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ABSTRACT

Hyperparameter optimization is an important subfield of machine learning that
focuses on tuning the hyperparameters of a chosen algorithm to achieve peak
performance. Recently, there has been a stream of methods that tackle the is-
sue of hyperparameter optimization, however, most of the methods do not ex-
ploit the scaling law property of learning curves. In this work, we propose
Deep Power Law (DPL), a neural network model conditioned to yield predic-
tions that follow a power-law scaling pattern. Our model dynamically decides
which configurations to pause and train incrementally by making use of multi-
fidelity estimation. We compare our method against 7 state-of-the-art com-
petitors on 3 benchmarks related to tabular, image, and NLP datasets cover-
ing 57 diverse search spaces. Our method achieves the best results across all
benchmarks by obtaining the best any-time results compared to all competitors.
We open-source our implementation and make our code publicly available at:
https://anonymous.4open.science/r/DeepRegret-0F61/

1 INTRODUCTION

Hyperparameter Optimization (HPO) is a major challenge for the Machine Learning community.
Unfortunately, HPO is not yet feasible for Deep Learning (DL) methods due to the high cost of eval-
uating multiple configurations. Recently, Gray-box HPO (a.k.a. multi-fidelity HPO) has emerged as
a promising paradigm for HPO in DL, by discarding poorly-performing hyperparameter configura-
tions after observing the validation error on the low-level fidelities of the optimization procedure (Li
et al., 2017; Falkner et al., 2018; Awad et al., 2021; Li et al., 2020). The advantage of gray-box
HPO compared to online HPO (Chen et al., 2017; Parker-Holder et al., 2020), or meta-gradient
HPO (Maclaurin et al., 2015; Franceschi et al., 2017; Lorraine et al., 2020) is the ability to tune all
types of hyperparameters.

In recent years, a stream of papers highlights the fact that the performance of DL methods is pre-
dictable (Hestness et al., 2017), concretely, that the validation error rate is a power law function of
the model size, or dataset size (Rosenfeld et al., 2020; 2021). Such a power law relationship has
been subsequently validated in the domain of NLP, too (Ghorbani et al., 2022). In this paper, we
demonstrate that the power-law principle has the potential to be a game-changer in HPO, because
we can evaluate hyperparameter configurations in low-budget regimes (e.g. after a few epochs), then
estimate the performance on the full dataset using dataset-specific power law models.

We introduce Deep Power Law (DPL) ensembles, a probabilistic surrogate for Bayesian optimiza-
tion (BO) that estimates the performance of a hyperparameter configuration at future budgets using
ensembles of deep power law functions. Subsequently, a novel proposed flavor of BO dynamically
decides which configurations to pause and train incrementally by relying on the performance esti-
mations of the surrogate. We demonstrate that our method achieves the new state-of-the-art in HPO
for DL by comparing against 8 strong HPO baselines, and 57 datasets of three diverse modalities
(tabular, image, and natural language processing). As a result, we believe the proposed method
has the potential to finally make HPO for DL a feasible reality. Overall, our contributions can be
summarized as follows:

• We introduce a novel probabilistic surrogate for gray-box HPO based on ensembles of deep
power law functions.
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• We derive a simple mechanism to combine our surrogate with Bayesian optimization.
• Finally, we demonstrate the superiority of our method against the current state-of-the-art in

HPO for Deep Learning, with a very large-scale HPO experimental protocol.

2 RELATED WORK

Multi-fidelity HPO relaxes the black box assumption by assuming it has access to the learning curve
of a hyperparameter configuration. Such a learning curve is the function that maps either training
time or dataset size, to the validation performance. The early performance of configurations (i.e. first
segment of the learning curve) can be used to discard unpromising configurations, before waiting for
full convergence. Successive halving (Jamieson & Talwalkar, 2016) is a widely used multi-fidelity
method that randomly samples hyperparameter configurations, starts evaluating them, and ends a
fraction of them upon reaching a predefined budget. Afterward, the budget is multiplied by the
fraction of discarded hyperparameter configurations and the process continues until the maximum
budget is reached. Although the method relies only on the last observed value of the learning curve,
it is very efficient. In recent years, various flavors of successive halving have been elaborated,
including Hyperband (Li et al., 2017), which effectively runs successive halving in parallel with
different settings. A major improvement to Hyperband is replacing random search with a more
efficient sampling strategy (Awad et al., 2021; Falkner et al., 2018). However, the only assumption
these methods make about the learning curve is that it will improve over time. In contrast, we fit
surrogates that exploit a power law assumption on the curves.

