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Abstract

Diffusion models have achieved remarkable progress in pho-
torealistic synthesis, yet they remain unreliable for generating
scenes with a precise number of object instances, especially in
complex, high-density settings. We introduce COUNTLOOP,
a training-free framework that equips diffusion models with
accurate instance control via iterative structured feedback.
It alternates between image synthesis and multimodal agent
evaluation: an LLM-guided layout planner and critic provide
explicit feedback on object counts, spatial arrangements, and
attribute consistency, which is used to refine scene layouts
and guide subsequent generations. Instance-driven attention
masking a1‘nd compositional techniques further prevent se-
mantic leakage, enabling clear separation of individual ob-
jects even in occluded scenes. Evaluations on COCO-Count,
T2I-CompBench, and two newly introduced high-instance
benchmarks demonstrate that COUNTLOOP surpasses existing
benchmarks by achieving a counting accuracy of as much as
98% while consistently acing spatial arrangement and visual
quality over existing layout and gradient-guided baselines with
a score of 0.97.

Introduction
Digital creators, designers, and artists increasingly use text-to-
image diffusion models like DALL-E 3 (Betker et al. 2023),
SDXL (Podell et al. 2024), and FLUX (Black-Forest-Labs
2024) to produce high-quality visuals. However, these models
struggle with scenes containing many distinct yet related ob-
ject instances, limiting their effectiveness in applications such
as product advertising (e.g., densely stocked retail shelves
(Amazon Ads 2023; Team 2023)) or visualizing rare/extinct
species (e.g., dodos or mammoths (Yap 2024), where real
data are limited; see Fig. 1). Current diffusion models typi-
cally saturate at around 10 instances per category (Binyamin,
Tewel et al. 2024), yielding semantic drift (mixed attributes),
spatial collapse (cluttered or overlapping objects), or instance
duplication. For instance, a prompt like “31 cups on a coffee
table” might produce only a dozen cups or an incoherent pile
(Fig. 1), compromising both accuracy and usability.

Current solutions fall into two categories: (1) layout-first
pipelines (Li et al. 2023; Feng et al. 2023; Liu et al. 2024;
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Figure 1: COUNTLOOP enables high-instance image gen-
eration with accurate layout and strong visual quality. (a) It
handles scenes with 30-100+ instances, achieving precise
counts and aesthetic layouts where prior models like FLUX
and LMD struggle. (b) It supports real-world applications
like product advertising and visuals of rare or extinct species.

Binyamin, Tewel et al. 2024; Zhou et al. 2024) and (2)
gradient-guided methods (Chefer et al. 2023a). However,
neither scale effectively to high-instance scenes or resolves
the issues shown in Fig. 2. Layout-first pipelines use boxes or
masks to guide diffusion, but often produce distorted seman-
tics due to autoregressive biases in generative models (Xiong
et al. 2024; Barron 2025) (e.g., grid-like layouts that favor the
top-left, see Fig. 2(a)). These approaches typically require
annotated data or carefully engineered prompts (Binyamin,
Tewel et al. 2024). Gradient-guided methods inject count-
ing signals during denoising to steer generation towards the
desired instance count, but they often introduce visual ar-
tifacts or worsen semantic leakage – an issue inherent to
high-instance generation – especially as object density in-
creases (Dahary et al. 2024a, 2025) (see Fig. 2(b)).

To address the persistent challenge of generating visually
coherent scenes with precise object counts, we introduce
COUNTLOOP, a framework that reimagines high-instance
image generation as an iterative design process rather than a



Figure 2: Issues in High-Instance Image Generation

one-shot operation. Inspired by how human designers refine
their work through successive iterations, COUNTLOOP es-
tablishes a closed-loop system where large language models
serve dual roles: as creative planners that construct structured
scene representations that capture object attributes and spatial
relationships, and as critics evaluating the generated images
against the original specification.

Crucially, COUNTLOOP integrates a cumulative attention
mechanism during the denoising process to mitigate semantic
leakage – a common issue in high-instance scenes. Rather
than generating all subjects simultaneously, it provides per-
instance grounding by preventing semantic entanglement and
maintains the identity of individual objects. By imposing
attention locality within instance-specific regions, COUNT-
LOOP encourages independence across objects and prevents
the borrowing of features from nearby or similar instances.

This iterative agent-guided process involves generating an
initial image, evaluating its alignment with the specification,
and systematically refining the layout and prompt until qual-
ity thresholds are met. Together, these components enable
COUNTLOOP to overcome the counting saturation and spa-
tial coherence that affect existing approaches. Unlike prior
methods requiring model retraining, COUNTLOOP acts as a
plug-and-play enhancement to standard diffusion models, re-
liably producing dense scenes (100+ objects) with accurate in-
stance counts and natural spatial distributions. Evaluations in
COCO-Count, T2I-CompBench, and our new high-instance
benchmark show that COUNTLOOP more than doubles count-
ing accuracy while maintaining visual fidelity.

We summarize our contributions as follows: (1) We present
COUNTLOOP, a training-free pipeline for generating high-
instance images with precise object counts and strong aes-
thetic quality; (2) We introduce a planning graph to guide
scene structure, combined with cumulative attention com-
position to prevent semantic leakage, even in dense scenes;
(3) We develop an iterative procedure where a critic evalu-
ates the generated image and provides feedback to refine the
planning graph for the next iteration; (4) We conduct exten-
sive evaluations on COCO-Count, T2I-CompBench, and new
high-instance benchmarks, showing that our method achieves
over 2x improvement in counting accuracy and significantly
better visual coherence than existing baselines.

Related Work
Count control in Image Generation: Early diffusion models
(LDM (Rombach et al. 2022), Imagen (Saharia et al. 2022),
SDXL (Podell et al. 2024)) achieve stunning photorealism
but falter beyond 10–15 identical objects, exhibiting attribute

