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ABSTRACT

Image generation models are typically trained using the L2 or cross-entropy loss,
and evaluated using IS or FID. The inconsistency between the training and eval-
uation metrics results in suboptimal model performance. To this end, we explore
to address the aforementioned issue by finetuning pre-trained generative models
with the reinforcement learning. Considering that current evaluation metrics can
not be used as training objects since obtaining an accurate score typically demands
more than ten thousand images, we introduce an innovative automated metric that
captures consensus as a reward signal of the reinforcement learning for finetuning
image generation models. It exhibits strong correlation with commonly used met-
rics such as FID, and demonstrates better robustness to the number of images than
FID. Experiments indicate that when introducing varying degrees of noise to the
generated images, such as ImageNet contamination or Gaussian noise, our metric
quantifies the level of disruption more accurately than IS. By finetuning generative
models with our proposed method, we boost the performance for image generation
on multiple benchmarks like LSUN 256x256 and ImageNet 64x64.

1 INTRODUCTION

In recent years, image generation models have achieved remarkable progress and demonstrated their
ability to produce realistic and diverse visual content. These models are typically trained using
loss functions such as L2 or cross-entropy lossand evaluated using metrics like Inception Score
(IS) Barratt & Sharma (2018) or Fréchet Inception Distance (FID) Heusel et al. (2017). However,
considering that the metrics employed during training is inconsistent with that used for evaluation,
current methods generate images with suboptimal quality Ranzato et al. (2015). It is since that
traditional training losses can not properly instruct models to capture the intricacies of image quality
and diversity, thus damaging model performance.

Despite that the evaluation metrics, such as IS and FID, can provide valuable insights into the quality
and diversity of generated images, they require a substantial number of samples to produce reliable
scores. In particular, accurately assessing image quality with IS and FID typically necessitates a
large number of images, often exceeding tens of thousands. Moreover, the commonly used back-
propagation training paradigm can not be applied to these evaluation metrics since they are non-
differentiable. In the end, it is difficult to use these evaluation metrics for guiding the training
process of image generation models.

In this paper, we propose a novel metric that is strong-correlated with previous evaluation metrics
but requires much smaller number of generated images. To optimize the image generation models
under the direct guidance of non-differentiable metrics, we propose a novel approach to leverage re-
inforcement learning (RL). By fine-tuning pre-trained generative models using our proposed metric
through reinforcement learning, we bridge the gap between the training and evaluation phases, thus
improving image generation performance. In particuler, to reduce the number of images required
for evaluation, we introduce an innovative automated visual consensus-based Evaluation metric as a
reward signal for reinforcement learning based image generation. Specifically, for a pair of reference
and generated images forming an image pair, we encode the images into two token sequences using
a pre-trained VQ-VAEVan Den Oord et al. (2017). Subsequently, we compute the TF-IDF vectors
for each nxn contiguous tokens combination, followed by utilizing cosine similarity to measure the
semantic consistency between the reference and generated images. This new metric offers an alter-
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native approach to quantifying image quality and diversity, which can capture nuanced aspects that
are vital for effective training.

Extensive experiments demonstrate the effectiveness and efficiency of our method. Notably, when
introducing perturbations such as contamination of the LSUN bedroom dataset with ImageNet im-
ages or Gaussian noise to the generated images, our metric outperforms the Inception Score in
accurately quantifying the level of disruption. This emphasizes the ability of our metric to discern
subtle variations in image quality. Moreover, our proposed automated metric demonstrates a robust
correlation with widely-used metrics like FID while displaying enhanced stability across varying
sample sizes. Furthermore, unlike IS and FID, which exhibits sensitivity to the number of images
used for evaluation, our metric showcases a higher level of consistency, making it more suitable for
reinforcement learning based finetuning.

Through the application of our proposed method, we observe significant performance enhancements
in image generation across multiple benchmark datasets, including LSUN 256x256Yu et al. (2015),
and ImageNet 64x64Deng et al. (2009). This demonstrates the potential of reinforcement learn-
ing based image generation via our CIGE metric in pushing the boundaries of image generation
capabilities.

Our contributions can be summarized as follows:

• We introduce a Consensus-based Evaluation metric for Image Generation that can accu-
rately identify noise and exhibits strong robustness with respect to the number of images.

