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ABSTRACT

Ensemble learning is a popular technique to improve the accuracy of machine
learning models. It hinges on the rationale that aggregating multiple weak models
can lead to better models with lower variance and hence higher stability, especially
for discontinuous base learners. In this paper, we provide a new perspective on
ensembling. By selecting the best model trained on subsamples via majority voting,
we can attain exponentially decaying tails for the excess risk, even if the base
learner suffers from slow (i.e., polynomial) decay rates. This tail enhancement
power of ensembling is agnostic to the underlying base learner and is stronger than
variance reduction in the sense of exhibiting rate improvement. We demonstrate
how our ensemble methods can substantially improve out-of-sample performances
in a range of examples involving heavy-tailed data or intrinsically slow rates.

1 INTRODUCTION

Ensemble learning (Dietterich, 2000; Zhou, 2012) is a class of methods to improve the accuracy
of machine learning models. It comprises repeated training of models (the “base learners”), which
are then aggregated through averaging or majority vote. In the literature, the main justification for
ensemble methods, such as bootstrap aggregating (bagging) (Breiman, 1996) and boosting (Freund
et al., 1996), pertains to bias/variance reduction or higher stability. This justification has been
shown to be particularly relevant for certain U-statistics (Buja & Stuetzle, 2006) and models with
hard-thresholding rules such as decision trees (Breiman, 2001; Drucker & Cortes, 1995).

Contrary to the established understanding, in this paper we present a new view of ensembling in
offering an arguably stronger power than variance reduction: By suitably selecting the best base
learners trained on random subsamples, ensembling leads to exponentially decaying excess risk tails.
In particular, for general stochastic optimization problems that suffer from a slow, namely polynomial,
decay in excess risk tails, ensembling can reduce these tails to an exponential decay rate. Thus,
instead of the typical constant factor of improvement exhibited by variance reduction, our ensemble
method offers a rate improvement, and moreover, the improvement is substantial.

In the following, we will first qualify our claims above by discussing how slow convergence can
arise generically in machine learning and more general data-driven decision-making problems under
heavy-tailed data. We then give intuition on our new ensembling perspective, proposed procedures,
and the technicality involved in a full analysis.

Main results at a high level. We begin by introducing a generic stochastic optimization problem

min
θ∈Θ

L(θ) := E [l(θ, z)] , (1)

where θ is the decision variable on space Θ, z ∈ Z denotes the randomness governed by a probability
distribution, and l is the cost function. n i.i.d. samples {z1, . . . , zn} are available from the underlying
distribution of z. In machine learning, θ corresponds to model parameters, {z1, . . . , zn} the training
data, l the loss function, and L the population-level expected loss. More generally, (1) encapsulates
data-driven decision-making problems, namely the integration of data on z into a downstream
optimization task with overall cost function l and prescriptive decision θ. These problems are
increasingly prevalent in various industrial applications (Kamble et al., 2020; Bertsimas et al., 2023;
Ghosal et al., 2024), such as in supply chain network design where θ may represent the decision to
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open processing facilities, z the uncertain supply and demand, and l the total cost of processing and
transportation.

Given the data, we can train the model or decision with a learning algorithm that maps the data
to an element in Θ. This encompasses a wide range of methods, including machine learning
training algorithms and data-driven approaches like sample average approximation (SAA) (Shapiro
et al., 2021) and distributionally robust optimization (DRO) (Mohajerin Esfahani & Kuhn, 2018)
in stochastic optimization. Our proposal and theory described below are agnostic to the choice of
learning algorithm.

We characterize the generalization performance of a solution to (1), denoted by θ̂, via the tail
probability bound on the excess risk or regret L(θ̂)−minθ∈Θ L(θ), i.e., P(L(θ̂) > minθ∈Θ L(θ)+δ)
for some fixed δ > 0, where the probability is over both the data and training randomness. By a
polynomially decaying generalization tail, we mean that

P
(
L(θ̂) > min

θ∈Θ
L(θ) + δ

)
≤ C1n

−α (2)

for some α > 0 and C1 depends on δ. Such bounds are common under heavy-tailed data distributions
(Kaňková & Houda, 2015; Jiang et al., 2020; Jiang & Li, 2021) due to slow concentration, which
frequently arises in machine learning applications such as large language models (e.g, Jalalzai et al.
(2020); Zhang et al. (2020); Cutkosky & Mehta (2021) among others), finance (Mainik et al., 2015;
Gilli & Këllezi, 2006) and physics (Fortin & Clusel, 2015; Michel & Chave, 2007), and are proved to
be tight (Catoni, 2012) for empirical risk minimization (ERM) (Vapnik, 1991). As our key insight,
our proposed ensembling methodology can improve the above to an exponential decay, i.e.,