Learning curve prediction is a related topic, where the performance of a configuration is predicted
based on a partially observed learning curve. Typically, the assumptions about the learning curve
are much stronger than those described above. The prediction is often based on the assumption
that the performance increases at the beginning and then flattened towards the end. One way to
model this behavior is to define a weighted set of parametric functions (Domhan et al., 2015; Klein
et al., 2017). Then, the parameters of all functions are determined so that the resulting prediction
best matches the observed learning curve. Another approach is to use learning curves from already
evaluated configurations and to find an affine transformation that leads to a well-matched learning
curve (Chandrashekaran & Lane, 2017). A more data-driven approach is to learn the typical learning
curve behavior directly from learning curves across different datasets (Wistuba & Pedapati, 2020).
Learning curve prediction algorithms can be combined with successive halving (Baker et al., 2018).
In contrast to this line of research, we actually fit ensembles of power law surrogates for conducting
multi-fidelity HPO with Bayesian optimization.

Scaling laws describe the relationship between the performance of deep learning models as a func-
tion of dataset size or model size. Concretely, Hestness et al. (2017) show empirically for differ-
ent data modalities and neural architectures that a power law relationship holds when growing the
dataset. Further work confirms this observation and extends it by demonstrating the power law re-
lationship also with regard to the model size (Rosenfeld et al., 2020; 2021; Ghorbani et al., 2022).
From a practical angle, Yang et al. (2022) propose to tune hyperparameters on a small-scale model
and then transfer it to a large-scale version. In contrast to these papers, we directly use the power
law assumption for training surrogates in Bayesian optimization for HPO.

3 PRELIMINARIES

Hyperparameter Optimization (HPO) demands finding the configurations λ ∈ Λ of a Machine
Learning method that achieve the lowest validation loss L(Val) of a model (e.g. a neural network),
which is parameterized with θ and learned to minimize the training loss L(Train) as:

λ∗ := argmin
λ∈Λ

L(V al) (λ, θ∗ (λ)) ,

s.t. θ∗ (λ) := argmin
θ∈Θ

L(Train) (λ, θ) (1)

For simplicity we denote the validation loss as our function of interest f(λ) = L(V al) (λ, θ∗ (λ)).
The optimal hyperparameter configurations λ∗ of Equation 1 are found via an HPO policy A (also
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called an HPO method) that given a history of N evaluated configurations H := {λi, f (λi)}Ni=1

suggests the (N + 1)-th configuration to evaluate as λN+1 := A(H) where A : [Λ× R+]
N → Λ.

The search for an optimal HPO policy is a bi-objective problem in itself, aiming at (i) finding a con-
figuration out of N evaluations that achieves the smallest validation loss f(λ), and (ii) ensuring that
the costs of evaluating the N configurations do not exceed a total budget Ω, as shown in Equation 2.

argmin
A

min
i∈{1,...,N}

f
(
λi = A

(
H(i−1)

))
, (2)

where: H(i) :=

{
{(λj , f(λj))}ij=1 i > 0

∅ i = 0

subject to: Ω >

N∑
i=1

cost (f (λi))

Bayesian optimization (BO) is the most popular type of policy for HPO, due to its ability to balance
the exploration and exploitation aspects of minimizing the loss f . Technically speaking, BO fits a
surrogate f̂(λ; θ) parametrized with θ to approximate the observed loss f(λ) using the history H ,
as θ∗ := argminθ E(λ,f(λ)) ∼pH

p(f(λ)|λ, θ). Afterwards, BO uses an acquisition/utility function
a : Λ → R+ to recommend the next configuration as λN+1 := A

(
H(N)

)
= argmaxλ∈Λ a (λ; θ∗).

