919

$$920 \quad \mathbb{E}[\mathbf{x}_0 \mid \mathbf{y}] = \boldsymbol{\mu} + \alpha_t (\mathbf{1}_2^\top \otimes \boldsymbol{\Sigma}) \mathbf{S}^\top [S(\alpha_t^2 (\mathbf{1}_2 \mathbf{1}_2^\top \otimes \boldsymbol{\Sigma}) + \sigma_t^2 \mathbf{I}) \mathbf{S}^\top]^{-1} (\mathbf{y} - \alpha_t \mathbf{S} (\mathbf{1}_2 \otimes \mathbf{I}) \boldsymbol{\mu}) \quad (25)$$

921 Therefore, DPF’s optimal solution depends on the specific context and query masks chosen, and may
 922 predict values that differ from target predictions. In contrast, our proposed method has a theoretical
 923 guarantee: with sufficient sampling of context masks, the model’s output will converge to the desired
 924 objective (see Theorem 2).
 925

926 E MULTI-STEP SAMPLING 927

928 In the following, we will consider two specific settings of the mask \mathbf{M} and diffusion time t , and use
 929 these constructions to approximate $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{x}_{\text{obs}}, \mathbf{M}]$.
 930

931 **Diffusion expectation approximation.** We randomly generate multiple masks $\{\mathbf{M}_{\text{rnd}}^{(i)}\}_{i=1}^K$, where
 932 \mathbf{M}_{rnd} follows the same marginal distribution as \mathbf{M}_{ctx} in the training process, but not necessarily
 933 being a subset of \mathbf{M} and take the average across all samples yields:
 934

$$935 \quad \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t] \approx \frac{1}{K} \sum_{k=1}^K \mathbf{x}_\theta \left(t, \mathbf{M}_{\text{rnd}}^{(k)} \odot \mathbf{x}_t, \mathbf{M}_{\text{rnd}}^{(k)} \right) \quad (26)$$

938 This Monte Carlo estimation demonstrates that our model, despite being trained exclusively on
 939 masked data, can recover the full data distribution. The averaging process allows us to obtain the
 940 same distributional modeling capability as standard diffusion models trained on complete datasets.
 941

942 **Imputation expectation approximation.** Given partially observed samples \mathbf{x}_{obs} , we apply the
 943 forward diffusion process to a small timestamp $t = \delta$ and generate random masks $\{\mathbf{M}_{\text{ctx}}^{(k)}\}_{k=1}^K \subseteq \mathbf{M}$
 944 to approximate:
 945

$$946 \quad \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs}}, \mathbf{M}] \approx \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs}, \delta}, \mathbf{M}] \approx \frac{1}{K} \sum_{k=1}^K \mathbf{x}_\theta \left(\delta, \mathbf{M}_{\text{ctx}}^{(k)} \odot \mathbf{x}_{\text{obs}, \delta}, \mathbf{M}_{\text{ctx}}^{(k)} \right) \quad (27)$$

948 The optimal denoiser $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{x}_{\text{obs}}, \mathbf{M}]$ requires the expectation of \mathbf{x}_0 conditional on all three
 949 information sources: the noisy state \mathbf{x}_t , the clean observations \mathbf{x}_{obs} , and the observation mask \mathbf{M} .
 950 Our approach decomposes this complex conditioning into two manageable components: the *diffusion*
 951 *expectation* $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$ captures the denoising information from the current noisy state, while
 952 the *imputation expectation* $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs}}, \mathbf{M}]$ incorporates the structural information from the ob-
 953 served values and their locations. We then heuristically combine these two sources of information
 954 through a weighted average:
 955

$$956 \quad \hat{\mathbf{x}}_\theta(t, \mathbf{x}_t, \mathbf{x}_{\text{obs}}, \mathbf{M}) := \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{x}_{\text{obs}}, \mathbf{M}] \approx \omega_t \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t] + (1 - \omega_t) \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs}}, \mathbf{M}] \quad (28)$$

$$957 \quad \approx \omega_t \mathbb{E}_{\mathbf{M}_{\text{rnd}}} [\mathbf{x}_\theta(t, \mathbf{M}_{\text{rnd}} \odot \mathbf{x}_t, \mathbf{M}_{\text{rnd}})] + (1 - \omega_t) \mathbb{E}_{\mathbf{M}_{\text{ctx}} \subseteq \mathbf{M}} [\mathbf{x}_\theta(\delta, \mathbf{M}_{\text{ctx}} \odot \mathbf{x}_{\text{obs}, \delta}, \mathbf{M}_{\text{ctx}})]$$

958 where ω_t is a monotonically increasing weight
 959 function that transitions from 0 to 1 as the dif-
 960 fusion process progresses and δ is a sufficiently
 961 small positive number.
 962

963 We present our proposed sampling algorithm in
 964 Alg. 4. At the implementation level, we precom-
 965 pute the *imputation expectation* once before the
 966 denoising process begins. During each denoising
 967 step, we approximate the *diffusion expectation* by
 968 sampling a single random mask \mathbf{M}_{rnd} and mak-
 969 ing one model evaluation. This single-sample ap-
 970 proximation is analogous to using a batch size of
 971 1 in stochastic gradient descent, where we accept
 972 the variance from using only one sample in ex-
 973 change for computational efficiency. Following

958 **Algorithm 4** Diffusion-based sampling for data
 959 imputation

960 **Require:** partially observed data \mathbf{x}_{obs} , mask
 961 \mathbf{M} , trained model \mathbf{x}_θ
 962 **Ensure:** imputed complete data \mathbf{x}_0
 963 1: initialize: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 964 2: **for** diffusion steps from s to t **do**
 965 3: $\epsilon_{\text{unobs}} \leftarrow \frac{\mathbf{x}_s - \alpha_s \hat{\mathbf{x}}_\theta(s, \mathbf{x}_s, \mathbf{x}_{\text{obs}}, \mathbf{M})}{\sigma_s}$ (Eq. 28)
 966 4: $\epsilon_{\text{obs}} \leftarrow \frac{\mathbf{x}_s - \alpha_s \mathbf{x}_{\text{obs}}}{\sigma_s}$
 967 5: $\epsilon_{\text{full}} \leftarrow \mathbf{M} \odot \epsilon_{\text{obs}} + (1 - \mathbf{M}) \odot \epsilon_{\text{unobs}}$
 968 6: $\mathbf{x}_t \leftarrow \text{DiffusionODE}(s, t, \mathbf{x}_s, \epsilon_{\text{full}})$
 969 7: **end for**
 970 8: $\mathbf{x}_0 \leftarrow \mathbf{M} \odot \mathbf{x}_{\text{obs}} + (1 - \mathbf{M}) \odot \mathbf{x}_t$
 971 9: **return** \mathbf{x}_0

Lugmayr et al. (2022), our sampling procedure applies different denoising strategies to observed and unobserved regions. For unobserved elements, we estimate the noise using our trained model, while for observed elements, we directly compute the noise from the known clean observations. This approach ensures that the observed values remain consistent with their true underlying data throughout the denoising process. A more advanced setting proposed in Huang et al. (2024) uses guided diffusion sampling that starts from Gaussian noise and iteratively denoises it while being guided by two loss terms: an observation loss (matching sparse measurements) and a PDE loss (satisfying the governing equation), ultimately generating complete solutions that are consistent with both the partial observations and the underlying physics. However, we did not implement this approach in our work, and combining our mask-based denoising strategy with physics-informed guided diffusion remains an interesting direction for future research.

F PROOFS

This section provides detailed mathematical proofs for the main theoretical results presented in the paper. We begin by establishing key assumptions and notation that will be used throughout the proofs.

Assumption 1 (Uncorrelated decomposition). *Decompose the model output as $\mathbf{x}_\theta(t, \text{ctx}) = \mathbb{E}[\mathbf{x}_0 | \text{ctx}] + \mathbf{b}(\text{ctx}) + \epsilon_{\text{bias}}(\text{ctx})$. Given a context ctx , the following three components are mutually uncorrelated:*

- *data component: $\mathbb{E}[\mathbf{x}_0 | \text{ctx}] - \mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]]$,*
- *bias component: $\mathbf{b}(\text{ctx}) - \mathbb{E}[\mathbf{b}(\text{ctx})]$,*
- *random error: $\epsilon(\text{ctx})$.*

We also assume that $\epsilon(\text{ctx}^{(i)})$ and $\epsilon(\text{ctx}^{(j)})$ are independent for $i \neq j$.

For notation simplicity, we denote

$$\text{obs} = [\mathbf{M} \odot \mathbf{x}_{\text{obs},t}, \mathbf{M}] \quad (29a)$$

$$\text{ctx} = [\mathbf{M}_{\text{ctx}} \odot \mathbf{x}_{\text{obs},t}, \mathbf{M}_{\text{ctx}}] \quad (29b)$$

$$\text{qry} = [\mathbf{M}_{\text{qry}} \odot \mathbf{x}_{\text{obs},t}, \mathbf{M}_{\text{qry}}] \quad (29c)$$

when it is clear from the context.

F.1 ANALYSIS OF MODEL OUTPUTS UNDER OPTIMAL LOSS CONDITIONS

We begin the proof with a foundational lemma that establishes the key relationship between the optimal model output and the conditional expectations.

Lemma 1 (Optimal Function for Element-wise Weighted MSE). *Let \mathbf{X} , \mathbf{Y} , and \mathbf{Z} be random vectors in \mathbb{R}^d such that the relevant second moments are finite. Let $\mathbf{g} : \text{Space}(\mathbf{Y}) \rightarrow \mathbb{R}^d$ be a deterministic function and let the objective function $L(\mathbf{g})$ be defined as*

$$L(\mathbf{g}) = \mathbb{E} [\|\mathbf{Z} \odot \mathbf{g}(\mathbf{Y}) - \mathbf{Z} \odot \mathbf{X}\|^2], \quad (30)$$

where \odot denotes the Hadamard (element-wise) product. If each component of the vector $\mathbb{E}[\mathbf{Z} \odot \mathbf{Z} | \mathbf{Y}]$ is strictly positive almost surely, then the unique function \mathbf{g}^* that minimizes $L(\mathbf{g})$ is given by

$$\mathbf{g}^*(\mathbf{Y}) = \frac{\mathbb{E}[\mathbf{Z} \odot \mathbf{Z} \odot \mathbf{X} | \mathbf{Y}]}{\mathbb{E}[\mathbf{Z} \odot \mathbf{Z} | \mathbf{Y}]}, \quad (31)$$

where the division is performed element-wise.