P
(
L(θ̂) > min

θ∈Θ
L(θ) + δ

)
≤ C2γ

n/k, (3)

where k is the subsampled data size and can be chosen at a slower rate in n, and γ < 1 depends on k, δ
such that γ → 0 as k → ∞. Hence, when k is properly chosen, the decay becomes exponential. This
exponential acceleration is qualitatively different from the well-known variance reduction benefit of
ensembling in several aspects. First, variance reduction refers to the smaller variability in predictions
from models trained on independent data sets, which has a more direct impact on the expected regret
than the tail decay rate. Second, the improvement by variance reduction is typical of a constant factor
(e.g., Bühlmann & Yu (2002) reported a reduction factor of 3), thus affecting at best the constant C1

in (2), whereas we obtain an order-of-magnitude improvement.

Main intuition. To facilitate our explanation, let us first focus on discrete space Θ. Our ensembling
methodology uses a majority-vote mechanism at the model level: After repeatedly running the
learning algorithm on subsamples to generate many models, we output the model that occurs most
frequently. This implicitly solves a surrogate optimization problem over the same decision space Θ as
(1) that maximizes the probability of being output by the learning algorithm. This conversion of the
original general objective in (1) to a probability objective is the key: As an expectation of a random
indicator function, the latter is uniformly bounded even if the original objective is heavy-tailed.
Together with a bootstrap argument that establishes the closeness between subsample and full data,
this in turn results in exponentially decaying tails for the regret.

For more general problems with continuous space, we replace the simple majority vote with a vote
based on the likelihood of being ϵ-optimal among all the generated models when evaluated on a
random subsample. This avoids the degeneracy issue of using a simple majority vote for continuous
problems while retaining similar (in fact, even stronger as we will see) guarantees. Regardless of
discrete or continuous model space, our main insight on turning (2) into (3) applies. Moreover, in
the discrete case, it turns out that not only the tail bound but also the average-case regret improves
exponentially. This also explains why our improvement is particularly significant for discrete-decision
problems in the experiments.

The rest of the paper is organized as follows. Section 2 presents our ensemble methods and their
finite-sample bounds. Section 3 presents experimental results, and Section 4 discusses related work.
Section 5 discusses limitations and concludes the paper. A review of additional related work, technical
proofs, and additional experimental results can be found in the appendix.
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2 METHODOLOGY AND THEORETICAL GUARANTEES

To solve (1) using data, we consider the generic learning algorithm in the form of a mapping

A(z1, . . . , zn;ω) : Zn × Ω → Θ

that takes in the training data (z1, . . . , zn) and outputs a model possibly under some algorithmic
randomness ω that is independent of the data. Examples of ω include gradient sampling in stochastic
first-order algorithms and feature/data subsampling in random forests. A(z1, . . . , zn;ω) serves as
our base learner. For convenience, we omit ω to write A(z1, . . . , zn) when no confusion arises.

2.1 A BASIC PROCEDURE

We first introduce a procedure called MoVE that applies to discrete solution or model space Θ. MoVE,
which is formally described in Algorithm 1, repeatedly draws a total of B subsamples from the data
without replacement, learns a model via A on each subsample, and finally conducts a majority vote
to output the most frequently subsampled model. Tie-breaking can be done arbitrarily.

Algorithm 1 Majority Vote Ensembling (MoVE)

1: Input: A base learning algorithm A, n i.i.d. observations z1:n = (z1, . . . , zn), subsample size
k < n, and ensemble size B.

2: for b = 1 to B do
3: Randomly sample zbk = (zb1, . . . , z

b
k) uniformly from z1:n without replacement, and obtain

θ̂bk = A(zb1, . . . , z
b
k).

4: end for
5: Output: θ̂n ∈ argmaxθ∈Θ

∑B
b=1 1(θ = θ̂bk).

