
Under review as submission to TMLR

Multi-Modal Foundation Models for Computational
Pathology: A Survey

Anonymous authors
Paper under double-blind review

Abstract

Foundation models have emerged as a powerful paradigm in computational pathology
(CPath), enabling scalable and generalizable analysis of histopathological images. While
early developments centered on uni-modal models trained solely on visual data, recent ad-
vances have highlighted the promise of multi-modal foundation models that integrate hetero-
geneous data sources such as textual reports, structured domain knowledge, and molecular
profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal
foundation models in CPath, with a particular focus on models built upon hematoxylin
and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We
categorize 34 state-of-the-art multi-modal foundation models into three major paradigms:
vision-language, vision-knowledge graph, and vision-gene expression. We further divide
vision-language models into non-LLM-based and LLM-based approaches. Additionally, we
analyze 30 available multi-modal datasets tailored for pathology, grouped into image-text
pairs, instruction datasets, and image-other modality pairs. Our survey also presents a tax-
onomy of downstream tasks, highlights training and evaluation strategies, and identifies key
challenges and future directions. We aim for this survey to serve as a valuable resource for
researchers and practitioners working at the intersection of pathology and AI.

1 Introduction

The advent of foundation models has significantly transformed computational pathology (CPath) by enabling
scalable and generalizable deep learning solutions for analyzing histopathological images. These models are
designed to extract meaningful patterns from vast collections of pathological data, enhancing diagnostic
accuracy, prognostic assessments, and biomarker discovery (Ochi et al., 2025). Among various imaging
modalities, hematoxylin and eosin (H&E) stained images remain the most widely used in CPath due to their
accessibility and effectiveness in capturing morphological details of tissues (Chanda et al., 2024; Guan et al.,
2025). Whole Slide Images (WSIs), obtained from high-resolution scanning of tissue samples, offer compre-
hensive histopathological insights but are computationally demanding due to their large size. To manage
this, WSIs are typically divided into smaller tile images, which serve as the fundamental units for training
deep learning models (Wang et al., 2024; Ding et al., 2024; Chen et al., 2024d). Existing foundation models
for CPath (FM4CPath) can be broadly classified into uni-modal and multi-modal paradigms (Li et al., 2025),
with the former primarily focusing on visual representation learning and the latter integrating additional
modalities such as text, knowledge graphs, and gene expression profiles for enhanced interpretability and
performance.

Early research in CPath predominantly leveraged uni-modal foundation models (Wang et al., 2022b; Chen
et al., 2024c; Vorontsov et al., 2023), where deep learning models were trained solely on histopathological
images. These uni-modal models have led to significant advancements in classification, segmentation, and
prognostic prediction tasks by learning rich visual features from pathology slides. However, despite their
success, these models are inherently limited by their exclusive reliance on image data, which often lacks
crucial contextual information present in pathology reports, structured knowledge, or molecular profiles. To
overcome these limitations, recent efforts have shifted toward multi-modal foundation models (Lu et al.,
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Figure 1: A roadmap of multi-modal foundation models for computational pathology (MMFM4CPath).

Table 1: Comparison between our survey and related surveys.

Survey
# MMFM4CPath # Datasets for MMFM4CPath

Tasks
TaxonomyVision-Language Vision-Knowledge Graph Vision-Gene Expression Total Image-Text Pair Instruction Image-Other Modality Total

Non-LLM LLM
Ochi et, al. (Ochi et al., 2025) 4 ✗ ✗ 1 5 4 ✗ 1 5 ✓
Chanda et, al. (Chanda et al., 2024) 7 4 1 ✗ 12 8 6 ✗ 14 ✗
Guan et, al. (Guan et al., 2025) 3 11 ✗ 1 14 8 6 ✗ 14 ✗
Bilal et, al. (Bilal et al., 2025) 8 4 ✗ 2 14 ✗ ✗ ✗ ✗ ✓
Li et, al. (Li et al., 2025) 8 ✗ 2 ✗ 10 12 ✗ 2 14 ✓

This Survey 13 15 2 4 34 12 13 5 30 ✓

2024a; Wang et al., 2024; Lu et al., 2024b), which integrate heterogeneous data sources to provide more
robust and interpretable insights.

Existing multi-modal foundation models for CPath (MMFM4CPath) can be categorized into three primary
paradigms: vision-language, vision-knowledge graph, and vision-gene expression models. A roadmap of
up-to-date MMFM4CPath is shown in Figure 1. Vision-language models (Huang et al., 2023; Ikezogwo
et al., 2024; Sun et al., 2024e;b) utilize textual annotations, such as WSI reports and tile-level captions, to
enrich visual representations, facilitating zero-shot learning and seamless cross-modal integration between
images and text. Within this category, models can be further divided into non-LLM-based and LLM-based
approaches, with the latter incorporating large language models (LLMs) for improved natural language
understanding and generative capabilities. Vision-knowledge graph models (Zhou et al., 2024b;a) integrate
structured domain knowledge by leveraging pathology-specific ontologies and knowledge graph to guide deep
learning models. Vision-gene expression models (Xu et al., 2024; Vaidya et al., 2025) align visual features
with molecular-level insights from RNA sequencing and other omics data, facilitating genotype-phenotype
associations for precision medicine.

While existing surveys have explored FM4CPath (Ochi et al., 2025; Chanda et al., 2024; Guan et al., 2025;
Bilal et al., 2025; Li et al., 2025), they often lack a comprehensive analysis tailored to multi-modal approaches.
As shown in Table 1, our survey differentiates itself by systematically categorizing 34 of the most up-to-
date MMFM4CPath and analyzing 30 available multi-modal datasets for pathology, with an emphasis on
modalities beyond vision-language integration. Additionally, we provide an in-depth discussion on evaluation
methodologies, training strategies, and emerging challenges in this field. For transparency, we detail our
literature search strategy, including databases, search terms, time range, and inclusion/exclusion criteria, in
Appendix A. The key contributions of this survey include:

• Comprehensive and Up-to-Date Survey. This survey systematically reviews 34 multi-modal founda-
tion models in computational pathology across vision-language, vision-knowledge graph, and vision-gene
expression paradigms. It offers detailed comparisons of their architectures, pretraining strategies, and
adaptation techniques, providing a broader and more current coverage than prior surveys.
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WSI Report: Prostatic adenocarcinoma with a 
Gleason score of 3 + 4 = 7 (Grade Group 2) confined 
to the prostate.

Tile Caption: Image displays a lymph node featuring 
a prominent germinal center. This center is 
enveloped by a mantle zone...

Whole-Slide Image (WSI)

Tile Image

Vision-Language Multi-Modality Vision-Gene Expression Multi-Modality

Vision-Knowledge Graph Multi-Modality

Figure 2: (Left) Illustration of whole-slide image and its corresponding tile images from H&E-stained tissue.
(Right) The three primary types of multi-modal approaches in computational pathology.

• In-Depth Analysis of Pathology-Specific Multi-Modal Datasets. This survey curates and catego-
rizes 30 available datasets into three types: image-text pairs, multi-modal instructions, and image-other
modality pairs. We emphasize how these datasets enable various training strategies and highlight their
roles in aligning modalities and supporting instruction tuning.

• Thorough Overview of Multi-Modal Evaluation Tasks. A taxonomy of evaluation tasks is pro-
vided, covering six major categories including classification, retrieval, generation, segmentation, predic-
tion, and visual question answering. We detail how different MMFM4CPath are evaluated under various
settings.

• Future Research Opportunities. We outline three promising directions, such as integrating H&E
images with spatial omics data for deeper biological insight, leveraging H&E to predict MxIF markers
for cost-effective virtual staining, and establishing standardized benchmarks to ensure consistent evalu-
ation across tasks and datasets. These directions aim to enhance the clinical relevance, scalability, and
comparability of future models.

2 Background

2.1 Computational Pathology

Computational Pathology (CPath) is an interdisciplinary field that applies computational techniques, in-
cluding machine learning and computer vision, to analyze and interpret pathological data. By leveraging
digital pathology, CPath enhances diagnostic accuracy, facilitates large-scale biomarker discovery, and sup-
ports personalized medicine. Among the various imaging modalities in pathology, Hematoxylin and Eosin
(H&E) stained images serve as the most commonly used vehicle for studying CPath. These images capture
essential morphological characteristics of tissues, making them fundamental for histopathological analysis.
Within the realm of digital pathology, Whole Slide Images (WSIs) and tile images are two primary forms of
data representation. WSIs, generated from high-resolution scanning of entire tissue slides, provide compre-
hensive visual information at gigapixel scale, allowing pathologists to examine cellular structures in detail.
However, due to their enormous size and high computational demands, WSIs pose significant challenges in
terms of storage, processing, and analysis. To mitigate these challenges, WSIs are often divided into smaller,
more manageable tile images, which serve as the primary unit of analysis in many computational pathology
studies.