1026 *Proof.* The objective function $L(\mathbf{g})$ can be decomposed by writing the squared Euclidean norm as
 1027 a sum over its components.

$$1029 \quad L(\mathbf{g}) = \mathbb{E} [\|\mathbf{Z} \odot (\mathbf{g}(\mathbf{Y}) - \mathbf{X})\|^2] \quad (32a)$$

$$1030 \quad = \mathbb{E} \left[\sum_{i=1}^d (\mathbf{Z}_i(\mathbf{g}_i(\mathbf{Y}) - \mathbf{X}_i))^2 \right] \quad (32b)$$

$$1033 \quad = \sum_{i=1}^d \mathbb{E} [\mathbf{Z}_i^2(\mathbf{g}_i(\mathbf{Y}) - \mathbf{X}_i)^2] \quad (32c)$$

1036 The final step follows from the linearity of expectation. The total loss is a sum of non-negative
 1037 terms, so $L(\mathbf{g})$ is minimized if and only if each term in the summation is minimized independently.
 1038 Let $L_i(\mathbf{g}_i) = \mathbb{E}[\mathbf{Z}_i^2(\mathbf{g}_i(\mathbf{Y}) - \mathbf{X}_i)^2]$ be the i -th term. The optimization problem is thus reduced to
 1039 finding the function \mathbf{g}_i that minimizes L_i for each component $i \in \{1, \dots, d\}$. By the law of total
 1040 expectation, $L_i(\mathbf{g}_i)$ can be written as:

$$1041 \quad L_i(\mathbf{g}_i) = \mathbb{E}_{\mathbf{Y}} [\mathbb{E} [\mathbf{Z}_i^2(\mathbf{g}_i(\mathbf{Y}) - \mathbf{X}_i)^2 | \mathbf{Y}]] \quad (33)$$

1042 The outer expectation is minimized by minimizing the inner conditional expectation for any given
 1043 realization \mathbf{y} from the space of \mathbf{Y} . For a fixed \mathbf{y} , let $v_i = \mathbf{g}_i(\mathbf{y})$ be a deterministic scalar. The inner
 1044 expectation becomes:

$$1045 \quad \mathbb{E} [\mathbf{Z}_i^2(v_i - \mathbf{X}_i)^2 | \mathbf{Y} = \mathbf{y}] = \mathbb{E} [\mathbf{Z}_i^2(v_i^2 - 2v_i \mathbf{X}_i + \mathbf{X}_i^2) | \mathbf{Y} = \mathbf{y}] \quad (34)$$

1047 Applying the linearity of conditional expectation yields a quadratic function of v_i :

$$1048 \quad v_i^2 \mathbb{E}[\mathbf{Z}_i^2 | \mathbf{Y} = \mathbf{y}] - 2v_i \mathbb{E}[\mathbf{Z}_i^2 \mathbf{X}_i | \mathbf{Y} = \mathbf{y}] + \mathbb{E}[\mathbf{Z}_i^2 \mathbf{X}_i^2 | \mathbf{Y} = \mathbf{y}] \quad (35)$$

1050 This is a convex quadratic in v_i , since its leading coefficient $\mathbb{E}[\mathbf{Z}_i^2 | \mathbf{Y} = \mathbf{y}]$ is strictly positive by
 1051 hypothesis. The unique minimum is found by setting the derivative with respect to v_i to zero:

$$1052 \quad 2v_i \mathbb{E}[\mathbf{Z}_i^2 | \mathbf{Y} = \mathbf{y}] - 2\mathbb{E}[\mathbf{Z}_i^2 \mathbf{X}_i | \mathbf{Y} = \mathbf{y}] = 0 \quad (36)$$

1053 Solving for v_i gives the optimal value for the component function at \mathbf{y} :

$$1055 \quad v_i = \frac{\mathbb{E}[\mathbf{Z}_i^2 \mathbf{X}_i | \mathbf{Y} = \mathbf{y}]}{\mathbb{E}[\mathbf{Z}_i^2 | \mathbf{Y} = \mathbf{y}]} \quad (37)$$

1057 This establishes the optimal form for each component $\mathbf{g}_i^*(\mathbf{y})$ of the function $\mathbf{g}^*(\mathbf{y})$. Since this holds
 1058 for all \mathbf{y} , the optimal function \mathbf{g}_i^* for the i -th component is:

$$1060 \quad \mathbf{g}_i^*(\mathbf{Y}) = \frac{\mathbb{E}[\mathbf{Z}_i^2 \mathbf{X}_i | \mathbf{Y}]}{\mathbb{E}[\mathbf{Z}_i^2 | \mathbf{Y}]} \quad (38)$$

1062 Assembling the components for $i = 1, \dots, d$ into a single vector equation gives the expression for
 1063 the optimal function \mathbf{g}^* :

$$1064 \quad \mathbf{g}^*(\mathbf{Y}) = \frac{\mathbb{E}[\mathbf{Z} \odot \mathbf{Z} \odot \mathbf{X} | \mathbf{Y}]}{\mathbb{E}[\mathbf{Z} \odot \mathbf{Z} | \mathbf{Y}]} \quad (39)$$

1066 where the division is understood to be element-wise. \square

1068 Having established the fundamental relationship between optimal model outputs and query probabilities
 1069 in the lemma, we now proceed to prove our main theorem.

1070 **Theorem 1** (Optimal solution under context masking without query information). *Let \mathbf{x}_θ^* be the
 1071 optimal solution by minimizing the loss in equation 1. Under the conditional independence of masks
 1072 and data, we have the following results:*

1073 (i) *Optimal solution: The optimal solution is given by*

$$1075 \quad (\mathbf{x}_\theta(t, \mathbf{M}_{ctx} \odot \mathbf{x}_{obs,t}, \mathbf{M}_{ctx}))_i = \begin{cases} \mathbb{E}[(\mathbf{x}_0)_i | \mathbf{M}_{ctx} \odot \mathbf{x}_{obs,t}, \mathbf{M}_{ctx}], & P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0 \\ \text{an arbitrary value,} & P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) = 0 \end{cases} \quad (2)$$

1077 *where i indicates the i -th entry of the vector. Specially, given the context mask \mathbf{M}_{ctx} , if the union of
 1078 all possible query mask \mathbf{M}_{qry} supports covers all spatial dimensions, we have*

$$1079 \quad \mathbf{x}_\theta(t, \mathbf{M}_{ctx} \odot \mathbf{x}_{obs,t}, \mathbf{M}_{ctx}) = \mathbb{E}[\mathbf{x}_0 | \mathbf{M}_{ctx} \odot \mathbf{x}_{obs,t}, \mathbf{M}_{ctx}] \quad (3)$$

(ii) *Gradient magnitude scaling*: The expected squared gradient magnitude with respect to the network output for dimension i scales linearly with the query probability $p_i := P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx})$:

$$\mathbb{E} \left[\left(\frac{\partial \mathcal{L}}{\partial (\mathbf{x}_\theta)_i} \right)^2 \right] = 4p_i \mathbb{E} \left[((\mathbf{x}_\theta)_i - (\mathbf{x}_{obs})_i)^2 \mid (\mathbf{M}_{qry})_i = 1 \right] \quad (4)$$

(iii) *Parameter update frequency*: The frequency of non-zero parameter updates for dimension i is exactly p_i :

$$P(\text{dimension } i \text{ contributes to parameter update}) = P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) = p_i \quad (5)$$

Proof. Given the training algorithm in Alg. 1, we have

$$\theta^* = \arg \min_{\theta} \mathbb{E}_{t, \mathbf{x}_{obs}, (\mathbf{M}_{ctx}, \mathbf{M}_{qry} \subseteq \mathbf{M})} [\|\mathbf{M}_{qry} \odot (\mathbf{x}_\theta(t, \text{ctx}) - \mathbf{x}_{obs})\|^2] \quad (40a)$$

$$= \arg \min_{\theta} \mathbb{E}_{t, \mathbf{x}_{obs}, (\mathbf{M}_{ctx}, \mathbf{M}_{qry} \subseteq \mathbf{M})} [\|\mathbf{M}_{qry} \odot (\mathbf{x}_\theta(t, \text{ctx}) - \mathbf{M} \odot \mathbf{x}_0)\|^2] \quad (40b)$$

$$= \arg \min_{\theta} \mathbb{E}_{t, \mathbf{x}_{obs}, (\mathbf{M}_{ctx}, \mathbf{M}_{qry} \subseteq \mathbf{M})} [\|\mathbf{M}_{qry} \odot \mathbf{x}_\theta(t, \text{ctx}) - \mathbf{M}_{qry} \odot \mathbf{x}_0\|^2] \quad (40c)$$

(i) Optimal solution: When optimized, given $\forall \mathbf{M}_{ctx} \subseteq \mathbf{M}$, for any index i such that $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0$ under the sampling distribution, we have

$$\mathbf{M}_{qry} \odot \mathbf{x}_\theta(t, \text{ctx}) = \mathbb{E} [\mathbf{M}_{qry} \odot \mathbf{x}_0 \mid \text{ctx}, \mathbf{M}_{qry}] = \mathbf{M}_{qry} \odot \mathbb{E} [\mathbf{x}_0 \mid \text{ctx}] \quad (41)$$

Thus, $\mathbf{M}_{qry} \odot (\mathbf{x}_\theta(t, \text{ctx}) - \mathbb{E} [\mathbf{x}_0 \mid \text{ctx}]) = \mathbf{0}$ for any \mathbf{M}_{qry} in the support of the sampling distribution given \mathbf{M}_{ctx} .

Case 1: When $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0$. By applying Lemma 1 with $\mathbf{Z} = \mathbf{M}_{qry}$, $\mathbf{Y} = \text{ctx}$, $\mathbf{X} = \mathbf{x}_0$, and $\mathbf{g}(\cdot) = \mathbf{x}_\theta(t, \cdot)$, the optimal solution is:

$$\mathbf{x}_\theta^*(t, \text{ctx}) = \frac{\mathbb{E}[\mathbf{M}_{qry} \odot \mathbf{M}_{qry} \odot \mathbf{x}_0 \mid \text{ctx}]}{\mathbb{E}[\mathbf{M}_{qry} \odot \mathbf{M}_{qry} \mid \text{ctx}]} \quad (42)$$

Since \mathbf{M}_{qry} is a binary mask where $(\mathbf{M}_{qry})_i \in \{0, 1\}$, we have $(\mathbf{M}_{qry})_i \odot (\mathbf{M}_{qry})_i = (\mathbf{M}_{qry})_i$. Thus:

$$\mathbf{x}_\theta^*(t, \text{ctx}) = \frac{\mathbb{E}[\mathbf{M}_{qry} \odot \mathbf{x}_0 \mid \text{ctx}]}{\mathbb{E}[\mathbf{M}_{qry} \mid \text{ctx}]} \quad (43)$$

For component i where $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) > 0$:

$$(\mathbf{x}_\theta^*(t, \text{ctx}))_i = \frac{\mathbb{E}[(\mathbf{M}_{qry})_i (\mathbf{x}_0)_i \mid \text{ctx}]}{\mathbb{E}[(\mathbf{M}_{qry})_i \mid \text{ctx}]} \quad (44a)$$

$$= \frac{\mathbb{E}[(\mathbf{M}_{qry})_i (\mathbf{x}_0)_i \mid \text{ctx}]}{P((\mathbf{M}_{qry})_i = 1 \mid \mathbf{M}_{ctx})} \quad (44b)$$

$$= \frac{\mathbb{E}[(\mathbf{x}_0)_i \mathbf{1}_{(\mathbf{M}_{qry})_i=1} \mid \text{ctx}]}{P((\mathbf{M}_{qry})_i = 1 \mid \mathbf{M}_{ctx})} \quad (44c)$$

$$= \mathbb{E}[(\mathbf{x}_0)_i \mid \text{ctx}, (\mathbf{M}_{qry})_i = 1] \quad (44d)$$

$$= \mathbb{E}[(\mathbf{x}_0)_i \mid \text{ctx}] \quad (44e)$$

where the last equality holds because \mathbf{x}_0 is independent of \mathbf{M}_{qry} given ctx .

