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Abstract

AI is transforming scientific discovery, yet researchers face a fragmented, fast-
moving field of AI that lacks stable, strategy-level guidance for method selection
and integration. In this study, we introduce the AI for Science Strategic Compass
(AFSC), a compact decision framework that aligns four cross-domain scientific-
discovery tensions (Complexity, Constraint, Scarcity, Explosion) with six core AI
functions (Represent; Reason & Infer; Optimize & Control; Simulate & Emulate;
Generate & Create; Autonomize & Orchestrate) via a 6×4 Strategy Matrix. We
adopt a function-based typology that is domain-agnostic and comparatively stable
under ongoing methodological change, enabling direct alignment with these ten-
sions and yielding decision-relevant guidance. Each cell is labeled with a keyword
that captures the shared mitigation logic and lists three strategic pathways linked
to representative method families. Pathways are anchored to a function-internal
atomic triad, stabilizing the vocabulary as techniques change. Automated corpus
audits validate the framework’s scope: the four tensions collectively cover all
sampled abstracts across six natural science domains, and the six functions account
for 98.9% of capabilities reported in recent AI papers. AFSC shifts selection
from tool-driven browsing to strategy-first planning, lowering cognitive load and
remaining portable across domains. We illustrate its use with an exoplanet spectral
retrieval case study that demonstrates systematic integration of complementary AI
approaches across functions to address multiple research tensions.

1 Introduction

Artificial intelligence is reshaping scientific research by accelerating discovery, extracting structure
from complex data, and extending the frontier of testable hypotheses and designs [Wang et al., 2023a,
Boiko et al., 2023a, Reddy and Shojaee, 2025, Canty et al., 2025, Rapp et al., 2024]. However, the AI
knowledge base evolves faster than disciplinary curricula, terminology is fragmented across subfields,
and many laboratories, particularly those without formal AI training, lack a strategy-level guide that
links specific scientific problems to appropriate AI capabilities.

Generic AI surveys synthesize broad method families by learning paradigm, modality, or architecture
and have established a shared vocabulary for the field [Gui et al., 2024, Zha et al., 2025, Xu et al.,
2023]. Yet their AI-centric vantage point is often either too abstract to inform concrete choices in a
laboratory or so technical that it raises cognitive load rather than lowering it. Domain-specific reviews
translate techniques into a single scientific context and improve local relevance [Ma et al., 2024,
Hasselgren and Oprea, 2024, Smith and Geach, 2023], but they narrow methodological coverage
and embed assumptions about data, resources, and metrics that hinder transfer across fields. Proce-
dural frameworks and evaluation methodologies add rigor through phases, roles, and metrics (e.g.,
39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The Reach and Limits
of AI for Scientific Discovery.



[Tekinerdogan, 2024, Cappello et al., 2025]), yet they typically presuppose specialized infrastructure
and address bounded scenarios, offering little cross-domain strategic guidance. Autonomous and
closed-loop systems demonstrate impressive end-to-end capability and throughput [Szymanski et al.,
2023a, Koscher et al., 2023, Wang et al., 2025], but they showcase solutions rather than provide
general criteria for prioritizing and integrating AI under local constraints. In short, the literature
remains fragmented and cognitively demanding; decision science suggests that complex dynamic
settings require simplified but principled frames for strategy [Simon, 1955, Gigerenzer and Selten,
2002].

We present the AI for Science Strategic Compass (AFSC), a compact, function-based framework
that aligns what science needs with what AI can do. AFSC organizes the AI landscape into six core
functions and aligns each with four universal scientific-discovery tensions, instantiating a 6×4 Strategy
Matrix in which every cell names a shared mitigation logic and offers three strategic pathways linked
to representative method families. To establish scope and coverage, we validate the tensions and
functions with automated corpus audits: the four tensions collectively cover all sampled abstracts
across six natural-science domains, and the six functions account for nearly all capabilities reported
in recent AI papers. By abstracting from algorithms to functions and anchoring each pathway in an
atomic layer of three minimal, mutually exclusive and collectively exhaustive (MECE) categories
per fuction, AFSC lowers cognitive load [Sweller, 2011] while preserving theoretical rigor, yielding
guidance that remains stable as techniques evolve.

2 Four universal research tensions

We treat four system-intrinsic barriers to scientific discovery as the problem descriptors to which
the Compass aligns AI functions. For clarity we use their full names and adopt short labels for
later reference. System Complexity (Complexity) is the intrinsic structural intricacy that makes
modeling, explanation, and generalization difficult even when data are abundant; it encompasses high
dimensionality, tightly coupled variables, nonlinear or chaotic interactions, emergence, non-stationary
shifting, and multiscale or multimodal signals. Experimental Constraint (Constraint) is the set of
limits on running empirical trials that slow or cap evidence acquisition; typical causes include high
per-trial cost or long cycle times, safety or irreversibility that undermines repeatability, physical
inaccessibility, and low throughput or limited parallelism. Data Scarcity (Scarcity) is a shortfall
of sufficiently informative and reliable evidence relative to problem difficulty; it includes few-shot
regimes, rare or inaccessible phenomena, weak or missing labels, noisy or biased curation across
heterogeneous sources, and incomplete or inconsistent records. Combinatorial Explosion (Explosion)
is the exponential growth of design, parameter, configuration, or solution spaces that render exhaustive
search infeasible in discrete, continuous, or mixed settings. The four tensions are orthogonal in intent
and collectively exhaustive at a coarse granularity.

To test cross-domain coverage, we sampled 3,000 abstracts from top journals across six domains
in 2021–2025 via the Crossref REST API (DOI-deduplicated) [Crossref, 2025]. For each ab-
stract, an LLM via the OpenAI API (model: gpt-5-mini) generated 1–3 bottleneck hypothe-
ses [OpenAI, 2025]; sentence-level evidence was retrieved with Okapi BM25 [Robertson and
Zaragoza, 2009], and hypothesis–evidence entailment was scored by a DeBERTa-v3 cross-encoder
(cross-encoder/nli-deberta-v3-base) using MNLI-style templates [He et al., 2021, Reimers
and Gurevych, 2019, Wolf et al., 2020, Williams et al., 2018]. We used a no-abstention Top-2
policy to emphasize coverage and logged (evidence, hypothesis, probability) per label for auditabil-
ity. Top-2 coverage was 100% (OTHER=0), and the most common co-occurrence is Complexity +
Scarcity (65.9%). These results are consistent with the tensions being domain-general and collectively
exhaustive at coarse granularity.