To understand MoVE, we consider an optimization associated with the base learner A

max
θ∈Θ

pk(θ) := P (θ = A(z1, . . . , zk)) , (4)

which maximizes the probability of a model being output by the base learner on k i.i.d. observations.
Here the probability P is with respect to both the training data and the algorithmic randomness. If
B = ∞, MoVE essentially maximizes an empirical approximation of (4), i.e.

max
θ∈Θ

P∗ (θ = A(z∗1 , . . . , z
∗
k)) , (5)

where (z∗1 , . . . , z
∗
k) is a uniform random subsample from (z1, . . . , zn), and P∗ denotes the proba-

bility with respect to the algorithmic randomness and the subsampling randomness conditioned on
(z1, . . . , zn). With a finite B < ∞, extra Monte Carlo noises are introduced, leading to the following
maximization problem

max
θ∈Θ

1

B

B∑
b=1

1(θ = A(zb1, . . . , z
b
k)), (6)

which gives exactly the output of MoVE. In other words, MoVE is a bootstrap approximation to the
solution of (4). The following result materializes the intuition explained in the introduction on the
conversion of the original potentially heavy-tailed problem (1) into a probability maximization (6)
that possesses exponential bounds:

Theorem 1 (Finite-sample bound for Algorithm 1) Consider discrete decision space Θ. Recall
pk(θ) defined in (4). Let pmax

k := maxθ∈Θ pk(θ), Ek,δ := P(L(A(z1, . . . , zk)) > minθ∈Θ L(θ)+ δ)
be the excess risk tail of A, and

ηk,δ := pmax
k − Ek,δ. (7)
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For every k ≤ n and δ ≥ 0 such that ηk,δ > 0, the solution output by MoVE satisfies that

P
(
L(θ̂n) > min

θ∈Θ
L(θ) + δ

)
≤|Θ|

[
exp

(
− n

2k
·DKL

(
pmax
k − 3ηk,δ

4

∥∥∥pmax
k − ηk,δ

))
+2 exp

(
− n

2k
·DKL

(
pmax
k − ηk,δ

4

∥∥∥pmax
k

))
+ exp

(
−B

24
·

η2k,δ
min (pmax

k , 1− pmax
k ) + 3ηk,δ/4

)

+ 1

(
pmax
k +

ηk,δ
4

≤ 1
)
· exp

(
− n

2k
·DKL

(
pmax
k +

ηk,δ
4

∥∥∥pmax
k

)
− B

24
·

η2k,δ
1− pmax

k + ηk,δ/4

)]
.

(8)
In particular, if ηk,δ > 4/5, (8) is further bounded by

|Θ|
(
3min

(
e−2/5, C1 max(1− pmax

k , Ek,δ)
) n

C2k

+ e−B/C3

)
, (9)

where C1, C2, C3 > 0 are universal constants, |Θ| denotes the cardinality of Θ, and DKL(p∥q) :=
p ln p

q + (1− p) ln 1−p
1−q is the Kullback–Leibler divergence between two Bernoulli distributions with

means p and q.

Theorem 1 states that the excess risk tail of MoVE decays exponentially in the ratio n/k and ensemble
size B. The bound consists of three parts. The first part has two terms with the Kullback–Leibler (KL)
divergences and arises from the bootstrap approximation of (4) with (5). The second part quantifies
the Monte Carlo error in approximating (5) with a finite B. The third part comes from the interaction
between the two sources of errors and is typically of higher order. The multiplier |Θ| in the bound is
avoidable, e.g., via a space reduction as in our next algorithm.

The quantity ηk,δ plays two roles. First, it quantifies how suboptimality in the surrogate problem
(4) propagates to the original problem (1) in that every ηk,δ-optimal solution for (4) is δ-optimal for
(1). Second, ηk,δ is directly related to the excess risk tail Ek,δ of the base learner, in addition to pmax

k
that captures the concentration of the base learner on δ-optimal solutions. Therefore, ηk,δ taking
large values signals the situation where the base learner already generalizes well. In this case, (8)
can be simplified to (9). The bound (9) suggests that our approach does not hurt the performance
of an already high-performing base learner as its generalization power is inherited through the
max(1− pmax

k , Ek,δ) term in the bound. See Appendix B for a more detailed comparison.

The quantity ηk,δ also hints at how to choose the subsample size k. As long as ηk,δ is bounded away
from 0, our bound decays exponentially fast. Therefore, k can be chosen in such a way that the
base learner outputs good models more often than bad ones in order for the exponential decay of
our bound to take effect, but at the same time considerably smaller than n to ensure the amount of
acceleration. In the experiments, we choose k = max(10, n/200).

On the choice of B, note that the two KL divergences in the first part of the tail bound (8) are
in general bounded below by O(η2k,δ) and so is the η2k,δ/(min (pmax

k , 1− pmax
k ) + 3ηk,δ/4) in the

second part as ηk,δ is no larger than 1. Therefore using an ensemble size of B = O(n/k) is sufficient
to control the Monte Carlo error to a similar magnitude as the data error.