Case 2: When $P((\mathbf{M}_{qry})_i = 1 | \mathbf{M}_{ctx}) = 0$. In this case, $(\mathbf{M}_{qry})_i = 0$ almost surely given \mathbf{M}_{ctx} . The contribution of index i to the loss function is:

$$\mathbb{E}[|(\mathbf{M}_{qry})_i (\mathbf{x}_\theta(t, \text{ctx}))_i - (\mathbf{M}_{qry})_i (\mathbf{x}_0)_i|^2 \mid \text{ctx}] \quad (45a)$$

$$= \mathbb{E}[|0 \cdot (\mathbf{x}_\theta(t, \text{ctx}))_i - 0 \cdot (\mathbf{x}_0)_i|^2 \mid \text{ctx}] \quad (45b)$$

$$= 0 \quad (45b)$$

Therefore, $(\mathbf{x}_\theta(t, \text{ctx}))_i$ does not affect the loss function and can take any arbitrary value.

Thus, we have

$$(\mathbf{x}_\theta(t, \text{ctx}))_i = \begin{cases} \mathbb{E}[(\mathbf{x}_0)_i \mid \text{ctx}], & P((\mathbf{M}_{qry})_i = 1 \mid \mathbf{M}_{ctx}) > 0 \\ \text{an arbitrary value,} & P((\mathbf{M}_{qry})_i = 1 \mid \mathbf{M}_{ctx}) = 0 \end{cases} \quad (46)$$

If the union of all possible query mask M_{qry} supports covers all spatial dimensions, we have $\bigcup_{M_{\text{qry}} \text{ possible}} \text{supp}(M_{\text{qry}}) = \{1, \dots, \dim(\mathbf{x}_0)\}$. Thus, $\forall i, P((M_{\text{qry}})_i = 1) > 0$ and

$$\mathbf{x}_{\theta}(t, \text{ctx}) = \mathbb{E}[\mathbf{x}_0 \mid \text{ctx}] \quad (47)$$

(ii) Gradient magnitude scaling: The gradient of the loss with respect to the i -th output component is:

$$\frac{\partial \mathcal{L}}{\partial (x_{\theta})_i} = 2(M_{\text{qry}})_i \cdot ((x_{\theta})_i - (x_{\text{obs}})_i) \quad (48)$$

Taking expectation over the sampling distribution:

$$\mathbb{E} \left[\left(\frac{\partial \mathcal{L}}{\partial (x_{\theta})_i} \right)^2 \right] = \mathbb{E} [4(M_{\text{qry}})_i^2 \cdot ((x_{\theta})_i - (x_{\text{obs}})_i)^2] \quad (49a)$$

$$= 4\mathbb{E} [(M_{\text{qry}})_i \cdot ((x_{\theta})_i - (x_{\text{obs}})_i)^2] \quad (49b)$$

$$= 4p_i \mathbb{E} [((x_{\theta})_i - (x_{\text{obs}})_i)^2 \mid (M_{\text{qry}})_i = 1] \quad (49c)$$

Let $C_i := \mathbb{E} [((x_{\theta})_i - (x_{\text{obs}})_i)^2 \mid (M_{\text{qry}})_i = 1]$. Then:

$$\mathbb{E} \left[\left(\frac{\partial \mathcal{L}}{\partial (x_{\theta})_i} \right)^2 \right] = 4p_i C_i \quad (50)$$

establishing linear scaling with p_i .

(iii) Parameter update frequency: At each training step, the gradient contribution from dimension i is:

$$\left(\frac{\partial \mathcal{L}}{\partial \theta} \right)_i = \frac{\partial \mathcal{L}}{\partial (x_{\theta})_i} \frac{\partial (x_{\theta})_i}{\partial \theta} \quad (51)$$

This contribution is non-zero if and only if $(M_{\text{qry}})_i = 1$, which occurs with probability p_i . Therefore:

$$P(\text{dimension } i \text{ contributes to parameter update}) = P((M_{\text{qry}})_i = 1 \mid M_{\text{ctx}}) = p_i \quad (52)$$

□

F.2 PARTIALLY OBSERVED MASK CONVERGENCE THEOREM

Theorem 2 (Ensemble approximation convergence). *Let $\mathbb{E}[\mathbf{x}_0 \mid \text{obs}] := \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs},t}, \mathbf{M}]$ be the ground truth conditional expectation and $\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}] = \mathbb{E}[\mathbf{x}_0 \mid \mathbf{M}_{\text{ctx}} \odot \mathbf{x}_{\text{obs},t}, \mathbf{M}_{\text{ctx}}]$ be the context-conditioned expectation. The expected squared error between these quantities is:*

$$\mathbb{E} [\|\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}] - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]\|^2] = \mathbb{E}[\text{Var}[\mathbf{x}_0 \mid \text{ctx}]] - \mathbb{E}[\text{Var}[\mathbf{x}_0 \mid \text{obs}]] \quad (11)$$

Consider a practical model with output $\mathbf{x}_{\theta}(t, \text{ctx}) = \mathbb{E}[\mathbf{x}_0 \mid \text{ctx}] + \mathbf{b}(\text{ctx}) + \epsilon_{\text{bias}}(\text{ctx})$, where $\mathbf{b}(\text{ctx})$ represents context-dependent deterministic bias and $\epsilon_{\text{bias}}(\text{ctx})$ is random error with $\mathbb{E}[\epsilon_{\text{bias}}] = \mathbf{0}$. Given the ensemble prediction in equation 10 as:

$$\hat{\mu}_K = \frac{1}{K} \sum_{k=1}^K \mathbf{x}_{\theta}(t, \text{ctx}^{(k)}), \quad (12)$$

the expected squared error between the ensemble prediction and ground truth is:

$$\begin{aligned} \mathbb{E} [\|\hat{\mu}_K - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]\|^2] &= \underbrace{\mathbb{E}[\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}]] - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]}_{\text{information gap}} + \underbrace{\mathbb{E}[\mathbf{b}(\text{ctx})]}_{\text{model bias}} \|^2 \\ &+ \frac{1}{K} \underbrace{(\text{Var}[\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}]] + \text{Var}[\mathbf{b}(\text{ctx})] + \text{Var}[\epsilon_{\text{bias}}])}_{\text{data variance}} \quad (13) \end{aligned}$$

As $K \rightarrow \infty$, the ensemble converges to:

$$\lim_{K \rightarrow \infty} \mathbb{E} [\|\hat{\mu}_K - \mathbb{E}[\mathbf{x}_0 \mid \text{obs}]\|^2] = \|\mathbb{E}[\mathbf{x}_0 \mid \text{ctx}] - \mathbf{x}_0 + \mathbf{b}(\text{ctx})\|^2 \quad (14)$$

1188 *Proof.* Define random variables $\mu = \mathbb{E}[\mathbf{x}_0 | \text{obs}]$ and $\mu_c = \mathbb{E}[\mathbf{x}_0 | \text{ctx}]$. Our goal is to compute
 1189 $\mathbb{E}[\|\mu - \mu_c\|^2]$.
 1190

1191 Applying the Law of Total Variance, we have

$$\text{Var}[\mathbf{x}_0 | \text{ctx}] = \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{obs}] | \text{ctx}] + \text{Var}[\mathbb{E}[\mathbf{x}_0 | \text{obs}] | \text{ctx}] \quad (53a)$$

$$= \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{obs}] | \text{ctx}] + \text{Var}[\mu | \text{ctx}] \quad (53b)$$

1192 Rearranging:

$$\text{Var}[\mu | \text{ctx}] = \text{Var}[\mathbf{x}_0 | \text{ctx}] - \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{obs}] | \text{ctx}] \quad (54)$$

1193 Then:

$$\mathbb{E}[\|\mu - \mu_c\|^2] \quad (55a)$$

$$= \mathbb{E}[\mathbb{E}[\|\mu - \mu_c\|^2 | \text{ctx}]] \quad \text{Law of total expectation} \quad (55a)$$

$$= \mathbb{E}[\mathbb{E}[\|\mu - \mathbb{E}[\mathbf{x}_0 | \text{ctx}] \|^2 | \text{ctx}]] \quad \text{By definition of } \mu_c \quad (55b)$$

$$= \mathbb{E}[\mathbb{E}[\|\mu - \mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{obs}] | \text{ctx}] \|^2 | \text{ctx}]] \quad \text{Tower rule} \quad (55c)$$

$$= \mathbb{E}[\mathbb{E}[\|\mu - \mathbb{E}[\mu | \text{ctx}] \|^2 | \text{ctx}]] \quad \text{By definition of } \mu \quad (55d)$$

$$= \mathbb{E}[\text{Var}[\mu | \text{ctx}]] \quad \text{Definition of conditional variance} \quad (55e)$$

$$= \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{ctx}] - \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{obs}] | \text{ctx}]] \quad \text{equation 54} \quad (55f)$$

$$= \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{ctx}]] - \mathbb{E}[\text{Var}[\mathbf{x}_0 | \text{obs}]] \quad \text{Linearity of expectation} \quad (55g)$$

1209 Further define $\mu_k = \mathbf{x}_\theta(t, \text{ctx}^{(k)}) = \mathbb{E}[\mathbf{x}_0 | \text{ctx}^{(k)}] + \mathbf{b}(\text{ctx}^{(k)}) + \epsilon_{\text{bias}}(\text{ctx}^{(k)})$, where \mathbf{b} is the
 1210 systematic bias and ϵ_{bias} is the random error with $\mathbb{E}[\epsilon_{\text{bias}}] = \mathbf{0}$. The ensemble average is:

$$\hat{\mu}_K = \frac{1}{K} \sum_{k=1}^K \mu_k = \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\mathbf{x}_0 | \text{ctx}^{(k)}] + \frac{1}{K} \sum_{k=1}^K \mathbf{b}(\text{ctx}^{(k)}) + \frac{1}{K} \sum_{k=1}^K \epsilon(\text{ctx}^{(k)}) \quad (56)$$

1211 Computing the expectation:

$$\mathbb{E}[\hat{\mu}_K] = \mathbb{E}\left[\frac{1}{K} \sum_{k=1}^K \mu_k\right] \quad (57a)$$

$$= \frac{1}{K} \sum_{k=1}^K \mathbb{E}[\mathbf{x}_0 | \text{ctx}^{(k)}] + \mathbf{b}(\text{ctx}^{(k)}) + \epsilon(\text{ctx}^{(k)}) \quad (57b)$$

$$= \mathbb{E}[\mathbf{x}_0 | \text{ctx}] + \mathbb{E}[\mathbf{b}(\text{ctx})] + \mathbb{E}[\epsilon(\text{ctx})] \quad (57c)$$

$$= \mathbb{E}[\mathbf{x}_0 | \text{ctx}] + \mathbb{E}[\mathbf{b}(\text{ctx})] \quad (57d)$$

1224 The bias of the ensemble estimator is:

$$\text{Bias}(\hat{\mu}_K) = \mathbb{E}[\hat{\mu}_K] - \mathbb{E}[\mathbf{x}_0 | \text{obs}] = \mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] - \mathbb{E}[\mathbf{x}_0 | \text{obs}] + \mathbb{E}[\mathbf{b}(\text{ctx})] \quad (58)$$