While visual analysis remains central to CPath, researchers increasingly rely on multi-modal data to enhance
interpretability and improve model performance. One major auxiliary modality is language, which includes
both tile-level captions that describe specific regions of tissue and WSI-level pathology reports that pro-
vide global contextual information about a slide. Integrating text data with images enables vision-language
models to learn richer feature representations and facilitate interpretability. Another important modality is
structured domain knowledge, often represented in knowledge graphs, which encode relationships between
diseases, biomarkers, and tissue structures, guiding AI models toward more biologically plausible interpreta-
tions. Additionally, molecular data, such as gene expression profiles, offer complementary insights by linking
histopathological features to underlying genetic mechanisms. By aligning visual data with gene expression
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information, vision-gene expression models enable the discovery of novel genotype-phenotype associations.
Figure 2 illustrates examples of WSIs and tile images alongside the three major multi-modal paradigms in
CPath. The synergy of these multi-modal approaches, including vision-language, vision-knowledge graph,
and vision-gene expression, has proven crucial in advancing the field of CPath, enabling more robust, gener-
alizable, and interpretable AI-driven pathology models.

2.2 Pre-training Objective for Multi-Modal FMs

Unlike uni-modal models, which are primarily pre-trained through self-supervised contrastive learning
(SSCL), multi-modal FMs, due to their cross-modal nature, involve a more diverse set of self-supervised
learning (SSL) objectives during their pre-training process. Furthermore, when fine-tuning LLMs to enable
conversational abilities, supervised instruction tuning is usually required.

The primary pre-training objective for multi-modal FMs is SSCL. CLIP (Radford et al., 2021), as a pioneer
in this field, ensures that the embeddings generated by the image encoder and text encoder are as similar
as possible for paired image-text data by utilizing contrastive loss. CoCa (Yu et al., 2022) builds upon
CLIP by adding a multi-modal encoder and an additional captioning loss to enable the mapping from the
visual space to the language space. BLIP-2 (Li et al., 2023) trains a lightweight Querying Transformer
(Q-Former) using a two-stage strategy. In the first stage, a frozen image encoder bootstraps vision-language
representation learning, while in the second stage, visual features are mapped to the language model input
space, leveraging a frozen LLM for text generation. Additionally, next word prediction (NWP) is a text-
specific SSL task commonly used for fine-tuning LLMs. It aims to predict the most likely next token based on
the given text sequence. Moreover, cross-modal alignment (CMA) multi-modal domain-specific task, which
aims to build a unified semantic space where the embedding vectors from different modalities can reflect the
same semantic content. In addition to contrastive learning, generative reconstruction and prediction are also
commonly used SSL proxy tasks for CMA.

Instruction tuning (IT) is a method for fine-tuning LLMs to enable them to better understand and execute
the instructions or task requirements provided by users. Unlike traditional pretraining objectives like NWP,
the goal of IT is to enable the model to generate meaningful responses or actions based on specific instructions
or questions. In Instruction Tuning, the model not only learns how to generate language but also learns
how to adapt and generate different outputs according to various task requirements. This typically involves
supervised training using a large number of instructions, ensuring that the model can understand the intent
of the tasks and effectively perform them. Such tasks can include text generation, question answering, and
conversation.

3 Multi-Modal Foundation Models for CPath

The power of multi-modal data has been repeatedly validated not only in the general machine learning com-
munity (Wang, 2021; Wang et al., 2023; Wu et al., 2023) but also in the field of computational pathology (Ochi
et al., 2025; Chanda et al., 2024; Guan et al., 2025). Given the high cost of pathology image data, leveraging
other modalities, particularly textual data, as auxiliary information to learn more robust tile or WSI rep-
resentations has become a dominant approach in developing foundation models for pathology (FM4CPath).
Based on the modalities used, we categorize existing multi-modal FM4CPath (MMFM4CPath) into three
major groups: vision-language, vision-knowledge graph, and vision-gene expression models. Additionally, we
comprehensively summarize their network architectures and pre-training details across different stages, as
shown in Table 2. The rapid advancements in LLMs have enabled MMFM4CPath to possess enhanced gen-
eration and conversational capabilities. We further categorize vision-language models into non-LLM-based
and LLM-based approaches. The goal of these methods is typically to learn robust representations of tiles
or WSIs for a wide range of downstream tasks.

3.1 Non-LLM-Based Vision-Language FM4CPath

Vision-language FM4CPath enhance the models’ understanding of pathological images by aligning paired
image-text data under vision-language SSL frameworks, such as CLIP (Radford et al., 2021) and CoCa (Yu
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Table 2: Overview of architecture and pre-training details of MMFM4CPath (Due to space constraints, the
references for the mentioned LLMs, V-LLMs, and off-the-shelf architectures are provided in the footnote of
this table.)

Model Year
Network Architecture† Pre-training Details§ Input

Image
TypeVision (V)‡ Language (L) / Knowledge Graph Multi-Modal Objective¶ Strategy∗

Data Short Description(Availability) (KG) / Gene Expression (GE) V O M
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LM
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ed

QuiltNet (Ikezogwo et al., 2024) ✓ 2023 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) D D - 438K Tiles and 802K Captions Tiles
PLIP (Huang et al., 2023) ✓ 2023 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) D D - 208K Tile-Caption Pairs Tiles

PathCLIP (Sun et al., 2024e) ✗ 2024 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) D D - 207K Tile-Caption Pairs Tiles

PRISM (Shaikovski et al., 2024) ✗ 2024 T: ViT-H/14 L: BioGPT (L1–12) BioGPT (L13–24) with SSL (CoCa) F,S F F,S 587K WSIs with 195K Specimens WSIsW: Perceiver Net. Cross-Attention Layers

PathAlign-R (Ahmed et al., 2024) ✗ 2024 T: ViT-S/16
W: Q-Former L: Q-Former - SSL (MSN) S,N N - Tiles From 354,089 WSIs

WSIs
SSL (CLIP) F,S S - 434k WSI-Report Pairs

PathAlign-G (Ahmed et al., 2024) ✗ 2024 T: ViT-S/16
W: Q-Former

L: Q-Former
L (LLM): PaLM-2 S MLP

SSL (MSN) S,N N,N N Tiles From 354,089 WSIs
SSL (BLIP-2) F,S S,N N 434k WSI-Report Pairs
SSL (CMA) F,D N,F S -

CHIEF (Wang et al., 2024) ✓ 2024 T: Swin-T L: Transformer Layers MLP WSL (CLIP) D,S D S 60K WSIs with Labels WSIsW: Aggregator Net.

CONCH (Lu et al., 2024a) ✓ 2024 T: ViT-B/16 L: Transformer Layers Transformer Layers
SSL (iBOT) S N N 16M Tiles Sampled From 21K WSIs

TilesSSL (NWP) N S S >950K Pathology Text Entries
SSL (CoCa) D D D 1.17M Tile–Caption Pairs

TITAN (Ding et al., 2024) ✓ 2024 T: ViT-L
W: ViT-S L: Transformer Layers Transformer Layers

SSL (iBOT) F,S N N 336K WSIs
WSIsSSL (CoCa) F,D D D 423K ROI-Caption Pairs

SSL (CoCa) F,D D D 183K WSI-Report Pairs

MUSK (Xiang et al., 2025) ✓ 2025 T: V-FFN L: L-FFN Cross-Attention Decoder SSL (BEiT3) S S N 1B Text Tokens and 50M Tiles Tiles|←— Shared Attention Layers —→| SSL (CoCa) D D S 1.01M Tile–Caption Pairs

PathGen-CLIP (Sun et al., 2024d) ✗ 2025 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) S S - 1.6M High-Quality Tile-Caption Pairs TilesSSL (CLIP) D D - 700K Tile-Caption Pairs
MLLM4PUE (Zhou et al., 2025) ✗ 2025 T: SigLIP L: Qwen 1.5 MLP SSL (CLIP) D D D 594K Tile-Caption Pairs Tiles

Lucassen et al. (Lucassen et al., 2025) ✗ 2025 T: ViT-L/14 L: BioGPT (L1–12) BioGPT (L13–24) with SSL (CoCa) F,S F F,S 42K WSIs and 19K Reports WSIsW: Perceiver Net. Cross-Attention Layers

LL
M

-B
as

ed

PathAsst (Sun et al., 2024e) ✗ 2024 T: ViT-B/32 L (LLM): Vicuna-13B MLP SSL (CMA) F F S Description Part of PathInstruct TilesSL (IT) F I D 35K Samples From PathInstruct
Dr-LLaVA (Sun et al., 2024a) ✓ 2024 T: ViT-L/14 L (LLM): Vicuna-V1.5 MLP SL (IT) & RL D I D Multi-turn Dialogues Based on 16K Tiles Tiles

Quilt-LLaVA (Seyfioglu et al., 2024) ✓ 2024 T: ViT-B/32 L (LLM): GPT-4 MLP SSL (CMA) F F S 723K Tile-Caption Pairs TilesSL (IT) F I D 107K Pathology-Specific Instructions

PathChat (Lu et al., 2024b) ✓ 2024 T: ViT-L/16 L (LLM): Llama 2-13B MLP with Attention
Pooling