2.2 A MORE GENERAL PROCEDURE

We next present a more general procedure called ROVE that applies to continuous space where simple
majority vote in Algorithm 1 can lead to degeneracy, i.e., all learned models appear exactly once in
the pool. Moreover, this general procedure relaxes our dependence on |Θ| in the bound in Theorem 1.

ROVE, displayed in Algorithm 2, proceeds initially the same as MoVE in repeatedly subsampling
data and training the model using A. However, in the aggregation step, instead of using a simple
majority vote, ROVE outputs, among all the trained models, the one that has the highest likelihood
of being ϵ-optimal. This ϵ-optimality avoids the degeneracy of the majority vote and, moreover,
since we have restricted our output to the collection of trained models, the corresponding likelihood
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Algorithm 2 Retrieval and ϵ-Optimality Vote Ensembling (ROVE / ROVEs)

Input: A base learning algorithm A, n i.i.d. observations z1:n = (z1, . . . , zn), subsample size
k1, k2 < n (if no split) or n/2 (if split), ensemble sizes B1 and B2.

Phase I: Model Candidate Retrieval
for b = 1 to B1 do

Randomly sample zbk1
= (zb1, . . . , z

b
k1
) uniformly from z1:n (if no split) or z1:⌊n

2 ⌋ (if split)
without replacement, and obtain θ̂bk1

= A(zb1, . . . , z
b
k1
).

end for
Let S := {θ̂bk1

: b = 1, . . . , B1} be the set of all retrieved models.

Phase II: ϵ-Optimality Vote
Choose ϵ ≥ 0 using the data z1:n (if no split) or z1:⌊n

2 ⌋ (if split).
for b = 1 to B2 do

Randomly sample zbk2
= (zb1, . . . , z

b
k2
) uniformly from z1:n (if no split) or z⌊n

2 ⌋+1:n (if split)
without replacement, and calculate

Θ̂ϵ,b
k2

:=

{
θ ∈ S :

1

k2

k2∑
i=1

l(θ, zbi ) ≤ min
θ′∈S

1

k2

k2∑
i=1

l(θ′, zbi ) + ϵ

}
.

end for
Output: θ̂n ∈ argmaxθ∈S

∑B2

b=1 1(θ ∈ Θ̂ϵ,b
k2
).

maximization is readily doable by simple enumeration. In addition, it helps reduce competition for
votes among the best models as each subsample can now vote for multiple candidates, ensuring a
high vote count for each of the top models even when there are many of them. This makes ROVE
more effective than MoVE in the case of multiple (near) optima as our experiments will show. We
have the following theoretical guarantees for Algorithm 2:

Theorem 2 (Finite-sample bound for Algorithm 2) Recall the tail Ek,δ of the base excess risk
from Theorem 1. Consider Algorithm 2 with data splitting, i.e., ROVEs. Let Tk(·) :=

P(supθ∈Θ|(1/k)
∑k

i=1 l(θ, zi) − L(θ)| > ·) be the tail function of the maximum deviation of the
empirical objective estimate. For every δ > 0, if ϵ is chosen such that P (ϵ ∈ [ϵ, ϵ]) = 1 for some
0 < ϵ ≤ ϵ < δ and Tk2

((δ − ϵ)/2) + Tk2
(ϵ/2) < 1/5, then

P
(
L(θ̂n)>min

θ∈Θ
L(θ)+2δ

)
≤B1

[
3min

(
e−2/5, C1Tk2

(
min(ϵ, δ − ϵ)

2

)) n
2C2k2

+ e−B2/C3

]

+min
(
e−(1−Ek1,δ)/C4 , C5Ek1,δ

) n
2C6k1

+ e−B1(1−Ek1,δ)/C7 ,

(10)

where C1, C2, C3 are the same as those in Theorem 1, and C4, C5, C6, C7 are universal constants.

Consider Algorithm 2 without data splitting, i.e., ROVE, and discrete space Θ. Assume
limk→∞ Tk(δ) = 0 for all δ > 0. Then, for every fixed δ > 0, we have limn→∞ P(L(θ̂n) >
minθ∈Θ L(θ) + 2δ) → 0, if lim supk→∞ Ek,δ < 1, P (ϵ > δ/2) → 0, k1 and k2 → ∞,
n/k1 and n/k2 → ∞, and B1, B2 → ∞ as n → ∞.