3 Six core AI functions and their dependencies

We structure the Compass around six domain-agnostic AI functions at an intermediate level of
abstraction because this is the only granularity that can be aligned with research tensions while
remaining stable as individual AI methods evolve. Representation encodes raw, heterogeneous inputs
into structured or latent states; Reason & Infer operates on those states to produce explicit constraints,
causal–probabilistic relations, and calibrated beliefs; Optimize & Control selects actions or designs
under stated objectives and constraints, either open-loop or in closed-loop policy control; Simulate
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Figure 1: AI core function ontology: a two-level capability framework. The upper level lists the
functions; the lower level shows, for each function, its three atomic categories obtained by crossing
two intrinsic binary axes. Minimal prerequisite structure: Representation → Reason & Infer →
{Optimize & Control, Simulate & Emulate, Generate & Create} → Autonomize & Orchestrate.
Optional lateral compositions among Optimize, Simulate, and Generate are omitted; dependencies
are functional rather than temporal. High-resolution, citable version: https://doi.org/10.5281/
zenodo.17669687

& Emulate reproduces dynamics to forecast, test counterfactuals, and run virtual experiments using
first-principles solvers, data surrogates, or hybrids; Generate & Create synthesizes candidate data,
artefacts, or designs conditioned on prompts or goals; Autonomize & Orchestrate composes and
supervises these capabilities in end-to-end workflows. Each function further decomposes into a triad
of atomic capability categories obtained by crossing two intrinsic binary axes; these atomic triads give
each function a minimal, MECE internal structure and later serve as anchors for strategic pathways.

The functions and their atomic triads form a minimal prerequisite chain (Fig. 1). Raw signals must be
encoded before they can support inference; separating representation from reasoning is standard in
cognitive and information-processing theory [Marr, 1982, Ackoff, 1989]. Reasoning then supplies
what downstream modules require (explicit objectives and constraints for optimization and closed-
loop control, and governing equations or learned dynamics for simulation), so Reason & Infer is
a prerequisite for Optimize & Control and Simulate & Emulate [Åström and Murray, 2008, Raissi
et al., 2019]. Similarly, generative synthesis depends on targets or priors made explicit by reasoning,
making Generate & Create downstream of Reason & Infer. Workflow autonomy is meaningful only
once decisions or policies, forecasts or trajectories, and candidate artefacts or hypotheses exist to be
scheduled and supervised; accordingly, Autonomize & Orchestrate depends on Optimize & Control,
Simulate & Emulate, and Generate & Create. Lateral exchanges among Optimize, Simulate, and
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Generate are common in practice but are optional compositions rather than logical prerequisites;
when they occur, Reason & Infer typically mediates scoring, constraint checking, and calibration.

To assess coverage of the six-function taxonomy on recent AI papers, we stratified arXiv (2019–
2025) by subfield and year, downloaded PDFs, and mined Methods/Contributions/Evaluation pas-
sages. For each function, we retrieved candidate passages with BM25 (curated lexicon) [Robertson
and Zaragoza, 2009] and scored function–passage entailment using a DeBERTa-v3 cross-encoder
(cross-encoder/nli-deberta-v3-base) via Sentence-Transformers/HuggingFace Transform-
ers with MNLI-style hypotheses [He et al., 2021, Reimers and Gurevych, 2019, Wolf et al., 2020,
Williams et al., 2018]. A deterministic policy with fixed thresholds accepted a function only when
supported by strong entailment on retrieved evidence; if the top two label scores fell within a small
margin, we retained both labels (Top-2), and OTHER was used only when no function met acceptance.
Each decision stores the supporting passage and retrieval/entailment scores for audit. Coverage was
98.9% on N = 628 papers; spot audits of OTHER cases indicate they stem primarily from weak
evidence extraction rather than a missing seventh function. This supports the taxonomy as providing
near-complete, auditable coverage of capabilities reported in recent AI research. The compact back-
bone provides a stable, domain-agnostic scaffold for method selection, lowers cognitive load, and
supports more impartial, context-aware decisions as techniques evolve.

4 Strategy matrix

4.1 Derivation overview

We constructed the Compass via a theory-guided procedure, complemented by two auditable empirical
checks; the resulting 6× 4 Strategy Matrix is shown in Fig. 2.

(i) We first identified four universal discovery tensions from cross-domain pain points and validated
collective exhaustiveness by an automated corpus audit on 3000 abstracts across six natural-
science domains.

(ii) We then elicited a minimal, mutually exclusive set of six core AI functions defined by epistemic
role rather than technique, ensuring method- and domain-agnostic scope.

(iii) For each function we fixed two intrinsic binary axes (first-principles motivated, empirically
recurrent), crossed them, and applied a void/merge test to remove logically empty quadrants
and merge operationally indistinct ones, yielding a triad of atomic categories—minimal, non-
decomposable classes along those axes that render each function internally MECE [Birkhoff,
1940, Davey and Priestley, 2002]. These atomic triads form the second level of the ontology in
Fig. 1.

(iv) For every tension–function pairing, we distilled three strategic pathways articulated at the
mitigation-mechanism level and transferrable across domains; a candidate was retained only
if it expressed a distinct mechanism, admitted a minimal atomic signature, and transferred
across at least two scientific domains. After identification, we attach the minimal atomic
signature as a post-hoc anchor to intrinsic properties rather than transient techniques, which
keeps pathway-level revisions infrequent.

Each cell then receives a single keyword naming the shared mitigation logic, and its pathways are
linked to representative method families so the strategy is actionable without prescribing a single
model. ⋆ marks non-exclusive high-leverage entry points for that tension.

Pathways may evolve by split (one label conflates separable mechanisms), merge (two labels are
mechanistically interchangeable), retag (primary relief lies in another function or tension), or addition
(a genuinely new mechanism recurs across domains with a verifiable minimal signature). If a proposed
pathway cannot be anchored to any minimal atomic signature within its function, we reassign it to a
more appropriate function or drop it as ill-posed. Atomic triads are revised only when robust cross-
domain evidence shows that the current two axes fail to span the function’s variability. Anchoring
pathways to atomic categories thus provides a stable, falsifiable, technique-agnostic basis.