SSL (CoCa) D N S 1.18M Tile-Caption Pairs
TilesSSL (CMA) F F D ∼100K Tile-Caption Pairs

SL (IT) F I D 457K Instructions with 999K VQA Turns

HistoGPT-S/M (Tran et al., 2025) ✓ 2024 T: Swin-T L (LLM): BioGPT-B / - WSL (MIL) F,S F/F - 15.1K WSIs with 6.7K Patient-Level Labels

Tiles
W: Perceiver Net. BioGPT-L SSL (NWP) F,F D/D - 15.1K WSI-Reports Pairs

HistoGPT-L (Tran et al., 2025) ✓ 2024 T: ViT-L/16 L (LLM): BioGPT-L - SSL (NWP) F,S S - 15.1K WSI-Reports PairsW: GCN

CLOVER (Chen et al., 2024a) ✓ 2024 T: EVA-ViT-G/14 L: Q-Former L (LLM): Vicuna
7B / FlanT5XL

Q-Former
MLP

SSL (BLIP-2) F S,N/N S,N 438K Tiles and 802K Captions TilesSL (IT) F N,I/I N,S 45K VQA Instructions
PathInsight (Wu et al., 2024) ✓ 2024 |←— V-LLM: LLaVA / Qwen-VL-7B / InternLM —→| SL (IT) I / I / I 45K Instances Covering 6 Pathology Tasks Tiles

SlideChat (Chen et al., 2024d) ✓ 2024 T: ViT-L L (LLM): Qwen2.5-7B MLP SSL (CMA) F,S F S 4.2K WSI-Report Pairs WSIsW: LongNet SL (IT) F,D I D 176K Instruction-Following VQA Pairs

W2T (Chen et al., 2024b) ✓ 2024
T: ViT-S / Res- L: PubMedBERT /

BioClinicalBERT /
An Embedding Mapping

Transformer Layers SSL (NWP) T: F
W: S

D
D
S

S 804 WSIs with 7.14K VQA Pairs WSIsResNet-50 / HIPT
W: Transformer Layers

PA-LLaVA (Dai et al., 2024) ✓ 2024 T: ViT-B/32 L (LLM): LLama3
with LoRA Transformer Layers

SSL (CLIP) D F F 827K Tile-Caption Pairs
TilesSSL (CMA) F I D 518K Tile-Caption Pairs

SL (IT) F I D 35.5K VQA Pairs

WSI-LLaVA (Liang et al., 2024) ✗ 2024
T: ViT-G/14
W: LongNet

MLP

L: Bio_ClinicalBERT
L (LLM): Vicuna-7b-v1.5 MLP

SSL (CLIP) F,F,S D,N N 9.85K WSI-Report Pairs
WSIsSSL (CMA) F,F,F N,F S 9.85K WSI-Report Pairs

SL (IT) F,F,F N,I D 175K VQA Pairs

CPath-Omni (Sun et al., 2024b) ✗ 2024
T: ViT-H/14

ViT-L
W: SlideParser

L: Qwen2.5-14B MLP

SSL (CMA) F,F,F F S 700K Tile-Caption Pairs Tiles
or

WSIs

SL (IT) D,D,D I D 352K Tile Instructions
SSL (CoCa) F,F,D F F 5.85K WSI-Report Pairs

SL (IT) D,D,D I D 53K Tile and 34K WSI Instructions

PathGen-LLaVA (Sun et al., 2024d) ✗ 2025 T: ViT-B/32 L: Transformer Layers
L (LLM): Vicuna MLP

SSL (CLIP) S S,N N 700K Tile-Caption Pairs
TilesSSL (CMA) F N,F S 700K Tile-Caption Pairs

SL (IC) F N,D D 30K Detailed Tile Descriptions
TCP-LLaVA (Lyu et al., 2025) ✗ 2024 T: ViT-B/16 L: Qwen2.5-7B-Instruct MLP SL (IT) F F I 175K VQA Pairs WSIs

V
is

io
n-

K
G KEP (Zhou et al., 2024b) ✓ 2024 T: ViT-B/(16,32) L: PubMedBERT - SSL (PKE) N N,S - A Pathology KG with 50.5K Attributes TilesKG: PubMedBERT SSL (CLIP) D D,F - 715K Tile-Caption Pairs

KEEP (Zhou et al., 2024a) ✓ 2024 T: ViT-L/16 L, KG: PubMedBERT - SSL (PKE) N S - A Pathology KG with 139K Attributes TilesSSL (CLIP) D D - 143K Semantic Groups Through KG

V
is

io
n-

G
E

TANGLE (Jaume et al., 2024) ✓ 2024 T: ViT-B (Rat) / Swin-T
(Human) W: ABMIL GE: A Three-Layer MLP - SSL (iBOT) S/N,N N - 15M Rat Tiles From 47K WSIs WSIsSSL (CLIP) F/F,S S - 8.67K WSI- Gene Pairs

mSTAR (Xu et al., 2024) ✗ 2024 T: ViT-L/16
W: Two-Layer TransMIL

L: BioBERT-Basev1.2 - SSL (CLIP) F,S D,D - 7.95K WSI-Report-Gene pairs WSIsGE: scBERT SSL (SD) D,F N,N - 7.95K WSIs

THREADS (Vaidya et al., 2025) ✗ 2025 T: ViT-L
W: ABMIL

GE: scGPT (RNA),
A Four-Layer MLP (DNA) - SSL (CLIP) F,S D,S - 26.6K WSI-Gene (RNA) Pairs & WSIs20.5K WSI-Gene (DNA) Pairs

OmiCLIP (Chen et al., 2025) ✓ 2025 T: ViT-B/16 GE: MLP MLP SSL (CLIP) F S D 2.18M tile–transcriptomics caption pairs Tiles
† Network architecture types: T: Tile Encoder, W: WSI Encoder, L: Text Encoder, LLM: Large Language Model, V-LLM: Multi-modal LLM, KG: Knowledge Graph Encoder, GE: Gene Expression Encoder.
§ Multi-modal foundation models are typically pretrained in multiple stages, with each row in this column representing a distinct pretraining phase.
¶ Training objectives are categorized into Supervised Learning (SL), Weakly Supervised Learning (WSL), Self-Supervised Learning (SSL), and Reinforcement Learning (RL). SL includes Image Captioning (IC) and Instruction Tuning

(IT), WSL includes Multiple Instance Learning (MIL), and SSL encompasses Contrastive Learning (CL), Masked Siamese Networks (MSN), Next Word Prediction (NWP), Cross-Modal Alignment (CMA), Pathology Knowledge
Encoding (PKE), and Self-Distillation (SD). CL is further divided based on its contrastive objectives into CLIP, CoCa, BLIP-2, iBOT and BEiT3.

∗ Pre-training strategies for different architectures (V: Vision, O: Other Modalities, M: Multi-Modal): F: Frozen, S: From Scratch, D: Domain-Specific Tuning, I: Instruction Tuning, N: Not Used, -: Not Existed.
• References of mentioned LLMs and V-LLMs in Table 2: BioGPT (Luo et al., 2022), PaLM-2 S (Anil et al., 2023), Qwen 1.5 (Bai et al., 2023), Vicuna-13B (Chiang et al., 2023), Vicuna-V1.5 (Touvron et al., 2023a), GPT-4 (Achiam

et al., 2023), Llama 2-13B (Touvron et al., 2023b), Vicuna 7B (Chiang et al., 2023), FlanT5XL (Chung et al., 2024), LLaVA (Liu et al., 2023), Qwen-VL-7B (Bai et al., 2023), InternLM (Zhang et al., 2023a), Qwen2.5-7B (Yang et al.,
2024), LLama3 (Grattafiori et al., 2024), LoRA (Hu et al., 2022), Vicuna-7b-v1.5 (Zheng et al., 2023), Qwen2.5-14B (Hui et al., 2024), Vicuna (Chiang et al., 2023)

• References of mentioned off-the-shelf architectures in Table 2: Perceiver Net. (Jaegle et al., 2021), GCN (Gindra et al., 2024), EVA-ViT-G/14 (Fang et al., 2023), Q-Former (Li et al., 2023), Swin-T (Liu et al., 2021), V-FFN (Shazeer
et al., 2017), L-FFN (Shazeer et al., 2017), SigLIP (Zhai et al., 2023), LongNet (Ding et al., 2023), PubMedBERT (Gu et al., 2021a), BioClinicalBERT (Gu et al., 2021b), HIPT (Chen et al., 2022), ABMIL (Ilse et al., 2018),
TransMIL (Shao et al., 2021), BioBERT-Basev1.2 (Lee et al., 2020), scGPT (Cui et al., 2024), scBERT (Yang et al., 2022)

et al., 2022), enabling them to learn robust visual representations while also supporting zero-shot and cross-
modal tasks. These methods typically use an off-the-shelf or trained vision encoder before performing joint
visual-language pre-training, which has been shown to improve the performance (Zimmermann et al., 2024).
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They also leverage existing LLMs or Visual LLM (V-LLMs, a.k.a. MLLMs), typically in two ways: (i)
fine-tuning them to serve as text encoders, or (ii) leaving them untuned, solely utilizing their capabilities for
generation and conversation.