1227 For the variance, decompose each component:

$$\mu_k - \mathbb{E}[\mu_k] = \mathbb{E}[\mathbf{x}_0 | \text{ctx}^{(k)}] + \mathbf{b}(\text{ctx}^{(k)}) + \epsilon(\text{ctx}^{(k)}) - \mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] - \mathbb{E}[\mathbf{b}(\text{ctx})] \quad (59a)$$

$$= \underbrace{\mathbb{E}[\mathbf{x}_0 | \text{ctx}^{(k)}] - \mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]]}_{\text{data variation}} + \underbrace{\mathbf{b}(\text{ctx}^{(k)}) - \mathbb{E}[\mathbf{b}(\text{ctx})]}_{\text{bias variation}} + \underbrace{\epsilon(\text{ctx}^{(k)})}_{\text{random error}} \quad (59b)$$

1233 The variance of the ensemble average:

$$\text{Var}(\hat{\mu}_K) = \mathbb{E}[\|\hat{\mu}_K - \mathbb{E}[\hat{\mu}_K]\|^2] \quad (60a)$$

$$= \mathbb{E}\left[\left\|\frac{1}{K} \sum_{k=1}^K (\mu_k - \mathbb{E}[\mu_k])\right\|^2\right] \quad (60b)$$

$$= \frac{1}{K^2} \mathbb{E}\left[\sum_{k=1}^K \|\mu_k - \mathbb{E}[\mu_k]\|^2 + 2 \sum_{i < j} \langle \mu_i - \mathbb{E}[\mu_i], \mu_j - \mathbb{E}[\mu_j] \rangle\right] \quad (60c)$$

1242 Since $\text{ctx}^{(1)}, \dots, \text{ctx}^{(K)}$ are conditionally independent given $\mathbf{x}_{\text{obs},t}$ and \mathbf{M} , the data variations and
 1243 bias variations are independent across different k . Additionally, under the assumption that $\epsilon(\text{ctx}^{(i)})$
 1244 and $\epsilon(\text{ctx}^{(j)})$ are independent for $i \neq j$:

$$1246 \mathbb{E}[\langle \boldsymbol{\mu}_i - \mathbb{E}[\boldsymbol{\mu}_i], \boldsymbol{\mu}_j - \mathbb{E}[\boldsymbol{\mu}_j] \rangle] = 0 \quad \forall i \neq j \quad (61)$$

1247 Therefore:

$$1249 \text{Var}(\hat{\boldsymbol{\mu}}_K) = \frac{1}{K^2} \sum_{k=1}^K \mathbb{E}[\|\boldsymbol{\mu}_k - \mathbb{E}[\boldsymbol{\mu}_k]\|^2] \quad (62a)$$

$$1251 = \frac{1}{K} \mathbb{E} \left[\|(\mathbb{E}[\mathbf{x}_0 | \text{ctx}] - \mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] + (\mathbf{b}(\text{ctx}) - \mathbb{E}[\mathbf{b}(\text{ctx})]) + \epsilon(\text{ctx})\|^2 \right] \quad (62b)$$

$$1253 = \frac{1}{K} (\text{Var}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] + \text{Var}[\mathbf{b}(\text{ctx})] + \text{Var}[\epsilon]) \quad (62c)$$

1255 Here, we used the independence between the three components to separate the variances. Combining
 1256 bias and variance using the bias-variance decomposition:

$$1258 \mathbb{E} \left[\|\hat{\boldsymbol{\mu}}_K - \mathbb{E}[\mathbf{x}_0 | \text{obs}]\|^2 \right] \\ 1259 = \|\text{Bias}(\hat{\boldsymbol{\mu}}_K)\|^2 + \text{Var}(\hat{\boldsymbol{\mu}}_K) \quad (63a)$$

$$1261 = \|\mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] - \mathbb{E}[\mathbf{x}_0 | \text{obs}] + \mathbb{E}[\mathbf{b}(\text{ctx})]\|^2 \\ 1262 + \frac{1}{K} (\text{Var}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] + \text{Var}[\mathbf{b}(\text{ctx})] + \text{Var}[\epsilon]) \quad (63b)$$

1264 Taking the limit as $K \rightarrow \infty$:

$$1266 \lim_{K \rightarrow \infty} \mathbb{E} \left[\|\hat{\boldsymbol{\mu}}_K - \mathbb{E}[\mathbf{x}_0 | \text{obs}]\|^2 \right] = \|\mathbb{E}[\mathbb{E}[\mathbf{x}_0 | \text{ctx}]] - \mathbb{E}[\mathbf{x}_0 | \text{obs}] + \mathbb{E}[\mathbf{b}(\text{ctx})]\|^2 \quad (64)$$

1268 This establishes that:

- 1270 • The average bias $\mathbb{E}[\mathbf{b}(\text{ctx})]$ across all contexts is not reduced by ensemble averaging.
- 1271 • The variance of the context-dependent bias $\text{Var}[\mathbf{b}(\text{ctx})]$ is reduced by a factor of $1/K$.
- 1273 • Both data variance and random error variance are also reduced by $1/K$.
- 1274 • The asymptotic error includes both the data bias and the model's average bias.

1276 \square
 1277

1279 G DISCUSSION ON INAPPLICABILITY OF BASELINES

1281 G.1 INAPPLICABILITY OF KNEWIMP

1283 We discuss the inapplicability of the primary method proposed in Chen et al. (2024b), Kernelized
 1284 Negative Entropy-regularized Wasserstein gradient flow Imputation (KnewImp), as a baseline for
 1285 our high-dimensional PDE dynamics task.

1286 **Principle.** KnewImp is an approach explicitly designed for the imputation of numerical tabular
 1287 datasets. The method reformulates the imputation problem within the framework of Wasserstein
 1288 Gradient Flow (WGF). Its core contribution is to derive a closed-form, implementable imputation
 1289 procedure by optimizing a novel Negative Entropy-Regularized (NER) cost functional within a Re-
 1290 producing Kernel Hilbert Space (RKHS).

1292 The final imputation procedure involves simulating an ODE $\frac{d\mathbf{X}^{(\text{miss})}}{d\tau} = u(\mathbf{X}^{(\text{joint})}, \tau)$, where the
 1293 velocity field $u(\mathbf{X}^{(\text{joint})}, \tau)$ is defined using a kernel function:

$$1295 u(\mathbf{X}^{(\text{joint})}, \tau) = \mathbb{E}_{r(\tilde{\mathbf{X}}^{(\text{joint})}, \tau)} \left\{ \begin{array}{l} -\lambda \nabla_{\tilde{\mathbf{X}}^{(\text{miss})}} \mathcal{K}(\mathbf{X}^{(\text{joint})}, \tilde{\mathbf{X}}^{(\text{joint})}) \\ + [\nabla_{\tilde{\mathbf{X}}^{(\text{miss})}} \log \hat{p}(\tilde{\mathbf{X}}^{(\text{joint})})]^\top \mathcal{K}(\mathbf{X}^{(\text{joint})}, \tilde{\mathbf{X}}^{(\text{joint})}) \end{array} \right\} \quad (65)$$

1296 This velocity field depends on two components: (1) a kernel function \mathcal{K} , which the authors specify
 1297 is a Radial Basis Function (RBF) kernel, $\mathcal{K}(\mathbf{X}, \tilde{\mathbf{X}}) := \exp(-\frac{\|\mathbf{X} - \tilde{\mathbf{X}}\|^2}{2h^2})$, and (2) an estimated score
 1298 function $\nabla_{\mathbf{X}^{(\text{miss})}} \log \hat{p}(\mathbf{X}^{(\text{joint})})$, which is trained separately using DSM (Song et al., 2020).
 1299

1300 **Reason for Unsuitability.** This method is mathematically and computationally infeasible for our
 1301 task for two primary reasons:

- 1303 • **Mathematical Infeasibility (Curse of Dimensionality):** The entire derivation of the imple-
 1304 mentable velocity field hinges on the use of an RBF kernel. This kernel’s computation is based
 1305 on the squared Euclidean distance $\|\mathbf{X} - \tilde{\mathbf{X}}\|^2$ between data points. Our PDE dynamics data
 1306 has a dimensionality of $D = 100 \times 64 \times 64 = 409,600$. In such an extremely high-dimensional
 1307 space, the concept of Euclidean distance becomes meaningless; all data points tend to become
 1308 equidistant from one another. This “curse of dimensionality” would cause the RBF kernel to
 1309 lose all discriminative power, rendering the velocity field calculation mathematically unstable
 1310 and uninformative. The KnewImp method is fundamentally structured for low-dimensional
 1311 tabular data, where distance metrics remain meaningful.
- 1312 • **Prohibitive Computational Cost (VRAM and Time):** The method’s two-stage process scales
 1313 intractably with dimension D .
 - 1315 – The “Estimate” phase requires training a score network $\nabla_{\mathbf{X}^{(\text{joint})}} \log \hat{p}(\mathbf{X}^{(\text{joint})})$ via DSM.
 Training any neural architecture (U-Net, Transformer, etc.) to model the score of a $D =$
 1316 $409,600$ dimensional vector would require prohibitive amounts of VRAM just to store the
 1317 activations and gradients for a single batch.
 - 1319 – The “Impute” phase requires simulating an ODE. Each step of this simulation necessi-
 1320 ties a full computation of the velocity field. This computation involves a Monte Carlo
 1321 estimation over the dataset, with each sample calculation requiring an expensive kernel
 1322 evaluation in D -dimensional space.

1323 This combination of a memory-intensive score network and a computationally-intensive,
 1324 kernel-based ODE simulation makes the KnewImp approach computationally infeasible for
 1325 our high-dimensional spatiotemporal task.

1327 G.2 INAPPLICABILITY OF SCORE MATCHING WITH MISSING DATA

1329 We discuss the inapplicability of the two primary methods proposed in Givens et al. (2025) as base-
 1330 lines for our high-dimensional PDE generation task.

1332 G.2.1 METHOD 1: MARGINAL IMPORTANCE WEIGHTING (MARG-IW)

1334 **Principle.** This approach (Algorithm 1) adapts the score matching objective to work with missing
 1335 data by defining a marginal Fisher divergence. It then estimates the intractable marginal scores by
 1336 applying importance weighting (IW) to approximate the high-dimensional integral over the missing
 1337 coordinates using Monte Carlo samples.

1339 **Reason for Unsuitability.** This method is unsuitable as it is not designed for high-dimensional
 1340 data. The authors of the original paper explicitly state that the IW approach “will struggle in
 1341 higher dimensional scenarios” and primarily demonstrate its efficacy in “lower dimensional set-
 1342 tings”. Given the dimensionality of our task, the variance and bias from the IW estimator would
 1343 render the optimization intractable.

1344 G.2.2 METHOD 2: MARGINAL VARIATIONAL SCORE MATCHING (MARG-VAR)

1346 **Principle.** This more complex approach (Algorithm 2) avoids direct IW estimation by first taking
 1347 the gradient of the loss objective (a “gradient-first” approach). It then introduces a secondary vari-
 1348 ational neural network (p'_ϕ) to approximate the conditional expectations and covariances over the
 1349 missing data. The training involves a nested optimization, where the main score model (s_θ) and the
 variational “helper” model (p'_ϕ) are updated iteratively.