4.2 Reading and using the matrix

The Compass is organized into three layers, each with a distinct role. The function layer specifies six
domain-agnostic capabilities and their prerequisite relations, together delimiting the scope of what an
AI system can do. The atomic layer fixes, for each function, two intrinsic axes and induces a triad of
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Figure 2: AFSC strategy matrix. Rows: six core AI functions. Columns: four universal scientific-
discovery tensions. The left column shows, for each function, its two intrinsic binary axes and the
resulting three atomic categories (which render the function internally MECE). Each cell is labeled
with a keyword naming the shared mitigation logic and lists three distinct strategic pathways with
representative method families (illustrative, not prescriptive). ⋆ marks high-leverage cells, typical
entry points for that tension (non-exclusive). Full pathway definitions and method-family citations
appear in Appendix C. High-resolution, citable version: https://doi.org/10.5281/zenodo.1
7672434

atomic categories—minimal, non-overlapping mechanisms along those axes that render the function
internally MECE and provide intrinsic anchors independent of particular algorithms. The strategy
layer is the 6× 4 Matrix: each cell is labeled with a single keyword capturing its shared mitigation
logic, lists three strategic pathways that realize that logic, and cites representative method families.

A typical workflow proceeds as follows. Identify the dominant tension(s) in the scientific problem;
consult the starred cells (⋆) as high-leverage, non-prescriptive entry points; select one or more strategic
pathways within the chosen cell that fit your data, expertise, computational budget, and experimental
constraints; then instantiate the pathway with a suitable method family or an equivalent alternative.
A row-wise scan shows how a single function changes stance across tensions; a column-wise scan
contrasts mechanisms across functions for a fixed tension. Because each pathway is anchored to
a fixed atomic layer, the conceptual vocabulary remains stable even as specific algorithms evolve,
enabling consistent comparison and incremental updates without revising the scaffold.
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5 Case study: exoplanet spectral retrieval

Problem and dominant tensions. Retrieving atmospheric parameters from exoplanet spectra is an
ill-posed inverse problem. Observations mix multiple molecules, overlapping lines, and cloud opacity;
many parameter vectors produce near-identical spectra, creating degeneracy [Madhusudhan, 2019,
Welbanks and Madhusudhan, 2019]. These features induce Complexity via multiscale, entangled
structure and non-identifiability, and open an interpretability gap where black-box fits cannot attribute
spectral segments to physical causes. The workflow also faces Constraints: forward radiative-transfer
evaluations with sampling-based Bayesian retrievals (MCMC or nested sampling) are computationally
expensive, and repeated space-based transits are scarce [Vasist et al., 2023].

Compass-guided selection. Following the Matrix’s starred cues, we address Complexity via Rep-
resentation → Complexity (Factorize) and Reason & Infer → Complexity (Causalize), and address
Constraints via Optimize & Control → Constraints (Satisfy) and Simulate & Emulate → Constraints
(Virtualize).

Instantiated pathways.

Factorize. Learn a compact latent spectra embedding to accelerate convergence and mitigate
overfitting (latent factorization, P3); augment it with a multiscale “skeleton” that captures
coarse-to-fine topology (hierarchical abstraction, P3); and construct a typed spectral graph
encoding relations among bands, molecules, and cloud or continuum components (structured
graph extraction, P1).

Causalize. Expose parameter–wavelength links by coupling the skeleton and parameter vector
with cross-attention and an attention–skeleton alignment loss (causalize system dynamics,
R3+R2). Irreducible degeneracy is modeled with a mixture-density posterior (probabilistic
dependency modeling, R2). Hard physics (e.g., monotonicities, equilibrium chemistry) enters
via conditioning vectors and regularizers (deductive causal invariants, R1).

Satisfy. Conduct gradient-guided parameter search by backpropagating through a differentiable
surrogate and shaping the objective with physics terms (learned safety certificates, O1), together
with a two-phase scheduler that suppresses early noise drift and adapts later refinement (risk-
sensitive adaptive policies, O3).

Virtualize. A first-principles RT forward model generates 22 000 synthetic spectra for training
(rule-constrained simulation, S1). A latent-diffusion surrogate conditioned on the skeleton and
learned parameters provides fast emulation for both reconstruction and retrieval (virtual-lab
emulation, S1+S2).

Outcome. These pathways preserve physical interpretability, expose parameter attributions, and
shorten the retrieval loop, while remaining aligned with the Compass’s strategy layer rather than
ad-hoc model choices.

6 Practical value and scope

The AFSC serves as a compass for a fragmented, fast-evolving AI landscape. It aligns a problem’s
dominant tension with the relevant function and atom-anchored pathways, turning unconstrained, tool-
driven browsing into targeted, strategy-first exploration. This panoramic view of capability reduces
availability bias and tool myopia and supports defensible, context-aware decisions about integrating
AI into a research workflow. In practice, users proceed from (i) tension identification to (ii) starred
high-leverage functions, (iii) appropriate strategic pathways, and (iv) method families, preserving
methodological freedom while sharply narrowing the design space. Because the vocabulary is
anchored at the atomic layer, it remains stable as techniques evolve: most new methods instantiate
combinations of existing atoms, so the scaffold rarely requires structural revision. This stability
provides a time-robust basis for decision-making across domains and enables cumulative learning
without reframing the map.
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7 Limitations and outlook

AFSC is a decision aid, not a performance guarantee. The pathways are representative rather than
exhaustive, and some domains may require additional variants. The current Matrix reflects a theory-
guided design with automated corpus checks; broader evaluation remains open. We will pursue
multi-lab user studies, ablations of pathway choices, and longitudinal tracking of downstream impact.
We are also building an open Matrix browser with per-cell exemplars, links to implementations, and a
community contribution workflow.

8 Conclusion

AFSC aligns four universal tensions (Complexity, Constraint, Scarcity, Explosion) with six core AI
functions (Representation; Reason & Infer; Optimize & Control; Simulate & Emulate; Generate &
Create; Autonomize & Orchestrate) in a single Strategy Matrix. By lifting the focus from algorithms
to functions and anchoring pathways in a first-principles, MECE atomic layer, the Compass provides
compact, cognitively tractable guidance that remains stable amid rapid technical change and supports
disciplined, cross-domain practice.
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A Automated audits for coverage

We complement the theory-guided construction with two auditable corpus audits: a tension-coverage
audit over natural science literature and a function-coverage audit over recent AI papers. Both audits
store per-item evidence and scores for inspection.