CLIP-based Vision-Language FM4CPath. The success of CLIP on natural images has inspired some
works to apply it in the CPath domain. PLIP (Huang et al., 2023), PathCLIP (Sun et al., 2024e) and
QuiltNet (Ikezogwo et al., 2024) all fine-tune a CLIP model pre-trained on natural images using datasets
composed of paired tiles and their captions. CHIEF (Wang et al., 2024) uses an image encoder pretrained
for CPath domain (Wang et al., 2022b) to encode the tile sequence extracted from WSIs to obtain WSI-level
features and CLIP’s text encoder to encode anatomical site information (WSI-level label). A weakly super-
vised aggregation network then combines both modalities to generate rich multi-modal WSI representations.
Unlike previous methods that rely on out-of-shelf vision encoders, PathGen-CLIP (Dai et al., 2024) leverages
the generative capabilities of V-LLMs to obtain high-quality tile-caption pairs and uses them to train an
OpenAI CLIP (Radford et al., 2021) framework from scratch, followed by fine-tuning on tile-caption pairs
from public datasets. PathAlign-R (Ahmed et al., 2024) is also trained from scratch on pathology data using
the CLIP framework, but it focuses on the WSI-level. MLLM4PUE (Zhou et al., 2025) leverages V-LLMs as
the backbone to generate universal multi-modal embeddings for CPath, integrating images and text within
a single framework to better understand their complex relationships.

CoCa-based Vision-Language FM4CPath. CoCa’s multi-modal decoder serves as a crucial bridge
between visual and linguistic information. By transforming encoded image features into text-aware rep-
resentations, it significantly boosts the cross-modal integration of MMFM4CPath, thereby enhancing its
performance in advanced pathology applications. CONCH (Lu et al., 2024a), PRISM (Shaikovski et al.,
2024), and Lucassen et al. (Lucassen et al., 2025) all pre-train an image encoder on pathology datasets, and
then further conduct joint vision-language pre-training within the CoCa framework. The difference is that
PRISM and Lucassen et al. extend the image encoder to the WSI-level using a Perceiver network (Jaegle
et al., 2021) and employ WSIs along with their corresponding clinical reports for training. MUSK (Xiang
et al., 2025) first independently trains image and text encoders on unpaired pathology images and text
tokens via masked data modeling within the BEiT-3 framework (Wang et al., 2022a). Using Masked Image
Modeling (MIM) (He et al., 2022), it leverages ViT’s patch structure to predict missing patches and learn
robust representations, and then aligns the two modalities within the CoCa framework. TITAN (Ding et al.,
2024) proposes a novel foundational framework for whole-slide imaging analysis through three progressive
training stages: Initially, the WSI encoder is optimized via the iBOT framework (Zhou et al., 2021) enhanced
with positional encoding; this is followed by a dual-scaled refinement under the CoCa framework leveraging
tile-level features and WSI-level contexts, where pathology-specialized V-LLMs generate diagnostic captions
and structured reports.

Other Vision-Language FM4CPath. Unlike previous methods that use CLIP or CoCa framework,
PathAlign-G (Ahmed et al., 2024) first pre-trains a ViT-S using Masked Siamese Networks (MSN) (Assran
et al., 2022), and then fine-tunes the model using the BLIP-2 framework. This enables PathAlign-G to
utilize a shared pathology image-text embedding space, enhancing its cross-modal capabilities and making
it more suitable for generative tasks.

3.2 LLM-Based Vision-Language FM4CPath

The fusion of vision and language modalities provides an extra perspective for MMFM4CPath, where patho-
logical visual representations aligned with language signals in latent space can assist LLMs in understanding
pathology knowledge, thereby contributing to the construction of generative foundation AI assistants for
pathologists (Lu et al., 2024b). These methods acquire pathology-specialized V-LLMs by pairing a pre-
trained image encoder with an LLM via a simple multi-modal module for cross-modal feature alignment,
then fine-tuning the LLM. Beyond contrastive learning, they employ diverse pre-training objectives, from
supervised to self-supervised learning. We classify them into instruction-based and non-instruction-based
methods based on LLM fine-tuning approaches.

Instruction-Based V-LLMs for CPath. Most V-LLMs for CPath undergo instruction tuning on carefully
curated datasets, refining general-purpose LLMs for the pathology domain while enhancing their cross-modal
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understanding. PathAsst (Sun et al., 2024e) builds a pathological V-LLM using PathCLIP as the visual
backbone. It aligns the image encoder with the LLM via a trained layer on QA-based instructions, then fine-
tunes the LLM with limited instructions. Following the same pre-training process, Quilt-LLaVA (Seyfioglu
et al., 2024) and PA-LLaVA (Dai et al., 2024) are fine-tuned on their publicly available instruction-tuning
datasets, while PathChat (Lu et al., 2024b) undergoes instruction tuning on its carefully designed and
diverse instructions. SlideChat (Chen et al., 2024d) and WSI-LLaVA (Liang et al., 2024) go beyond the
tile-level and create V-LLMs capable of handling gigapixel WSIs, and are fine-tuned on corresponding WSI-
level instruction datasets. TCP-LLaVA (Lyu et al., 2025) is the first pathology WSI VQA model based
on token compression. By introducing a modality compression module with trainable compression tokens,
it compresses tens of thousands of patch tokens into a few hundred before feeding them into the LLM,
significantly reducing computational cost while maintaining accuracy.

Instead of relying on separate image encoders or vision-language architectures, PathInsight (Wu et al., 2024)
directly fine-tunes existing V-LLMs using instructions covering six pathology tasks. In addition to instruction
tuning, Dr-LLaVA (Sun et al., 2024a) employs reinforcement learning (RL) with an automated reward
function that assesses the clinical validity of responses during multi-turn interactions. CLOVER (Chen
et al., 2024a) aims to develop a cost-effective V-LLM for conversational pathology. It employs BLIP-2 with
a lightweight Q-former (Li et al., 2023), keeping both the visual encoder and LLM frozen to avoid full
LLM tuning. CLOVER combines generation-based instructions from GPT-3.5 (Achiam et al., 2023) with
template-based instructions, forming hybrid instructions that improve understanding. As one of the most
powerful models currently, CPath-Omni (Sun et al., 2024b) aims to build a unified model that can process
tile-level and WSI-level inputs separately through a proprietary framework, and integrate LLMs to enable
generation and conversational capabilities. It undergoes four stages of training on three proposed datasets
of different types: tile-caption pairs, tile-level instructions, and WSI-level instructions.

Non-Instruction-Based V-LLMs for CPath. PathGen-LLaVA (Sun et al., 2024d) is trained from
scratch on the CLIP architecture using tile-caption pairs, then a fully connected (FC) layer is trained to
ensure the features extracted by the image encoder are understandable by the LLM. Finally, it employs a
supervised image captioning task rather than instruction tuning, as PathGen-LLaVA is specifically designed
for generating pathology image descriptions. W2T (Chen et al., 2024b) utilizes four frozen visual extractors
(including those trained on natural images and pathology images) and three text extractors in various
combinations. It is trained on its proposed WSI-VQA instruction dataset using next word prediction
(NWP) to interpret WSIs through generative visual question answering. HistoGPT (Tran et al., 2025) is
designed with three model sizes: small, medium, and large. Among them, HistoGPT-S and HistoGPT-M
first train a Perceiver Network (Jaegle et al., 2021) as a WSI encoder using multiple instance learning (MIL),
followed by fine-tuning the LLM with NWP. HistoGPT-L, on the other hand, employs a graph convolutional
network (GNN) (Kipf & Welling, 2016) to encode WSI-level positional information, eliminating the need
for a pre-trained WSI encoder. HistoGPT is capable of simultaneously generating reports from multiple
pathology images and provides prompts that allow for expert knowledge guidance.

3.3 Enhancing FM4CPath with Other Modalities

Due to the high costs, pathology-specific datasets are typically small and sourced from diverse origins, such
as websites or videos (Huang et al., 2023; Ikezogwo et al., 2024). This often results in noisy data with
limited quality, making it unstructured and lacking domain knowledge. Meanwhile, massive multi-modal
data aligned with clinical practices, along with domain-specific knowledge, such as gene expression profiles,
remain underutilized for pretraining. Based on these, some studies have explored incorporating modalities
beyond vision and language to enhance the training signal.