• We introduce reinforcement learning to image generation models to directly optimize non-
differentiable metric, thereby avoiding the inconsistency between the training and evalua-
tion metrics.

• We assess the effectiveness of our methods on LSUN 256x256 and ImageNet 64x64
datasets. The experiments demonstrate the efficacy of our approach.

2 RELATED WORK

Consensus-based Image Desciption Evaluation Text generation evaluation metrics primarily in-
clude BLEU Papineni et al. (2002), ROUGE Lin (2004), METEOR Banerjee & Lavie (2005), and
CIDEr Vedantam et al. (2015). CIDEr emphasizes consensus-based evaluation, treating alignment
between generated descriptions and multiple reference descriptions as a critical criterion. This ap-
proach aligns more closely with human perception. Given an image and a collection of human
generated reference sentences describing it, the objective of CIDEr is to measure the similarity of a
candidate sentence to a set of reference sentences. The measure of consensus involves assessing how
frequently the n-grams in the candidate sentence are present in the reference sentences. Conversely,
n-grams absent from the reference sentences should not be present in the candidate sentence. Fur-
thermore, n-grams that exhibit commonality across the entire dataset should be assigned diminished
weight due to their presumed lower informativeness. We believe that the core concept of CIDEr can
be applied to the evaluation of image generation tasks.

Evaluation Metrics of Image Generation In image generation tasks, the most commonly used eval-
uation metrics are IS and FID. The Inception Score assesses the diversity and realism of generated
images by computing a model’s performance. It employs a pre-trained image classifier, Inception-
V3 Szegedy et al. (2016), to calculate the class probability distribution for each generated image,
then measures diversity and quality using KL divergence. However, since Inception-V3 is trained on
the ImageNet dataset, the Inception Score is biased towards ImageNet characteristics, considering
anything dissimilar to ImageNet as less authentic. Inception Score heavily relies on the classifier
and indirectly evaluates image quality, neglecting specific differences between real and generated
data.

FID evaluates the similarity between the distributions of generated and real images by computing
the Fréchet distance. It measures the dissimilarity between two multivariate normal distributions,
where lower values are preferable. However, FID is highly sensitive to the number of images and
demands a significant amount of data to be computed effectively.

Reinforcement Learning based Generation Models In NLP, text generation models are typically
based on n-grams Kneser & Ney (1995), feed-forward neural networks Morin & Bengio (2005), re-
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current neural networks Mikolov et al. (2010) or transformers Vaswani et al. (2017). They are trained
to predict the next word given the preceding real words as input. During testing, the trained model
is used to sequentially generate a sequence, taking the generated words as input. Errors accumulate
along the way, leading to exposure bias issues. Furthermore, these models are trained with word-
level losses (e.g., cross-entropy) to maximize the probability of the next word. However, they are
evaluated based on different metrics such as BLEU. To address these issues, we apply reinforcement
learning to text generation. In 2016, Mixed Incremental Cross-Entropy Reinforcement Ranzato et al.
(2015) was introduced for sequence prediction. It employs incremental learning and combines the
REINFORCE Sutton & Barto (2018) algorithm with cross-entropy loss. MIXER is a sequence-level
training algorithm that adjusts the training and testing objectives, such as BLEU, rather than predict-
ing the next word as in previous works. The actor-critic algorithm is applied to sequence prediction,
aiming to further enhance MIXER. It utilizes a critic network to predict the value of tokens, which
represents the expected score following the sequence prediction policy defined by the actor network,
and is trained using the predicted token values Bahdanau et al. (2016).SeqGAN Yu et al. (2017) is a
sequence generative adversarial network with policy gradients, integrating adversarial training from
GANs Goodfellow et al. (2020). ChatGPT Ouyang et al. (2022) employs reinforcement learning
fine-tuning based on human feedback to finetune pre-trained language model.

In the field of image generation, there is still limited research available. Recently, ImageReward
Xu et al. (2023) attempted to enhance text-to-image models through human preference feedback.
However, it only presents evaluation results using the evaluation method proposed in the paper itself
and human evaluation.