1350
 1351 **Reason for Unsuitability.** This method is computationally infeasible for our task due to pro-
 1352 hibitive VRAM and time costs. Our backbone model (analogous to s_θ) already consumes ~ 70 GB
 1353 of VRAM for a single forward-backward pass with a batch size of 8 on an 80GB A800 GPU. The
 1354 Marg-Var algorithm would introduce, at a minimum:

1355 • **Dual Model Memory Cost:** The algorithm requires maintaining two large neural net-
 1356 works—the primary score model s_θ and the variational helper p'_ϕ , simultaneously in VRAM.
 1357 This alone would exceed the 80GB capacity.

1358 • **Peak Gradient Memory Cost:** The gradient calculation for s_θ (Eq. 10/11) is exceptionally
 1359 complex. It requires computing expectations and covariances that involve components from
 1360 *both* models, necessitating that the computational graphs of both networks are active for the
 1361 joint gradient estimation. This leads to a peak VRAM usage far exceeding the simple sum of
 1362 the two models.

1363 • **Multiplied Training Time Cost:** The algorithm employs a nested optimization loop. For *each*
 1364 gradient step of the main model s_θ , the helper model p'_ϕ must be trained for L steps (e.g.,
 1365 $L = 10$ in the paper’s experiments). This L -fold multiplication of an already lengthy training
 1366 step makes the method impractical for large-scale generative modeling.

1367 **G.2.3 DIMENSIONALITY MISMATCH**

1368 The core issue is the extreme discrepancy in data dimensionality. The experiments in Givens et al.
 1369 (2025) are conducted on tasks with dimensions of 10 (Gaussian), up to 50 (Non-Gaussian), 100
 1370 (S&P 100), and 106 (Yeast). Our PDE dataset has a dimensionality of $100 \times 64 \times 64 = 409,600$.
 1371 This is more than three orders of magnitude larger than the highest-dimensional task (106-dim) on
 1372 which the Marg-Var method was validated. The computational and statistical challenges of this scale
 1373 are not addressed by these methods.

1374 **H SUPPLEMENTARY EXPERIMENTS**

1375 **H.1 DATASET SETTINGS**

1376 **Shallow Water and Advection datasets.** We evaluate our approach on two fundamental geophys-
 1377 ical PDE systems with distinct characteristics:

1378 Shallow Water: $\partial_t u = fv - g\partial_x h, \quad \partial_t v = -fu - g\partial_y h, \quad \partial_t h = -H(\partial_x u + \partial_y v)$ (66a)

1379 Advection: $\partial_t u(t, x) + \beta\partial_x u(t, x) = 0$ (66b)

1380 where for the shallow water system, u and v represent velocity components, h denotes height field,
 1381 f is the Coriolis parameter, g is gravitational acceleration, and H is mean depth. For the advection
 1382 equation, u represents a scalar field being transported and β is the advection velocity. We generate
 1383 synthetic solutions by randomly sampling physical parameters, along with randomized initial
 1384 conditions to ensure dataset diversity. Each dataset contains 5k training, 1k validation, and 1k test
 1385 samples with 32×32 spatial resolution and 50 temporal frames. We generate synthetic solutions by
 1386 randomly sampling physical parameters and initial conditions. For evaluation, we employ comple-
 1387 mentary metrics to comprehensively assess reconstruction quality across different physical aspects.
 1388 For the Shallow Water dataset, we evaluate PDE feasibility loss, which measures how well the re-
 1389 constructed solutions satisfy the underlying shallow water equations by computing the residual error
 1390 when the reconstructed fields are substituted into the governing PDEs. For the Advection dataset,
 1391 we reconstruct complete initial conditions from partial observations using our trained model, then
 1392 propagate these reconstructions forward using traditional PDE solvers (finite difference schemes)
 1393 to generate temporal sequences. Performance is measured by computing MSE between our recon-
 1394 structed solutions and ground truth sequences over all 50 time steps. This dual evaluation strategy
 1395 demonstrates our method’s superiority across multiple physically meaningful criteria.

1396 **Navier-Stokes dataset.** We evaluate our approach on the incompressible Navier-Stokes equations
 1397 for isotropic turbulence. The governing equations are:

1398 $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f},$ (67a)

1399 $\nabla \cdot \mathbf{u} = 0$ (67b)

1404 where $\mathbf{u} = (u, v)$ represents the velocity field, p is pressure, ν is kinematic viscosity, and \mathbf{f} is external
 1405 forcing. The data are generated using either pseudo-spectral solvers with 4th-order Runge-Kutta
 1406 or higher-order Finite Volume IMEX methods. Initial conditions with varying peak wavenumbers
 1407 eventually evolve to exhibit the Kolmogorov energy cascade. The dataset contains 1152 samples
 1408 with a spatial resolution of 64×64 and temporal sequences of 100 frames. For evaluation, the
 1409 model generates complete field reconstructions. Performance is measured by computing MSE be-
 1410 tween reconstructed fields and ground truth across all spatial locations and time steps.

1411
 1412
 1413

1414 **ERA5 dataset.** We evaluate our approach on the ERA5 reanalysis dataset, which provides com-
 1415 prehensive atmospheric and surface meteorological variables. ERA5 represents the fifth generation
 1416 atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF),
 1417 combining model data with observations through data assimilation to produce a globally com-
 1418 plete and consistent dataset. We utilize one year of hourly data sampled at a spatial resolution
 1419 of 103×120 grid points in latitude-longitude coordinates, creating temporal sequences of dimen-
 1420 sion $(365 \times 24, 103, 120)$. The data are segmented into 3-hour windows, and we only select 20% /
 1421 10% / 1% observed pixels for each sample. Our experiments incorporate nine essential atmospheric
 1422 variables. These variables capture both surface conditions and atmospheric dynamics critical for
 1423 weather prediction tasks. Performance is evaluated by computing reconstruction errors across all
 1424 spatial locations and temporal frames.

1425
 1426

1427 H.2 MASK SELECTION IMPLEMENTATION

1428

1429 We now present concrete algorithmic implementations of our strategic context-query partitioning
 1430 framework for both pixel-level and block-wise missing patterns. Algorithm 5 details the pixel-level
 1431 procedure, where each observed location in the observation mask \mathbf{M} is independently selected as
 1432 context or query through Bernoulli sampling with ratios r_{ctx} and r_{qry} , ensuring that $\mathbf{M}_{\text{ctx}} \subseteq \mathbf{M}$
 1433 and $\mathbf{M}_{\text{qry}} \subseteq \mathbf{M}$. For the more realistic block-wise scenario depicted in Algorithm 6, we operate
 1434 on spatial blocks. This block-based sampling preserves spatial continuity while guaranteeing that
 1435 every observable dimension maintains a positive probability of being selected as query, directly
 1436 implementing the principle from Theorem 1. Both procedures maintain the crucial property that
 1437 $P((\mathbf{M}_{\text{qry}})_i = 1 \mid \mathbf{M}_{\text{ctx}}) > 0$ for all unobserved dimensions, thereby enabling effective learning
 1438 from incomplete training data.

1439
 1440
 1441

1442 Algorithm 5 Pixel-Level Context-Query Partitioning

1443 **Require:** Observation mask $\mathbf{M} \in \{0, 1\}^d$, context ratio $r_{\text{ctx}} \in (0, 1)$, query ratio $r_{\text{qry}} \in (0, 1)$

1444 **Ensure:** Context mask \mathbf{M}_{ctx} , query mask \mathbf{M}_{qry}

1445 1: Initialize $\mathbf{M}_{\text{ctx}} \leftarrow \mathbf{0}$, $\mathbf{M}_{\text{qry}} \leftarrow \mathbf{0}$
 1446 2: **for** each spatial index $i \in \{1, \dots, d\}$ **do**
 1447 3: **if** $\mathbf{M}_i = 1$ **then**
 1448 4: Sample $u \sim \text{Uniform}(0, 1)$
 1449 5: **if** $u < r_{\text{ctx}}$ **then**
 1450 6: $(\mathbf{M}_{\text{ctx}})_i \leftarrow 1$
 1451 7: **end if**
 1452 8: Sample $v \sim \text{Uniform}(0, 1)$
 1453 9: **if** $v < r_{\text{qry}}$ **then**
 1454 10: $(\mathbf{M}_{\text{qry}})_i \leftarrow 1$
 1455 11: **end if**
 1456 12: **end if**
 1457 13: **end for**
 14: **return** $\mathbf{M}_{\text{ctx}}, \mathbf{M}_{\text{qry}}$

1458 **Algorithm 6** Block-Wise Context-Query Partitioning (Integer-based)
 1459
 1460 **Require:** Observation mask grid $M_{\text{grid}} \in \{0, 1\}^{3 \times 3}$ (e.g., 5 observed blocks out of 9), integer k_{ctx}
 1461 (number of context blocks, e.g., 4), integer k_{qry} (number of query blocks, e.g., 1)
 1462 **Ensure:** Context mask M_{ctx} , query mask M_{qry}
 1463 $\mathcal{B}_{\text{obs}} \leftarrow \{b \mid (M_{\text{grid}})_b = 1\}$
 1464 Sample $\mathcal{B}_{\text{ctx}} \subseteq \mathcal{B}_{\text{obs}}$ uniformly with $|\mathcal{B}_{\text{ctx}}| = k_{\text{ctx}}$
 1465 Sample $\mathcal{B}_{\text{qry}} \subseteq \mathcal{B}_{\text{obs}}$ uniformly with $|\mathcal{B}_{\text{qry}}| = k_{\text{qry}}$
 1466 $M_{\text{ctx}} \leftarrow \text{BlocksToMask}(\mathcal{B}_{\text{ctx}})$
 1467 $M_{\text{qry}} \leftarrow \text{BlocksToMask}(\mathcal{B}_{\text{qry}})$
 1468 **return** $M_{\text{ctx}}, M_{\text{qry}}$

1469

1470

1471 H.3 ANALYSIS OF MISSDIFF BASELINE AND DATA MATCHING ADAPTATION

1472

1473 A notable aspect of our experimental setup is the adaptation of the MissDiff baseline (Ouyang et al.,
 1474 2023) from its original noise matching objective to a data matching framework. This modification
 1475 was empirically necessary, as the original objective proved ineffective in our experimental context.
 1476 This adaptation facilitates a meaningful and fair comparison by ensuring the baseline can operate
 1477 effectively on our challenging datasets.

1478

1479

1480

1481

1482

Initial failure of the noise matching objective. An initial evaluation of MissDiff with its original noise matching objective showed that the training loss failed to decrease at all in our experimental setting. This failure is attributed to a fundamental difference between the data domains: the tabular data used in the original MissDiff paper and the spatiotemporal data used in our work.

1483

1484

1485

1486

1487

1488

1489

1490

- **Tabular data (original MissDiff domain):** The MissDiff paper focused on tabular data with relatively moderate missing ratios. In this context, each entry often represents an independent feature. Missing one entry means completely losing information about that specific feature.
- **Spatiotemporal data (our domain):** Our PDE datasets involve spatiotemporal fields (e.g., images/videos) characterized by much higher missing data ratios (down to 1% observed data). Critically, in these physical fields, a missing pixel does not represent the loss of an independent feature. Due to the inherent spatial smoothness and continuity of physical systems, neighboring pixels carry highly correlated information.