Vision-Knowledge Graph FM4CPath. To integrate structured domain-specific knowledge, KEP (Zhou
et al., 2024b) constructs a pathology knowledge graph and encodes it using a knowledge encoder, which
then guides vision-language pretraining. They design a pathology knowledge encoding (PKE) method to
align semantic groups in the latent space for training the knowledge encoder. Similarly, KEEP (Zhou et al.,
2024a) builds a disease knowledge graph for encoding and employs knowledge-guided dataset structuring
to generate tile-caption pairs for pretraining within the CLIP framework, incorporating strategies such as
positive mining, hardest negative sampling, and false negative elimination.
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Vision-Gene Expression FM4CPath. Serving as WSI-level information, gene expression profiles pro-
vide insights into quantitative molecular dynamics, complementing the qualitative morphological perspec-
tive of a WSI and capturing biologically and clinically significant details. TANGLE (Jaume et al., 2024)
is a transcriptomics-guided WSI representation learning framework that aligns image signals with RNA se-
quences encoded by multi-layer perceptron (MLP) in the latent space using contrastive loss, similar to CLIP.
It extends beyond human tissues, incorporating a specialized architecture and dataset for rat tissue pre-
training. THREADS (Vaidya et al., 2025), like TANGLE, utilizes molecular profiles from next-generation
sequencing for WSI representation learning but uniquely integrates WSI-RNA and WSI-DNA sequence
pairs. mSTAR (Xu et al., 2024) integrates three modalities within an extended CLIP framework, training on
WSI-report-gene expression pairs via inter-modality and inter-cancer contrastive learning. It then employs
self-distillation to transfer multi-modal knowledge to the patch extractor. Recently, OmiCLIP (Chen et al.,
2025) is a visual–omics foundation model that builds on CoCa-style cross-modal contrastive learning to align
H&E slides with spatial transcriptomics data, enabling gene expression prediction and cross-modal retrieval,
thereby bridging pathology and molecular omics.

Note that some methods do not solely focus on pathology images but also encompass multi-modal medical
imaging data such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray from
various organs (Zhang et al., 2023b; 2024; Zhao et al., 2024; Xia et al., 2024). However, since their goal
is not to leverage other medical image modalities to enhance pathology image representation but rather to
develop a universal medical image model, these studies exceed the scope of our survey.

4 Multi-Modal Datasets for CPath

Larger, more diverse, and higher-quality datasets for CPath have been proven to be the key to the success
of FM4CPath (Vorontsov et al., 2023; Zimmermann et al., 2024), and MMFM4CPath is no exception.
Curating pathology-specific public datasets has long been a challenge in this field, driving extensive research
efforts. Many well-designed datasets have been developed to address various pathology-related questions,
continuously advancing CPath. We summarize existing multi-modal datasets for CPath, highlighting high-
quality datasets or those that have demonstrated success in current models. Based on data types, we
categorize them into three groups as shown in Table 3.

Image-Text Pair Datasets for CPath. This category includes tile-level tile-caption pairs and WSI-level
WSI-report pairs. Training on these datasets within a self-supervised contrastive learning framework enables
FM4CPath to learn richer image embeddings while gaining zero-shot and cross-modal capabilities. Due to
the expensive expert annotation and the preference of many research institutions for in-house data, several
datasets have been constructed by collecting pathology tile images and text data from online sources, books,
and publicly available educational resources. For example, Quilt (Ikezogwo et al., 2024), OpenPath (Huang
et al., 2023), ARCH (Gamper & Rajpoot, 2021a) and MI-Zero (Lu et al., 2023) leverage data from YouTube,
Twitter, pathology textbooks, and educational resources, respectively. Due to the lack of a unified format,
the collected data undergo standardized processing pipelines to ensure high quality. Image data is filtered
for non-pathology images, followed by sub-figure segmentation. Text data is refined with LLMs, including
sub-caption segmentation and token-based filtering. Finally, multimodal models align figures with captions.
Additionally, Quilt (Ikezogwo et al., 2024) uses speech recognition to extract text from videos.

Other tile-caption pair datasets primarily expand existing datasets or utilize internal datasets to enhance
scale and diversity (Sun et al., 2024e; Lu et al., 2024a; Sun et al., 2024d;b; Dai et al., 2024). Notably,
ARCH (Gamper & Rajpoot, 2021a) is a multiple-instance captioning CPath dataset, where each image
bag is associated with a single caption. Furthermore, datasets such as PathGen (Sun et al., 2024d),
HistGen (Guo et al., 2024), and Mass-340K (Ding et al., 2024) generate WSI-report pairs by leveraging
generative models or processing WSI descriptions using LLMs.

Multi-Modal Instruction Datasets for CPath. These datasets incorporate diverse instructions for tun-
ing LLM-based vision-language FM4CPath, training them as AI assistants in the pathology domain. Since
manually designing instructions is typically expensive, instruction construction often directly relies on LLMs
to generate cost-effective instruction datasets. The most common instruction type is VQA, which typically
includes closed-ended and open-ended question-and-answer (Q&A) sessions to develop the model’s conversa-
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Table 3: Multi-Modal Datasets for CPath.
Dataset†

Data Type Description Staining‡ Dataset Invariant Data Source Method LLM
Assisted(Availability) Public Private

Im
ag

e-
T

ex
t

P
ai

r

Quilt (Ikezogwo et al., 2024) ✓ Tile-Caption Pair
437,878 tiles paired with 802,144
captions extracted from 4,475
videos.

H, I, O
Quilt-1M: Combining Quilt
with other pathology data
sources to form 1M pairs.

YouTube ✗ QuiltNet (Ikezogwo et al., 2024) ✓

PathCap (Sun et al., 2024e) ✓ Tile-Caption Pair 207K pathology tile-caption
pairs. H, I, O - PubMed (Gu et al., 2021a) ✗ PathCLIP (Sun et al., 2024e) ✓

OpenPath (Sun et al., 2024e) ✓ Tile-Caption Pair 208,404 tile-caption pairs. H, I, O

PathLAION: 32,041 ad-
ditional tile–caption pairs
scraped from the Internet and
the LAION dataset (Schuh-
mann et al., 2022)

WSI-Twitter, Replies,
PathLAION ✗ PLIP (Huang et al., 2023) ✗

CONCH* (Lu et al., 2024a) ✗ Tile-Caption Pair 1,170,647 tile–caption pairs. H, I, O - PMC OA (Istrate et al., 2022) ✓ CONCH (Lu et al., 2024a) ✓

HistGen (Guo et al., 2024) ✓ WSI-Report Pair A WSI-report dataset with 7,753
pairs. H - TCGA (Tomczak et al., 2015) ✗ - ✓

Mass-340K (Ding et al., 2024) ✗ WSI 335,645 WSIs across 20 organs. H, I
Synthetic captioning for
423,122 ROIs and curation of
182,862 WSI-report pairs.

GTEx (Consortium et al., 2015) ✓ TITAN (Ding et al., 2024) ✓

CPath-Patch
Caption (Sun et al., 2024b) ✗ Tile-Caption Pair 700,145 tile-caption pairs from

diverse datasets. H, I, O - PathCap, Quilt-1M,
OpenPath ✗ CPath-Omni (Sun et al., 2024b) ✓

PathGen (Sun et al., 2024d) ✓ Tile-Caption Pair 1.6 million high-quality tile-
caption pairs from 7,300 WSIs. H

PathGeninit: 700K tile-
caption pairs from PathCap,
OpenPath, and Quilt-1M

TCGA (Tomczak et al., 2015) ✗ PathGen-CLIP (Sun et al., 2024d) ✓

Munich (Tran et al., 2025) ✗ WSI-Report Pair 15,129 paired WSIs and pathol-
ogy reports from 6,705 patients. H - - ✓ HistoGPT (Tran et al., 2025) ✗

PCaption-C (Tran et al., 2025) ✓ Tile-Caption Pair 1,409,058 tile-caption pairs. H, I, O

PCaption-0.8M: removing
non-human pathology data and
PCaption-0.5M: further filter
out pairs with <20 words.

PMC-OA (Istrate et al., 2022),
Quilt-1M ✗ PA-LLaVA (Dai et al., 2024) ✓

ARCH (Gamper & Rajpoot, 2021a) ✓ Bag-Caption Pair
11,816 bags and 15,164 images,
with each bag containing multi-
ple tiles.

H, I - PubMed (Gu et al., 2021a),
pathology textbooks ✗ - ✗

MI-Zero (Lu et al., 2023) ✓ Tile-Caption Pair Diverse dataset of 33,480 tile-
caption pairs. H, I, O - educational resources,

ARCH ✗ - ✗

M
ul

ti
-M

od
al

In
st

ru
ct

io
n

PathInstruct (Sun et al., 2024e) ✓
Tile-Level
Instruction

180K pathology multi-modal
instruction-following samples. H, I, O - YouTube ✗ PathAsst (Lu et al., 2024b) ✓

CPath-Patch
Instruction (Sun et al., 2024b) ✗

Tile-Level
Instruction

351,871 tile-level samples, in-
cluding tile-caption pairs, VQA
pairs, labeled images for clas-
sification, and visual referring
prompting pairs.

H

CPath-VQA: created by gen-
erating VQA pairs using GPT-
4o (Hurst et al., 2024), which
combines classification labels
with image data for datasets
lacking captions.