A typical acquisition choice is the Expected Improvement (Mockus et al., 1978). For a more detailed
introduction to BO and HPO we refer the interested reader to Hutter et al. (2019)

Gray-box (multi-fidelity) HPO refers to the case where an approximation of the validation loss
can be measured at a lower budget b ∈ B, where B = (0,max budget]. For instance in Deep
Learning we can measure the validation loss after few epochs (0 < b < ϵ), rather than wait for a
full convergence (b = max budget). Throughout this paper the term budget refers to the number
of optimization epochs. The evaluation of a configuration λ for a budget b is defined as f (λ, b) :=
L(V al) (λ, θ∗ (λ, b)), where f (λ, b) : Λ×B → R+. The concept of budgets alters the HPO problem
definition slightly. The history of N configurations evaluated at different budgets becomes a set of
N triples (config, budget, eval) defined as H := {(λi, bi, f (λi, bi))}Ni=1. A gray-box HPO policy is
still optimized for Equation 2, however, the constraint is altered as Ω >

∑N
i=1 cost (f (λi, bi)).

4 POWER LAW SURROGATES FOR BAYESIAN OPTIMIZATION

Prior work has demonstrated that the performance of Machine Learning methods as a function of
budgets (i.e. dataset size, number of optimization epochs, model size, image resolution) follows
a power law relationship (Rosenfeld et al., 2020; 2021). In this work, we employ this power law
dependence between the validation loss and the number of optimization epochs in Deep Learning.
We propose a novel gray-box Hyperparameter Optimization method which is based on power law
surrogates. We assume that every learning curve f (λ, ·) can be described by a power law function
defined by (α, β, γ). Concretely, we define a power law function modelling the validation loss for a
configuration λ at budget b (a.k.a. number of epochs) as shown in Equation 3.

f̂ (λ, b) := αλ + βλ b−γλ , αλ, βλ, γλ ∈ R (3)

We propose to use surrogate models employing the power law in Bayesian optimization (BO) to
optimize hyperparameters. We suggest learning a shared power law function across all configu-
rations by conditioning the power law coefficients α, β, γ on λ using a parametric neural network
g that maps a configuration to the power law coefficients of its learning curve as g : Λ → R3.
The network g has three output nodes, corresponding to the power law coefficients, denoted as
g(λ)α, g(λ)β , g(λ)γ . The configuration-conditioned power law surrogate becomes:

f̂ (λ, b) := g(λ)α + g(λ)β b−g(λ)γ , g : Λ → R3 (4)
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Using a history of learning curve evaluations H := {(λi, bi, f (λi, bi))}Ni=1 we can train the power
law surrogate to minimize the following loss function using stochastic gradient descent:

argmin
g

E(λ,b,f(λ,b))∼pH

∣∣∣f (λi, bi)−
[
g(λi)α + g(λi)β bi

−g(λi)θ
]∣∣∣ (5)

BO surrogates need to be probabilistic regression models because the acquisition functions require
the posterior variance of the predictions. As a result, we train an ensemble of K diverse surrogates
f̂ (1)(λ, b), . . . , f̂ (K)(λ, b) with the Deep Ensemble strategy (Lakshminarayanan et al., 2017), by
initializing each surrogate with different weights and by training with a different sequence of mini-
batches. The posterior mean µ and the posterior variance σ2 of the power law ensemble are trivially
computed as:

µf̂ (λ, b) =
1

K

K∑
k=1

f̂ (k)(λ, b),

σ2
f̂
(λ, b) =

1

K

K∑
k=1

(
f̂ (k)(λ, b)− µf̂ (λ, b)

)2

(6)

The acquisition function of our approach relies on selecting the configuration λ with the lowest
estimated loss at the full budget. In other words, we select the hyperparameter configurations that
are expected to achieve the best performance at the end of the optimization procedure.