1491

1492

1493

Implications for diffusion objectives. This fundamental data difference has profound implications for the suitability of noise matching versus data matching:

1494

1495

1496

1497

1498

1499

1500

1501

1502

- **Data matching (our adaptation):** This objective (predicting x_0) can effectively leverage the spatial smoothness priors. Even from sparse observations, the model can learn to interpolate and predict reasonable values for missing regions by exploiting the correlated context.
- **Noise matching (original MissDiff):** This objective (predicting ϵ) requires the model to predict fine-grained noise patterns. This task demands much denser observations to capture the necessary local structure. At extreme sparsity (e.g., 1% observed), the noise prediction task becomes ill-posed. There is simply insufficient local context to distinguish signal from noise, making the learning target ambiguous.

1503

1504

1505

1506

1507

1508

Our empirical findings show that in our setting, the original noise matching objective led to MissDiff completely failing to learn (e.g., outputting all zeros). The adaptation to a data matching framework allows MissDiff to produce meaningful predictions by leveraging the smoothness priors inherent in physical systems. Therefore, this modification was essential for a valid and fair comparison. Without this adaptation, MissDiff would be unable to generate meaningful results in our experimental scenarios, rendering the comparison ineffective.

1509

1510

1511

H.4 ABLATION STUDY

We conduct ablation studies to validate the effectiveness of key components in our proposed method.

1512 **Test-time gap introduced by replacing M_{ctx} with M .** Our sampling procedure requires mul-
 1513 tiple context masks M_{ctx} to estimate $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs},t}, \mathbf{M}] \approx \frac{1}{K} \sum_{k=1}^K \mathbf{x}_{\theta}(t, \mathbf{M}_{\text{ctx}}^{(k)} \odot \mathbf{x}_t, \mathbf{M}_{\text{ctx}}^{(k)})$.
 1514 This ablation study compares our method against directly computing $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs},t}, \mathbf{M}]$ using
 1515 $\mathbf{x}_{\theta}(t, \mathbf{M} \odot \mathbf{x}_t, \mathbf{M})$. The direct approach creates a distributional mismatch: during training, the
 1516 model’s input mask follows the distribution of \mathbf{M}_{ctx} , but during sampling, the input becomes \mathbf{M} .
 1517 This mismatch degrades model performance. Tab. 4 presents experimental results comparing both
 1518 methods.
 1519

1520 Table 4: Performance comparison of two approaches: (1) imputation with multiple time sampling
 1521 of \mathbf{M}_{ctx} followed by ensemble prediction (Theorem 2), versus (2) directly using \mathbf{M} as \mathbf{M}_{ctx} , which
 1522 creates a distributional mismatch between training and testing inputs.

Method	Shallow Water		Advection	
	80%	30%	80%	30%
Ours (\mathbf{M})	2.3983 \pm 0.7880	2.6717 \pm 1.4731	0.1320 \pm 0.0155	0.1655 \pm 0.0537
Ours (\mathbf{M}_{ctx})	0.1878 \pm 0.0054	0.7379 \pm 0.1101	0.1035 \pm 0.0008	0.1189 \pm 0.0069

1524 **Backbone architecture.** To demonstrate the generalizability of our method across different archi-
 1525 tectures, we evaluate both our proposed approach and baseline methods using two distinct back-
 1526 bones: Karras UNet (Karras et al., 2024) and Fourier Neural Operator (FNO) (Li et al., 2020).
 1527 For the FNO implementation, we concatenate diffusion time embeddings along the channel dimen-
 1528 sion. Results are presented in Tab. 5. Our findings show that U-Net and FNO achieve comparable
 1529 performance on the Shallow Water and Advection datasets, while U-Net outperforms FNO on the
 1530 Navier-Stokes and ERA5 datasets, where FNO fails to generate reasonable samples.

1531 Table 5: Performance comparison across backbone architectures. Results for our method and base-
 1532 lines using Karras UNet (Karras et al., 2024) and FNO (Li et al., 2020) backbones across two PDE
 1533 datasets.

Method	Backbone	Shallow Water		Advection	
		80%	30%	80%	30%
MissDiff	UNet	0.3963 \pm 0.0617	1.2570 \pm 0.2146	0.1030 \pm 0.0004	0.1197 \pm 0.0096
	FNO	0.2917 \pm 0.1683	0.7525 \pm 0.1529	0.1375 \pm 0.0063	0.4816 \pm 0.0187
Ours	UNet	0.3279 \pm 0.0655	0.9292 \pm 0.1963	0.1035 \pm 0.0008	0.1189 \pm 0.0069
	FNO	0.1869 \pm 0.0015	0.7379 \pm 0.1101	0.1240 \pm 0.0040	0.3527 \pm 0.0620

1553 **Context and query mask ratio selection.** We conduct an ablation study examining how different
 1554 choices of context and query mask ratios affect model performance. The results are presented in
 1555 Table 6. We evaluate ratios ranging from 0.5 to 1.0 to understand the trade-offs between information
 1556 availability and parameter update frequency identified in our theoretical analysis. As expected from
 1557 our theoretical framework, intermediate ratios (0.5-0.9) achieve optimal performance by balancing
 1558 the information gap and parameter update frequency trade-offs. Notably, when both context and
 1559 query ratios are set to 100%, our proposed method reduces to the MissDiff baseline, providing a
 1560 direct comparison point that validates our experimental setup.

1561 **Optimal denoiser approximation.** We approximate the optimal denoiser $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{x}_{\text{obs}}, \mathbf{M}]$
 1562 through a weighted combination of diffusion expectation $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$ and imputation expectation
 1563 $\mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_{\text{obs}}, \mathbf{M}]$ using empirical weight ω_t (equation 28). We investigate different weighting strate-
 1564 gies to understand their impact on reconstruction quality during the multi-step generation process
 1565 (200 steps). The results can be seen in Tab. 7.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
Table 6: Performance comparison of context and query mask ratio.

Context Ratio	Query Ratio	Navier-Stokes		
		80%	60%	20%
50%	50%	0.2383	0.5338	2.0924
70%	70%	0.2076	0.5336	2.0336
90%	90%	0.2252	0.5251	2.1309
70%	100%	0.2103	0.5276	2.1178
100%	100%	0.2444	0.7023	2.5599

Table 7: Impact of weighting strategies on optimal denoiser approximation.

Method	Navier-Stokes		
	80%	60%	20%
w/o ω_t	0.2334 \pm 0.0115	0.5649 \pm 0.0329	3.3820 \pm 0.1704
$\omega_t = t$	0.2331 \pm 0.0117	0.5633 \pm 0.0332	3.1881 \pm 0.2170
$\omega_t = t^2$	0.2334 \pm 0.0116	0.5647 \pm 0.0333	3.3557 \pm 0.1973

Influence of ensemble size K . Tab. 8 shows that increasing K consistently improves performance (see Theorem. 2). We use $K = 10$ by default to balance efficiency and accuracy.

Training cost: Our training procedure has a comparable computational cost to baseline diffusion methods (MissDiff, AmbientDiff) since the network architecture, input/output dimensions, and number of training steps are the same. The main difference is in our context-query partitioning strategy during training, which adds negligible overhead.

Inference cost: The additional computational cost comes from sampling:

- For *single sample generation* (common in scientific applications): The K forward passes can be executed in parallel since they are independent. Wall-clock time increases sub-linearly with K rather than K -fold. For example, on an A800 GPU, $K = 10$ requires 3.36 \times the time of $K = 1$ for 50-frame 32 \times 32 sequences, and 8.32 \times for 100-frame 64 \times 64 sequences. The overhead depends on hardware parallelization efficiency and batch size.
- For *batch generation* of multiple samples: The computational cost scales approximately K times compared to baselines. This represents a fundamental trade-off: our method enables learning from realistically incomplete data, a necessity in many scientific domains where complete measurements are physically impossible.

Table 8: Impact of ensemble size K on Navier-Stokes imputation. Errors decrease with larger K but with diminishing returns. Time cost is measured for single-sample forward passes on a single GPU.

Ensemble size K	Navier-Stokes ($\times 10^{-3}$)			Time Ratio
	80%	60%	20%	
$K = 1$	0.2239	0.5652	2.1446	1.00 \times
$K = 2$	0.2147	0.5475	2.0822	1.81 \times
$K = 3$	0.2119	0.5418	2.0640	2.65 \times
$K = 5$	0.2094	0.5371	2.0462	4.26 \times
$K = 10$	0.2076	0.5337	2.0343	8.32 \times
$K = 20$	0.2068	0.5320	2.0277	16.48 \times
$K = 50$	0.2062	0.5308	2.0240	41.06 \times

1620
 1621 Table 9: Cross-distribution generalization on the Navier-Stokes dataset. Each column represents a
 1622 model trained with a specific observation ratio, and each row represents the test observation ratio.
 1623 Values indicate MSE between reconstructed and ground truth fields. The diagonal entries represent
 1624 matched train-test distributions, while off-diagonal entries measure generalization under distribution
 1625 shift. Models maintain reasonable performance when test-time observations are close to training
 1626 conditions, but degrade gracefully when trained on fewer observation datasets.

Test Set \ Training Set	80%	60%	20%
80%	0.2229 ± 0.0162	0.2362 ± 0.0121	0.3363 ± 0.0082
60%	0.4990 ± 0.0260	0.5071 ± 0.0257	0.6980 ± 0.0188
20%	-	-	1.9315 ± 0.0921

1633 H.5 CROSS-DISTRIBUTION GENERALIZATION

1634 To evaluate the robustness of our method under distribution shift between training and testing, we
 1635 conduct experiments where the observation ratio differs between training and inference. Specifically,
 1636 we investigate whether a model trained on data with a certain observation density can generalize to
 1637 test scenarios with different observation patterns. The key challenge lies in maintaining consistent
 1638 model behavior when the available information at test time deviates from the training distribution.
 1639 Our implementation addresses this through adaptive context mask sampling: during training with
 1640 observation ratio r_{train} (e.g., 80%), we sample context masks containing a fraction α of the observed
 1641 points (e.g., 50%), resulting in the model receiving $r_{\text{train}} \times \alpha$ of the total pixels as input (e.g., 40%).
 1642 At test time with a different observation ratio r_{test} (e.g., 60%), we maintain the same effective input
 1643 ratio by sampling $\frac{r_{\text{train}} \times \alpha}{r_{\text{test}}}$ of the available observations as context (e.g., $\frac{40\%}{60\%} = 66.7\%$). This strategy
 1644 ensures the model operates within its learned input distribution while adapting to varying observation
 1645 densities. Tab. 9 presents results across different train-test observation ratio combinations, demon-
 1646 strating that our method maintains reasonable performance even under significant distribution shifts,
 1647 though performance naturally degrades when the test-time observation ratio substantially deviates
 1648 from the training distribution.

1649 H.6 COMPLETE RESULTS

1650 We provide the complete experimental results, including standard deviations, to demonstrate the
 1651 statistical significance and variance of our findings.