Consistency Models Recently, diffusion model based image generation models have seen rapid de-
velopment. These models transform Gaussian noise into samples from a known data distribution
through iterative denoising processes Ho et al. (2020). The generated images exhibit notable diver-
sity and realism However, methods based on diffusion model often require multiple iterations during
the inference process, which affects the generation speed. Recently, consistency models Song et al.
(2023) have addressed this issue. It supports fast one-step generation by design, while still permit-
ting a few-step sampling approach to balance computational cost and sample quality. In this paper,
we employ consistency models as the pre-trained framework.

3 METHOD

In this section, we introduce Consensus-based evaluation metric for Image Generation and the rein-
forcement learning based consistency models.

3.1 CIGE METRIC

We devise an automated metric that captures consensus. Our goal is to automatically evaluate for
image Ii how well a generated image gi matches the reference image ri. First, we train a VQ-VAE
with added perceptual loss Johnson et al. (2016), and the encoder of this VQ-VAE serves as an
image tokenizer to transform an image to a sequence of discrete tokens. We consider a contiguous
block of nxn tokens as a single entity in spatial proximity. CIGE measures consensus by encoding
how often nxn-tokens in the generated image are present in the reference image. While nxn-tokens
not present in the reference image should not be in the generated image. Moreover, nxn-tokens that
commonly occur across all images in the dataset should be given lower weight, since they are likely
to be less informative. In particular, we perform a TF-IDF ? weighting for each nxn-tokens. The
number of times an nxn-tokens ωk occurs in a reference image ri is denoted by hk(ri) or hk(gi) for
the generated sentence gi. We compute the TF-IDF weighting gk(si) for each nxn token ωk using:

gk(si) =
hk(si)∑
ωl∈Ω hl

log

(
|I|∑

Ip∈I min(1,
∑

q hk(sq)

)
(1)

where Ω is the set of all nxn tokens and I is the set of all images in the dataset. The first term
measures the TF of each nxn token ωk, and the second term measures the rarity of ωk using its IDF.
Intuitively, TF places higher weight on nxn tokens that frequently occur in the reference image,
while IDF reduces the weight of nxn tokens that commonly occur across all images in the dataset.
That is, the IDF provides a measure of word saliency by discounting popular tokens that are likely
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to be less visually informative. The IDF is computed using the logarithm of the number of images in
the dataset |I| divided by the number of images for which ωk occurs in any of its reference images.

Our CIGEn score for nxn tokens of length n is computed using the average cosine similarity between
the generated image and the reference image, which accounts for both precision and recall:

CIGEn(gi, ri) =
1

m

gn(ci) · gn(ri)

∥gn(ci)∥∥gn(ri)∥
) (2)

where gn(ci) is a vector formed by gk(ci) corresponding to all nxn tokens of length n and ∥gn(ci)∥
is the magnitude of the vector gn(ci). Similarly for gn(ri). In the experiments conducted in this
paper, we set n = 2.

3.2 FINETUNE CONSISTENCY MODELS WITH THE REINFORCEMENT LEARNING

The learning algorithms we describe in the following sections are agnostic to the choice of the
underlying model, as long as it is parametric. In this work, we focus on diffusion models as they are
a popular choice for image generation. In particular, we use consistency models.

3.2.1 PRETRAIN CONSISTENCY MODELS

We first train a consistency model as a pretraining step. A prominent characteristic of the consistency
model is self-consistency: points along the same PF ODE trajectory map to the same initial point
Song et al. (2023).

When training consistency models, we utilize numerical ODE solvers and a pre-trained diffusion
model to generate pairs of adjacent points on a PF ODE trajectory. Consider discretizing the time
horizon [ϵ, T ] into N − 1 sub-intervals, with boundaries t1 = ϵ < t2 < · · · < tN = T . When N is
sufficiently large, we can obtain an accurate estimate of xtn from xtn+1 by running one discretization
step of a numerical ODE solver. This estimate, which we denote as x̂ϕ

tn , is defined by

x̂ϕ
tn := xϕ

tn+1
+ (tn − tn+1)Φ(x

ϕ
tn+1

, tn+1;ϕ), (3)

where Φ(· · · ;ϕ) represents the update function of a one-step ODE solver applied to the empirical
PF ODE.

