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Abstract

Biomedical pathways have been extensively
used to characterize the mechanism of com-
plex diseases. One essential step in biomedi-
cal pathway analysis is to curate the descrip-
tion of a pathway based on its graph struc-
ture and node features. Neural text genera-
tion could be a plausible technique to circum-
vent the tedious manual curation. In this pa-
per, we propose a new dataset Pathway2Text,
which contains 2,094 pairs of biomedical path-
ways and textual descriptions. All pathway
graphs are experimentally derived or manu-
ally curated. All textual descriptions are writ-
ten by domain experts. We form this prob-
lem as a Graph2Text task and propose a novel
graph-based text generation approach kNN-
Graph2Text, which explicitly exploited de-
scriptions of similar graphs to generate new de-
scriptions. We observed substantial improve-
ment of our method on both Graph2Text and
the reverse task of Text2Graph. We further
illustrated how our dataset can be used as
a novel benchmark for biomedical name en-
tity recognition. Collectively, we envision
our method will become an important bench-
mark for evaluating Graph2Text methods and
advance biomedical research for complex dis-
eases.

1 Introduction

Many complex diseases, such as cancer and neu-
rodegenerative disorders, are driven by reactions
among a combination of genes and metabolites in-
stead of one single gene (Manolio et al., 2009).
These reactions, which are formally referred to as
pathways (Kanehisa et al., 2017; DS et al., 2020;
Gillespie et al., 2022), are represented as a hetero-
geneous graph (Figure 1). Each node in this graph
is a biomedical entity, such as gene, chemical or
metabolite. Each edge is a specific biomedical
reaction. Using natural language to describe this

Succinic acid

...

Protein
Succinylation

Prolyl
4-hydroxylase

subunit alpha-3
Hypoxia-inducible 

factor 1-alpha Interleukin-1 beta

Label Description Type
Succinic acid is a dicarboxylic acid. The anion, succinate, is a component of the citric acid cycle ca-
pable of donating electrons to the electron transfer chain. Succinate dehydrogenase (SDH) plays an 
important role in the mitochondria, being both part of the respiratory chain and the Krebs cycle ...

Succinic acid

Hypoxia-inducible 
factor 1-alpha

Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic
conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporte-
rs, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose ...

     Production Inhibition

Succinic acid, or its anion succinate, can leave the mitochondria and can directly inhibit the prolyl 4-hydroxylase subunit 
alpha-3 protein, which then allows for additional activation of the hypoxia-inducible factor 1-alpha (HF-1α). The higher levels 
of HF-1α enhance the expression of genes, including those for interleukin-1 beta (IL-1β). Succinic acid is also necessary for 
the succinylation of proteins, leading to changes in their structure and function.

Chemical

Macromolecule

... ... ...

Input: graph

Output: description

Figure 1: An example of a pathway and its description
in our dataset. Each pathway is a heterogeneous graph
containing different node types and edge types. Each
node has three features: textual label, textual descrip-
tion and node type. For Graph2Text task, the input is
the graph and the output is the graph description.

pathway graph is of great importance for scientific
communication and further promotes applications
in complex disease research (Whirl-Carrillo et al.,
2012, 2021). To date, these descriptions are almost
entirely curated manually by domain experts, thus
substantially slowing down downstream biomedi-
cal applications (Naithani et al., 2019). Neural text
generation has shown promising results in many
applications (Bowman et al., 2016; Sutskever et al.,
2014; Song et al., 2020; Brown et al., 2020; Raf-
fel et al., 2020; Lewis et al., 2020). Among them,
Graph-to-Text (Graph2Text) generation, such as
AMR-to-Text (Song et al., 2018; Marcheggiani and
Perez-Beltrachini, 2018; Fan and Gardent, 2020),
and Knowledge-Graph-to-Text (Colas et al., 2021;
Wang et al., 2021), is most similar to pathway de-
scription generation. Therefore, we hypothesize
that neural text generation could also be a solu-
tion here. To fill in the gap, we first propose a
novel biomedical pathway description dataset Path-
way2Text, which contains 2,094 pairs of pathway
and description. Each description is written by
domain experts, describing the function and prop-
erty of this pathway. In contrast to many other
Graph2Text datasets (Banarescu et al., 2013; Co-
las et al., 2021) that use automatic approach to
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extract the graph from the text, pathways in our
dataset are all experimentally measured or manu-
ally curated, presenting a high-quality structured
data corresponding to the textual description. To
the best of our knowledge, Pathway2Text is the
first large-scale dataset studying the problem of
biomedical pathway description generation.