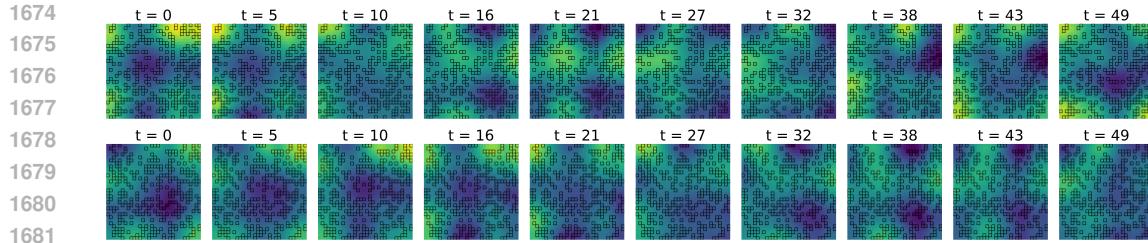
1652 Table 10: Performance comparison on PDE imputation tasks. Each sample represents a temporal
 1653 sequence of 50 frames, each with 32×32 spatial resolution. Results show the MSE between the
 1654 reconstructed and the ground truth solutions from the PDE solver, averaged over all timesteps.

Method	Shallow Water (feasibility loss, $\times 10^{-8}$)		Advection (simulation MSE, $\times 10^{-1}$)	
	80%	30%	80%	30%
Temporal Consistency	3.0248	4.2742	0.5097	0.6911
Fast Marching	2.5931	8.8631	0.2127	0.5222
Navier-Stokes	0.7045	2.8244	0.1350	0.4805
MissDiff	0.2917 ± 0.1683	0.7527 ± 0.1530	0.1030 \pm 0.0004	0.1197 ± 0.0096
AmbientDiff	0.1927 ± 0.0050	0.7504 ± 0.1119	0.1039 ± 0.0009	0.1219 ± 0.0075
Ours	1 step	0.1878 ± 0.0054	0.7379 \pm 0.1101	0.1035 ± 0.0008
	200 steps	0.1869 \pm 0.0015	0.7502 ± 0.1120	0.1037 ± 0.0009
				0.1231 ± 0.0109

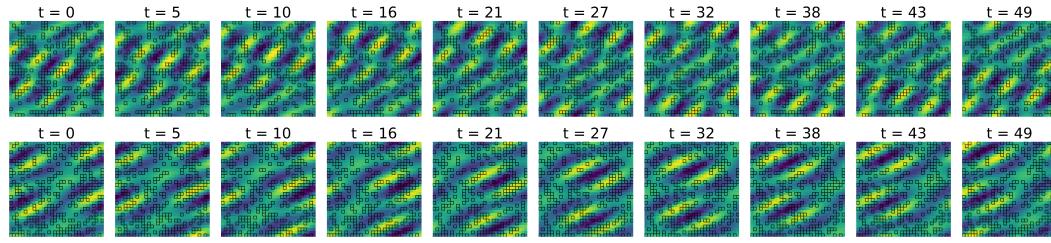
1668 H.7 VISUALIZATION OF GENERATED SAMPLES

I LIMITATIONS AND FUTURE WORK

1669 Our work represents a first step towards systematically incorporating mask distribution priors into
 1670 the training of generative models for incomplete data. A primary assumption in our current frame-



1682 Figure 4: Imputed results on 2D Shallow Water dataset where 30% of the original data points are
1683 available for training.



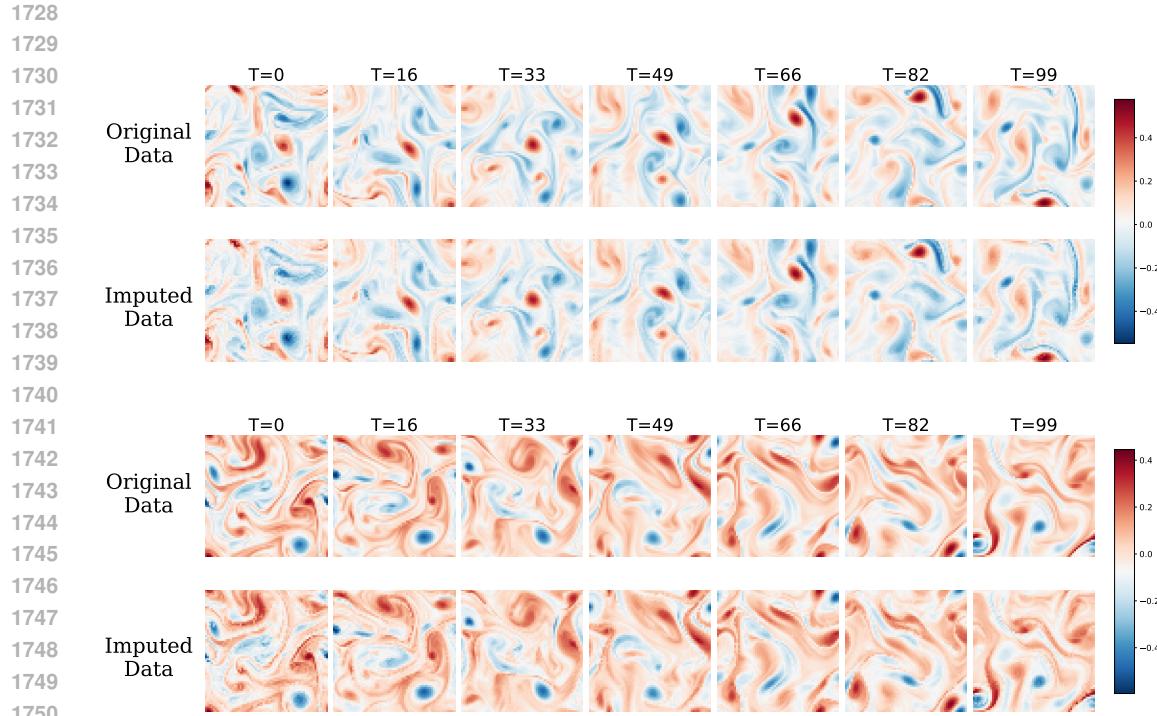
1693 Figure 5: Imputed results on 2D Advection dataset where 30% of the original data points are available for training.

1694 work is that the mask distribution $p_{\text{mask}}(\mathcal{M})$ is known *a priori* and is independent of the data \mathbf{x}_0 .
1695 However, in certain real-world scenarios, the missingness mechanism can be data-dependent (e.g.,
1696 a weather station failing due to the direct impact of a typhoon it is measuring) or follow complex
1697 patterns that are unknown. Our current methodology does not explicitly address these more
1698 complex cases. We believe that extending this framework to handle unknown or data-dependent mask
1699 distributions is a significant and important direction for future research.

1700 On the theoretical front, our analysis provides guarantees for the asymptotic convergence of our
1701 training paradigm. We acknowledge that this analysis does not extend to a non-asymptotic regime.
1702 A more comprehensive theoretical investigation, such as deriving finite sample complexity bounds
1703 or formally quantifying the approximation error introduced by the neural network architecture, is
1704 considerably challenging. Such an analysis would need to account for the complex interplay between
1705 the diffusion process, the context-query sampling strategy, and the function approximator. We leave
1706 this rigorous theoretical extension as an important open problem for future work.

J LLM USAGE STATEMENT

1711 We used large language models (Claude) to assist with manuscript preparation in the following capacities:
1712 (1) improving the clarity and grammatical correctness of our writing through proofreading and copy-editing suggestions,
1713 (2) formatting LaTeX code for tables and equations,
1714 (3) reviewing mathematical proofs for logical consistency and clarity, and
1715 (4) identifying and correcting typographical errors throughout the manuscript.



1751 Figure 6: Sample imputation results on 2D Navier-Stokes dataset where 80% of the original data
1752 points are available for training.