A.1 Tension coverage (natural-science abstracts)

We sampled N = 3,000 journal-article abstracts (2021–2025) across six domains (Physics, Chemistry,
Materials, Ecology, Astronomy, Genomics) via the Crossref REST API [Crossref, 2025], targeting
500 per domain with DOI-based deduplication. We relied on deposited abstracts; when a top venue
lacked abstracts in Crossref, we expanded the venue list within the domain until the quota was met.
For each abstract, an LLM via the OpenAI API (model: gpt-5-mini) generated 1–3 latent “discovery
bottleneck” hypotheses at the scientific-content layer (excluding workflow frictions); responses were
cached for reproducibility [OpenAI, 2025]. We split abstracts into sentences, retrieved top evidence
sentences for each hypothesis using Okapi BM25 [Robertson and Zaragoza, 2009], and computed tex-
tual entailment with a cross-encoder NLI implemented as cross-encoder/nli-deberta-v3-base
[He et al., 2021], via Sentence-Transformers and HuggingFace Transformers [Reimers and Gurevych,
2019, Wolf et al., 2020], using MNLI-style templates [Williams et al., 2018]. Decisions were
evidence-aware: BM25 provided gating and evidence-driven promotion; NLI scores dominated
fusion. To emphasize coverage we used a no-abstention Top-2 policy, retaining up to two tension
labels per abstract. Top-2 coverage by the four tensions is 100% (OTHER = 0). The dominant
co-occurrence is Complexity + Scarcity; Explosion appears primarily as secondary. This supports
the collective exhaustiveness (at coarse granularity) of the four scientific-discovery tensions across
domains.

A.2 Function coverage (recent AI papers)

We stratified arXiv (2019–2025) by subfield × year and sampled N = 628 papers. PDFs were
fetched via canonical arXiv URLs with retries and checksums, then parsed to plain text. We mined
candidate passages primarily from Methods/Contributions/Evaluation/Ablations, guided by high-
yield heuristics (section headers; “we propose/introduce ... to ...”; pipeline/agent/tool-use phrases;
benchmark mentions). For each of six AI functions (Represent; Reason & Infer; Optimize & Control;
Simulate & Emulate; Generate & Create; Autonomize & Orchestrate), we maintained a curated,
high-precision lexicon and retrieved top-k passages per function with Okapi BM25 [Robertson
and Zaragoza, 2009]. We then scored function–passage entailment using a DeBERTa-v3 cross-
encoder (cross-encoder/nli-deberta-v3-base) implemented with Sentence-Transformers and
HuggingFace Transformers [He et al., 2021, Reimers and Gurevych, 2019, Wolf et al., 2020], under
MNLI-style hypotheses [Williams et al., 2018]. A deterministic, evidence-aware rule accepted a
function if entailment ≥ θ with adequate BM25 support; promoted strong-evidence cases (high BM25
with a clear NLI margin gap); and emitted Top-2 when the top labels were within a small margin.
OTHER was reserved for genuine coverage failures (no function passed gates). Each assignment
logged the winning passage, BM25/NLI scores, and gate/override flags. The Coverage is 98.9%
(OTHER = 1.11%). Frequent Top-2 pairs combine Autonomize & Orchestrate with a core algorithmic
function (e.g., Reason, Simulate, or Optimize), reflecting typical paper structure (pipeline plus
capability). This indicates a near-complete coverage of the reported capabilities by the six-function
taxonomy. Retrieval noise can cause OTHER; proportions reflect the mining policy and are not
population frequencies. The thresholds were fixed a priori and stable under small perturbations.

B Intrinsic axes and atomic triads

Our compass treats each core AI function as a two-dimensional conceptual space spanned by two
intrinsic binary axes. An axis is adopted only if it (i) follows from first principles, (ii) recurs across
disciplines, and (iii) captures the observed variability of the function. Crossing the axes yields four
theoretical quadrants. In every case, one quadrant is either logically void or operationally redundant;
removing the void cell or merging indistinguishable cells produces a triad of mutually exclusive
and collectively exhaustive classes. We call these atomic categories in the lattice-theoretic sense
[Birkhoff, 1940, Davey and Priestley, 2002]: minimal under the chosen axes, and any higher-level
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construct (a problem-centered strategy or an algorithmic innovation) can be expressed as a join of
these atoms. Because the axes are intrinsic and the atoms are minimal, the taxonomy is stable as
techniques evolve and provides the scaffold for the strategy layer.

Representation. Axes: information carrier (discrete symbols vs continuous vectors) and uncertainty
handling (deterministic vs stochastic). In common learning pipelines, discrete tokens are embedded
into continuous logits before probabilistic handling, making the discrete–stochastic and continuous–
stochastic quadrants operationally indistinguishable; we thus merge them [Shannon, 1948, Bishop,
2006]. Triad: P1 Symbolic/Structured, P2 Probabilistic, P3 Latent-manifold.

Reason & Infer. Axes: validity contract (necessary vs contingent) and evidence quantification
(qualitative vs probabilistic). “Necessary × probabilistic” is void—probabilistic claims presuppose
contingency, leaving three well-studied calculi [Hughes and Cresswell, 1996, Douven, 2022, Pearl,
2009]. Triad: R1 Deductive, R2 Probabilistic, R3 Abductive/Analogical.

Optimize & Control. Axes: decision coupling (open vs closed loop) and model knowledge (ac-
cessible vs black box). In closed loop, policies driven by analytic versus surrogate/finite-difference
gradients behave identically once the update law is fixed, so those quadrants merge [Åström and
Murray, 2008]; black-box plants motivate derivative-free or meta-heuristic search [Conn et al., 2009].
Triad: O1 Deterministic optimization, O2 Stochastic/meta-heuristic search, O3 Adaptive feedback
control.

Simulate & Emulate. Axes: physics prior (present vs absent) and data-driven closure (present vs
absent). Models lacking both prior and closure are uninformative and discarded; the survivors match
standard practice in physics-informed ML [Raissi et al., 2019, Karniadakis et al., 2021]. Triad: S1
First-principles solver, S2 Data surrogate, S3 Physics-informed hybrid.

Generate & Create. Axes: optimization loop (present vs absent) and prompt conditioning (present
vs absent). A loop without a target is incoherent; with an inner loop, the goal can be internalized and
updated during generation (e.g., diffusion-based planning), effectively collapsing the prompt-present
pair in practice [Prabhumoye et al., 2020, Janner et al., 2022](Prabhumoye et al., 2020; Janner et al.,
2022). Triad: G1 Unconditional sampling, G2 Conditioned synthesis, G3 Goal-directed search.