A commonly used acquisition function in the domain is Expected Improvement (EI) which incor-
porates both the mean and uncertainty of predictions, applying a trade-off between exploration and
exploitation. Consequently, in our work, we use the Expected Improvement (EI) acquisition with
the estimated full budget’s (b = max budget) posterior mean and variance.

EI(λ, b|H) = E
[
max

{
µf̂ (λ, b)− f (best) (b = max budget) , 0

}]
,

λnext := argmax
λ∈Λ

EI (λ, b|H) (7)

The best observed loss until a budget b is denoted as f (best) (b) :=
min {f (λ, b′) | (λ, b′, f (λ, b)) ∈ H ∧ b′ < b}. We briefly define the acquisition in Equation 7,
and refer the reader to Mockus et al. (1978) for the details of the EI.

However, after selecting a configuration with our variant of the EI acquisition, we do not naively run
it until convergence. Instead, we propose a novel multi-fidelity strategy that advances the selected
λnext of Equation 7 by a small budget of bstep, e.g. 1 epoch of training. Therefore, the selected λnext

will be evaluated at bnext as defined in Equation 8. Notice our proposed strategy also covers new
configurations with no learning curve evaluations in H .

bnext :=

{
bstep, ∄λnext : (λnext, ·, ·) ∈ H

bstep + max
(λnext,b,·)∈H

b, otherwise (8)

5 A PROOF-OF-CONCEPT EXAMPLE

To visually demonstrate the power law surrogate, we created a 1-dimensional search space where
we train a Preact ResNet (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al., 2009). We
train multiple versions of the model applying a different dropout hyperparameter λ ∈ [0.1, 0.85]
for 50 epochs, with a cosine annealed learning rate and an initial value of 10−2. We train our
power law surrogate on a subspace of the hyperparameter search space. We use the full validation
curves for the aforementioned hyperparameter subspace, except for the hyperparameter configura-
tion corresponding to 0.65, where, we use only a subset of the learning curve. Ideally, our power
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Figure 1: The power law predictions and uncertainty estimations on the CIFAR10 1-D search space.
Left: The maximal budget across different hyperparameter configurations (dropout rates). Right:
Across different budgets for the same hyperparameter configuration that was observed partially.

law surrogate should model a low uncertainty in the observed hyperparameter configurations and a
higher uncertainty in the partial or unobserved regions.

As shown in Figure 1, our power law surrogate fits the training data well by generalizing correctly
across different hyperparameter configurations. Furthermore, the power law surrogate models a low
uncertainty in the region of observed hyperparameter configurations, and a higher uncertainty in the
region of partially observed configurations that scales more the further we move from the region of
observed points. Additionally, Figure 1 (right) conveys that when we evaluate the hyperparameter
configuration that is only observed partially, the uncertainty scales with the budget. More concretely,
the surrogate is more uncertain the higher the budget (epoch) for which we predict compared to the
last observed value.

6 EXPERIMENTAL PROTOCOL

In our experiments, we standardize the data by performing min-max scaling for our method and
every baseline included. If a baseline has a specific preprocessing protocol, we do not apply min-
max scaling but we apply the protocol as suggested by the authors. In the following experiments,
we report the regret of the best configuration found λbest, which is defined as:

R
(
λbest

)
= max

(
0, f (oracle) (b = max budget)− f (best) (b = max budget)

)
(9)

where f (oracle) (b = max budget) := min {f (λ, b′) | (λ, b′, f (λ, b)) ∈ H ∧ b′ < b}. In short, the
regret is the difference in the metric performance from the best possible hyperparameter configura-
tion (oracle) on the dataset to the best-found hyperparameter configuration by a method . The metric
is benchmark-specific, since the benchmarks do not support a common metric. On a dataset level,
we report the average regret across 10 repetitions with different seeds. When reporting results over
all datasets, we report the averaged normalized regret. The normalized regret for each dataset is
calculated by dividing the regret by the difference between the best value and the worst value spe-
cific to the dataset. We normalize the regret because over all datasets, there are regret distances of
different scales, which in turn can lead to low regret values that can dominate the overall averaged
results for all datasets. For more information regarding the detailed implementation of our method,
we refer the reader to Appendix A.