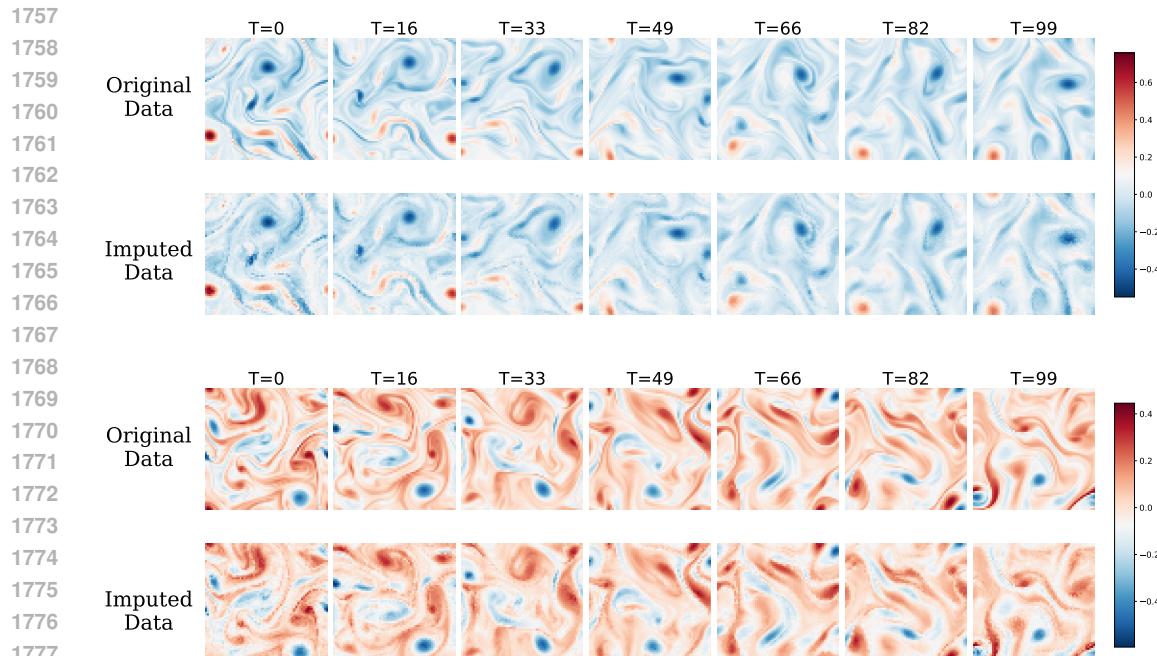
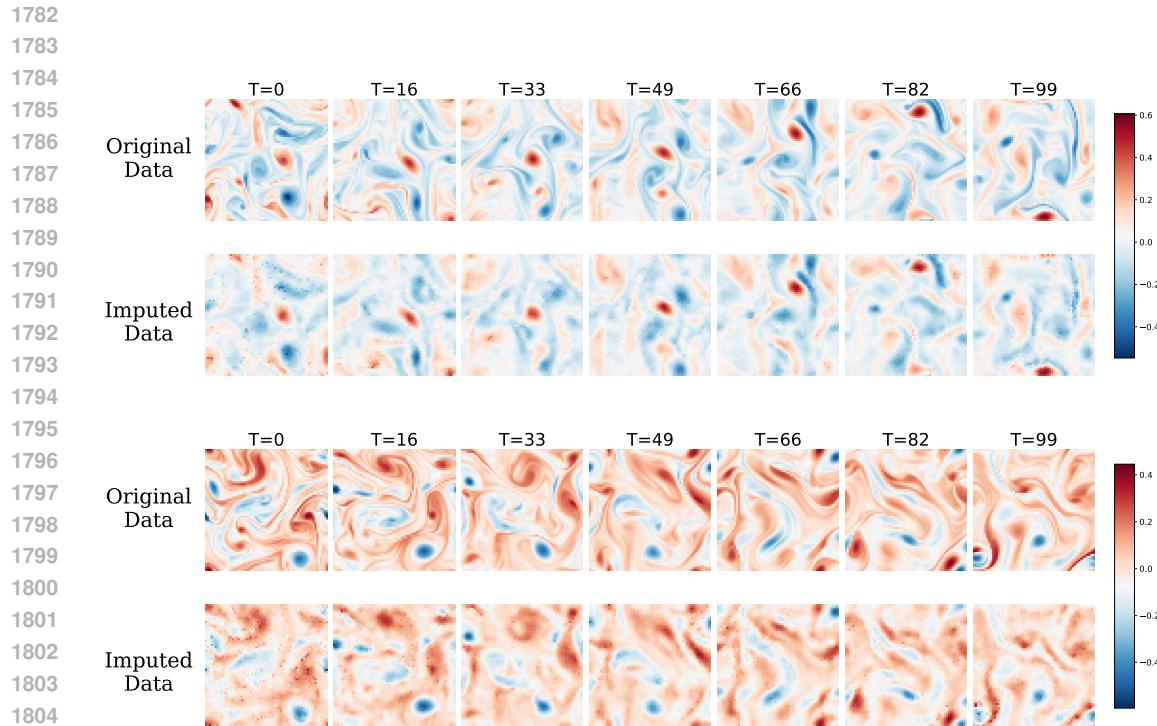
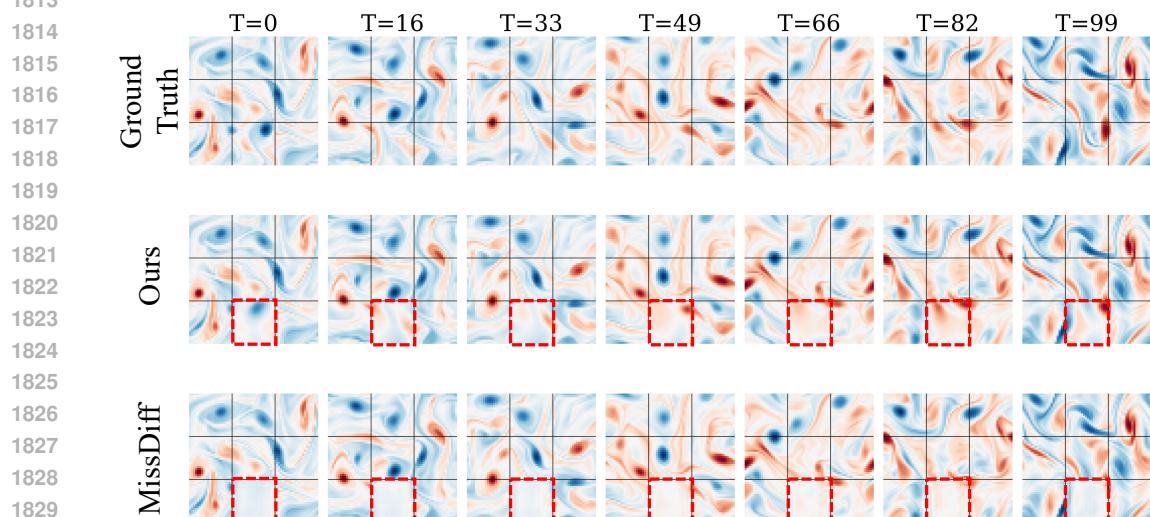
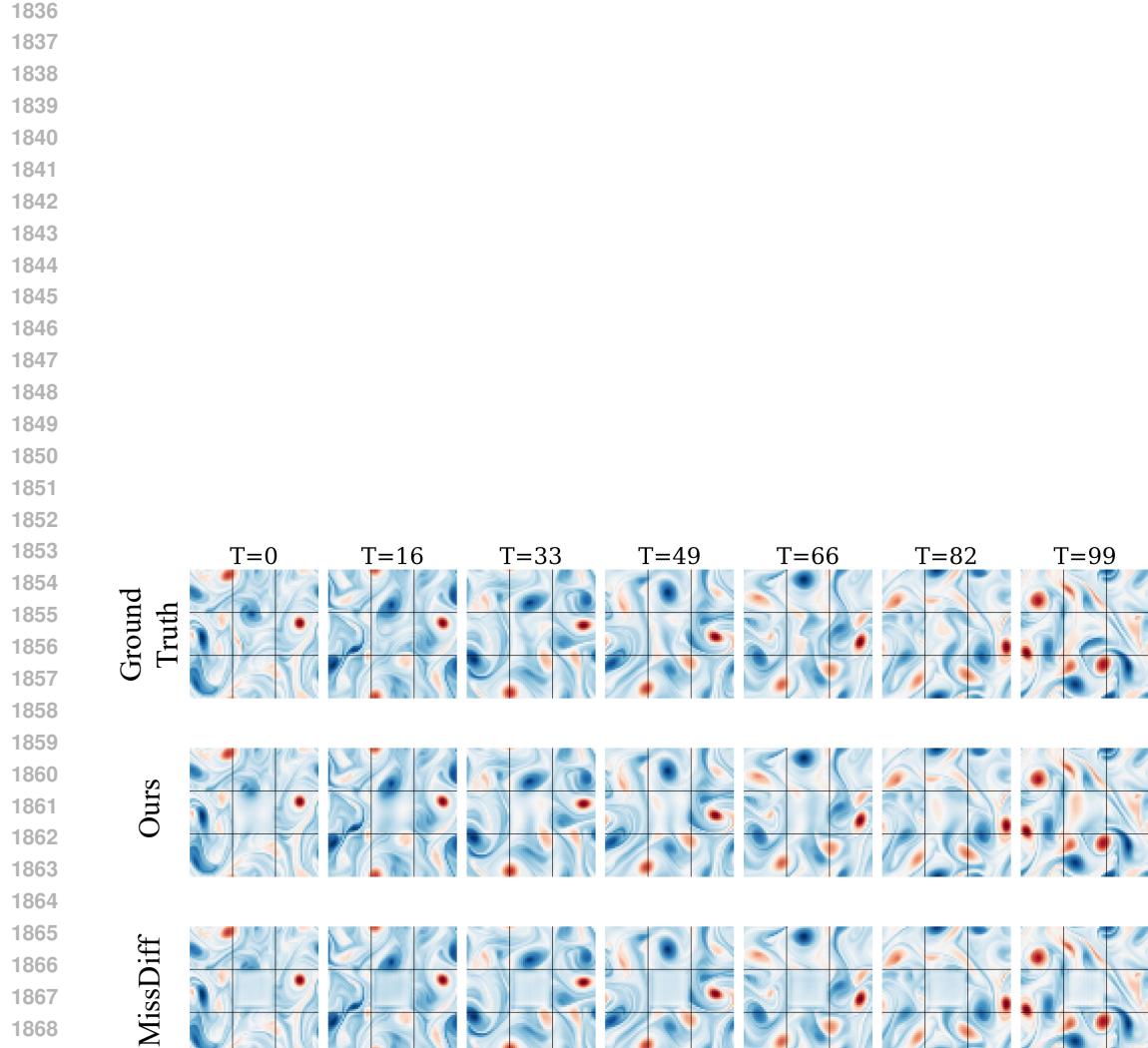


Figure 7: Sample imputation results on 2D Navier-Stokes dataset where 60% of the original data points are available for training.





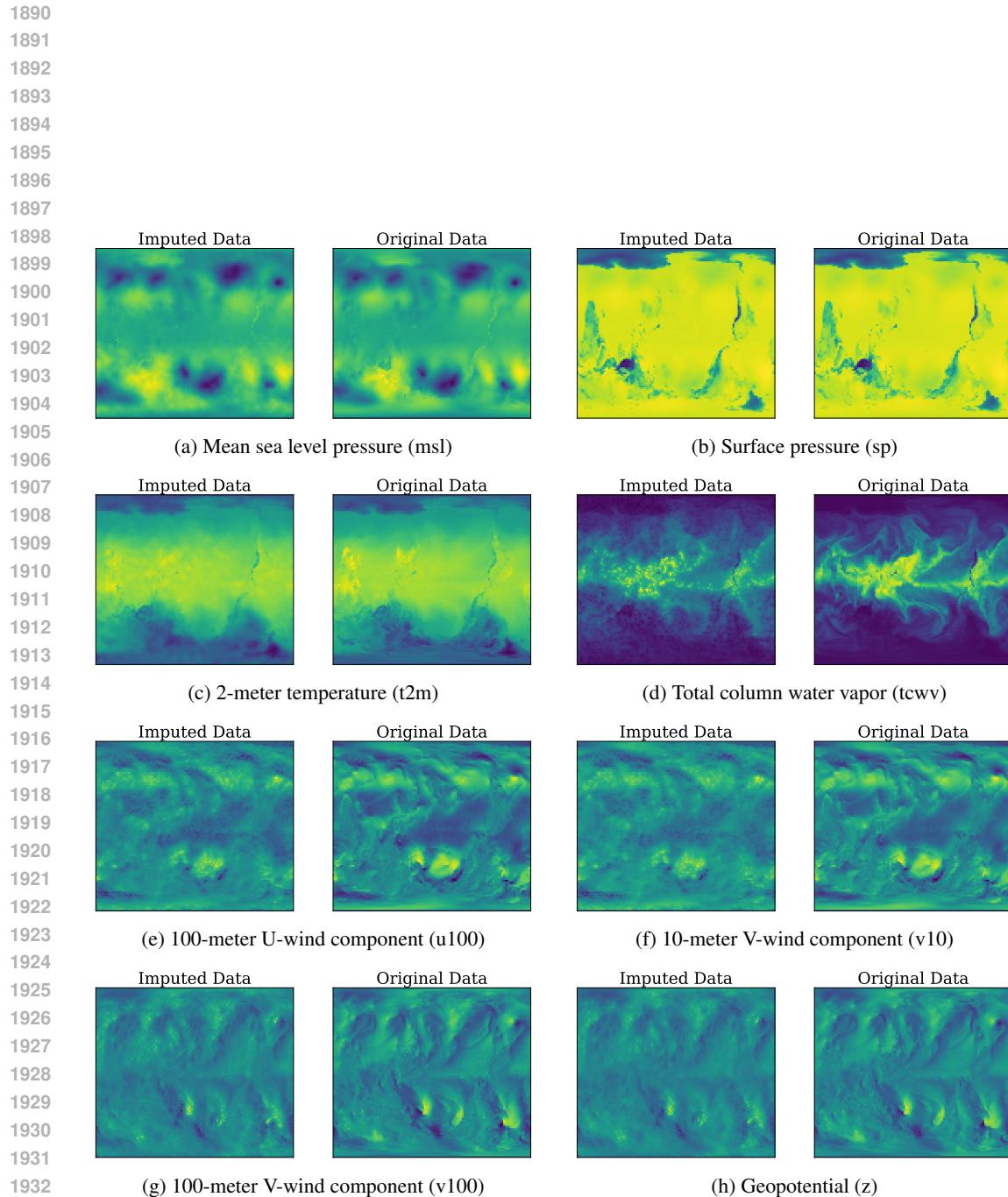


Figure 11: Imputation results on the ERA5 dataset with 20% observed points. Each subfigure shows a different atmospheric variable. The left column of each subfigure contains the imputed/reconstructed data, and the right column shows the original data.