Theorem 2 provides an exponential excess risk tail, regardless of discrete or continuous space. The
first line in the bound (10) is inherited from the bound (9) for MoVE from majority to ϵ-optimality
vote. In particular, the multiplier |Θ| in (9) is now replaced by B1, the number of retrieved models.
The second line in (10) bounds the performance sacrifice due to the restriction to Phase I model
candidates.

ROVE may be carried out with the data split between the two phases, in which case it’s referred to as
ROVEs. Data splitting makes the procedure theoretically more tractable by avoiding inter-dependency
between the phases but sacrifices some statistical power from halving the data size. Empirically we
find ROVE to be overall more effective.

The optimality threshold ϵ is allowed to be chosen in a data-driven way and the main goal guiding this
choice is to be able to distinguish models of different qualities. In other words, ϵ should be chosen to
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create enough variability in the likelihood of being ϵ-optimal across models. In our experiments, we
find it a good strategy to choose an ϵ that leads to a maximum likelihood around 1/2.

Lastly, our main theoretical results, Theorems 1 and 2, are derived using several novel techniques.
First, we develop a sharper concentration result for U-statistics with binary kernels, improving upon
standard Bernstein-type inequalities (e.g., Arcones (1995); Peel et al. (2010)). This refinement
ensures the correct order of the bound, particularly (9), which captures the convergence of both the
bootstrap approximation and the base learner, offering insights into the robustness of our methods for
fast-converging base learners. Second, we perform a sensitivity analysis on the regret for the original
problem (1) relative to the surrogate optimization (4), translating the superior generalization in the
surrogate problem into accelerated convergence for the original. Finally, to establish asymptotic
consistency for Algorithm 2 without data splitting, we develop a uniform law of large numbers (LLN)
for the class of events of being ϵ-optimal, using direct analysis of the second moment of the maximum
deviation. Uniform LLNs are particularly challenging here because, unlike fixed classes in standard
settings, this class dynamically depends on subsample size k2 as n → ∞.

3 NUMERICAL EXPERIMENTS

In this section, we numerically test Algorithm 1 (MoVE), Algorithm 2 with (ROVEs) and without
(ROVE) data splitting in training neural networks for regression problems and solving stochastic
programs. Additional experimental results are provided in Appendix D due to space constraints. The
code is available at: https://anonymous.4open.science/r/vote_ensemble.

To empirically determine well-performing configurations for general use, we performed a com-
prehensive hyperparameter profiling of our algorithms in Appendix D.3. Below, we summa-
rize the recommended configurations used in all experiments presented in this section (except
Figure 4): 1) For discrete space Θ, use k = max(10, n/200), B = 200 for MoVE, and
k1 = k2 = max(10, n/200), B1 = 20, B2 = 200 for ROVE and ROVEs; 2) For continuous space
Θ, use k1 = max(30, n/2), k2 = max(30, n/200), B1 = 50, B2 = 200 for ROVE and ROVEs; 3)
The ϵ in ROVE and ROVEs is selected such that maxθ∈S(1/B2)

∑B2

b=1 1(θ ∈ Θ̂ϵ,b
k2
) ≈ 1/2.

3.1 NEURAL NETWORKS FOR REGRESSION

We consider regression problems with multilayer perceptrons (MLPs) on both synthetic and real
data. The base learning algorithm splits the data into training (70%) and validation (30%), and uses
Adam to minimize mean squared error (MSE), with early stopping triggered when the validation
improvement falls below 3% between epochs. The architecture details of the MLPs are provided
in Appendix D.1. Note that MoVE is not included in this comparison as it’s applicable to discrete
problems only.

Setup for Synthetic Data Input-output pairs (X,Y ) are generated as Y = (1/50) ·
∑50

j=1 log(Xj+

1) + ε, where each Xj is drawn independently from Unif(0, 2 + 198(j − 1)/49), and the noise ε
is independent of X with zero mean. We consider both standard Gaussian noise and Pareto noise
ε = ε1 − ε2, where each εi ∼ Pareto(2.1). The out-of-sample performance is estimated on a
common test set of one million samples. Each algorithm is repeatedly applied to 200 independently
generated datasets to assess the average and tail performance.