6.1 BENCHMARKS

LCBench: A benchmark that features 2,000 hyperparameter configurations that parametrize the
architecture of simple feedforward neural networks, as well as, the training pipeline (Zimmer et al.,
2021). The benchmark features 7 numerical hyperparameters. The hyperparameter configurations
were evaluated for 51 epochs on 35 different datasets from the AutoML benchmark (Gijsbers et al.,
2019). When reporting results for LCBench, we use the balanced accuracy metric.
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PD1: A deep learning benchmark (Wang et al., 2022) that consists of recent DL architectures run
on large vision datasets such as CIFAR-10, CIFAR-100, ImageNet, as well as statistical modeling
corpora and protein sequences datasets from the bioinformatics domain. Every search space fea-
tures varying learning curve lengths, ranging from 5 to 1414, and a different number of evaluated
hyperparameter configurations ranging from 807 to 2807. The search space includes hyperparame-
ter configurations that parametrize the learning rate, the learning rate scheduler and the momentum.
When reporting results for the PD1 benchmark, we use the accuracy metric.

TaskSet: A benchmark that features different optimization tasks evaluated in 5 different search
spaces (Metz et al., 2020). For our work, we focus on the Adam8p search space, which is among
the largest search spaces in the benchmark with 1000 hyperparameter configurations, every hyper-
parameter configuration featuring 8 continuous hyperparameters. The hyperparameters control the
learning rate, the learning rate schedulers and the optimizer. Every run consists of 50 steps, where,
every step corresponds to 200 training iterations. For variety among our benchmarks, we focus on
12 NLP tasks. When reporting results for TaskSet we use the loss metric since the benchmark does
not offer information regarding accuracy.

6.2 BASELINES

Random Search: Randomly samples hyperparameter configurations for the largest possible budget.

Hyperband: Uses multiple brackets with different trade-offs of the initial budget and number of
epochs to initially train (Li et al., 2017). It then further applies Successive Halving (SH) (Jamieson
& Talwalkar, 2016) on every individual bracket to decide which configurations to further train and
which configurations to stop training.

ASHA: An asynchronous version of SH (Li et al., 2018) that does not wait for all configurations to
finish in a bracket before running for the next fidelity.

BOHB: An extension of Hyperband that replaces the random sampling of hyperparameter con-
figurations in the initial brackets with model-based sampling (Falkner et al., 2018). BOHB uses
TPE (Bergstra et al., 2011) as an inner model and has an individual model for every fidelity.

DEHB: An additional extension of Hyperband, which differs from BOHB by using evolutionary
strategies to sample the initial hyperparameter configurations (Awad et al., 2021).

SMAC: A method that extends Hyperband but uses random forests to sample the initial hyperpa-
rameter configurations for a bracket (Lindauer et al., 2022).

Dragonfly: We use the Dragonfly Library (Kandasamy et al., 2020) to compare against
BOCA (Kandasamy et al., 2017), a multi-fidelity method that uses Gaussian processes to predict
the next hyperparameter to evaluate and the fidelity for which it should be evaluated.

For all the baselines, we use their official public implementations. We provide additional details in
Appendix C.

7 RESEARCH HYPOTHESES AND EXPERIMENTAL RESULTS

Hypothesis 1: The power law assumption improves the quality of the learning curve predictions.

Initially, we compare power laws against GPs and simple feedforward neural networks by fitting in-
dividual instances of every algorithm on a partially observed learning curve for every corresponding
hyperparameter configuration. We repeat the procedure with different fractions of partially observed
learning curves for every dataset in the LCBench benchmark. We check the accuracy of each model
in predicting the final performance by calculating the correlation. Lastly, we investigate the perfor-
mance of a simple feedforward neural network and Deep Power Laws (DPLs) conditioned on the
hyperparameter configurations. In particular, we do not fit a model on the partial learning curve of
every hyperparameter configuration, but, we fit a model for all partial learning curves of different
hyperparameter configurations, learning a shared model for all configurations.