leakage and spatial collapse (Chefer et al. 2023b,a; Dahary
et al. 2024b,a). Layout-based approaches (Lian et al. 2023;
Binyamin, Tewel et al. 2024) and gradient-guided corrections
(Kang, Galim, and Koo 2023; Chefer et al. 2023a) offer par-
tial fixes but demand heavy retraining or still fail in extremely
dense scenes. COUNTLOOP avoids retraining by coupling
a frozen diffusion backbone with an LLM-driven layout-
refinement loop, incorporating a multi-turn object generation
and composition mechanism that prevents the model from at-
tribute leakage, thereby generating high-quality images even
at high instance densities.
Layout-to-Image Generation: Techniques like GLIGEN (Li
et al. 2023), LMD (Lian et al. 2023), and SceneLayoutNet
(Zhang et al. 2024) use bounding boxes or masks for coarse
count and placement control. They work well for moderate
densities but degrade into rigid, grid-like layouts when scenes
become crowded, lacking both relational reasoning and itera-
tive correction. Scene-graph models (e.g., SG2IM (Johnson,
Gupta, and Fei-Fei 2018)) capture pairwise relations but de-
pend on extensive annotations, while LLM planners (e.g.,
LayoutGPT (Feng et al. 2023)) generate initial layouts that
often violate natural groupings under high-instance prompts
(see Fig. 2(a)). Recent studies (Dahary et al. 2024b,a) high-
light the architectural tendency of attention layers to leak
visual features between subjects – a phenomenon that com-
plicates multi-subject generation. In our work, we propose
a method to dynamically generate realistic looking layouts
from prompt using an LLM and then process each layout
independently to generate the corresponding object while
preserving the texture in a iterative fashion. This prevents the
model from sharing attention to similar looking objects in
the image, thus preventing the attention leakage even during
occlusions enabling the generation of accurate multi-instance
object images without any extra optimization or training.
Agent-guided Diffusion Correction: Recent frameworks
use LLMs as planners and critics to improve diffusion pro-
cesses. They aim to improve outputs over time. For example,
SLD (Wu, Lian et al. 2023) uses one LLM to find errors
in generation and suggest changes to prompts. However, it
treats the image as a black box and does not control the lay-
out, which can lead to over-corrections that either repeat or
leave out objects. GenArtist (Wang et al. 2024) uses multi-
ple agents for tasks like editing color, style, and composi-
tion. It primarily focuses on improving aesthetics instead of
counting instances or maintaining spatial relationships. RPG-
DiffusionMaster (Yang et al. 2024) uses role-playing agents
to draft and review prompts at different stages, enhancing
narrative clarity. However, it does not address problems like
object overlap or counting in dense or occluded scenes. While
all three frameworks can improve prompts, they lack a clear
representation of scenes. Consequently, their corrections may
lack accuracy in dense scenes. In contrast, COUNTLOOP im-
plements a targeted iterative refinement process specifically
designed for high-instance generation. Our framework uses a
structured planning graph representation that enables precise
spatial reasoning between objects, coupled with a parameter-
free textual optimizer that translates the LLM’s feedback
into concrete layout modifications without altering model
parameters and without any additional training.



Figure 3: Given a text prompt, the Layout Designer constructs a planning graph encoding object attributes and spatial relations,
which is converted into a pixel-aligned layout. Guided by instance masks and cumulative latent composition with an IP-Adapter,
the image is synthesized. A Design-Critic evaluates the result and updates the planning graph via an iterative feedback loop. This
loop repeats until the count and quality goals are met.

COUNTLOOP
We present COUNTLOOP, a training-free, LLM-guided ap-
proach for generating images with a high number of instances,
ensuring precise object counts, coherent spatial arrangements,
and distinct instance-level attributes as specified by a textual
prompt (see Fig. 1).
Overview: We start by using a layout designer LLM to inter-
pret the prompt and create realistic layouts that avoid rigid
grid patterns (see Fig. 2(a)) while keeping natural object
placements. These layouts guide style-consistent image gen-
eration using cumulative attention mechanism, which helps
prevent attribute leakage (see Fig. 2(b)) and preserves object
clarity, even when they overlap. Subsequently, a critic LLM
assesses the generated output with respect to object count
accuracy and overall aesthetic quality, offering structured
feedback to iteratively refine both the layout and the prompt.
This refinement loop continues until the output meets a set
quality score, allowing us to generate complex images with
many objects without retraining the diffusion model. Fig. 3
shows an overview of our method.

LLM-Guided Layout Generation
Generating images with precise control over multiple object
instances – especially in dense scenes – remains challenging
for text-to-image models, often resulting in unrealistic layouts
or object overlaps. Layouts can be extracted from prompts via
an LLM to guide image generation, with layout grounding
(Lian et al., 2023) further enabling accurate object counting.
However, due to limited spatial reasoning (Ramachandran
et al. 2025) and autoregressive nature, LLMs often produce
rigid, grid-like layouts (see Fig. 2(a)). To address this, we
introduce structural reasoning into the LLM to promote more
flexible arrangements. Inspired by scene graphs (Chen et al.
2024), we introduce planning graphs that refine LLM’s Chain-
of-Thought reasoning by incorporating relational and spatial
priors for layout generation. We call the resulting model

Layout Designer LLM, built on Qwen3 (Yang et al. 2025).
This graph-based planning improves consistency in object
placement, attributes, and relations, reducing grid artifacts
and enabling more structured, realistic compositions.
Prompt parsing: As a precursor to our process, we break
down the input prompt into its core components, which in-
clude object-level quantities, instance-level attributes, and
instance-level quantities. For example, the prompt “two cats
and a bird in the sky” contains two objects, “cat” and “bird”,
with desired quantities of two and one, respectively. The ob-
ject “bird” is associated with an instance-level attribute “in
the sky”, which has a desired quantity of one, whereas the ob-
ject “cat” is not associated with any instance-level attributes.
We begin by instructing an LLM (Qwen3 (Yang et al. 2025))
to analyze the prompt and the attribute relations and return
this information in a JSON dictionary. We guide the LLM
with specific instructions on how to extract spatial relations
from P as shown below.

Prompt Parsing Instruction
You are a scene planner. Given a prompt, return a JSON-based object-attribute
relation with:

• objects: list of instance nodes with fields—id, category, position
(x,y), depth, color

• relations: list of edges with fields—source, target, relation,
distance, angle

• context: background scene type

These object-attribute relations serve as the foundation for the
planning graph that injects spatial reasoning into the LLM’s
chain-of-thought reasoning.
Planning Graph Construction: The graph construction pro-
cess begins by utilizing object-attribute relations parsed from
the input prompt. Specifically, the planning graph is defined
as G = (V,E,Bbg), where V denotes object-instance nodes,
E represents edges encoding spatial relations, and Bbg cap-
tures the scene context (e.g., “outdoor environment”). Each



node in V includes attributes such as category (e.g., cat,
bird), a unique identifier (e.g., cat 1), normalized position
[x, y] ∈ [0, 1]2, depth prior d ∈ [0, 1], and color. Edges
in E encode spatial relations via directional operators (e.g.,
“above,” “left-of”), normalized distances, and angular orien-
tations. The graph G enforces structured spatial reasoning,
nodes specify individual properties while edges ensure rela-
tional consistency (e.g., minimum distances to prevent over-
laps), enabling realistic multi-object scene construction. To
integrate this structured representation into LLM reasoning,
the graph is converted into a textual prompt template PG:

PG = ϕ([′Object′]), [′Relation′], [′Context′]) (1)

where ϕ denotes a text concatenation operator; ’Object’ ∈
V , ’Relation’ ∈ E, and ’Context’ ∈ Bbg denotes
the textual attributes from the planning graph. Full prompt
details are provided in the supplementary. The prompt PG

encodes object positions, depth, and sizes in text, enabling
spatial reasoning within the LLM. This reasoning is com-
bined with in-context examples for effective grounding:

Planning Graph Construction

Prompt: "A scene with 2 cats and 1 bird in the sky"

LLM Reasoning (Simplified):

1. Identify objects: 2 cats, 1 bird

2. Assign coarse positions: cats near center, bird above

3. Apply spatial jitter and avoid overlaps

Example: (Prompt: "A scene with 2 cats and 1 bird in

the sky") "objects": [ "id": "cat 1", "pos": [0.3,

0.6], "d": 0.4, "color": "gray", "id": "cat 2", "pos":

[0.6, 0.6], "d": 0.4, "color": "black", "id": "bird

1", "pos": [0.5, 0.3], "d": 0.2, "color": "white"

], "relations": [ "from": "cat 1", "to": "bird 1",

"r": "below", "dist": 120, "angle": 90 ], "context":

"outdoor, grassy field"

These examples provide a structured format that ensures
precise object placement while preserving natural compo-
sition. Finally, both the planning graph prompt PG and the
in-context examples (denoted by Picl) are fed into the Layout
Designer LLM as follows:

J = LLM(PG, Picl) (2)

where J is the LLM’s output in JSON format. From this, we
extract the object layout coordinates L, the scene description
prompt Pd and background prompt Pbg respectively.

Layout Aligned Image Generation
After obtaining the layouts L, our objective is to generate
images that respect the layout. Layout grounded diffusion
methods often suffer from attribute leakage in such scenarios
(Dahary et al. 2024a, 2025), leading to correct object counts
but compromised image quality (Fig. 2(b)). To address this,
we draw inspiration from multi-turn image generation (Cheng
et al. 2024), and instead of generating all object instances
in a single pass, we adopt an iterative strategy – generating
one instance at a time while preserving the texture using
the previously generated content. This approach mitigates
attention leakage into some other cases and ensures clearer
separation of individual objects, even under occlusion.

Figure 4: Cumulative Latent Composition along with self-
attention expansion mitigates attribute leakage

Layout Aligned Attention Masking: Given the object lay-
outs L and prompt description Pd, we aim to ground the
layout with the text to generate images with accurate instance
counts. Since layouts are discrete spatial arrangements, we
project them into a continuous space using a layout encoder.
Specifically, we use the layout encoder of GLIGEN (Li et al.
2023), denoted by E, which encodes each per-instance layout
li ∈ L into latent embeddings Qi = E(li). The full set of
embedding is represented as Q = {Q1, . . . , QN}. To ground
these layout embeddings with the prompt Pd, we compute
cross-attention Across, where the queries are layout embed-
dings Q, and the keys, values are derived from the text em-
bedding of Pd. However, directly using Across for generation
introduces semantic leakage as it attempts to generate all the
instances at the same time. To mitigate this, we independently
process Across at the instance level. For each object instance i,
we apply a binary spatial mask Mi ∈ {0, 1}wi×hi (1 inside
the bounding box of li, 0 elsewhere), derived from the layout
li ∈ L. This mask is further refined via a self-segmentation
algorithm (Dahary et al. 2024a) to obtain shape-aware masks.
The masked layout feature is then computed as:

Ai
mask = Ai

cross ⊙Mi (3)

Here, Ai
mask denotes the instance-specific masked attention

feature, which confines the receptive field of attention to the
corresponding object’s region in the spatial domain.
Cumulative Latent Composition: Once instance-level at-
tention maps Ai

mask are computed for each object layout
li ∈ L, we construct a coherent global latent feature map
F via cumulative composition in the diffusion latent space.
Starting from a zero-initialized canvas, we iteratively paste
each Ai

mask at its designated spatial location, producing in-
termediate latent maps Fi ∈ RHF×WF×D, where HF and
WF are spatial dimensions and D is the feature dimension.
The composition is defined as:

Fi+1(x, y) = 1(x,y)∈li · Blend(Fi(x, y), A
i
mask)

Here, 1 indicates whether pixel (x, y) lies within the bound-
ing box of li, and Blend(·) denotes feature concatenation.



This iterative process yields a sequence of cumulative latent
feature maps F = {F1, F2, · · · , FN}, where each Fi con-
tains an increasing set of composed instances (see Fig. 4).
When these disentangled instance-wise latent features are
used for image generation independently, the cross-attention
mechanism from Eq. 3 ensures per-instance grounding. This
prevents semantic entanglement and maintains the identity
of individual objects.
Appearance Consistency via IP-Adapter: Generating im-
ages independently from disentangled features F mitigates
semantic leakage but often results in texture inconsistency,
as each latent Fi undergoes separate noise and denoising
processes. To address this, we condition the text-to-image
diffusion model (e.g., SDXL (Podell, Liu et al. 2023)) on
the foreground texture of the previously generated output
using IP-Adapter (Ye et al. 2023). Since semantic leakage
arises when query tokens attend to different instances during
self-attention (Dahary et al. 2024a), we additionally preserve
the per-instance query representation (Zq) prior to its inter-
action with keys and values, thus maintaining instance-level
semantics. This is formalized as:

Ii+1, Z
i+1
q = Φ(Fi+1, Pd, θ(Ii)) ∀i ∈ {1, . . . , N − 1} (4)

Here, Ii is the image generated from Fi, N is the number
of objects, and θ denotes IP-Adapter conditioning. The first
image is generated without IP-Adapter due to the absence
of a prior texture. We iterate over all Fi, enforcing consis-
tency between the prompt Pd and prior visual cues to reduce
hallucinations and preserve object distinctiveness. Once all
clean query representations Zq = {Z1

q , Z
2
q , · · · , ZN

q } are
extracted from the cumulative features F , we generate an
image with semantically disentangled objects and minimal
attribute leakage. To achieve this, we adapt the self-attention
mechanism in standard diffusion models to a object-aware
self-attention, analogous to attention expansion techniques in
video diffusion (Wu et al. 2023; Alimohammadi et al. 2024),
which promote temporal consistency. Similarly, our approach
enables instances to attend to share the semantic features
among each other. The attention is designed as follows:

A([Z1
Q, · · · , ZN

Q ],K, V ) (5)

where K and V denote keys and values (see Fig 4). This
formulation ensures semantic coherence in the foreground,
as each query Zi

Q interacts with a constant keys and values,
while background features remain decoupled. Since the back-
ground is generated solely from Pd, it may lack realism. Thus,
we inpaint the masked background using SDXL(Podell, Liu
et al. 2023) conditioned on a background prompt Pbg. The
final image I (see Fig. 4) captures the intended scene lay-
out, with semantically disentangled foregrounds and minimal
attribute leakage.