Setup for Real Data We use six datasets from the UCI Machine Learning Repository (Blake,
1998): Wine Quality (Cortez et al., 2009), Bike Sharing (Fanaee-T, 2013), Online News (Fernandes
et al., 2015), Appliances Energy (Candanedo, 2017), Superconductivity (Hamidieh, 2018), and Gas
Turbine Emission (gas, 2019). Each dataset is standardized (zero mean, unit variance). To evaluate
the average and tail performance, we permute each dataset 100 times, and each time use the first half
for training and the second for testing.

Result. As shown in Figure 1, in heavy-tailed noise settings (Figures 1a–1c), both ROVE and
ROVEs significantly outperform the base algorithm in terms of both expected out-of-sample MSE
and tail performance under all sample sizes n. Notably, the performance improvement becomes more

6
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(a) Pareto noise, H = 4. (b) Pareto noise, H = 8. (c) Pareto noise, H = 4, n = 216.

(d) Gaussian noise, H = 4. (e) Gaussian noise, H = 8. (f) Gaussian noise, H = 4, n = 216.

Figure 1: Results of neural networks on synthetic data. (a)(b)(d)(e): Expected out-of-sample costs
(MSE) with 95% confidence intervals under different noise distributions and varying numbers of
hidden layers (H). (c) and (f): Tail probabilities of out-of-sample costs.

(a) Appliances Energy. (b) Bike Sharing. (c) Gas Turbine Emission.

(d) Online News. (e) Superconductivity. (f) Wine Quality.

Figure 2: Results of neural networks with 4 hidden layers on six real datasets, in terms of tail
probabilities of out-of-sample costs (MSE).

pronounced with deeper networks (H = 8), indicating that the benefits of ROVE and ROVEs are
more apparent in models with higher expressiveness and lower bias.

In light-tailed settings (Figures 1d–1f), ROVE and ROVEs show comparable expected out-of-sample
performance to the base when H = 4, but outperform the base as H increases. Additionally, ROVE
and ROVEs outperform the base in tail probabilities even when H = 4. This indicates that ROVE and
ROVEs provide better generalization as the model complexity grows even for light-tailed problems.
Similar results for MLPs with 2 and 6 hidden layers can be found in Appendix D.4, where results on
least squares regression and Ridge regression are also provided.
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On real datasets (Figure 2), ROVE exhibits much lighter tails compared to the base on three out of
six datasets, and similar tail behavior on the other three. ROVEs, however, underperforms the base in
these real-world scenarios, potentially due to the data split that compromises its statistical power.

3.2 STOCHASTIC PROGRAMS

Setup. We consider four discrete stochastic programs: resource allocation, supply chain network
design, maximum weight matching, and stochastic linear programming, alongside one continuous
mean-variance portfolio optimization. All problems are designed to possess heavy-tailed uncertainties.
For the stochastic linear program, instances with varying tail heaviness are explored to study its
impact on algorithm performance. The base learning algorithm for all the problems is the SAA.
Detailed descriptions of the problems are deferred to Appendix D.2 and results using DRO as the
base algorithm are provided in Appendix D.4.

(a) Resource allocation. (b) Network design. (c) Portfolio optimization.

(d) Maximum weight matching. (e) Linear program (multiple optima). (f) Tail of portfolio opt., n = 216.

Figure 3: Results for stochastic programs. (a)-(e): Expected out-of-sample costs with 95% confidence
intervals. (f): Tail probabilities of out-of-sample costs for mean-variance portfolio optimization. All
maximization problems are converted to minimization by negating their objectives, and the generic
term “cost” refers to the minimizing objective.

Result. Figure 3 shows that our ensembling methods generally outperform the base algorithm in all
cases, except for the linear program case (Figure 3e). Notably, ROVE still outperforms the base in
the linear program case, demonstrating its robustness, while MoVE performs slightly worse than the
base under small sample sizes. Comparing ROVE and ROVEs, ROVE consistently exhibits superior
performance than ROVEs in all cases.

When there is a unique optimal solution, MoVE and ROVE perform similarly, both generally better
than ROVEs, as seen in Figures 3a-3d. However, in cases with multiple optima (Figures 3e and 4a),
the performance of MoVE deteriorates while ROVE and ROVEs stay strong. This is in accordance
with our discussion on the advantage of ϵ-optimality vote in Section 2.2. Additional results in
Appendix D.4 shall further explain that optima multiplicity weakens the base learner for MoVE in
the sense of decreasing the ηk,δ and hence inflating the tail bound in Theorem 1.