By minimizing the discrepancy between model outputs for these pairs, we can effectively transform
a diffusion model into a consistency model. This enables the generation of high-quality samples
with just a single network evaluation. The consistency distillation loss is defined as

Lpre = E[λ(tn)d(fθ(xtn+1
, tn+1), fθ−(x̂ϕ

tn , tn)], (4)

where λ(·) ∈ R+ is a positive weighting function, x̂ϕ
tn is given by Eq. (4), θ− denotes a running

average of the past values of θ during the course of optimization, and d(·, ·) is a metric function that
satisfies ∀x, y : d(x, y) ≥ 0 and d(x, y) = 0 if and only ifx = y.

3.2.2 FINETUNE WITH REINFORCEMENT LEARNING

As described in the previous section, image generation systems are traditionally trained using the
L2 or cross entropy loss. To directly optimize metrics, we can cast our generative models in the
Reinforcement Learning terminology. Generative models can be viewed as an “agent” that interacts
with an external “environment” (image features). The parameters of the network, θ, define a policy
pθ, that results in an “action” that is the prediction of the image. For each step during training, the
agent observes a “reward” that is, for instance, the CIGE score of the generated image——we denote
this reward by R. The reward is computed by CIGE metric by comparing the generated image to
corresponding ground-truth image. The goal of training is to minimize the negative expected reward:

Lθ = −Exi∼I(R(gi, ri)), (5)

where gi is the generated image at step i, and ri is the reference image. We directly fine-tune
consistency models by viewing the CIGE score as the losses.

Lreward = −Exp∼I(R(fθ(xptn+1
), xp)− bp), (6)
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bp =
1

N − 1

∑
q ̸=p

R(fθ(xqtn+1
), xq), (7)

where θ denotes the parameters of the consistency models, fθ(xqtn+1
) denotes the generated image

of consistency models with parameters θ. The final loss form is:
L = Lreward + Lpre (8)

4 EXPERIMENTS

In this section, we first demonstrate the capability of our metric to estimate the level of noise inter-
ference, its robustness with respect to the number of images, and its correlation with FID. Next, we
compare the quantitative and qualitative performance of reinforcement learning-based consistency
models and previous methods on LSUN Bedroom 256x256 and ImageNet 64x64 datasets. Then, we
present the results of ablation studies to demonstrate the necessity of reinforcement learning.

4.1 METRIC

4.1.1 INCREASING DISTURBANCE

We demonstrate that CIGE can accurately assess disruption levels in generated images under varying
degrees of noise. Experiments indicate that our metric consistently correlates with noise levels more
accurately than the Inception Score.

Fig. 5 in appendix shows that the CIGE is consistent with increasing disturbances and human judg-
ment on the LSUN bedroom dataset. It illustrates the evaluation of CIGE and IS across different
disturbances: Gaussian noise, Gaussian blur, implanted black rectangles, swirled images, salt and
pepper noise, and contamination of the LSUN Bedroom dataset with ImageNet images. Remarkably,
unlike the IS, the CIGE effectively captures the degree of disruption.

As shown in Fig. 5, with increasing disturbance levels, the CIGE score decreases. A higher CIGE
score indicates better image quality, similar to IS. However, as the disturbance level of Gaussian
noise, Gaussian blur, and ImageNet contamination increases, the IS score keeps increasing. With
the continuous enhancement of the other three types of noise, the IS score remains relatively stable
or exhibits fluctuations, demonstrating that it also struggles to effectively identify the other three
types of noise.

We can see that IS is incapable of discerning noise presence in images. Particularly, when some
images are replaced with ones from the ImageNet dataset, IS exhibits a significant increase. This
is attributed to the fact that the Inception-V3 model used by IS is trained on the ImageNet dataset,
which significantly impacts the accuracy of IS.

Additionally, when parts of the image undergo a spiral transformation, resembling a swirl, the de-
crease in CIGE score is slower compared to the addition of other types of noise. This observation
aligns with human judgment.

4.1.2 CONSISTENCY WITH FID

We next show that CIGE exhibits strong correlation with commonly used metrics such as FID and
CLIPScore. We trained a cogview model and utilized models with varying training steps to generate
10,000 images based on MS COCO captions. Then, we calculate CIGE, FID, and CLIPScore for
the generated images respectively. It can be observed that with an increase in training steps, FID
gradually decreases, while CIGE and CLIPScore exhibit an increasing trend.

Additionally, we computed the Pearson correlation coefficient Sedgwick (2012) between FID and
CIGE scores, resulting in an absolute value of 0.71, indicating a strong correlation between FID and
CIGE. For detailed information, please refer to the appendix.