Layout Refinement via Iterative Feedback
After generating a layout-grounded image I , we ensure that
the prompt description Pd is accurately reflected in terms of
object count and image aesthetics. To this end, we propose an
iterative refinement process that evaluates I , identifies flaws,
and updates both the layout and prompt until the output meets
the desired quality.

Figure 5: Successive Layout Refinement using LLM Critic.
Corresponding layouts in the inset.

Design-Critic LLM: We reuse the LLM agent based on
Qwen3 (Yang et al. 2025), repurposed as a Design Critic
for analyzing generated images and suggesting prompt and
layout corrections. Given a user prompt Pd and the corre-
sponding generated image I , the agent evaluates two key
aspects: (a) object count accuracy and (b) visual aesthetics,
as illustrated in Fig. 3. Since LLMs may struggle to reliably
assess object counts or aesthetic quality, we provide reference
metrics to guide evaluation. Specifically, we estimate count
accuracy using an open-vocabulary object detector (Liu et al.
2024), producing a score sc. Additionally, we assess visual
quality using an aesthetic scorer (Wu et al. 2024) that con-
siders both Pd and I , outputting a score sa. We define a
composite score S to quantify overall image quality:

S = α ·max

(
0, 1− |sc − sgtc |

sgtc

)
+ βsa (6)

where sgtc is the ground truth object count from the prompt,
and α=0.6, β=0.4 are weighting coefficients. This score
balances object count accuracy and visual fidelity. The
composite score S, along with I and Pd, is then fed
to the LLM critic, which programmatically generates
textual feedback, e.g., ’cat1 is overlapping with
cat2’, ’only 2 birds detected but target
is 1’, or ’lighting is inconsistent across
objects’. This feedback is used to iteratively refine the
spatial layout, aiming to improve both object count accuracy
and visual quality.
Parameter-free refinement: The critic LLM’s textual feed-
back must be translated into concrete edits to the plan-
ning graph to generate an updated image incorporating the
feedback. Instead of fine-tuning model parameters—which
is impractical without large annotated datasets—we intro-
duce a gradient-free textual optimizer, ImGrad, inspired by
TextGrad (Yuksekgonul et al. 2025). ImGrad acts as an in-
telligent text-editing agent, interpreting the critic’s feedback
∆G to update the planning graph G:

G′ = ImGrad
(
G,∆G

)
,

Importantly, ImGrad operates on the textual represen-
tations rather than numerical parameters. For exam-
ple: ① For feedback like "cup7 is overlapping
with cup3", ImGrad adjusts G to increase spatial
separation. ② For "only 28 cups detected but
target is 30", it adds missing nodes in G. This
parameter-free approach is compatible with any frozen diffu-
sion model and allows precise, structured refinements. With



the updated graph G′, we re-run the planning graph construc-
tion, which produces a refined layout L, followed by image
synthesis I (see Fig. 5). The feedback loop terminates when
the composite score S exceeds a threshold (0.85) and the
predicted object count sc matches the ground truth sgtc .

Experiments
Benchmarks: We evaluate COUNTLOOP on four datasets
targeting image generation under varying instance counts
and compositional complexity: T2I-CompbenchCount:
A subset of T2I-Compbench (Huang et al. 2023), fo-
cused on open-world compositional text-to-image generation.
COCO-Count: A subset of MS-COCO (Lin et al. 2014).
COUNTLOOP-S (Single Category, High Instance): A cus-
tom dataset of 200 prompts, each describing a single cat-
egory with 30–200 instances (e.g., “50 trees in a forest”).
COUNTLOOP-M (Multiple Categories, High Instance): A
custom dataset of 200 prompts, each with multiple categories,
each ranging from 30–200 instances (e.g., “30 people and 20
cars in a city street”). More details about these newly intro-
duced benchmarks are given in the supplementary material.
Evaluation Metrics: We evaluate object counting using
GroundingDINO (Liu et al. 2024), chosen for its strong open-
vocabulary detection performance across diverse categories.
We report both F1 score and counting accuracy. For aesthetic
quality and semantic alignment, we use the CLIP-FlanT5
encoder from VQAScore (Li et al. 2024), which provides
scores between 0 and 1. Additionally, we conduct a human
evaluation to assess how well the generated images match
the prompts and to rate their overall visual appeal.

Figure 6: COUNTLOOP maintains precise object counts and
natural arrangements in dense scenes, while baselines exhibit
abnormal counts, spatial collapse, and grid artifacts.

Baselines: We compare COUNTLOOP against eleven rep-
resentative baselines across three categories: text-to-image
(T2I), agentic, and layout-to-image (L2I) approaches. (1)
T2I Models: SDXL (Podell et al. 2024), a high-resolution
diffusion model; FLUX (Black-Forest-Labs 2024), known
for enhanced style and texture fidelity; SD 3.5 (Stability-
AI 2025), the latest version of Stable Diffusion; Counting
Guidance (Kang, Galim, and Koo 2023), which integrates
a counting module into denoising; and GPT-4o (Yan et al.
2025), a proprietary multimodal model capable of image syn-
thesis. (2) Agentic Models: GenArtist (Wang et al. 2024),
an agent-based framework for iterative artistic refinement;
SLD (Wu, Lian et al. 2023), a self-correcting loop for accu-
racy enhancement; and RPG-DiffusionMaster (Yang et al.
2024), which uses role-playing agents for multi-stage gener-
ation. (3) L2I Models: LMD (Lian et al. 2023), leveraging
LLM-generated layouts; MIGC (Zhou et al. 2024), focused
on multi-instance layout-constrained synthesis; and Count-
Gen (Binyamin, Tewel et al. 2024), which uses attention
manipulation for count control.
Quantitative Results: Table 1 presents a quantita-
tive comparison across four benchmarks: COCO-Count,
T2I-Compbench, COUNTLOOP-S, and COUNTLOOP-M.
COUNTLOOP consistently outperforms baselines in both
counting accuracy and spatial coherence across all categories.
On COCO-Count and T2I-Compbench (moderate instance
counts), COUNTLOOP achieves F1 scores of 98.47% and
95.38%, surpassing agentic methods like SLD (90.34% and
91.50%) and RPG-DiffusionMaster (84.89% and 91.32%),
as well as T2I models such as GPT-4o (92.91% and 94.19%)
and FLUX (84.73% and 90.75%). For high-instance datasets
COUNTLOOP-S and COUNTLOOP-M (30–200 instances),
COUNTLOOP attains F1 scores of 60.00% and 85.43%,
clearly exceeding L2I baselines like MIGC (54.16% and
81.06%) and agentic approaches such as GenArtist (51.00%
and 77.87%). These results highlight the challenges faced by
competing methods under high-instance conditions, where
agentic models outperform T2I but still fall short in precision.
Additionally, COUNTLOOP maintains superior spatial coher-
ence (0.73–0.97), affirming its capacity for accurate counting
and spatial arrangement in complex scenes.
Qualitative Results: Fig. 6 demonstrates COUNTLOOP’s
consistent precision across diverse instance counts. For “17
vases”, baselines under generate (LMD: 13, Count Guidance:
9, CountGen: 6), while COUNTLOOP accurately renders all
17 with natural arrangements. In the “104 hot air balloons”
scene, COUNTLOOP precisely places all balloons with real-
istic spacing, unlike Count Guidance (57), CountGen (54),
and LMD’s artificial clusters (225 overlapping). For dense
scenes like “49 oranges in a bowl”, COUNTLOOP maintains
exact count with natural overlaps and lighting, outperforming
Count Guidance (55) and CountGen (22). Similarly, COUNT-
LOOP correctly generates 77 distinct donuts with varied tex-
tures, while LMD produces only 10 and Count Guidance
yields 47. Crucially, COUNTLOOP consistently avoids se-
mantic drift, grid artifacts, and count inaccuracies that out-
performs baselines for high-instance image generation.
Ablation and Analysis: We perform a systematic ablation
study on the COCO-Count dataset to evaluate the impact