One unique feature of our dataset is the rich tex-
tual information on each node in the graph. Specif-
ically, each node is associated with a node type, a
concise textual label and a detailed textual descrip-
tion. In contrast, many other Graph2Text datasets
only have a short textual label or a fixed-size feature
vector on each node (Belz et al., 2011; Banarescu
et al., 2013; Gardent et al., 2017; Jin et al., 2020;
Wang et al., 2021). We found that conventional
graph neural network architectures were unable to
fully exploited these rich node features, resulting
in less accurate graph description generation. We
therefore propose kNN-Graph2Text, which explic-
itly incorporates descriptions of similar graphs into
the definition generation process. In particular, our
method first calculates a description-guided graph
embedding and then finds similar graphs for a test
graph based on these embeddings. After that, the
new description is generated by jointly considering
the description of neighbors and the graph structure
using a multi-head attention framework (Vaswani
et al., 2017).

We evaluated kNN-Graph2Text on our dataset
and observed substantial improvement over conven-
tional graph neural network architectures as well
as methods that do not fully utilize the heteroge-
neous node features. We next demonstrated that
our dataset can be used to study the reverse task
of Text2Graph. In particular, we investigated how
graph description can enhance the performance
of link prediction and node classification, and ob-
tained accuracy of 0.781 in link prediction and
accuracy of 0.352 in node classification. Moreover,
our dataset can be used as a novel benchmark for
biomedical name entity recognition by extracting
the ground truth entity types according to the anno-
tated node types. Collectively, our dataset and our
method present the first study in automatic biomed-
ical pathway description generation. We envision
Pathway2Text to be an important benchmark for
general Graph2Text methods and facilitate down-
stream biomedical applications.

2 Dataset Description

We collected biomedical pathways and their as-
sociated textual descriptions from three biomedi-
cal databases: Reactome (Gillespie et al., 2022),
KEGG (Kanehisa et al., 2017), and Pathbank (DS
et al., 2020). We excluded any pathway that is a
subgraph of another pathway to avoid data leak-
age. After further excluding duplicate pathways
and pathways that do not have textual description,
we obtained 2,094 pairs of pathway and descrip-
tion. An example is shown in Figure 1. Each
textual description is a few sentences describing
functions and structures of the pathway. The textual
description has on average 127.1±104.6 words and
7.5±5.5 sentences. Each pathway can be viewed
as a heterogeneous graph that contains different
types of edges and nodes. There are 8 edge types
and 6 node types in the entire dataset, where each
pathway has on average 3.1±1.2 edge types and
4.2±1.8 node types. Each node type (e.g., chem-
ical) has a large number of specific classes (e.g.,
succinic acid). Each class is associated with a con-
cise textual label and a detailed textual description.
The average length of the textual description is
153.7 words. We refer to the class description as
the node description and the pathway description
as the graph description throughout the paper. Each
pathway has on average 64±53 nodes and 68±78
edges. In summary, there are four data fields for
each pathway description pair: graph description,
graph structure, node description and node label.

-0.0 0.2 0.4 0.6 0.8 1.0
Description similarity

-0.1

0.1

0.3

0.5

0.7

0.9

Pa
th

wa
y 

sim
ila

rit
y

Correlation = 0.35
de

ns
ity

Figure 2: Scatter plot showing the consistency between
graph-based representation similarity and description-
based representation similarity. Each dot is a pair of
graphs.

To examine the feasibility of conducting
Graph2Text and Text2Graph tasks using our
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dataset, we examined the consistency between
graph similarity and description similarity (Figure
2). We used GAT (Veličković et al., 2018) to embed
each graph into a dense representation. We also
obtained a dense representation for each graph de-
scription using BioBERT (Lee et al., 2020). For ev-
ery two graphs, we calculated one similarity score
based on their graph-based representations and an-
other similarity score based on their description-
based representations. We observed a Pearson cor-
relation 0.35 between these two similarity scores,
reflecting a substantial consistency between these
two similarity metrics. This indicates that graphs
with similar structure tend to have similar textual
descriptions, suggesting the possibility to generate
textual description using the graph structure and
vice versa.