Autonomize & Orchestrate. Axes: process variability (static vs dynamic) and decision authority
(human vs machine). A strictly static script cannot host a learned policy (void), yielding three work-
flow regimes supported by evidence from scientific workflow systems and self-driving laboratories
[Deelman et al., 2018, Häse et al., 2019, Tom et al., 2024]. Triad: A1 Scripted automation, A2
Policy-driven orchestration, A3 Goal-level autonomy.

C Pathway identification, anchoring, and representative method families

Pathways are identified top-down by mitigation mechanisms: for each function–tension pairing,
we formulate three mechanism-level strategies. Once a pathway is named, we attach its minimal
atomic signature—the smallest sufficient set of atoms (a single atom or a combination)—as a post hoc
anchor to intrinsic properties rather than transient techniques; pathway-level revisions are therefore
infrequent. We retain a pathway if its mechanism is distinct within the cell, transfers across domains,
and admits a minimal signature; we merge interchangeable labels, split when one label conflates
separable mechanisms, re-tag when the primary relief lies in another function, and add only for
genuinely new mechanisms recurring across domains. We claim MECE at the function and atomic
levels; the strategy layer is illustrative rather than exhaustive, and non-redundant within a cell.

We assemble the strategic pathways into the 6 × 4 Strategy Matrix (Fig. 2). Rows correspond to
the six core functions; the left-hand column for each row represents the two intrinsic axes and the
resulting atomic triad; columns are the four discovery tensions. Each cell is labeled with a single
keyword that names the shared mitigation logic and lists three strategic pathways with their atomic
signatures; starred cells (⋆) indicate high-leverage pairings for the corresponding tension.

For each pathway, we cite representative method families—broad and literature-anchored categories
rather than individual models—so that the strategy is actionable without prescribing a specific
algorithm. Families were selected by (i) coverage (used across multiple domains), (ii) maturity
(canonical surveys or benchmarks), and (iii) explanatory fit to the pathway’s mechanism; they
are illustrative, not exhaustive. Mapping a method family to a pathway is illustrative rather than
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prescriptive: alternative families realizing the same mechanism are acceptable and do not alter the
pathway’s atomic signature. The six function-wise tables below instantiate the matrix: for each
cell (function × tension), we present the cell’s keyword and three strategic pathways, each with a
one-sentence mechanism-level definition and an atomic signature, and for each pathway we list the
representative method families with in-table citations that are illustrative rather than exhaustive.

Table C1: Representation — P1 Symbolic/Structured, P2 Probabilistic, P3 Latent-manifold

Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Complexity
(Factorize)

• Latent factorization (P3): Learn a lower-
dimensional latent coordinate system with
weakly coupled factors, reducing intrinsic
dimensionality.

• Disentangled / factorized latent en-
coders [Kim and Mnih, 2018]

• Low-rank and tensor-factorization en-
coders [Hu et al., 2022]

• Hierarchical abstraction (P3): Build a
multi-level representation where higher lev-
els summarize and organize lower levels, en-
abling scale-appropriate computation.

• Hierarchical VAEs / multi-scale latent
encoders [Vahdat and Kautz, 2020]

• Hierarchical or segmented transform-
ers [Liu et al., 2021]

• Structured graph extraction (P1): Map ob-
servations into typed symbolic structures (en-
tities, relations, rules) to expose constraints
and sparsity for combinatorial pruning.

• Typed-graph mining & ontology in-
duction [Zhang et al., 2018]

• Programmatic schema/grammar in-
duction [Kim et al., 2019b]

• Scene/semantic graph parsers [Li
et al., 2022a]

Constraint
(Robustify)

• Physics-aware embedding (P3+P1): En-
code invariants and constraints (symmetries,
conservation, rule structure) via continuous
fields plus discrete entities/relations to pre-
serve validity.

• Equivariant encoders [Cohen and
Welling, 2016]

• Physics-informed encoders [Raissi
et al., 2019]

• Neural fields with constraint features
[Beucler et al., 2021]

• Noise-robust encoding (P3): Learn latent
representations that attenuate measurement
noise and artefacts while preserving signal,
with implicit or explicit noise modeling.

• Denoising autoencoders [Vincent
et al., 2008]

• Diffusion-based denoisers [Ho et al.,
2020]

• Consistency-regularized contrastive
encoders [Chen et al., 2020]

• Domain-invariant mapping (P3+P2): Sep-
arate domain factors and align distributions
so task features transfer with quantified un-
certainty.

• Domain adversarial encoders [Ganin
et al., 2016]

• Moment/marginal alignment encoders
[Sun and Saenko, 2016]

continued on next page
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Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Scarcity
(Amplify)

• Signal-boost encoding (P3): Use self-
supervised pretraining to harvest structure
from unlabeled data, improving sample effi-
ciency for downstream tasks.

• Masked Autoencoders [He et al.,
2022]

• Contrastive pretraining [Chen et al.,
2020]

• Predictive coding encoders [Baevski
et al., 2020]

• Cross-source fusion (P3): Align multiple
sources or modalities into a shared latent
space to transfer supervision and fill coverage
gaps.

• Joint multimodal embeddings [Rad-
ford et al., 2021]

• Deep CCA / multi-view alignment
[Wang et al., 2017]

• Mixture-of-encoders multimodal co-
embedding [Bao et al., 2022]

• Uncertainty-aware imputation (P2+P3):
Probabilistic completion of missing data with
calibrated uncertainty.

• Variational imputers [Mattei and
Frellsen, 2019]

• Diffusion/score-based imputers
[Tashiro et al., 2021]

• Probabilistic graphical imputers [Zhao
and Udell, 2020]

Explosion
(Compress)

• Regularity compression (P1+P3): Encode
symmetries and invariants as discrete indices
with equivariant continuous features to elimi-
nate redundant search.

• Group-equivariant CNNs / transform-
ers [Cohen and Welling, 2016]

• Steerable / Lie-group encoders [Cohen
and Welling, 2017]

• Symmetry-aware encoders [Fuchs
et al., 2020]

• Multi-resolution abstraction (P3): Use hi-
erarchical indices and multiscale latents for
coarse-to-fine navigation and inference.