Table 1: Comparing counting and aesthetic quality across four benchmarks. For every dataset we report Counting—split
into F1 score and Accuracy—and Spatial, which is the aesthetic quality.

Single Category Multi Categories

COCO-Count T2I-Compbench COUNTLOOP-S COUNTLOOP-M

Model Counting (%) ↑ Spatial ↑ Counting (%) ↑ Spatial ↑ Counting (%) ↑ Spatial ↑ Counting (%) ↑ Spatial ↑F1 Acc. F1 Acc. F1 Acc. F1 Acc.

T2
I

SDXL (Podell et al. 2024) 71.87 42.13 0.38 84.36 44.00 0.75 55.40 24.49 0.63 77.84 67.25 0.55
FLUX (Black-Forest-Labs 2024) 84.73 54.19 0.53 90.75 57.00 0.78 49.08 29.59 0.65 79.99 78.00 0.58
SD 3.5 (Stability-AI 2025) 83.97 50.56 0.46 88.56 50.00 0.76 54.96 33.67 0.64 79.91 77.19 0.56
Counting Guidance ((Kang, Galim, and Koo 2023)) 67.54 18.50 0.63 71.41 17.50 0.56 36.67 10.20 0.47 64.42 25.90 0.41
GPT-4o (Yan et al. 2025) 92.91 72.50 0.55 94.19 68.00 0.80 49.45 39.64 0.69 79.10 50.11 0.60

A
ge

nt
ic GenArtist (Wang et al. 2024) 75.40 45.50 0.45 85.33 55.82 0.70 51.00 30.56 0.60 77.87 70.34 0.57

SLD (Wu, Lian et al. 2023) 90.34 69.90 0.70 91.50 65.50 0.77 55.04 40.07 0.75 82.46 74.35 0.65
RPG-DiffusionMaster (Yang et al. 2024) 84.89 60.73 0.60 91.32 60.00 0.75 51.89 34.38 0.70 80.16 71.46 0.62

L2
I

LMD (Lian et al. 2023) 54.69 29.81 0.24 71.44 35.50 0.73 49.24 28.57 0.66 80.28 77.67 0.64
MIGC (Zhou et al. 2024) 73.82 36.11 0.36 71.47 33.00 0.65 54.16 25.17 0.65 81.06 79.08 0.62
CountGen (Binyamin et al. 2024) 58.99 50.00 0.61 63.75 19.78 0.75 48.18 41.40 0.72 72.00 45.33 0.69
COUNTLOOP (ours) 98.47 93.33 0.93 95.38 78.50 0.79 60.00 55.00 0.97 85.43 83.67 0.73

of key components in our model. Specifically, we ablate
the Planning Graph and Cumulative Attention modules. As
shown in Table 2, incorporating spatial reasoning through the
planning graph enhances generation quality with complex
reasoning, which is visually evident in Fig. 7. The cumu-
lative attention module improves visual fidelity by ∼ 18%,
highlighting its role in mitigating attention leakage in high-
instance scenarios. Further analysis of the number of iter-
ations required for optimal aesthetics (see supplementary
material) reveals that two iterations are sufficient. Addition-
ally, we plot count accuracy against the number of instances
(see supplementary material) and demonstrate that our model
maintains high accuracy, even when generating around 100 in-
stances. We also compare the runtime of our best-performing
model in terms of both count and aesthetics with existing ap-
proaches, reporting the time required to generate images with
correct count and aesthetics in the supplementary material.
Finally, we evaluate the performance of COUNTLOOP using
different LLMs and image generation models, with results
provided in the supplementary material.

Table 2: Ablation of design components

Planning Graph Cumulative Attention Metrics
Accuracy ↑ Spatial ↑

✗ ✗ 65.8 0.58
✓ ✗ 77.3 0.70
✗ ✓ 80.4 0.76
✓ ✓ 93.33 0.93

Human Evaluation: We evaluate COUNTLOOP with 30 par-
ticipants (20 designers, 10 AI artists) recruited from design
studios, freelance platforms, and AI art communities. Partici-
pants rated 15 sets of 3 blinded images per method – COUNT-
LOOP, LMD (Lian et al. 2023), and GPT-4o (Hurst et al.
2024) – from the COCO-Count dataset on a 5-point scale
for Prompt Alignment, Aesthetic Quality, and Overall Pref-
erence. COUNTLOOP outperformed baselines (p < 0.01),
scoring 4.6, 4.7, and 4.5, respectively (see Table 3). The users
generally appreciated COUNTLOOP for the image generation
quality being on par with GPT-4o in addition to its precision
in instance generation. We discuss more details on how we

collected the data, who responded, and a screenshot of the
Google Form used to collect responses in the supplementary.

Table 3: User Evaluation (5 best, 0 worst).