3 Task Description

We aim to generate the textual description for
a given biomedical pathway graph and gener-
ate the biomedical pathway graph from a given
textual description. Let D = {DG ,DS} =

{(Gi, Si)}Ni=1
dist∼ P(G,S) be a dataset of paired

pathway and its textual description. Each pathway
is a directed graph G = (V,E, F ), where V repre-
sents the set of nodes, E ⊆ V × V represents the
set of edges, and F represents node features. Since
each pathway is a heterogeneous graph, we refer to
pathway as graph in this paper.

One unique property of the graphs in our dataset
is the rich node features F = {g, t, d}. In partic-
ular, each node v is associated with three features
gv, tv, and dv. gv ∈ {0, 1}nc is a one-hot vector
representing the node type of v. gi

v = 1 if node v is
type i. tv ,

〈
t1v, t

2
v, . . . , t

|tv |
v

〉
is the textual label

of node v. dv ,
〈
d1v, d

2
v, . . . , d

|dv |
v

〉
is the textual

description of node v. tiv ∈ C and div ∈ C, where
C is the vocabulary. In practice, the textual label
is often a phrase and the textual definition is a few
sentences. As a result, |dv| is often much larger
than |tv|. Each edge is associated with an edge
type r ∈ R, where R is the set of edge types in the
dataset. Each graph description is a token sequence
defined as S ,

〈
S1, S2, . . . , S|S|

〉
, where Si ∈ C.

We use an inductive learning framework in
our experiment. The whole dataset D is ran-
domly divided into Dtrain = {(Gi, Si)}|Dtrain|

i=1

and Dtest = {(Gi, Si)}Ni=|Dtrain|+1. For each task,
we train our model on Dtrain and evaluate its per-

Multi-head Attention

GNN Transformer

kNN

BioBERT

GNN

Fix Graph
embedding

Node
embedding

Description
embedding

Description of 
similar graphs

Final generation

Transformer

Succinic acid, or it succinate, can make mitochondria as expression ... 
Succinic acid, or it succinate, can make mitochondria as expression ... 

Succinic acid, or it succinate, can make mitochondria as expression ... 
Succinic acid, or it succinate, can make mitochondria as expression ... 

Succinic acid, or it succinate, can make mitochondria as expression ... 
Succinic acid, or a succinate, can make mitochondria as expression ... 

Succinic acid, or its anion succinate, can leave the mitochondria     and
Succinic acid, or its anion succinate, can leave the mitochondria and ...

...... ...

The Krebs cycle, also known as the citric acid cycle (CAC) or tricarbo-
xylic acid cycle (TCA cycle) occurs in the mitochondria, and it involves 
the oxidation of acetyl-CoA from glycolysis to form molecules of ATP, 
as well as NADH, which will later be used to form more ATP. Interm ...

Step 1

Step 2

Description in training data

Figure 3: Flow chart of our two-step approach kNN-
Graph2Text. In the first step, we learnt a representation
for each graph by projecting graphs to descriptions. In
the second step, we find similar graphs for a test graph
and jointly use descriptions of similar graphs and node
embeddings of the test graph to generate the final de-
scription.

formance on Dtest. Graph G and textual descrip-
tion S are always observed for the training data.
We define three tasks based on the unobserved in-
formation in the test data as follows:
Graph2Text. The input of this task is a graph G.
All node features are observed on this graph. The
output is the description text S for this graph.
Text2Graph link prediction. This task aims to
predict missing links in a test graph. The inputs
are graph description S, all node features F and a
subset of edges {e} in the graph G. For a test edge
eu,v ∈ V × V − {e}, our goal is to classify eu,v
into a specific edge type r ∈ R.
Text2Graph node classification. This task aims
to classify each test node into a specific node type
in graph G. We split nodes in G into training nodes
and test nodes. For training nodes, we observed
all node features F , including textual label, textual
description and node type, whereas none of these
features is observed for the test node. We also
observed the graph description S for G. Instead of
predicting the node type, we aim at predicting the
specific textual label, which is a more challenging
task. We form this problem as a node classification
task instead of textual generation.