As can be seen in Figure 2, DPLs manages to have the highest accuracy compared to all the con-
sidered model algorithms. Observing the results, fitting an individual power law to a learning curve
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Figure 3: A comparison of all methods considered in the experiments over the number of
epochs/steps for all the considered benchmarks. We report the average normalized regret for all
methods. A step corresponds to 200 iterations in the case of TaskSet.

achieves predictions of higher quality compared to fitting a simple feedforward neural network or
Gaussian processes.
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Figure 2: The correlations of individual mod-
els, and the DPL, for different fractions of ob-
served learning curves across datasets. DPL:
Deep Power Law, Cond NN: Conditioned neural
network, PL: Power Law, NN: Neural Network,
GP: Gaussian processes.

Furthermore, conditioning a neural network to
output based on a power law formulation yields
a DPL that can share information across hyper-
parameter configurations while improving ac-
curacy compared to the individual power laws.
As expected, the effect is more noticeable in the
small data regime, where, we observe only a
small subset of observed points from the learn-
ing curve. Lastly, a DPL is less expensive to
fit on a benchmark compared to fitting an in-
dividual power law for every hyperparameter
configuration which does not scale and it over-
comes the issue of fitting an individual power
law, which requires data points for every hyper-
parameter configuration. Based on the results,
we consider Hypothesis 1 to be validated and
that DPLs yield qualitative predictions that
surpass different models fitted on individual
hyperparameter configurations.

Hypothesis 2: Our method DPL achieves state-of-the-art results in HPO.

Initially, we compare the average normalized regret of our method against all competitors over the
number of epochs for all the benchmarks. In Figure 3, we show the performance of all the methods
considered in the experiments over the number of epochs, as observed, DPLs manage to outperform
in all the considered benchmarks. In the case of LCBench, DPLs converge faster to a better solution
compared to the competitor methods and continue to increase the gap in performance until the
optimization process ends. Furthermore, we observe the same trend with TaskSet, only in 25% of
the optimization process the DPLs converge to a better solution compared to all the considered
baselines and increase the lead until the optimization process ends. Lastly, since PD1 features
datasets with different learning curves, we consider a budget of 20 full function evaluations for every
dataset (roughly the same number of full function evaluations as in the other two benchmarks). We
normalize the budget by dividing the number of epochs by the total number of epochs per dataset.
As seen in Figure 3, our method converges slower compared to DragonFly, the closest baseline in
the benchmark, however, when 75% of the optimization process is reached, our method matches the
baseline in performance and continues to improve until the end of the optimization process, once
again, performing best compared to all baselines.

In addition to the average normalized regret, Figure 4 provides the critical difference diagrams that
show the average dataset ranks of all methods for the different benchmarks, where, DPL consistently
achieves the best rank with a statistically significant difference in the majority of cases. In particular,
we provide the critical difference diagrams during half the optimization procedure and at the end of
the optimization procedure. As observed, for LCBench and TaskSet, DPL achieves the best per-
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Figure 5: The performance of rival methods over the normalized time for all the benchmarks con-
sidered. We report the average normalized regret for all baselines.

formance with a statistically significant difference in results only halfway through the optimization
procedure, retaining the statistical significance until the end of the HPO procedure. In the case of
PD1, our method is among the best three methods during half of the optimization procedure, with
a non-significant difference compared to the other two top-3 methods. Although at the end of the
optimization procedure our method does not have a statistical difference in the results compared to
the other methods, it still achieves the best rank over all datasets.

Lastly, we analyse the performance of DPL and all the other methods considered in the experiments
in Figure 5, where, as it can be observed, DPL manages to outperform the competitors even when
method’s overhead time is included, showing that the time overhead of DPL is negligible in the
results. In more detail, the total time includes the time to evaluate a hyperparameter configuration
and the time taken by each respective method in its inner process to suggest the next hyperparameter
configurations to evaluate. Additionally, before the results are averaged for all datasets, the per-
dataset time is normalized by the time it took random search to finish the optimization procedure.
TaskSet is not included in Figure 5 since it does not offer information regarding the time. Given the
results, we conclude that Hypothesis 2 is validated and that DPL manages to achieve state-of-the-
art performance.