Metric COUNTLOOP LMD GPT-4o

Prompt Alignment 4.6 3.8 4.0
Aesthetic Quality 4.7 3.9 4.1
Overall Preference 4.5 3.7 3.9

Figure 7: Spatial reasoning in image generation. Vanilla LLM
(LMD (Lian et al. 2023)) fails to identify directions

Conclusion
We presented COUNTLOOP, a training-free, iterative frame-
work that enables high-instance image generation with pre-
cise object counts and strong visual quality. By combining
LLM-based planning graphs, instance-driven attention, and
cumulative latent composition, COUNTLOOP overcomes key
limitations of existing methods – such as count saturation,
semantic leakage, and rigid layouts. A critic-in-the-loop fur-
ther refines generation through layout and prompt updates.
Evaluations on COCO-Count, T2I-CompBench, and a new
high-instance benchmark show COUNTLOOP achieves over
2× improvement in counting accuracy while preserving aes-
thetics, scaling reliably up to 100+ instances per image.
Limitations: While effective, COUNTLOOP inherits bi-
ases from pre-trained LLMs, struggles with view-grounded
prompts and dense human scenes, and suffers from higher
runtime due to its iterative nature.
Future Work: It would be interesting to extend COUNT-
LOOP toward layout-free generation with weak spatial pri-



ors, enhance human modeling in dense scenes, and enable
ultra-high object counts through controllable upscaling or
multi-canvas fusion.

Implementation Details
All experiments were conducted on a single NVIDIA A100
GPU (80GB) running Ubuntu 22.04, with Python 3.10, Py-
Torch 2.1, and CUDA 12.2. We used Stable Diffusion XL
(sdxl-base-1.0) as the backbone diffusion model, con-
figured with 50 denoising steps. Layout conditioning was im-
plemented via the GLIGEN layout encoder (box+text mode),
and cross-instance texture consistency was enforced using
the IP-Adapter (public checkpoint from (Ye et al. 2023)).
Both the Layout Designer and Design Critic agents were
instantiated from the Qwen (Yang et al. 2025) large language
model. Images were generated at a resolution of 1024×1024,
with composite score weights set to α = 0.6 for count ac-
curacy and β = 0.4 for aesthetic quality, a count detector
confidence threshold of 0.3, and loop termination occurring
when the composite score S ≥ 0.85. A fixed random seed
of 42 was used for all runs, and all third-party models and
detectors were loaded from publicly released checkpoints.
The workflow of our model is provided in Algorithm 1.

Benchmarks and Evaluation Details
Here we provide the details of the evaluation metric and
the benchmark dataset used to judge the performance of our
COUNTLOOP model.
GDINO as Counting Metric: Evaluating object counts in
high-instance synthetic images is critical to measuring gener-
ative fidelity. While YOLO (Feng, Miao, and Zheng 2024)
is widely used for real-time detection and counting, it is
fundamentally limited by its grid-based architecture: YOLO
often struggles in scenes with high object density, heavy
overlap, or occlusion, leading to missed detections and du-
plicate counts. Moreover, YOLO cannot detect new object
categories without retraining, restricting its use in open-set or
zero-shot benchmarks. Grounding DINO (GDINO) (Liu et al.
2024) overcomes these limitations through a transformer-
based design with denoising training and flexible query sup-
port. GDINO offers substantially higher precision and recall
for counting in crowded scenes, handles both small and over-
lapping objects robustly, and can perform open-vocabulary
detection – enabling evaluation on novel categories without
additional training. In our experiments, GDINO delivers more
reliable and consistent counts than YOLO, especially for our
most challenging high-instance compositions a finding also
claimed by CountGen (Binyamin, Tewel et al. 2024), where
they had to use human evaluation for counting T2I Comp-
bench images rather than YOLO due to disjoint categories.
As shown in Fig. 8, GDINO’s robust spatial reasoning and
zero-shot adaptability make it uniquely well-suited for high-
fidelity counting in the settings addressed by our method.
COUNTLOOP-S & COUNTLOOP-M Benchmarks: Ex-
isting text-to-image (T2I) counting benchmarks, includ-
ing T2I-Compbench (Huang et al. 2023) and COCO-
Count (Binyamin, Tewel et al. 2024), suffer from several
key limitations: (i) Limited class diversity—COCO-Count,

ALGORITHM 1: COUNTLOOP: Iterative Feedback for Pre-
cise Object Count and Aesthetics

Function COUNTLOOP(Prompt P , target counts ngt // dict of

per-category counts

):
/* Step 1: Parse prompt into planning graph */

G← BuildPlanningGraph(P ) // Construct

G = (V,E,Bbg) with objects, relations,

attributes (PAGE3)

; iter ← 0

while iter < MaxIter do
/* Step 2: Generate layout and detailed

prompts from planning graph */

(L, Pd, Pbg)← GenerateLayout(G) // Pixel-aligned

layout L; Pd is the foreground prompt and

Pbg contains the background context

(PAGE3-4)

;
/* Step 3: Generate image using diffusion

model (instance-by-instance) */

I ← GenerateImage(L, Pd, Pbg) // Instance-aware

denoising with attention masking,

IP-Adapter for consistency, inpainting

with background prompt(PAGE4-5)

;
/* Step 4: Scoring */

sc ← CountScore(I) // Per-category counts via

GroundingDINO (PAGE6); dict matching ngt

keys

; sa ← AestheticScore(I, Pd) // CLIP-like

aesthetic/alignment score (0-1) (PAGE6)

; S ← CompositeScore(sc, sa, ngt) // Combines

normalized count accuracy and aesthetics;

exact formula tuned empirically

;
/* Step 5: Check stopping criteria */

if S > 0.85 and sc = ngt // Exact match across

all categories

then
return I

/* Step 6: Critic feedback and refinement

*/

∆G← CriticFeedback(I, Pd, sc, sa) // Structured

LLM feedback on counts, spatial,

attributes (PAGE3)

; G← ImGrad(G,∆G) // Update planning graph

;
iter ← iter + 1

return I

for example, samples only 20 classes from MSCOCO, exclud-
ing many real-world object types; (ii) Restricted count range
– most benchmarks evaluate generation only for low-count
scenes (typically <10 objects), failing to challenge models
on dense or high-instance compositions; and (iii) Lack of
complex multi-category prompts – existing datasets rarely
assess the ability to control multiple object types and their
relationships within a scene. These constraints make it dif-
ficult to assess compositional and numeracy capabilities in
state-of-the-art T2I systems rigorously.



Figure 8: Choice of GDINO accuracy as a counting metric
over YOLOv9

To address these gaps, we introduce 2 new benchmarks:
COUNTLOOP-S and COUNTLOOP-M. Both are con-
structed from 92 diverse classes curated from the OmniCount-
191 dataset (Mondal et al. 2025). COUNTLOOP-S is designed
for single-category, high-count evaluation (e.g., “A photo of
127 watches”), while COUNTLOOP-M targets multi-category
control (e.g., “A photo of 148 birds and 6 dogs”), enabling
assessment of compositional fidelity at scale. Representative
generations are shown in Fig. 14; further qualitative examples
are provided below.
Key Features:
• High class diversity: 92 categories, including airplanes,

apples, balloons, bananas, bears, birds, bowls, buttons,
butterflies, cars, cats, dogs, donuts, elephants, fish, hot
air balloons, laptops, monkeys, oranges, pineapples, rab-
bits, roses, sheep, suitcases, swans, teacups, tigers, trucks,
turtles, vases, watches, wine glasses, and more.