4 Methods

4.1 Graph2Text
The overall framework of our method is shown in
Figure 3. We propose a two-step approach. In
the first step, we embed each graph into a dense
representation through jointly considering its graph
structure and node features. In the second step,
we use the learnt graph embeddings to find sim-
ilar graphs for each test graph and then leverage
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the description of these similar graphs to help the
generation.

4.1.1 Description guided graph embedding
One unique property of our dataset is the rich tex-
tual features on each node. We hypothesize that
unsupervised graph embedding methods might be
unable to fully exploit these textual features. There-
fore, we first use a supervised approach to obtain
graph embeddings. Since we don’t have any class
label for each graph, we treat the graph descrip-
tion as the pseudo label in the supervised learning
framework to embed graphs.

In particular, we learn an encoder Enc that
projects the graph G into a dense representation
hG, and then a decoder Dec that maps this repre-
sentation into the textual description S. The de-
coder will be discarded in the second step, while
the encoder will be used to obtain the representa-
tion of an input graph.

Our encoder could be any existing graph neu-
ral network architectures (Kipf and Welling, 2017;
Veličković et al., 2018; Xu et al., 2019). We first
use a pretrained language model BioBERT to en-
code the textual label tv and the description dv of
each node v into a dense vector tv and a dense
vector dv, and fuse them to get the initial node
embedding for node v:

h0
v = RELU([tv||dv]W), (1)

where W represents a trainable parameter matrix
and || is the concatenation operation.

We then propagate this embedding on the graph
using a chosen graph neural network architecture,
which learns representation of node v through it-
eratively updating it with neighbors’ information
hl
N (v) as:

hl
N (v) = AGG({(hl−1

u , eu,v)|u ∈ N (v)}),

hl
v = UPDATE(hl−1

v ,hl
N (v)),

(2)

where Nv denotes the set of neighbors for v. AGG
and UPDATE are the aggregation and the update
function of the specific graph neural network archi-
tecture. We studied the performance of using GIN,
GCN and GAT as the neural network architecture
in our experiments.

After L iterations, the final embedding hL
v can

be used to represent the local subgraph comprising
node v’s L-hop neighbors. Next, for each node, we
concatenate its node embeddings from all layers
to fuse the information from different ranges of
neighbors. We then calculate the graph-level repre-

sentation by applying a READOUT function to the
concatenated node embedding:

hv = [h1
v‖h2

v‖ · · · ‖hL
v ]W,

hG = READOUT({hv}v∈V ).
(3)

Our decoder is a Transformer based on the pre-
trained BioBERT. It generates textual description
conditioned on hG:

P (Ŝi|hG) = Dec(hG, S
1,...,i−1). (4)

Finally, the decoder Dec and the encoder Enc are
trained jointly using the following loss function:

L1 = − 1

|Dtrain|
∑

(G,S)∈Dtrain

∑
Si∈S

logP (Si|hG)

|S|
.

(5)

4.1.2 Exploiting descriptions of similar
graphs in generation

The above encoder-decoder framework could al-
ready be used to generate the description for a given
test graph. However, we observed that such gener-
ations were not of great quality in our experiment,
partially due to the poor utilization of the node
textual features. We thus propose to train a new
decoder by leveraging the descriptions of similar
graphs.