CPath-VQA,
PathGen,

CPath-PatchCaption,
PathInstruct

✓ CPath-Omni (Sun et al., 2024b) ✓

CPath-WSI
Instruction (Sun et al., 2024b) ✗

WSI-Level
Instruction

7,312 WSI-level samples, includ-
ing captioning, VQA, and classi-
fication.

H
Further generate a WSI VQA
dataset by prompting GPT-
4 (Achiam et al., 2023).

HistGen ✗ CPath-Omni (Sun et al., 2024b) ✓

Quilt-
Instruct (Seyfioglu et al., 2024) ✓ VQA Pair 107,131 Q&A pairs. H, I, O

QUILT-VQA: a Q&A dataset
from Youtube videos, catego-
rized into image-dependent and
general-knowledge questions;
QUILT-VQA-red: QUILT-
VQA with red circle marking
the ROI in the pathology
image.

YouTube ✗ Quilt-LLaVA (Seyfioglu et al., 2024) ✓

PathChat* (Lu et al., 2024b) ✗
Tile-Level
Instruction

456,916 instructions with
999,202 question and answer
turns.

H, I

PathQABench: an expert-
curated benchmark of 105 high-
resolution pathology images,
split into PathQABench-
Public and PathQABench-
Private subsets.

PMC-OA (Istrate et al., 2022),
TCGA (Tomczak et al., 2015) ✓ PathChat (Lu et al., 2024b) ✓

CLOVER
Instruction (Chen et al., 2024a) ✓

Tile-Level
Instruction

45K question-and-answer in-
structions. H - Quilt-VQA,

PathVQA (He et al., 2020) ✓ CLOVER (Chen et al., 2024a) ✓

Path-
EnhanceDS (Wu et al., 2024) ✓

Tile-Level
Instruction

49K tile-level instructions, in-
cluding captioning, VQA, classi-
fication and conversation.

H - OpenPath, TCGA (Tomczak et al., 2015),
PathVQA (He et al., 2020), etc. ✗ PathInsight (Wu et al., 2024) ✓

Slide-
Instruction (Chen et al., 2024d) ✓

WSI-Level
Instruction

44,181 WSI-caption pairs and
175,754 visual Q&A pairs. H

SlideBench: 734 WSI cap-
tions along with a substantial
number of closed-set VQA pairs
to establish evaluation bench-
mark.

TCGA (Tomczak et al., 2015) ✗ SlideChat (Chen et al., 2024d) ✓

WSI-VQA (Chen et al., 2024b) ✓ VQA Pair 977 WSIs and 8,672 Q&A pairs. H - TCGA-BRCA (Tomczak et al., 2015) ✗ W2T (Chen et al., 2024b) ✓

PA-LLaVA* (Dai et al., 2024) ✓ VQA Pair 35,543 question-answer pairs. H - PathVQA (He et al., 2020) ✗ PA-LLaVA (Dai et al., 2024) ✓

WSI-Bench (Liang et al., 2024) ✗ VQA Pair
179,569 WSI-level VQA pairs,
which span across 3 pathological
capabilities with 11 tasks.

H

SlideBench: 734 WSI cap-
tions along with a substantial
number of closed-set VQA pairs
to establish evaluation bench-
mark.

TCGA (Tomczak et al., 2015) ✗ WSI-LLaVA (Liang et al., 2024) ✓

PathMMU (Sun et al., 2024c) ✓ VQA Pair 33,428 Q&As along with 24,067
pathology images. H, I, O

SlideBench: 734 WSI cap-
tions along with a substantial
number of closed-set VQA pairs
to establish evaluation bench-
mark.

PubMed (Gu et al., 2021a), Quilt-1M,
Atlas (Alber et al., 2025), OpenPath ✗ - ✓

TCP-LLaVA* (Lyu et al., 2025) ✓ VQA Pair 175,797 Q&A pairs from 10 dif-
ferent cancer types H - TCGA (Tomczak et al., 2015).

SlideBench, WSI-VQA ✗ TCP-LLaVA (Lyu et al., 2025) ✗

Im
ag

e-
O

th
er

M
od

al
it

y

KEEP* (Zhou et al., 2024a) ✓

Pathology KG
KG contains 11,454 disease en-
tities and 139,143 associated at-
tributes.

- - DO (Schriml et al., 2012),
UMLS (Bodenreider, 2004) ✗

KEEP (Zhou et al., 2024a) ✓
Pathology

Semantic Group
143K pathology semantic groups
linked through the disease KG H, I, O - Quilt-1M,

OpenPath ✗

PathKT (Zhou et al., 2024b) ✓ Pathology KG Pathology KG that consists of
50,470 informative attributes - - OncoTree ✗ KEP (Zhou et al., 2024b) ✗

mSTAR* (Xu et al., 2024) ✓
WSI-Report-RNA-

Seq Pair

A dataset with 7,947 cases with
image, text and RNA sequence
modalities for pretraining.

H - TCGA (Tomczak et al., 2015) ✗ mSTAR (Xu et al., 2024) ✓

MBTG-47K (Vaidya et al., 2025) ✗
WSI-RNA-Seq Pair
WSI-DNA-Seq Pair

26,615 WSI-RNA pairs, and
20,556 WSI-DNA pairs. H - TCGA (Tomczak et al., 2015),

GTEx (Consortium et al., 2015) ✓ THREADS (Vaidya et al., 2025) ✗

ST-bank (Chen et al., 2025) ✗
Tile–Transcrip

tomics Pair
2,185,571 pathology-specific
tile–transcriptomics pairs H - 10x Visium (Mirzazadeh et al., 2023) ✓ OmiCLIP (Chen et al., 2025) ✗

† Some methods introduced datasets without naming them, so we use the method name instead and marked with an asterisk (*).
‡ Staining type: H: H&E, I: IHC, O: Others.

tional abilities. Due to prompt flexibility, different datasets create various instructions based on their needs.
For example, PathInstruct(Sun et al., 2024e) provides instruction-following samples that enable LLMs to
call upon other pathology models for problem-solving. Lu et al.(Lu et al., 2024b) developed six instruction
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types to adapt the model to diverse pathology conversation scenarios. CLOVER Instruction(Chen et al.,
2024a) generates instructions both through LLMs and by matching template questions with original text
captions for cost-effectiveness. PathMMU(Sun et al., 2024c) uses enhanced descriptions with images to
prompt GPT-4V (GPT, 2023), generating professional multi-modal pathology Q&As with detailed expla-
nations. Due to the scarcity of large-scale multi-modal pathology datasets for training WSI interpretation
assistants, WSI-level instructions have emerged, typically creating VQAs from WSI reports and advanced
LLM-generated prompts.

Image-Other Modality Pair Dataset. There is still a lack of extensive exploration of datasets involving
vision and other modalities. Zhou et al. (Zhou et al., 2024a;b) constructed two different disease knowledge
graphs and, guided by one of them, created well-structured semantic groups linked through hierarchical
relations. The MBTG-47K dataset (Vaidya et al., 2025) includes paired data of DNA and RNA gene
sequences with WSIs. Xu et al. (Xu et al., 2024) publicly released a dataset with WSI-report-RNA-sequence
pairs containing three modalities. These are bold attempts at constructing datasets that integrate pathology
images with other modalities.

5 Evaluation Tasks

5.1 Taxonomy of Evaluation Tasks in MMFM4CPath

Unlike uni-modal FM4CPath, data from other modalities not only enhance MMFM4CPath’s understanding
of pathology images but also enable MMFM4CPath to perform zero-shot learning and cross-modal tasks.
When MMFM4CPath are combined with LLMs, they gain the ability to engage in dialogue and genera-
tion, allowing them to adapt to more diverse tasks. We have summarized the evaluation tasks used by
MMFM4CPath, as shown in Figure 3, and categorized them into six main types from a machine learning
perspective: classification, retrieval, generation, segmentation, prediction, and visual question answering
(VQA). Furthermore, we classify them based on the type of pathology image input they target (tile or WSI).
For MMFM4CPath, their pre-training dataset and model design are closely tied to their evaluation tasks.
For example, benefiting from multi-scale and more diverse training instructions, CPath-Omni (Sun et al.,
2024b) has been evaluated across the widest range of tasks.

Classification is the most common evaluation task for MMFM4CPath, as many pathology-related tasks,
such as cancer subtyping and biomarker prediction, are fundamentally classification problems. Most
MMFM4CPath are evaluated on classification tasks across various settings. Models using tile-level inputs
can perform WSI-level classification via multiple instance learning (MIL), treated as weakly supervised due
to the lack of detailed region annotations. Multi-modal data enables zero-shot or few-shot classification with
minimal reliance on costly annotations. Some methods also assess out-of-distribution (OOD) generalization
to handle distribution shifts between training and test data (e.g., data collected from different institutions).
Additionally, CONCH (Lu et al., 2024a) evaluates classification on rare diseases with imbalanced data.