• Broad count range: Instance counts from 1 up to 100 and
select very large counts (e.g., 107, 140, 148), supporting
rigorous evaluation in both sparse and dense settings.

• Diverse backgrounds: Prompts encompass a wide array
of real-world contexts, such as in a kitchen cabinet, on
a picnic table, on a pantry shelf, on a couch armrest, in
the sky, in the water, over a valley, on a refrigerator, on a
lunch tray, etc.

• Composite categories: Multi-category prompts combine
classes (e.g., cats and dogs, balloons and pineapples, bears
and mice, cats and suitcases, candles and donuts, cars and
helicopters), enabling compositional reasoning beyond

single-object scenes.

A brief statistics of our benchmark is shown in Fig. 9.

Figure 9: Statistics (instance per image vs category) for the
COUNTLOOP-S benchmark.

Details on Human Evaluation Setup: We designed our
human evaluation survey using Google Forms. Raters were
asked to evaluate three images per set in terms of prompt
alignment, aesthetic quality, and overall preference. A total
of 15 image sets were selected across all four benchmarks,
covering diverse prompts, object categories, and scene com-
plexities to ensure representative assessment. Participants
(N=30) had an average age of 31 (range 22–45), and came
from professional backgrounds in graphic design (20), AI art
and research (10). Approximately 10 participants had prior
experience or domain expertise in tasks requiring precise ob-
ject counting (e.g., data annotation, inventory management,
or computer vision evaluation).

Additional Ablation Details
We perform additional ablations on our model design on
COCO-Count benchmark.
Runtime Analysis: We evaluated the runtime required by
COUNTLOOP and one of the best-performing agentic sys-
tems, SLD (Wu, Lian et al. 2023), to achieve the exact target
object count on prompts containing 10, 50, and 100 instances.
For each configuration, we averaged over 10 independent
runs and report both the mean and standard deviation. In all
cases, COUNTLOOP converges significantly faster than SLD,
with speedups of approximately 1.2× at low counts and up to
1.4× at high counts. In addition to this, SLD performs poorly
in single/multi-category multi-instance scenarios as shown
in Table 1 (main paper), demonstrating the superiority of our
approach both in terms of efficiency and image quality.



Figure 10: Screenshot of the Google Form used for human evaluation.

Table 4: Runtime comparison for achieving correct count
(mean ± std, in seconds)

Model 10 instances 50 instances 100 instances
SLD (Wu, Lian et al. 2023) 35.2± 1.8 110.5± 3.2 165.8± 4.5
COUNTLOOP (Ours) 28.4 ± 1.2 75.3 ± 2.7 120.1 ± 3.9

Impact of Iterative Refinement Rounds: We investigate the
impact of varying the number of iterations on both counting
accuracy and aesthetic quality using the COCO-Count split.
Experiments range from a single iteration (baseline) to two
iterations. We show in Table 5 that while a single iteration
achieves reasonable results, additional iterations significantly
improve both counting accuracy and aesthetic quality.

Table 5: Ablation on the number of iterations.

Iterations Counting (%) ↑ Spatial ↑
F1 Acc.

1 89.72 85.44 0.79
2 98.47 93.33 0.93

Impact on Object-Aware Attention Expansion: In order to
isolate the contribution of our object-aware self-attention (at-
tention expansion) mechanism (see Eq. 5 in the main text), we
conducted an ablation study on the COCO-Count benchmark.
In this variant, we remove the attention-expansion module:
after generating all instance-wise query representations Zq

i
with the IP-Adapter (Eq. 4), we skip the joint self-attention
among these queries (Eq. 5) and directly decode each object
independently, followed by background inpainting. As Ta-
ble 6 shows, omitting attention expansion causes a noticeable

Figure 11: Illustrating the effect of attention expansion. The
quality of generated objects degrades when images are al-
lowed to generate directly using cumulative features alone.

drop in spatial coherence – measured by the CLIP-FlanT5
aesthetic score – while the object counting F1 and accuracy
remain effectively unchanged. This is visually illustrated in
Fig. 11, where without attention expansion leads to degrada-
tion in semantic due to leakage. This confirms that attention
expansion primarily enhances inter-instance semantic consis-
tency without affecting count control.

Table 6: Effect of object-aware attention expansion on COCO-
Count. “Spatial” is the CLIP-FlanT5 aesthetic score.

Model Variant Counting F1 (%) Counting Acc. (%) Spatial
Full COUNTLOOP 98.47 93.33 0.93

w/o Attention Expansion 85.39 81.07 0.82



Performance with different LLM backbones: In this sec-
tion, we compare the performance of different open-sourced
large language models (LLMs) on the COCO-Count bench-
mark. Table 7 presents the results for Qwen3 (Yang et al.
2025), Pixtral (Agrawal et al. 2024), and LLaVA (Liu et al.
2023), with Qwen outperforming the others in both metrics.

Table 7: Performance comparison of different LLMs

Model F1 Score ↑ Spatial ↑
LLaVA 90.87 0.88
Pixtral 92.13 0.91
Qwen 98.47 0.93

Count Accuracy under different numbers of instances::
We plot counting accuracy vs number of instances in Fig. 12.
As seen, COUNTLOOP delivers consistently better perfor-
mance than most benchmarks, even with high instances (100)

   COUNTLOOP

   SDXL

   CountGen

   SLD

   FLUX

Figure 12: Count accuracy vs number of objects per image
for COUNTLOOP, SDXL, Make-It-Count, SLD, and FLUX

.

Performance with Different Diffusion Backbones:
To assess the generality of COUNTLOOP across diffusion
backbones, we replaced the default SDXL model with
two additional Stable Diffusion checkpoints: Stable Dif-
fusion v1.5 (sd-v1-5.ckpt) and Stable Diffusion 3.5
(sd3.5-base). We kept all other components (planning
graph, cumulative attention, IP-Adapter, critic loop) and hy-
perparameters identical. Table 8 reports counting F1, exact-
match accuracy, and spatial scores on the COCO-Count
benchmark. While all backbones benefit substantially from
COUNTLOOP’s structured refinement, we observe that higher-
capacity models yield marginally better spatial coherence,
with SDXL at the top. Importantly, counting performance re-
mains robust (F1 ≥ 97.2%) across backbones, demonstrating
that COUNTLOOP’s instance-control mechanism is largely
model-agnostic.

Additional Qualitative Results
Here we provide some additional results of the LLM and
the Image generation pipeline along with an application of
COUNTLOOP.

Table 8: COUNTLOOP’s performance with different Stable
Diffusion backbones on COCO-Count.