We first use hGi to find k similar graphs in the
training data:

disij = ‖hGi − hGj‖2F ,
S̄i = ‖

Gj∈kNN(Gi)

(Sj),
(6)

where Sj is the description for k nearest graphs
measured by disij . We then embed neighbor’s de-
scription S̄i into a dense representation s̄i using
BioBERT:

〈s̄ji 〉 = BioBERT(S̄i)W,

s̄i = Maxpooling(〈s̄ji 〉).
(7)

Next, we use multi-head attention framework
to calculate a new dense representation va

s based
on description embedding s̄i and 〈s̄ji 〉, and a new
dense representation va

g based on graph embedding
hG and {hv}as:

sa(u,vi, V ) =
exp(Qa(u)TKa(vi))∑

vj∈V exp(Qa(u)TKa(vj))
,

Attentiona(u, V ) = LeakyReLU(
∑

vi∈V sa(u,vi, V )vi),

va
g = Attentiona(hG, {hv}),

va
s = Attentiona(s̄i, 〈s̄ji 〉),

(8)
where a ∈ {1, . . . , A} indicates the attention head
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number. Qa is a projection function mapping a
vector to the query space, which is defined as
Qa(v) = tanh(vQa), where Qa represents a train-
able parameter matrix. Similarly, we useKa to map
a vector to the key space.

Finally, we concatenate the new graph embed-
ding va

g and new description embedding va
s , and

use a pretrained Transformer as the decoder to gen-
erate textual content:

V = [v1
g || · · · ||vA

g ||v1
s || · · · ||vA

s ],

P (Ŝi|V) = Dec(V, S1,...,i−1).
(9)

Since we didn’t use the position embedding in the
input of the Transfomer encoder, it implicitly per-
forms cross attention between graph and descrip-
tion. The loss function is finally defined as:

L2 = − 1

|Dtrain|
∑

(D,S)∈Dtrain

∑
Si∈S

logP (Si|V)

|S|
.

(10)

4.2 Text2Graph

For Text2Graph, we studied link prediction and
node classification.
4.2.1 Link prediction
To predict the edge type between node u and node
v on graph G, we used the node embedding hu,
node embedding hv and the graph description S as
the input features. We first define the edge feature
wu,v and the graph description feature 〈sji 〉 as:

〈sji 〉 = BioBERT(Si)W,

wu,v = [hu||hv].
(11)

Then we use the same attention mechanism as in
Equation. 8 to obtain a new embedding h from
these two features and define the predicted distri-
bution P (r̂u,v|eu,v) for edge type r as:

h = Attention(wu,v, 〈sji 〉),
P (r̂u,v|S) = softmax(MLP([hu||hv||h])).

(12)

Here, MLP is a multi-layer perceptron. The final
training loss is defined as:

L3 = − 1

|Dtrain|
∑

(G,S)∈Dtrain

∑
eu,v

P (ru,v|S)

|{eu,v}|
.

(13)

4.2.2 Node classification
To classify a test node v, we applied a similar at-
tention mechanism on its node embedding hv and
graph description feature 〈sji 〉 as:

〈sji 〉 = BioBERT(Si)W,

h = Attention(hv, 〈sji 〉).
(14)

We then define the predicted label distribution and
loss function accordingly as:

P (t̂v|S) = softmax(MLP([hv||h])),

L4 = − 1

|Dtrain|
∑

(G,S)∈Dtrain

∑
v

P (tv|S)

|{v}|
. (15)

5 Results

5.1 Experimental setup

For Graph2Text, we randomly split the graph de-
scription pairs into 75% training pairs and 25%
test pairs. We used a fixed Transformer encoder
in BioBERT and initialized the GNN with xavier
initialization. We used a learning rate 5e-5. We
found that this method performed better than using
a fixed Transformer and warming GNN before the
training. We used GAT (Veličković et al., 2018),
GCN (Kipf and Welling, 2017) and GIN (Xu et al.,
2019) as different graph encoders. The hidden state
embedding dimension was set to 128 for GAT and
512 for others. The number of heads of GAT was
set as 4. AGG and UPDATE functions were imple-
mented according to the original papers. Global
mean pooling was used as the READOUT function.
Since Transformer can hardly generate more than
512 tokens, we calculated the loss functions and
evaluated the generation only on the first 3 sen-
tences, which have an average token length 69±23
(maximum token length is 471). However, the en-
tire text was used as the input in all tasks through
the attention mechanism, and we set the attention
head number A = 128. We set k to 1 in the kNN
framework. We focused on the 1,173 pathway from
Pathbank (DS et al., 2020) in our experiments.