As shown in Figure 4a, the performance gap between ROVE, ROVEs, and the base algorithm becomes
increasingly significant as the tail of the uncertainty becomes heavier. This supports the effectiveness
of ROVE and ROVEs in handling heavy-tailed uncertainty, where the base algorithm’s performance
suffers. Note that here MoVE behaves similarly as the base due to optima multiplicity.

The running time comparison in Figure 4b shows that, despite requiring multiple runs on subsamples,
our ensembling methods do not introduce a significantly higher computational burden compared to
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(a) Influence of tail heaviness. (b) Running time comparison.

Figure 4: (a): Influence of tail heaviness in the stochastic linear program with multiple optima with
n = 106. Hyperparameters: k = 50, B = 2000 for MoVE, k1 = k2 = 50, B1 = 200, B2 = 5000
for ROVE and ROVEs. The tail heaviness parameter corresponds to the mean of the Pareto random
coefficient. (b): Running time for supply chain network design. Hyperparameters: k = 10, B = 200
for MoVE, k1 = k2 = 10, B1 = 20, B2 = 200 for ROVE and ROVEs. “Sequential” refers to
sequential processing of the subsamples; “Parallel” refers to parallel processing with 8 CPU cores.

running the base algorithm on the full sample, and can even be advantageous under large sample
sizes. This is because, in problems like DRO (Ben-Tal et al., 2013; Mohajerin Esfahani & Kuhn,
2018) and two-stage stochastic programming, solving the optimization on the full sample often leads
to a substantial increase in problem size, as the decision space and constraints grow at least linearly
with the sample size. Subsampled optimizations, as performed in our approach, result in smaller,
more manageable problems that can be solved more efficiently. Moreover, our theory indicates
that solving more than O(n/k) subsamples does not further improve generalization performance,
ensuring that computational efficiency is maintained. Additionally, parallel processing of subsamples
further reduces computational time.

Finally, among the three proposed ensemble methods, ROVE is the preferred choice over MoVE and
ROVEs for general use as it’s applicable to both discrete and continuous problems and consistently
delivers superior and stable performance across all scenarios.

4 RELATED WORK

This work is closely connected to various topics in optimization and machine learning, and we only
review the most relevant ones. See Appendix A for additional literature review.

Ensemble learning. Ensemble learning (Dietterich, 2000; Zhou, 2012; Sagi & Rokach, 2018) has
been widely studied for improving model performance by combining multiple weak learners into
strong ones. Popular ensemble methods include bagging (Breiman, 1996), boosting (Freund et al.,
1996) and stacking (Wolpert, 1992; Džeroski & Ženko, 2004). Bagging enhances model stability
by training models on different bootstrap samples and combining their predictions through majority
voting or averaging, effectively reducing variance, especially for unstable learners like decision trees
that underpin random forests (Breiman, 2001). Subagging (Bühlmann & Yu, 2002) is a variant of
bagging that constructs the ensemble from subsamples in place of bootstrap samples. Boosting is
a sequential process where each subsequent model corrects its predecessors’ errors, reducing both
bias and variance (Ibragimov & Gusev, 2019; Ghosal & Hooker, 2020). Prominent boosting methods
include AdaBoost (Freund et al., 2003), Stochastic Gradient Boosting (SGB) (Friedman, 2001; 2002),
and Extreme Gradient Boosting (XGB) (Friedman et al., 2000) which differ in their approaches to
weighting training data and hypotheses. Boosting is commonly used with decision trees as Gradient
Boosted Decision Trees (GBDT), including XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), and CatBoost (Hancock & Khoshgoftaar, 2020). Instead of using simple aggregation like
weighted averaging or majority voting, stacking trains a model to combine base predictions in a more
sophisticated way, further improving performance. A key procedural difference of our approach from
these ensemble methods is that we perform majority voting at the model level, rather than at the
prediction level, to select a single best model from the ensemble. As a result, our method consistently
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outputs models within the same space as the base learner, making it applicable to general stochastic
optimization problems. In contrast, most existing ensemble methods yield aggregated models outside
the base space. Additionally, compared to the bias/variance reduction of typical ensembles, our
approach guarantees exponentially decaying excess risk tails and hence is particularly effective in
settings with heavy-tailed noise.