4.1.3 ROBUSTNESS TO THE NUMBER OF IMAGES

In Fig. 2, CIGE exhibits superior resilience to changes in the number of images compared to FID.
We employed the cogview model to generate 10,000 images based on the MS COCO dataset. Sub-
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Figure 1: CIGE exhibits strong correlation
with FID .

Figure 2: Robustness of metrics to the num-
ber of images.We present the curves depict-
ing the variations of the CIGE, FID, and IS
metrics as the number of images changes on
MS COCO dataset.

sequently, we randomly selected N images (10 ≤ N ≤ 10, 000) and computed CIGE scores, FID
values, and IS scores. To better illustrate the robustness of our metrics with respect to the number
of images, we applied different scaling factors to these scores to bring the CIGE score, FID, and IS
values for 10,000 images closer together.

From the graph, it can be observed that as the number of images decreases, FID rapidly increases.
The rate of change in IS is slower compared to the rate of change in FID, and our metric shows
the least pronounced variation. When the number of images is less than 70, the change in CIGE
increases in comparison to itself. This demonstrates that FID is the most sensitive to the number of
images, followed by IS, whereas our metric displays the highest level of robustness.

Furthermore, even though there is some variability in the CIGE scores when calculated for individual
images generated by the same model, instances of extreme values are relatively infrequent. This
suggests that as the number of images reaches several tens, the average scores tend to deviate only
slightly from the average scores obtained for 10,000 images. For detailed information, please refer
to the appendix.

4.2 REINFORCEMENT LEARNING BASED CONSISTENCY MODELS

We employ consistency distillation to learn consistency models and finetuned with reinforcement
learning on real image datasets. Results are compared according to Fréchet Inception Distance
(lower is better), Inception Score (higher is better), Precision (higher is better), and Recall(higher is
better).

4.2.1 BASELINES

We mainly compare our methods with diffuison models including DDPM Ho et al. (2020), EDM
Karras et al. (2022), PD Salimans & Ho (2022), SS-GAN Chen et al. (2019), ADM Dhariwal &
Nichol (2021).

4.2.2 QUANTITATIVE COMPARISON

Table 4 and Table 5 presents the results of our model trained on the LSUN Bedroom 256×256
dataset and ImageNet 64×64 dataset for image generation tasks. As shown in Table 4 and Table 5 ,
our approach is mainly compared with other single-step generative models.

Table 4 indicates that our method outperforms both the PD and SS-GAN approaches in terms of
FID, precision, and recall when using one-step generation on the LSUN Bedroom 256×256 dataset.
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METHOD NFE FID Prec. Rec.
LSUN Bedroom 256× 256
DDPM 1000 4.89 0.60 0.45
ADM 1000 1.90 0.66 0.51
EDM 79 3.57 0.66 0.45
PD 1 16.92 0.47 0.27
SS-GAN 1 13.3 - -
OURS 1 10.74 0.65 0.30

Table 1: Sample quality on LSUN Bedroom 256 × 256.
METHOD NFE FID Prec. Rec.
ImageNet 64 × 64
ADM 250 2.07 0.74 0.63
EDM 79 2.44 0.71 0.67
PD 1 15.39 0.59 0.62
OURS 1 13.75 0.6297 0.6593

Table 2: Sample quality on ImageNet 64 × 64.

Furthermore, while the FID of our method may not be as competitive as those of DDPM, ADM and
EDM, our precision is superior to that of DDPM, and it is comparable to EDM and ADM.

Table 5 indicates that our method outperforms the PD approaches in terms of FID, precision, and
recall when using one-step generation on the ImageNet 64×64 dataset. Furthermore, while the FID
of our method may not be as competitive as ADM and EDM, our recall is superior to that of ADM.

4.3 ABLATION STUDY ON THE REINFORCEMENT LEARNING

To investigate the effectiveness of our proposed finetuning with reinforcement learning, we con-
ducted an ablation study by training consistency models without employing reinforcement learning
for fine-tuning during the training process.

The quantitative results are presented in Table3, providing clear evidence of the effectiveness of our
reinforcement learning approach across both datasets: LSUN Bedroom and ImageNet. Furthermore,
we qualitatively compare the images generated by models using reinforcement learning for finetune
and those without. We found that finetune models using reinforcement learning can better generate
image detail and are less prone to distortion.