For Text2Graph node classification, we ran-
domly split the graph and description pairs into
75% training pairs and 25% test pairs. We sam-
pled 10% nodes as the test node in each graph.
In Text2Graph link prediction task, we varied the
proportion of the test set (10%, 30%, 50%, 70%,
90%). We sampled 40% edges for each graph and
the same number of edges from the complementary
graph as the test edge. In link prediction and node
classification, we only used GAT since it obtained
the best performance in Graph2Text. We set the
learning rate to 5e-4. We used Adam optimizer for
all optimizations.

In Graph2Text task, we compared our meth-
ods to supervised graph neural network which
jointly trains a graph neural network and a trans-
former. We denote them as GNN (des.), GNN



6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

a b c

MLP GIN GCN GAT

0.10

0.15

0.20

0.25

0.30

0.35
BL

EU
kNN-Graph2Text (Ours)
kNN-Transformer
GNN (des. + label)
GNN (des.)
GNN (label)
GNN (structure only)

0.3 0.4 0.5 0.6 0.7 0.8
Without graph (F1 score)

0.3

0.4

0.5

0.6

0.7

0.8

W
ith

 g
ra

ph
 (F

1 
sc

or
e)

No arc

Catalysis

Stimulation

Logic arc

Inhibition

ConsumptionProduction

Belong to

0.5 0.6 0.7 0.8
Without description (F1 score)

0.5

0.6

0.7

0.8

W
ith

 d
es

cr
ip

tio
n 

(F
1 

sc
or

e) No arc

Catalysis

Stimulation

Logic arc

Inhibition

Consumption
Production

Belong to

Figure 4: Performance of our method on Graph2Text and Text2Graph link prediction. a, Bar plot comparing
our method and baselines using different graph neural network architectures on Graph2Text. b, Scatter plot com-
paring the F1 score of using the graph structure to the F1 score of without using the graph structure. Each dot is
one edge type. c, Scatter plot comparing the F1 score of using the graph description to the F1 score of without
using the graph description. Each dot is one edge type.

(label),GNN (des. + label) and GNN(structure
only) based on the node features used. In partic-
ular, GNN (des.) uses textual description as node
feature. GNN (label) uses textual label as the node
feature. GNN (des. + label) uses both textual label
and description as the node feature. We also com-
pared to a kNN-Transformer model which trained
a transformer using descriptions of similar graphs
to the final description. Different GNN architec-
tures are used to identify nearest neighbors in kNN
based on the graph information.

5.2 Graph2Text

We sought to evaluate the performance of our
method on the task of Graph2Text (Figure 4a, Ta-
ble 1). Overall, we found that our method achieves
the best performance on all metrics (0.304 BLEU-
1 score, 0.238 METEOR, 2.3 NIST, and 0.243
ROGUE-L), demonstrating the effectiveness of
jointly modeling graph structure, node description
and node label. We first compared our method to
graph neural network, which performed the first
step of our framework and used concatenated node
embeddings instead of single graph embedding as
the input to Transformer. We observed substantial
improvement over it on all three kinds of graph
neural networks, indicating the importance of re-
training using descriptions of similar graphs. We
also observed that our method was better than kNN-
Transformer, reflecting how our description-guided
graph embeddings enhance the description genera-
tion.

To further understand the importance of each
type of node feature, we evaluate the variants that
only consider node description or node textual la-
bel (Figure 4a). We found that the performance of

Method BLEU1 BLEU2 BLEU3 METEOR NIST ROUGE-L
GNN (structure only) 14.8 2.3 0.8 12.1 0.8 20.0

GNN (des.) 18.7 2.5 0.8 11.7 1.1 16.5
GNN (label) 21.1 4.2 1.3 13.1 1.2 17.1

GNN (des. + label) 27.2 12.1 11.0 20.7 2.0 25.0
kNN-Transformer 26.9 12.3 10.7 20.5 1.9 24.2

kNN-Graph2Text (Ours) 30.4 14.5 12.2 23.8 2.3 25.3

Table 1: Comparison on Graph2Text using different
metrics.

both variants dropped substantially, demonstrating
the importance of both node textual label and node
description. We further observed that the improve-
ment of our method was consistent when using
other graph neural network architectures, including
GIN and GCN, demonstrating the robustness of our
method. When replacing GAT to a multi-layer per-
ception that cannot model the graph structure, the
BLEU score of our method dropped substantially
from 0.304 to 0.182, again confirming the necessity
of considering the graph structure in this task.