In addition to basic image-to-image retrieval, non-LLM-based MMFM4CPath are widely used for cross-
modal retrieval tasks, such as text-to-image and image-to-text retrieval. KEP (Zhou et al., 2024b) performs
one-to-many disease retrieval, retrieving captions or tiles with the same disease label using disease names.
MLLM4PUE (Zhou et al., 2025) enables many-to-one composed retrieval by using pathology images and
questions as queries. Moreover, due to its capability to understand gene expression data, THREADS (Vaidya
et al., 2025) generates class prompts from gene expression profiles for WSI retrieval.

The integration of LLMs, whether by fine-tuning them as part of the model’s architecture or by directly uti-
lizing existing models, enables MMFM4CPath to generate captions/reports from tiles/WSIs. CONCH (Lu
et al., 2024a) and KEP (Zhou et al., 2024b) evaluate the segmentation capabilities of these models. Some
MMFM4CPath have also been tested for prediction tasks, using WSIs to generate continuous value predic-
tions.

LLM-based MMFM4CPath models focus on evaluating their diagnostic VQA ability. Compared to tradi-
tional QA tasks, VQA incorporates pathology images into its questions, challenging the image understand-
ing capabilities of V-LLMs. Typically, VQA tasks involve answers from a fixed set, usually in the form of
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Tasks

Classification

Tile-level

Supervised QuiltNet, PLIP, TITAN, MUSK, PathInsight

Zero-Shot QuiltNet, PLIP, PathCLIP, CONCH, TITAN, MUSK, MLLM4PUE, PA-LLaVA, CPath-Omni, 
PathGen-CLIP, KEP, KEEP, OmiCLIP

Few-Shot CONCH, TITAN, CLOVER, CPath-Omni, PathGen-CLIP

WSI-level

(Weakly)  Supervised PRISM, PathAlign-R, CHIEF, MUSK, HistoGPT, W2T, CPath-Omni, PathGen-CLIP, 
mSTAR, THREADS

Zero-Shot PRISM, CONCH, KEP, KEEP, mSTAR

Few-Shot CONCH, TANGLE, mSTAR

OOD Generalization HistoGPT, CPath-Omni, THREADS

Imbalanced CONCH

Retrieval

Tile-level

Tile-to-Tile PLIP, MUSK

Tile-to-Caption QuiltNet, PathCLIP, CONCH, MUSK, MLLM4PUE, KEP, KEEP

Caption-to-Tile QuiltNet, PLIP, PathAlign-R, CONCH, MUSK, MLLM4PUE, KEP, KEEP

Tile-to-Gene OmiCLIP

Disease KEP

Composed MLLM4PUE

WSI-level

WSI-to-WSI TITAN, TANGLE, THREADS

WSI-to-Report TITAN, Lucassen et al.

Report-to-WSI TITAN, Lucassen et al.

Gene-to-WSI THREADS

Generation
Tile-level Tile Captioning PathAlign-G, CONCH, Quilt-LLaVA, PathInsight, CPath-Omni

WSI-level Report Generation PRISM, TITAN, Lucassen et al., HistoGPT, SlideChat, WSI-LLaVA, CPath-Omni, mSTAR

Segmentation WSI-level Zero-Shot CONCH, KEEP

Prediction

Tile-level Gene Expression 
Prediction OmiCLIP

WSI-level

Survival Prediction CHIEF, MUSK, W2T, mSTAR

Tumor Thickness 
Prediction HistoGPT

PR Prediction W2T

 Diagnostic  
VQA

Tile-level

Closed-Ended & 
Open-Ended

MUSK, PathAsst, Dr-LLaVA, Quilt-LLaVA, PathChat, CLOVER, PA-LLaVA , PathGen-
LLaVA

Visual Referring 
Prompting CPath-Omni

WSI-level Closed-Ended & 
Open-Ended SlideChat, W2T, WSI-LLaVA, CPath-Omni, TCP-LLaVA

Figure 3: A comprehensive taxonomy of MMFM4CPath, categorized according to evaluation tasks. Non-
LLM-based vision-language, LLM-based vision-language, vision-knowledge graph, and vision-
gene expression models are highlighted in different colors, respectively.

closed-ended questions, such as multiple-choice (single or multiple answers) or true/false questions, as well
as open-ended questions with no predefined answer options. These tasks can also be divided into multi-
and single-turn dialogues. The initial LLM-based MMFM4CPath only performed tile-level VQA tasks (Sun
et al., 2024e; Lu et al., 2024b), but recently, conversational abilities on WSI have gained increasing at-
tention (Chen et al., 2024d; Liang et al., 2024). Additionally, CPath-Omni (Sun et al., 2024b) has been
validated on the visual referring prompting task, where the regions of interest (ROIs) are highlighted, and
both the question and answer are based on these regions. It is worth noting that, due to its flexible format,
the VQA task offers high adaptability: tasks like classification and generation can be transformed into VQA
tasks via prompt engineering (Wu et al., 2024; Sun et al., 2024b). Thus, LLM-based MMFM4CPath also
encompass evaluation capabilities typical of non-LLM-based models. In addition to the quantitative analysis
above, qualitative analysis is also frequently used to assess the performance of MMFM4CPath, especially
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Table 4: Comparison of MMFM4CPath for zero-shot tile classification task on multiple pathology datasets.
Bold is the best and underline is the second best.

Method WSSS4LUAD LC25000Lung LC25000Colon BACH CRC100K Osteo SICAPv2 Pcam SkinCancer
F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy Accuracy Accuracy F1 Accuracy

QuiltNet (Ikezogwo et al., 2024) 0.827 0.705 0.775 0.800 0.910 0.943 0.386 0.438 0.553 0.495 0.585 0.538 0.373 0.587 0.409 0.464
PLIP (Huang et al., 2023) 0.261 0.731 0.622 0.879 0.902 0.902 0.380 0.343 0.602 0.528 0.322 0.529 0.425 0.518 0.435 0.425
PathCLIP (Sun et al., 2024e) - 0.851 - 0.889 0.943 0.943 - 0.468 - 0.553 - 0.692 0.483 0.725 - 0.351
CONCH (Lu et al., 2024a) 0.798 - 0.527 - - - 0.606 - 0.590 - 0.785 - - - 0.413 -
MLLM4PUE (Zhou et al., 2025) 0.591 - 0.809 - 0.923 - 0.562 - 0.522 - 0.638 - - - 0.365 -
CPath-Omni (Sun et al., 2024b) - 0.871 - 0.971 - 1.000 - 0.723 - 0.780 - 0.807 0.631 0.959 - 0.742
PathGen-CLIP (Sun et al., 2024d) - 0.822 - 0.898 - 0.993 - 0.715 - 0.780 - 0.746 0.635 0.882 - 0.706
KEEP (Zhou et al., 2024a) 0.809 - 0.936 - - - 0.686 - 0.852 - 0.760 - - - 0.658 -

Table 5: Comparison of MMFM4CPath for tile-to-caption (image-to-text) and caption-to-tile (text-to-image)
retrieval on multiple pathology datasets. Bold is the best and underline is the second best.

Method
Tile-to-Caption (i2t) Caption-to-Tile (t2i)

Arch-PubMed Arch-Book Arch-PubMed Arch-Book
R@5 R@10 R@50 R@5 R@10 R@50 R@5 R@10 R@50 R@5 R@10 R@50

QuiltNet (Ikezogwo et al., 2024) 0.069 0.111 0.273 0.116 0.168 0.384 0.056 0.092 0.237 0.100 0.152 0.389
PLIP (Huang et al., 2023) 0.037 0.067 0.185 0.096 0.152 0.393 0.037 0.067 0.181 0.112 0.164 0.419
PathCLIP (Sun et al., 2024e) 0.275 0.388 0.680 0.152 0.234 0.482 0.236 0.348 0.630 0.137 0.196 0.445
MLLM4PUE (Zhou et al., 2025) 0.372 0.495 0.782 0.192 0.283 0.603 0.297 0.399 0.688 0.185 0.277 0.555
KEP (Zhou et al., 2024b) - 0.196 0.421 - 0.282 0.564 - 0.176 0.404 - 0.340 0.621
KEEP (Zhou et al., 2024a) 0.180 0.248 0.492 0.298 0.404 0.732 0.182 0.228 0.491 0.322 0.434 0.781

their VQA and generation abilities. This is done by directly observing or through evaluation by professional
pathologists to assess the quality of the generated text. For a more detailed discussion of the risks associated
with automatic metrics and LLM-as-judge in generation tasks, as well as evidence from recent studies that
employ pathologist-based evaluations, please see Appendix B.

5.2 Comparative Analysis of MMFM4CPath on Evaluation Tasks

Currently, research on MMFM4CPath lacks a unified benchmark that specifies a consistent protocol (e.g.,
evaluation datasets and metrics) for assessing different models. In this work, we have compared the evaluation
results of all available methods covered in the survey as comprehensively as possible, in order to provide
a useful reference for model selection. As noted in Section 5, although different studies may employ the
same type of evaluation task, their choices of datasets and metrics are rarely standardized. To address this,
we have collected two widely adopted and relatively consistent evaluation tasks and reported results across
multiple datasets and metrics in Table 4 and Table 5.