• Multiscale graph encoder–decoder
[Gao and Ji, 2019]

• Wavelet / scattering feature pyramid
encoders [Bruna and Mallat, 2013]

• Hierarchical latent pyramid models
[Razavi et al., 2019]

• Compact latent indexing (P1): Quantize
or hash embeddings into compact discrete
codes, enabling sub-linear retrieval and prun-
ing.

• Deep hashing families [Liu et al.,
2016]

• Product quantization indexing [Jégou
et al., 2011]

• Vector-quantized autoencoders
[van den Oord et al., 2017]
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Table C2: Reason & Infer — R1 Deductive, R2 Probabilistic, R3 Abductive/Analogical

Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Complexity
(Causalize)

• Causalize system dynamics (R3+R2):
Learn causal structure and effect strengths
to separate drivers from correlates, enabling
intervention-aware simplification of model
search.

• Causal discovery (score-/constraint-
/invariance-based; nonlinear variants)
[Zheng et al., 2018]

• Causal graphical modeling with neu-
ral parameterization [Pawlowski et al.,
2020]

• Probabilistic dependency modeling (R2):
Build calibrated graphical or conditional-
density models that capture uncertainty in
dependencies under partial information.

• Bayesian networks & factor graphs
[Zhang et al., 2023]

• Deep conditional density estimators
(autoregressive/flow models) [Papa-
makarios et al., 2017]

• Deductive causal invariants (R1): Establish
and enforce invariants/constraints that must
hold under interventions, pruning hypotheses
inconsistent with theory.

• Differentiable theorem proving [Rock-
täschel and Riedel, 2017]

• Neuro-symbolic constraint layers
[Wang et al., 2019b]

Constraint
(Prequalify)

• Deductive feasibility prequalification (R1):
Use known rules/constraints to pre-screen
candidate designs or experiments, eliminat-
ing impossible or non-compliant options be-
fore optimization.

• Neuro-rule engines / differentiable
logic layers [Manhaeve et al., 2018]

• Constraint programming / SAT–SMT
with neural guidance [Selsam et al.,
2019]

• Probabilistic feasibility estimation (R2):
Estimate the probability of constraint satis-
faction under data/model uncertainty.

• Probabilistic graphical models [Wain-
wright and Jordan, 2008]

• Simulation-based inference [Papa-
makarios et al., 2019]

• Abductive constraint induction (R3):
From observed passes/failures, infer latent
rules/guards that best explain feasibility pat-
terns and generalize them.

• Differentiable ILP [Evans and Grefen-
stette, 2018]

• Neuro-guided abduction [Dai et al.,
2019]

Scarcity
(Generalize)

• Rule-driven extrapolation (R1): Apply
mechanistic/symbolic relations to extend pre-
dictions beyond the training regime with log-
ical validity.

• Neuro-symbolic regression [Petersen
et al., 2021]

• Sparse system-identification [Brunton
et al., 2016]

• Bayesian prior integration (R2): Combine
informative priors with limited data to pro-
duce calibrated posteriors that generalize.

• Gaussian process regression [Wang
et al., 2019a]

• Hierarchical Bayesian models [Kim
et al., 2019a]

continued on next page
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Tension
(Keyword) Strategic Pathways Method Families (illustrative)

• Few-shot hypothesis induction (R3): Gen-
erate and refine candidate hypotheses from
few examples via analogical or meta-level
reasoning.

• Gradient-based meta learning [Finn
et al., 2017]

• Prompted LLMs abductive reasoning
frameworks [Shi et al., 2023]

Explosion
(Prune)

• Deductive constraint propagation (R1):
Propagate hard constraints to shrink the
search space by eliminating inconsistent
branches early.

• Differentiable CSP networks [Jiang
et al., 2022]

• Neural-guided SAT/SMT/CP solvers
[Selsam et al., 2019]

• Probabilistic branch ranking (R2): Score
and select branches by success probability or
expected value to focus search effort.

• Bayesian value estimation for branch-
and-bound [Mern et al., 2021]

• Posterior-guided heuristic search
[Tesauro et al., 2010]

• Abductive pathway trimming (R3): Prefer
explanations with minimal assumed causes,
dropping branches not required by the best
explanation.

• Neuro-symbolic weighted abduction
[Huang et al., 2021]

• RL-guided abduction [Bai et al., 2024]

Table C3: Optimize & Control — O1 Deterministic optimization, O2 Stochastic/meta-heuristic search, O3
Adaptive feedback control

Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Complexity
(Navigate)

• Gradient-based surrogate navigation (O1):
Use differentiable surrogates to obtain gra-
dients or adjoints and optimize in a reduced
space, streamlining search.

• Neural operator surrogates [Lu et al.,
2021]

• Differentiable physics surrogates
[de Avila Belbute-Peres et al., 2018]

• Heuristic black-box search (O2): Explore
the objective with uncertainty- or heuristic-
driven proposals when gradients are unavail-
able or unreliable.

• Bayesian optimization [Snoek et al.,
2012]

• Evolutionary strategies [Sun et al.,
2022]

• Self-adaptive feedback control (O3): Main-
tain closed-loop policies that update online
from rollouts or streaming data to track
changing dynamics.

• Meta RL adaptation [Finn et al., 2017]
• Adaptive model predictive control

[Amos et al., 2018]

Constraint
(Satisfy)

• Learned safety certificates (O1): Train dif-
ferentiable barrier or Lyapunov certificates
and embed them in deterministic objectives
to enforce feasibility at low cost.

• Barrier/Lyapunov networks [Xiao
et al., 2023]

• Differentiable penalty/projection lay-
ers [Agrawal et al., 2019]

continued on next page
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Tension
(Keyword) Strategic Pathways Method Families (illustrative)

• Constrained acquisition search (O2): Opti-
mize acquisition functions that couple utility
with feasibility or safety under uncertainty.

• Safe/constrained Bayesian optimiza-
tion [Gardner et al., 2014]

• Constrained evolutionary search
[Arnold and Hansen, 2012]

• Risk-sensitive adaptive policies (O3):
Learn closed-loop controllers that satisfy con-
straints or risk budgets during execution.

• Risk-aware RL [Tamar et al., 2015]
• Constrained policy optimization

[Achiam et al., 2017]

Scarcity
(Prioritize)

• Initialization-based optimization (O1):
Use meta-learned initializations or learned
optimizers to reduce steps to convergence on
new tasks.

• MAML initialization [Finn et al.,
2017]

• Transfer-initialized solvers [Feurer
et al., 2014]

• Uncertainty-driven sampling (O2): Query-
efficient evaluations by selecting points that
maximize information gain or value of infor-
mation.