Backbone Counting F1 (%) Counting Acc. (%) Spatial
SD v1.5 (sd-v1-5.ckpt) 97.21 91.05 0.88
SD 3.5 (sd3.5-base) 97.95 92.10 0.90
SDXL (sdxl-base-1.0) 98.47 93.33 0.93

LLM Prompt Template: We have provided the prompt tem-
plates for LLM instructions used in Sec 3. More specifically,
we have provided the expanded prompt instructions used for
(a) In-Context Learning Prompt for Layout Generation and
(b) Prompt for Design Critic LLM, respectively.
Qualitative Comparison Analysis: In addition to the qual-
itative results presented in the main paper, we have also
provided a qualitative comparison (Fig. 13) and a genera-
tion gallery (Fig. 14). The visual results provide compelling
evidence of COUNTLOOP’s effectiveness in high-instance
generation against SoTA models, under both single and mul-
tiple category scenarios.

Style-Aligned Image Generation
A pretrained diffusion U-Net model fine-tuned with LoRA
(Low-Rank Adaptation) can produce vastly different visual
styles from the same base concept. For example, the “13
cats” in Fig. 15 maintain the subject’s constant while each
panel applies a distinct style (photorealistic, semi-realistic
3D, anime, oil painting, sci-fi concept art, and storybook
illustration), altering the lighting and rendering approach
without altering the core content. Under the hood, LoRA
fine-tuning freezes the original diffusion model’s weights
and inserts a small set of trainable low-rank matrices into
the network. These low-rank weight updates capture the new
style’s visual patterns (e.g., realistic fur vs. flat cartoon shad-
ing) without having to modify all of the model’s parameters.
This parameter-efficient approach enables fast, memory-light
adaptation to each style, essentially a learned style transfer
inside the diffusion process, while preserving the model’s
base knowledge (how to depict cats). Crucially, only a few ad-
ditional parameters (on the order of megabytes) are required
for each style, allowing each stylistic variation to be achieved
without retraining or duplicating the entire multi-gigabyte
models.



Figure 13: Comparison with SoTA



Figure 14: Visuals from our COUNTLOOP-M & COUNTLOOP-S benchmarks using COUNTLOOP .



In-Context Learning Prompt for Layout Generation

SYSTEM: You are a Layout Designer AI specialized in

converting text prompts into detailed spatial

layouts for image generation.

CRITICAL INSTRUCTIONS:

1. Assign natural, non-grid positions

2. Include depth information (d)

3. Calculate realistic spatial relationships

4. Maintain proportional object sizes

5. Output ONLY valid JSON

JSON SCHEMA:

{

"objects": [

{

"id": "unique identifier",

"pos": [x, y],

"d": depth,

"size": [w, h],

"color": "primary color",

"attributes": ["list", "of", "attributes"]

}

],

"relations": [

{

"from": "source id",

"to": "target id",

"relation": "spatial relation",

"dist": pixel_distance,

"angle": degrees

}

],

"context": "background description"

}

EXAMPLE 1:

PROMPT: "2 cats and 1 bird in sky"

{

"objects": [

{"id": "cat 1", "pos": [0.3, 0.6], "d": 0.4, "size

": [0.2, 0.25]},

{"id": "cat 2", "pos": [0.6, 0.65], "d": 0.4, "size

": [0.22, 0.27]},

{"id": "bird 1", "pos": [0.5, 0.3], "d": 0.2, "size

": [0.15, 0.1]}

],

"relations": [

{"from": "cat 1", "to": "bird 1", "relation": "

below", "dist": 120, "angle": 90},

{"from": "cat 2", "to": "bird 1", "relation": "

below", "dist": 100, "angle": 85}

],

"context": "outdoor, grassy field"

}

EXAMPLE 2:

PROMPT: "15 identical watches on stand"

{

"objects": [

{"id": "watch 1", "pos": [0.15, 0.4], "d": 0.7, "

size": [0.06, 0.06]},

{"id": "watch 2", "pos": [0.22, 0.42], "d": 0.7, "

size": [0.06, 0.06]},

// ... additional watches

{"id": "watch 15", "pos": [0.85, 0.45], "d": 0.7, "

size": [0.06, 0.06]}

],

"relations": [

{"from": "watch 1", "to": "watch 2", "relation": "

right of", "dist": 45, "angle": 10},

// ... additional relations

],

"context": "wooden display stand"

}

EXAMPLE 3 (High-Count):

PROMPT: "107 identical balloons"

{

"objects": [

{"id": "balloon 1", "pos": [0.12, 0.25], "d": 0.3,

"size": [0.04, 0.04]},

{"id": "balloon 2", "pos": [0.15, 0.28], "d": 0.35,

"size": [0.04, 0.04]},

// ... 103 additional balloons

{"id": "balloon 107", "pos": [0.88, 0.45], "d":

0.25, "size": [0.04, 0.04]}

],

"relations": [

{"from": "balloon 1", "to": "balloon 2", "relation

": "right of", "dist": 30, "angle": 15},

// ... key spatial relations

],

"context": "clear blue sky"

}

CURRENT PROMPT: "{PROMPT}"

OUTPUT:



Prompt for Design Critic LLM

SYSTEM: You are a Designer Critic AI that evaluates

generated images against prompts and provides

structured feedback for refinement. Analyze

object count, spatial arrangement, and

aesthetics, then output actionable feedback in

JSON.

INSTRUCTIONS:

- Analyze ONLY the provided image, prompt, and score

- Identify SPECIFIC issues with object IDs/positions

- Provide CONCRETE fixes (not vague suggestions)

- Prioritize count accuracy issues

- Output ONLY valid JSON

JSON SCHEMA:

{

"evaluation": {

"count_accuracy": {"detected": int, "target": int},

"spatial_quality": float,

"decision": {

"continue_refinement": boolean,

"reason": "justification"

}

}

EXAMPLE (High-Count):

PROMPT: "15 watches on display stand"

GENERATED: 12 watches in grid pattern

{

"evaluation": {

"count_accuracy": {"detected": 12, "target": 15},

"spatial_quality": 0.6

},

"issues": [

{

"type": "count",

"severity": "critical",

"description": "3 watches missing",

"suggested_fix": "Add watches 13-15 at [0.72,0.41],

[0.79,0.39], [0.86,0.43]"

},

{

"type": "spatial",

"severity": "major",

"description": "Artificial grid pattern",

"suggested_fix": "Vary spacing (42-48px) and angles

(-3 to +10ˆ{\circ})"

}

],

"decision": {

"continue_refinement": true,

"reason": "Count error requires refinement"

}

}

CURRENT PROMPT: "{PROMPT}"

CURRENT LAYOUT: "{LAYOUT}"

OUTPUT:



Figure 15: COUNTLOOP’s style control capability
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