5.3 Text2Graph

We next investigated the performance on the task
of Text2Graph. Here, we studied two classic graph
prediction tasks: link prediction and node classi-
fication. We summarized the performance of link
prediction in Figure 5a. We obtained an average of
0.781 accuracy score across 8 different edge types,
demonstrating an accurate prediction of the graph
structure using the graph description. We further
examined the effect of using the graph description
in Figure 4c and observed that all 8 edge types
had better F1 score when the graph description was
used. We observed the same improvement of using
the graph description when evaluated using the ac-
curacy. We also performed the ablation study for
the graph structure and observed similar improve-
ment Figure 4b. These results collectively confirm
that our method can generate the graph structure
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Figure 5: Performance on Text2Graph link prediction, node classification and name entity recognition. a, Bar
plot showing the ablation studies on using the graph description and using the graph structure on link prediction.
b, Box plot showing the comparison between using the graph description and without using the graph description
on node classification. c, Bar plot showing the performance of name entity recognition on chemical and protein on
our dataset.

based on the graph description, offering biologists
novel insights in pathway analysis.

We then studied the performance of node classi-
fication. We considered three most frequent node
types in our dataset: macromolecule, multimer
and chemical. For each node type, we formed the
node classification task as a multi-class classifica-
tion problem, where each test node is classified
into a specific class defined by the textual label.
We noticed that each node type has a large num-
ber of classes. Therefore, we first evaluated two
naive baselines: random guess and majority vote.
Random guess obtained 0.0009 average accuracy,
while majority vote obtained 0.046 average accu-
racy, suggesting a challenging classification task.
Our method obtained a desirable classification per-
formance, which was substantially higher than the
performance of the variant that does not consider
the graph description (Figure 5b). The improve-
ment of using graph description on both node clas-
sification and link prediction further confirm that
our dataset could be a promising benchmark for
Text2Graph task.

6 Application to Name Entity
Recognition

Name entity recognition (NER) is essential in
detecting chemicals, genes, and diseases from
biomedical text (Lu et al., 2015; Leaman et al.,
2016; Luo et al., 2018; Kim et al., 2019; Yoon et al.,
2019), and further facilitating downstream bioNLP
applications, such as relation extraction(Xing et al.,
2020). A major bottleneck in NER is the lack of
curated benchmarks since such curation often re-
quires substantial domain expertise. Our dataset
Path2wayText can be used as a novel curated bench-

mark for NER.
Specifically, we used the graph description as the

sentences that one wants to perform NER. We then
obtained the ground truth entity type of phrases
in these sentences according to their curated node
types in the graph. Since the graphs, including all
node types, are curated by domain experts, such
node types can be used as the ground truth entity
types for NER. Here, we focused on two most fre-
quent entity types in our dataset: protein and chem-
ical. We noticed that some phrases in the graph
description sentences might also be a protein or
chemical, even though they were not curated in the
graph. We excluded such phrases in the evalua-
tion in order to maintain the quality of our NER
benchmark.

To this end, we obtained the graph-based cura-
tion of 8,779 protein entities and 1,621 chemical
entities, offering a good complementary to exist-
ing biomedical NER datasets (Smith et al., 2008;
Lu et al., 2015). To further investigate the perfor-
mance of our novel NER datasets, we tested a few
state-of-the-art biomedical NER methods, includ-
ing BERN (Kim et al., 2019), CollaboNet (Yoon
et al., 2019), Multi-BioNER (Wang et al., 2019),
and NeuroNER (Dernoncourt et al., 2017). We
observed that NeuroNER obtained the best perfor-
mance on protein and Multi-BioNER achieved the
best performance on Chemical (Figure 5c). More-
over, existing approaches only consider the graph
description sentences when labelling entity types.
In addition to graph description, our dataset also
contains the corresponding graph structure, which
has been shown to be critical in graph description
generation in our experiments. Therefore, we hy-
pothesize that graph structure might be also helpful
in NER, and envision our dataset to be an important
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resource for benchmarking graph-based NER meth-
ods (Radford et al., 2015; Rijhwani et al., 2020; He
et al., 2020; Nie et al., 2021).