From the first three columns of images in Fig. 3, it can be observed that the shape of the bed
generated by the model without fine-tuning is not close to a rectangle, and the edges of the bed are
more prone to bending. The images in the fourth column indicate that our model is able to clearly
generate curtains, whereas the same area in images generated by the model without fine-tuning is
blurry. In the last column of images, the model without fine-tuning was not able to successfully
generate the bed on the right side.

Figure 3: Images generated
with(bottom) or without(top) the
reinforcement learning on LSUN
Bedroom 256×256. All corresponding
images are generated from the same
initial noise.

Datasets RL FID IS

LSUN Bedroom 256×256 w/o 10.70 2.09
w/ 10.74 2.14

ImageNet 64 × 64 w/o 13.48 33.44
w/ 13.41 33.51

Table 3: Sample quality on ImageNet 64 × 64
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5 CONCLUSION AND LIMITATIONS

This paper introduces CIGE, a visual evaluation metric that captures consensus and utilizes it as
a reward signal for reinforcement learning to fine-tune consistency models.We also e introduce re-
inforcement learning to image generation models to directly optimize non-differentiable metric,
thereby avoiding the inconsistency between the training and evaluation metrics.

Our approach offers several advantages: Firstly, when introducing varying levels of noise to the gen-
erated images, such as ImageNet contamination or Gaussian noise, CIGE provides a more accurate
quantification of disruption compared to IS. Additionally, our metric exhibits a strong correlation
with commonly used metrics like FID and demonstrates superior robustness to changes in the num-
ber of images compared to FID. These advantages allow us to address the disparity between training
and evaluation metrics in image generation models by directly optimizing CIGE. Lastly, through
reinforcement learning-based finetuning of consistency models, we enhance the model’s capability
to generate images.

However, our research has certain limitations. Due to constraints in computational resources, we
have yet to explore the role of reinforcement learning in fine-tuning other types of generative models.
Future works are encouraged to solve the above issues.
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Figure 4: Left: CIGE and right: Inception Score are evaluated for first row: Gaussian noise,
second row:Gaussian blur,third row:implanted black rectangles,fourth row:swirled images,fifth
row:salt and pepper noise,sixth row:LSUN bedroom dataset contaminated by ImageNet images.
Left is the smallest disturbance level of zero, which increases to the highest level at right. The CIGE
captures the disturbance level very well by monotonically increasing whereas the Inception Score
fluctuates, stay flat or even, in the worst case, decreases.
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A APPENDIX

You may include other additional sections here.

This document provides comprehensive descriptions and results of our method that could not be
accommodated in the main paper due to space restriction.

B ADDITIONAL EXPERIMENTS AND EXPERIMENTAL DETAILS

In this section, we present additional experiments and experimental details.

B.1 INCREASING DISTURBANCE

We considered following disturbances of the image X in section of Increasing Disturbance.

Gaussian noise: The noisy image is computed as (1− α)X+ αN for α ∈ {0, 0.25, 0.5, 0.75}.

Gaussian blur: Convolution is performed on the image using a Gaussian kernel characterized by a
specific standard deviation α ∈ {0, 1, 2, 4}.

Black rectangles: Add five randomly positioned black blocks to each image to obscure its original
content. The size of the black blocks is determined by multiplying α with the image size.

Swirl: For a pixel with coordinates (x, y) in the image, its polar coordinates relative to the center
position (x0, y0) are (r, θ), where r =

√
(x− x0)2 + (y − y0)2 is the radius and θ = arctan((y −

y0/(x − x0)) is the angle. The polar coordinates after adding noise are (r, θ
′
), where θ

′
= θ −

αe−5r/(ln 2ρ). α ∈ {0, 1, 2, 4} is a parameter for the amount of swirl and ρ = 25 indicates the swirl
extent in pixels. Therefore, the pixel at the original coordinates (x, y) in the image corresponds
to the coordinates (x

′
, y

′
) in the image after adding noise, where x

′
= x0 + r cos(θ

′
) and y

′
=

y0 + r sin(θ
′
).

Salt and pepper noise: We randomly set some pixels in the image to black or white, with a
probability of 50% for each. The proportion of pixels that undergo changes in the image is
α ∈ {0, 0.1, 0.2, 0.3}.