• Information-theoretic acquisition
[Wang and Jegelka, 2017]

• Bayesian active learning for expensive
evaluations [Kirsch et al., 2019]

• Curriculum-adaptive control (O3): Adapt
task or domain difficulty online to accelerate
policy learning with minimal data.

• Self-paced RL [Klink et al., 2020]
• Teacher–student curriculum genera-

tion [Florensa et al., 2017]

Explosion
(Guided-Search)

• Multi-fidelity surrogate screening (O1):
Coarse-to-fine evaluation using cheap surro-
gates to prune candidates before expensive
solves.

• Multi-fidelity Bayesian optimization
[Kandasamy et al., 2016]

• Hierarchical surrogate cascades
[Falkner et al., 2018]

• Structure-guided search (O2): Learn prob-
lem structure-guided heuristics to prune or
branch effectively in combinatorial spaces.

• GNN-guided branching & pruning
[Gasse et al., 2019]

• Neural heuristic guidance for tree
search or combinatorial optimization
[Silver et al., 2018]

• Hierarchical policy refinement (O3): Plan
at a coarse level and refine to fine-grained
actions via hierarchical control.

• Hierarchical RL [Nachum et al., 2018]
• Model-based RL with hierarchical

planning [Pertsch et al., 2020]
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Table C4: Simulate & Emulate — S1 First-principles solver, S2 Data surrogate, S3 Physics-informed hybrid

Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Complexity
(Approximate)

• Coarse-grain approximation (S1+S2):
Combine physics-based coarse models with
learned surrogates to capture fine-scale
effects at reduced resolution and cost.

• Projection-based or reduced-order
models [Berman and Peherstorfer,
2023]

• Latent dynamical-system emulators
[Wu et al., 2022]

• Stochastic scenario sampling (S2): Train
data-driven stochastic simulators that sample
plausible trajectories or outcomes to approxi-
mate distributional futures.

• Variationally trained stochastic simu-
lators [Hafner et al., 2021]

• Diffusion-based simulators [Janner
et al., 2022]

• Residual-hybrid acceleration (S3): Attach
a learned residual or corrective policy to a
first-principles solver to reduce error and iter-
ation count while preserving governing struc-
ture.

• Residual physics-informed neural net-
works [Mao and Meng, 2023]

• Gaussian-process residual models
[Xing et al., 2021]

Constraint
(Virtualize)

• Virtual lab emulation (S1+S2): Build exe-
cutable virtual models of experimental work-
flows to rehearse procedures and test feasibil-
ity under controllable parameters.

• Differentiable physics engines
[Schoenholz and Cubuk, 2021]

• Agent-based or rule-based laboratory
emulators [Häse et al., 2021]

• Rule-constrained simulation (S1): Enforce
hard rules and constraints inside the simula-
tor so generated trajectories remain admissi-
ble.

• Constraint-enforcing numerical
solvers (barrier/penalty/projection
families) [Huang et al., 2024c]

• Trust-region simulators [Schulman
et al., 2015]

• Safe exploration loops (S3): Close the loop
with constraint-aware design-of-experiments,
selecting next trials within certified risk or
validity bounds.

• Bayesian experimental-design con-
trollers [Wu et al., 2023]

• Safe RL controllers [Liu et al., 2020]

Scarcity
(Synthesize)

• Mechanistic data synthesis (S1): Use
governing-equation solvers to generate la-
beled data across parameter regimes when
measurements are unavailable.

• Physics-constrained neural solvers [Li
et al., 2024]

• Symbolic or numerical equation-
driven simulators [Hu et al., 2020]

• Surrogate extrapolation (S2): Learn em-
pirical surrogates that extrapolate beyond ob-
served regimes with quantified uncertainty.

• Flow-based or autoregressive emula-
tors [Krause and Shih, 2023]

• Adversarial generative emulators
[Khattak et al., 2022]

continued on next page
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Tension
(Keyword) Strategic Pathways Method Families (illustrative)

• Physics-informed augmentation (S3): Gen-
erate synthetic samples conditioned on physi-
cal invariants or constraints, and select under-
covered regions iteratively.

• Physics-conditioned generative mod-
els [Chen et al., 2025]

• Simulator–generator joint training
loops [Shrivastava et al., 2017]

Explosion
(Accelerate)

• Physics-based prefiltering (S1): Apply fast
analytic or coarse-physics filters to reject in-
feasible candidates before high-fidelity simu-
lation.

• Reduced-order physics screening [Lee
and Carlberg, 2020]

• Analytic bounding and approximation
models [Law et al., 2023]

• Structure-guided pruning (S2): Learn
structure-aware heuristics that approximate
solver decisions and prune branches or can-
didates early.

• Graph-based surrogate heuristics
[Paulus and Krause, 2023]

• Symbolic rule-learning for pruning
[Kuang et al., 2024]

• Adaptive multi-fidelity screening (S3): Al-
locate simulation budget across fidelity levels
with closed-loop policies that update using
uncertainty and cost.

• Multi-fidelity Bayesian optimization
[Li et al., 2020b]

• Active learning with adaptive fidelity
selection [Li et al., 2022b]

Table C5: Generate & Create — G1 Unconditional sampling, G2 Conditioned synthesis, G3 Goal-directed
search

Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Complexity
(Probe)

• Counterfactual probing (G3): Generate
plausible alternatives under explicit interven-
tion targets, searching inputs or latents so
that specified factors change while others are
held fixed.

• Counterfactual generative modeling
[Sauer and Geiger, 2021]

• Goal-directed diffusion generators
[Poole et al., 2023]

• Edge-case exploration (G2+G3): Bias gen-
eration toward tail regions using conditioning
and adaptive guidance to surface rare or brit-
tle behaviors.

• Tail-focused diffusion samplers
[Pandey et al., 2025]

• Importance-weighted or rejection-
guided samplers [Na et al., 2024]

• Latent subspace probing (G1): Explore the
generator’s intrinsic manifold by traversing
or interpolating latent directions to reveal
controllable factors.

• Latent traversal and interpolation
[Härkönen et al., 2020]

• Geodesic or spectral manifold probes
[Shen and Zhou, 2021]

Constraint
(Prototype)

• Unconstrained prototype drafting (G1):
Use unconditional sampling and mixing to
sketch broad candidate prototypes without
validity constraints.