7 Related Work

Graph2Text, which aims at generating a textual de-
scription for a structured graph, has attracted atten-
tions in different applications. Existing Graph2Text
datasets aims to generate text from RDF data
(Gardent et al., 2017), knowledge graph (Koncel-
Kedziorski et al., 2019; Jin et al., 2020; Cheng et al.,
2020; Colas et al., 2021; Wang et al., 2021), street
view map (Schumann and Riezler, 2021), Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013; Marcheggiani and Perez-Beltrachini, 2018;
Song et al., 2018; Ribeiro et al., 2019; Zhu et al.,
2019; Hajdik et al., 2019; Damonte and Cohen,
2019; Mager et al., 2020; Zhang et al., 2020; Zhao
et al., 2020; Fan and Gardent, 2020; Wang et al.,
2020), terminology ontology (Liu et al., 2021) and
graph-transduction grammars (Belz et al., 2011;
Mille et al., 2019, 2020). Our dataset is the first
Graph2Text dataset that focuses on biomedical
pathway generation. In addition, our dataset has
more complicated node features than many exist-
ing Graph2Text datasets, where each node in our
dataset has a node type, a concise textual label and
a detailed textual description.

Text2Graph can be viewed as an information
extraction task, which aims at mining structured
knowledge from free text. The datasets that are
more relevant to our task could be generating a
knowledge graph from long document (Kertkeid-
kachorn and Ichise, 2017; Bosselut et al., 2019;
Kannan et al., 2020; Wu et al., 2020). Many of
these existing datasets use automatic annotation to
extract the graph information from corpus (Kertkei-
dkachorn and Ichise, 2017; Bosselut et al., 2019),
which might introduce bias and data leakage from
the extraction method. In contrast, graphs in our
dataset are either experimentally derived or manu-
ally curated, presenting a high-quality complemen-
tary to existing Text2Graph datasets.

8 Conclusion and Future work

We have presented a novel dataset Pathway2Text
for biomedical pathway description generation.
Our dataset contains 2,094 pairs of curated path-
way and its associated description. To generated
description for biomedical pathways, we have pro-
posed a kNN-Graph2Text approach, which utilizes

neighbor’s description to enhance the text gener-
ation. We have extensively evaluated our method
and observed substantial improvement in compar-
ison to conventional graph neural network archi-
tectures. Furthermore, we have investigated the
reverse task of Text2Graph and illustrated how our
dataset can serve as a novel benchmark for biomed-
ical NER.

In addition to Graph2Text, Text2Graph and NER,
our dataset can also be used to investigate other
important applications. For example, our dataset
can be used as a relation extraction benchmark
by regarding graph descriptions as sentences and
graph edge types as the ground truth relation type.
We can also use our dataset to study other graph-
based tasks, such as generating node description
given the graph structure and the graph description.
Another interesting application is to identify the
importance of each node in the graph, which has
important applications in recommender system and
social media. The order of mentions of each node
in the graph description can be used to evaluate the
node importance since the graph description often
starts from the most important node.

From a methodological perspective, we plan to
develop semi-supervised approaches to leverage
many other biomedical pathways that currently
do not have curated description. For example,
we can train a Graph Transformer (Cai and Lam,
2020) on these unlabelled pathways and then fine-
tune the model on pathways with graph descrip-
tion. We also want to explore other geometric em-
bedding methods, such as hyperbolic embedding
(Cvetkovski and Crovella, 2009) and spherical em-
bedding (Meng et al., 2019, 2020), since biomedi-
cal pathways often form a hierarchical structure.

More importantly, our dataset could also open
up new venues in biomedical research. Any com-
putational biology tools that utilize biomedical
pathways as features in their pipeline can exploit
the graph description as additional features. For
biomedical pathways that do not have the corre-
sponding description, one can use the description
generated by our kNN-Graph2Text as the feature.
We envision this will substantially advance a wide
range of biomedical research that involves path-
way analysis, and our dataset will introduce other
new text generation tools developed in the NLP
community to broader audience in biomedicine.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
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