Table 4 presents the F1-score and accuracy of eight MMFM4CPath models across nine datasets, namely
WSSS4LUAD (Han et al., 2022), LC25000Lung (Borkowski et al., 2019), LC25000Colon (Borkowski
et al., 2019), BACH (Aresta et al., 2019), CRC100K (Kather et al., 2018), Osteo (Arunachalam et al.,
2019), SICAPv2 (Silva-Rodríguez et al., 2020), Pcam (Veeling et al., 2018), and SkinCancer (Kriegs-
mann et al., 2022). The results indicate that even when evaluated on the same dataset and metric, differ-
ent MMFM4CPath exhibit their own tendencies. Among them, CPath-Omni, PathGen-CLIP, and KEEP
demonstrate superior and more robust performance across datasets. Table 5 shows the performance of six
MMFM4CPath models on the Arch-PubMed (Gamper & Rajpoot, 2021b) and Arch-Book (Gamper &
Rajpoot, 2021b) datasets for tile-to-caption retrieval and caption-to-tile retrieval, measured by Top-K Recall
(R@K, K = {5, 10, 50}). We observe that KEEP achieves the best results on Arch-Book, PathCLIP shows
stronger performance on Arch-PubMed, while MLLM4PUE delivers more robust and overall stronger re-
trieval ability across both datasets. Establishing a unified evaluation standard that specifies consistent tasks,
datasets, and metrics for benchmarking different MMFM4CPath remains an urgent and important direction
for future research, which we further discuss in Section 6.
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6 Future Directions

Developing MMFM4CPath Integrating H&E Images with Spatial Omics. The integration of
H&E-stained histopathology images with spatial omics data, such as spatial transcriptomics and proteomics,
represents a promising frontier in computational pathology. By coupling morphological context with spatially
resolved molecular signatures, future multi-modal foundation models could enable precise cellular localization
of gene and protein expression, bridging the gap between tissue architecture and molecular mechanisms.
Developing such models would require addressing challenges like data sparsity, spatial resolution mismatch,
and alignment between modalities, but could significantly enhance our understanding of disease heterogeneity
and microenvironmental interactions.

Developing MMFM4CPath to Predict MxIF Markers from H&E Images. A compelling direc-
tion involves using H&E images to predict marker expressions captured by multiplexed immunofluorescence
(MxIF), enabling cost-effective and scalable estimation of protein-level biomarkers. This line of research
leverages the morphological cues from H&E to infer high-dimensional proteomic data, potentially reducing
the need for expensive MxIF experiments. Multi-modal foundation models trained with paired H&E-MxIF
data could facilitate virtual staining or marker imputation, supporting downstream tasks such as subtyping,
immune landscape assessment, and therapy response prediction in a non-invasive manner.

Toward Multi-Modal Integration Beyond Pairs. Most existing FM4CPath focus on pairwise modality
alignment, such as vision–language or vision–gene expression. An important future direction is to extend
this paradigm toward integration of three or more modalities (e.g., vision–language–gene expression or vi-
sion–knowledge graph–omics), which would enable more comprehensive modeling of pathological phenotypes
by jointly capturing morphological, molecular, and semantic signals. While this higher-order integration cur-
rently faces significant challenges, including data sparsity, alignment complexity, and increased computational
cost, it represents a natural evolution for the field. Progress in multi-modal pretraining frameworks, data
harmonization, and scalable optimization techniques may gradually make such integration feasible.

Safeguarding Patient Privacy in MMFM4CPath. Another important but underexplored direction
is the safeguarding of patient privacy. When multi-modal models incorporate patient-level textual records
or genomic data, they inevitably involve sensitive and identifiable information. Yet, existing research has
rarely examined this challenge in depth. Future work should therefore adopt de-identification strategies,
privacy-preserving learning frameworks, and compliance with healthcare regulations to ensure responsible
use in computational pathology.

Standardized Benchmarking for MMFM4CPath. As the field matures, there is a pressing need to
establish standardized metrics and unified benchmarks for evaluating MMFM4CPath. Current evaluations
are fragmented across tasks, modalities, and datasets, limiting comparability and reproducibility. Future
work should focus on developing comprehensive evaluation protocols that span classification, retrieval, gen-
eration, and VQA across tile- and WSI-level inputs. Such efforts would guide model development, ensure
fair comparisons, and accelerate the translation of multi-modal models into clinical practice.

7 Conclusion

In this survey, we have systematically reviewed the recent advances in multi-modal foundation models for
computational pathology, focusing on three major paradigms: vision-language, vision-knowledge graph, and
vision-gene expression models. We categorized 34 state-of-the-art models, analyzed 30 multi-modal datasets,
and summarized key downstream tasks and evaluation strategies. Our comprehensive comparison highlights
the growing impact and promise of integrating diverse data modalities in computational pathology.
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Appendix

A Survey Methodology

To ensure transparency and reproducibility of our survey, we briefly describe how the reviewed papers and
datasets were identified and selected. We outline the literature databases searched, the main search terms
used, the time period covered, and the inclusion/exclusion criteria applied. This methodological overview
clarifies the scope of our survey and allows readers to assess its completeness and potential sources of bias.

• Databases searched: arXiv, medRxiv, bioRxiv, Google Scholar, ACM Digital Library, PubMed,
DBLP, Europe PMC.

• Search terms: “computational pathology foundation model”, “multi-modal computational pathol-
ogy”, “vision-language foundation model for computational pathology”, “vision-omics foundation
model for computational pathology”, “large language model for computational pathology”, “foun-
dation model for computational pathology”, etc.

• Date range: January 2022 – September 2025.

• Inclusion/exclusion criteria: This survey focuses on multi-modal foundation models (FMs) de-
veloped specifically for computational pathology (CPath), with an emphasis on models built upon
hematoxylin and eosin (H&E) stained whole-slide images (WSIs) and tile-level representations. We
review 34 state-of-the-art models that integrate pathology images with auxiliary modalities such as
textual reports, knowledge graphs, and molecular profiles, categorizing them into vision–language, vi-
sion–knowledge graph, and vision–gene expression paradigms. In addition, we analyze 30 pathology-
specific multi-modal datasets, grouped into image–text pairs, instruction datasets, and image–other
modality pairs, and summarize the evaluation tasks and strategies most relevant to CPath foundation
models. Several related directions are excluded from the scope of this survey. Specifically, methods
that extend beyond pathology to broader biomedical imaging, including Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and X-ray (Zhang et al., 2023b; 2024; Zhao et al., 2024;
Xia et al., 2024), are not covered in detail, as their primary goal is to build universal medical imaging
models rather than enhance pathology image representation. Similarly, we do not comprehensively
review general-purpose multi-modal large language models (MLLMs) that incorporate pathology
data only as a small subset of training, since their emphasis lies in broader generative AI capabilities
rather than pathology-specific representation learning. By clearly defining these boundaries, we aim
to provide a focused and coherent review of foundation models for computational pathology while
acknowledging related but out-of-scope research directions.

B Risks of Automatic and LLM-based Evaluation in Generation Tasks

In generation tasks such as diagnostic VQA and pathology report generation, conventional automatic metrics
(e.g., METEOR, BLEU, ROUGE) or even LLM-as-judge evaluations present several risks. Biases can arise
because these metrics tend to reward surface-form fluency or frequent stylistic templates, leading to inflated
scores for outputs that look plausible but misrepresent rare or clinically critical findings. Hallucinations,
the fabrication of entities such as tumor grade, margin status, or molecular markers, may be overlooked by
lexical overlap–based metrics and even tolerated by LLM judges if phrased fluently, despite being clinically
unsafe. Dataset leakage and contamination pose further risks when near-duplicate reports or Q&A items
exist across training and evaluation sets, or when LLM judges share training sources with the systems under
evaluation, potentially inflating performance through circular validation. These limitations highlight the need
for complementary expert review and contamination-aware evaluation protocols to ensure that generation
tasks are assessed for clinical factuality rather than superficial textual similarity.

Beyond automatic and LLM-based metrics, several recent studies have incorporated pathologist-based eval-
uations for diagnostic VQA and report generation. For example, PathChat was evaluated on 260 open-ended
diagnostic VQA questions by a panel of seven board-certified pathologists, who graded the correctness and
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ranked the quality of model responses, revealing substantial gaps between human judgment and automatic
metrics. Similarly, HistoGPT, a model for whole-slide report generation, was assessed by certified der-
matopathologists, who judged whether generated reports captured the essential clinical findings and flagged
factual inaccuracies. Both studies underscore that human experts prioritize clinical factuality and action-
ability over surface overlap, frequently identifying omission errors such as missing tumor stage, commission
errors such as hallucinated findings, or semantic inversions such as “invasive” vs. “in situ.” While pathologist
review is costly and less scalable, it remains the most reliable safeguard against subtle yet clinically critical
errors. Taken together, these observations highlight the necessity of integrating structured expert review into
future benchmarks, where automatic metrics and human-in-the-loop evaluation should be reported jointly
to provide a more faithful assessment of generative models in computational pathology.
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