Hypothesis 3: DPL explores the search space more efficiently compared to the baselines.

We conduct further analyses to understand the source of the efficiency of our method DPL versus the
baselines. As a result, we analyze two important aspects, the quality of the evaluated configurations,
as well as the exploration capability of our gray-box HPO. Initially, we measure what fraction of
the top 1% configurations (ranked by accuracy) our method considers. Figure 6 (left) shows that
until convergence our method can discover significantly more top configurations in the datasets of
the LCBench benchmark, compared to baselines.

The middle plot of Figure 6 shows the average regret for each configuration promoted to the respec-
tive budget. According to this plot, DPL is more efficient by assigning budget only to configurations
with lower regret compared to the other methods. The precision and regret plots demonstrate that
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Figure 6: Study of DPL’s efficiency over the course of HPO. Left: Share of the best candidates
selected during training. Middle: Average regret of configurations chosen to be trained at each
budget. Right: Share of top third configurations at a given budget which were bottom two third
configurations at a previous budget.

the quality of the evaluated configurations is largely better than all baselines, therefore, giving our
method a significant lift in the performance rank. Last but not least, the right plot shows the percent-
age of configurations that were performing poor in an earlier epoch (i.e. accuracy-wise in the bottom
2/3 of configurations up to the epoch indicated at the x-axis) but performed better at later epochs
(i.e. at the top 1/3 of configurations). Furthermore, we added a line labeled with ”Baseline”, which
represents the fraction of previously poor-performing configurations of all configurations. Such be-
havior is observed often with learning curves, for instance, strongly regularized networks converge
slowly. The results indicate that our method can better explore unpromising early configurations,
by giving them a chance through the uncertainty estimation of our ensemble, and the respective
Bayesian optimization mechanism.

8 LIMITATIONS

Our proposed ensemble of power law functions achieves an important gain in performance concern-
ing the state-of-the-art in gray-box HPO and highlights the efficiency of modeling learning curves
with the power law assumption. However, we believe that further research is needed to calibrate the
power law model for the beginning and the end parts of the learning curves. Recent work highlighted
that the error rate at very small fidelities (e.g. after a few mini-batches) is not a power law (Rosenfeld
et al., 2021). Contrary to the common expectations, we experienced that the uncertainty estimation
arising from the Deep Ensemble (Lakshminarayanan et al., 2017) is not very qualitative compared
to standard BO surrogates such as Gaussian Processes. In addition, having to train an ensemble
has additional computational costs, due to the necessity of training multiple power law models.
In the future, we plan to re-conceptualize our surrogate, by combining power laws with Gaussian
Processes.

9 CONCLUSIONS

In this work, we introduce Deep Power Law (DPL), a probabilistic surrogate based on an ensemble
of power law functions. The proposed surrogate is used within a novel gray-box HPO method based
on Bayesian optimization. In contrast to the prior work we exploit the recently-discovered scaling
laws for estimating the performance of Deep Learning models. Through extensive experiments
comprising 7 baselines, 57 datasets, and search spaces of diverse deep learning architectures, we
showed that DPL outperforms strong HPO baselines for DL by a large margin. As an overarching
contribution, we advanced the state-of-the-art in the important field of HPO for Deep Learning.

9
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A IMPLEMENTATION DETAILS

For our method, we use a 2-layer feedforward neural network with 128 units per layer. Additionally,
we use batch normalization after every linear layer. We use Leaky ReLU as our non-linearity. Our
network has 3 output units, which, are then combined to yield the power law output. We apply the
Sigmoid non-linearity activation only on the β and γ output units. For the experiments in the pd1
benchmark, we apply a Leaky ReLU non-linearity to improve convergence, since, the benchmark
features low error rate values. We use PyTorch version 1.12 as the main library on top of which we
build our method.