• Adversarial generative models [Karras
et al., 2020]

• Latent mixing or style-mixing meth-
ods [Karras et al., 2019]

continued on next page
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Tension
(Keyword) Strategic Pathways Method Families (illustrative)

• Rule-conditioned prototyping (G2):
Generate candidates conditioned on
rules/grammars/masks/property descriptors
to ensure compliance at draw time.

• Grammar-constrained decoders [Kus-
ner et al., 2017]

• Mask-conditioned diffusion genera-
tors [Lugmayr et al., 2022]

• Constraint-loop prototyping (G3):
Evaluate–generate–refine in a closed loop
under stated constraints to steer prototypes
toward admissible regions.

• RL fine-tuning with constraint penal-
ties [Jayant and Bhatnagar, 2022]

• Constrained Bayesian search over gen-
erator controls [Maus et al., 2022]

Scarcity
(Augment)

• Data augmentation (G1): Create training
signal via transformations or unconditional
synthesis to expand coverage without labels.

• Geometric, photometric, or spectral
transformations [Cubuk et al., 2019]

• Unconditional generative augmenta-
tion [Trabucco et al., 2024]

• Weak label expansion (G2): Create labels
or label-like signals using teacher models or
constraints, attaching noisy but useful anno-
tations to existing or generated data.

• LLM labeling frameworks [Wang
et al., 2023b]

• Self-training and consistency-based
pseudo-labeling [Sohn et al., 2020]

• Utility-guided augmentation (G3): Choose
what to generate next by maximizing down-
stream utility or information gain with a
generator-in-the-loop.

• Active learning with generator propos-
als [Kim et al., 2020]

• Bayesian acquisition-guided genera-
tion [Gruver et al., 2023]

Explosion
(Seed)

• Diversity-maximized sampling (G1): Se-
lect seeds to maximize coverage and diversity
in latent or feature space before downstream
search.

• Determinantal point process samplers
[Bardenet et al., 2021]

• Maximum-entropy generators [Ben-
gio et al., 2023]

• Constraint-aware seed search (G2):
Generate-and-prune under constraints using
grammars, masks, or property predicates to
keep only admissible seeds.

• Grammar-driven samplers with rule-
based pruning [Park et al., 2024b]

• Constraint-aware property-guided de-
coders [Huang et al., 2024b]

• Hierarchical assembly (G3): Compose
complex artifacts from parts via multi-stage
plans where generation and selection alter-
nate across a hierarchy.

• Hierarchical generative models [Ho
et al., 2022]

• RL assembly policies [Gürtler et al.,
2021]

31



Table C6: Automate & Orchestrate — A1 Scripted automation, A2 Policy-driven orchestration, A3 Goal-level
autonomy

Tension
(Keyword) Strategic Pathways Method Families (illustrative)

Complexity
(Auto-Compose)

• Scripted multimodal coordination (A1):
Compose fixed, human-authored pipelines
that coordinate heterogeneous tools and data
via explicit handoffs.

• Workflow domain-specific languages
[Crusoe et al., 2022]

• Static pipeline orchestrators and
schedulers [Deelman et al., 2015]

• Policy-driven scaling & routing (A2): Use
human-specified policies to place, scale, and
route tasks dynamically at run time.

• Policy-based workflow schedulers
[Yang et al., 2023]

• Container-orchestration autoscaling
frameworks [Rzadca et al., 2020]

• Closed-loop pipeline auto-tuning (A3):
Learn controllers that select or adjust com-
ponents, hyperparameters, and resource allo-
cations online to optimize end-to-end objec-
tives.

• RL pipeline controllers [Park et al.,
2024a]

• Meta-controllers for configuration
search [Song et al., 2022]

Constraint
(Auto-Enforce)

• Validation & workflow codification (A1):
Formalize protocols, validations, and prove-
nance as executable steps before experi-
ments.

• Protocol domain-specific languages
[Mehr et al., 2020]

• Provenance and lineage graphs
[Soiland-Reyes et al., 2022]

• Policy-driven guardrails & feedback (A2):
Install dynamic guardrails (halt, rollback, re-
view) triggered by human-authored risk or
quality policies during operation.

• Safety and compliance guardrails
[Berkenkamp et al., 2016]

• Active learning lab schedulers with
policy thresholds [Low et al., 2024]

• Self-lab orchestration (A3): An au-
tonomous planner–executor that plans, ex-
ecutes, measures, and adapts experiments un-
der constraints using learned policies.

• Robotic experiment platforms [Szy-
manski et al., 2023b]

• LLM planners for lab tasks [Boiko
et al., 2023b]

Scarcity
(Auto-Curate)

• Scripted acquisition & integration (A1):
Compose fixed, human-authored pipelines to
acquire data and integrate schemas.

• Schema-aware ETL pipelines
[Shankar et al., 2023]

• Web and API crawlers [Raffel et al.,
2020]

• Policy-driven auto-labeling (A2): Apply
rule-/policy-guided labeling with model as-
sistance to generate or refine annotations at
scale.

• Weak-supervision labelling frame-
works [Rühling Cachay et al., 2021]

• LLM labeling bots under policies
[Smith et al., 2024]

• Active learning labeling schedulers
[Ash et al., 2020]

continued on next page
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Tension
(Keyword) Strategic Pathways Method Families (illustrative)

• Autonomous quality refinement (A3):
Learn to detect, correct, and reweight noisy,
duplicate, or low-quality data in closed loop.

• Noise filtering agents [Li et al., 2020a]
• Learned deduplication & outlier detec-

tion [Thakkar et al., 2023]

Explosion
(Auto-Screen)

• Batch high-throughput screening (A1):
Run fixed batch pipelines that evaluate large
candidate sets in parallel through scripted
stages.

• Workflow DAG pipeline frameworks
[Baylor et al., 2017]

• Parallel batch execution frameworks
[Moritz et al., 2018]

• Policy-driven triage & scheduling (A2):
Use human-specified scoring/eligibility rules
to prioritize and schedule candidates over
time.

• Policy-driven triage with learned scor-
ing [Chzhen et al., 2023]

• Multi-armed bandit schedulers [Qi
et al., 2023]

• Closed-loop active screening (A3): Select
the next candidates iteratively using value
and uncertainty models to maximize discov-
eries under budget.

• Active learning acquisition controllers
[Parvaneh et al., 2022]

• Adaptive experimental-design con-
trollers [Huang et al., 2024a]
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