ImageNet contamination: A percentage of α ∈ {0, 0.25, 0.5, 0.75} of the MSCOCO images has
been replaced by ImageNet images. α = 0 means all images are from MSCOCO, α = 0.25 means
that 75% of the images are from MSCOCO and 25% from ImageNet etc.

In Fig.5, we also validated the superior noise-discrimination ability of CIGE over IS and CLIPScore
on the MSCOCO dataset. The CIGE captures the disturbance level very well by monotonically
increasing. While the Inception Score increases when replacing some of the images with pictures
from the ImageNet dataset. In addition the CLIPScore is basically consistent with increasing distur-
bances on the MSCOCO dataset. However, when the level of disturbance added to the images is 0
and 1, the clipscore is 29.97 and 30.03, respectively. At this point, the clipscore cannot accurately
represent the quality of image generation. CLIPScore is also not sensitive to swirled distortions in
images.

B.2 PEARSON CORRELATION COEFFICIENT

The Pearson correlation coefficient, also known as Pearson’s correlation, is a statistical measure
used to assess the strength of a linear relationship between two variables. It quantifies the degree
of linear association between two variables, with values ranging between -1 and 1, indicating the
strength and direction of their correlation.

Specifically, the Pearson correlation coefficient is calculated using the following formulaSedgwick
(2012):

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(9)
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Figure 5: Left: CIGE, middle:Inception Score and right: CLIP Score are evaluated on MSCOCO
datasets for first row: Gaussian noise, second row:Gaussian blur,third row:implanted black rectan-
gles,fourth row:swirled images,fifth row:salt and pepper noise,sixth row:LSUN bedroom dataset
contaminated by ImageNet images. Left is the smallest disturbance level of zero, which increases to
the highest level at right.
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1.0X¡ — X¡ ImageNet 256× 256heightInput Size 256× 256Latent Layers32× 32Hidden Units128β(Commitment Loss Coefficient) 0.25Codebook Size 8192Codebook Dimension 64height

Table 4: Hyper-parameters of the VQ-VAE, the encoder of which serves as an image tokenizer to
transform an image to a sequence of discrete tokens when computing CIGE.

Table 5: Hyper-parameters of the Consistency Models and reinforcement learning on LSUN Bed-
room 256× 256 and Imagenet 64× 64.

1 p0.33 — X¡ X¡ X¡ height LSUN Bedroom 256× 256 ImageNet 64× 64heightBatch Size 128 32Learning Rate 1e-5 8e-6heightheightTraining method of Consistency ModelsConsistency Distillation Consistency DistillationODE solver Heun HeunEMA decay rate 0.999943 0.999943Loss Norm L2 L2Number of GPUs 44heightheightn 22β(threshold)0.50.5Number of GPUs 44height

Here, (xi) and (yi) are the individual observations of the two variables, and (x̄)and (ȳ) are their
respective means. This formula measures the linear relationship between the variables: when r is
positive, it indicates a positive correlation, meaning that the values of both variables tend to increase
or decrease together; when r is negative, it indicates a negative correlation, implying that one variable
increases while the other decreases. Values of r close to 1 or -1 signify a strong linear relationship,
while values near 0 suggest a weak or no linear relationship between the variables.

We trained a Cogview model and utilized models with varying training steps to generate 10,000
images based on MS COCO captions. Next, we calculate the CIGE, FID, and CLIPScore for the
images generated by each of the 13 models separately. The range of variation for FID is between
31.36 and 102.36. We computed the Pearson correlation coefficient between FID and CIGE scores
of these images, resulting in an absolute value of 0.71, indicating a strong correlation between FID
and CIGE. Additionally, the Pearson correlation coefficient between CLIPScore and FID is -0.18.

C MORE QUALITATIVE RESULTS

We present more qualitative result on LSUN Bedroom 256×256 in Fig. 6.

D SETTINGS OF HYPER PARAMETERS

The detailed settings of model hyper parameters are presented in Table 4 and Table 5. The threshold
c in Table 5 represents that when there are more than β × n × n tokens in common between two
n×n-sized tokens while calculating CIGE, those two token combinations are considered as identical.
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Figure 6: Qualitative result on LSUN Bedroom 256×256.
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