We use the MSE loss to train our network, coupled with Adam featuring an initial learning rate
of 10−3. We train every network of our ensemble for 250 epochs only in the beginning of the hpo
optimization process and we continuously refine the model for 20 epochs every hpo iteration. Lastly,
we use 5 models to build our ensemble of DPLs. For the experiments, we use an initial history H of
1 randomly sampled hyperparameter configuration evaluated for 1 epoch.
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B BENCHMARKS

LCBench We use the official implementation as the interface for the LCBench benchmark 1. As
suggested by the authors, we use the benchmark information starting from the second step and we
skip the last step of the curve since it is a repeat of the preceding step.

TaskSet: The TaskSet benchmark features 1000 diverse tasks. We decide to focus on only 12 NLP
tasks from the TaskSet benchmark to add variety to our entire collection of datasets. Our limitation
on the number of tasks included is related to the limited compute power, as we are unable to run
for the entire suite of tasks offered in TaskSet. TaskSet features a set of 8 hyperparameters, that
consists of i) optimizer-specific hyperparameters, such as the learning rate, the exponential decay
rate, β1 and β2, and Adam’s constant for numerical stability ε, ii) hyperparameters that control the
linear and exponential decay schedulers for the learning rate decay, and lastly iii) hyperparameters
that control the L1 and L2 regularization terms. Every hyperparameter in TaskSet except β1 and β2

is sampled logarithmically.

PD1: We use the synetune library (Salinas et al., 2022) for our interface to the PD1 benchmark.
From the benchmark, we only include datasets that have a learning curve of length greater than
10. We furthermore only include datasets that have a learning curve lower or equal to 50 to have
a fair comparison between all benchmarks by having approximately 20 full function evaluations.
PD1 features 4 numerical hyperparameters, lr initial value, lr power, lr decay steps factor
and one minus momentum, where lr initial value and one minus momentum are log sam-
pled. The learning rate decay is applied based on a polynomial schedule.

C BASELINES

Random Search: We implemented random search by randomly sampling hyperparameter configu-
rations from the benchmarks with the maximal budget.

Hyperband, BOHB, LCNet: We use version 0.7.4 of the HpBandSter library as a common code-
base for all 3 baselines 2. For the last approach mentioned, despite heavy hyperparameter tuning of
the method, we could not get stable results across all the benchmarks and hence dropped the method
from our comparison.

ASHA: For the implementation of ASHA we use the public implementation from the optuna library
, version 2.10.0.

DEHB: We use the public implementation offered by the authors 3.

MF-DNN: In our experiments we used the official implementation from the authors 4. However, the
method crashes which does not allow for full results on all benchmarks.

SMAC: For our experiment with SMAC we used the official code base from the authors 5.

Dragonfly: We use version 0.1.6 of the publicly available Dragonfly library.

For all the multi-fidelity methods considered in the experiments, we use the same minimal and
maximal fidelities. In more detail, for the LCBench and TaskSet benchmarks we use a minimal
fidelity lower bound of 1 and a maximal fidelity lower bound equal to the max budget. In the case
of PD1, where, the learning curves have different lengths, we use a minimal bound that allows for a
maximal amount of 4 brackets, if no more than 4 brackets can be achieved we use a minimal budget
of 1.

D PLOTS

1https://github.com/automl/LCBench
2https://github.com/automl/HpBandSter
3https://github.com/automl/DEHB/
4https://github.com/shib0li/DNN-MFBO
5https://github.com/automl/SMAC3
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Figure 7: The dataset absolute relative error distribution of DPL over the different learning curve
fractions. The distribution is calculated from the ground truth and prediction values, averaged over
all configurations of a dataset.

14


	Introduction
	Related Work
	Preliminaries
	Power Law Surrogates for Bayesian Optimization
	A Proof-of-concept Example
	Experimental Protocol
	Benchmarks
	Baselines

	Research Hypotheses and Experimental Results
	Limitations
	Conclusions
	Implementation Details
	Benchmarks
	Baselines
	Plots