Optimization and learning with heavy tails. Optimization with heavy-tailed noises has garnered
significant attention due to its relevance in traditional fields such as portfolio management (Mainik
et al., 2015) and scheduling (Im et al., 2015), as well as emerging domains like large language
models (Brown et al., 2020; Achiam et al., 2023). Tail bounds of most existing algorithms are
guaranteed to decay exponentially under sub-Gaussian or uniformly bounded costs but deteriorate
to a slow polynomial decay under heavy-tailedness (Kaňková & Houda, 2015; Jiang et al., 2020;
Jiang & Li, 2021; Oliveira & Thompson, 2023). For SAA or ERM, faster rates are possible under
the small-ball (Mendelson, 2018; 2015; Roy et al., 2021) or Bernstein’s condition (Dinh et al., 2016)
on the function class, while our approach is free from such conditions. Considerable effort has
been made to mitigate the adverse effects of heavy-tailedness with robust procedures among which
the geometric median (Minsker, 2015), or more generally, median-of-means (MOM) (Lugosi &
Mendelson, 2019a;c) approach is most similar to ours. The basic idea there is to estimate a true
mean by dividing the data into disjoint subsamples, computing an estimate on each, and then taking
the median. Lecué & Lerasle (2019); Lugosi & Mendelson (2019b); Lecué & Lerasle (2020) use
MOM in estimating the expected cost and establish exponential tail bounds for the mean squared
loss and convex function classes. Hsu & Sabato (2016; 2014) apply MOM directly on the solution
level for continuous problems and require strong convexity from the cost to establish generalization
bounds. Besides MOM, another approach estimates the expected cost via truncation (Catoni, 2012)
and allows heavy tails for linear regression (Audibert & Catoni, 2011; Zhang & Zhou, 2018) or
problems with uniformly bounded function classes (Brownlees et al., 2015), but is computationally
intractable due to the truncation and thus more of theoretical interest. In contrast, our ensemble
approach is a meta algorithm that acts on any learning algorithm to provide exponential tail bounds
regardless of the underlying problem characteristics. Relatedly, various techniques such as gradient
clipping (Cutkosky & Mehta, 2021; Gorbunov et al., 2020) and MOM (Puchkin et al., 2024) have
been adopted in stochastic gradient descent (SGD) algorithms for handling heavy-tailed gradient
noises, but their focus is the faster convergence of SGD rather than generalization.

Machine learning for optimization. Learning to optimize (L2O) studies the use of machine
learning in accelerating existing or discovering novel optimization algorithms. Much effort has been
in training models via supervised or reinforcement learning to make critical algorithmic decisions
such as cut selection (e.g., Deza & Khalil (2023); Tang et al. (2020)), search strategies (e.g., Khalil
et al. (2016); He et al. (2014); Scavuzzo et al. (2022)), scaling (Berthold & Hendel, 2021), and primal
heuristics (Shen et al., 2021) in mixed-integer optimization, or even directly generate high-quality
solutions (e.g., neural combinatorial optimization pioneered by Bello et al. (2016)). See Chen et al.
(2022; 2024); Bengio et al. (2021); Zhang et al. (2023) for comprehensive surveys on L2O. This line
of research is orthogonal to our goal, and L2O techniques can work as part of or directly serve as the
base learning algorithm within our framework.

5 CONCLUSION AND LIMITATION

This paper introduces a novel ensemble technique that significantly improves generalization by
aggregating base learners via majority voting. In particular, our approach converts polynomially
decaying generalization tails into exponential decay, thus providing order-of-magnitude improvements
as opposed to constant factor improvements exhibited by variance reduction. Extensive numerical
experiments in both machine learning and stochastic programming validate its effectiveness, especially
for scenarios with heavy-tailed data and slow convergence rates. This work underscores the powerful
potential of our new ensemble approach across a broad range of machine learning applications.

While our method accelerates tail convergence, it may increase model bias, similar to other
subsampling-based techniques like subagging (Bühlmann & Yu, 2002). This makes it best suited for
applications with relatively low bias, e.g., when the model is sufficiently expressive.
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Supplemental materials
The appendices are organized as follows. In Appendix A, we review additional related work.
Appendix B presents additional technical discussion for Theorem 1. Next, in Appendix C, we
document the proofs of theoretical results in our paper. Specifically, we introduce some preliminary
definitions and lemmas in Appendix C.1. Then, the proof of Theorem 1 can be found in Appendix
C.2, and the proof of Theorem 2 can be found in Appendix C.3. Finally, we provide additional
numerical experiments in Appendix D.

APPENDIX A ADDITIONAL RELATED WORK

Bagging for stochastic optimization. Bagging has been adopted in stochastic optimization for
various purposes. The most relevant line of works (Biggs et al., 2023; Perakis & Thayaparan,
2021; Wang et al., 2021; Biggs & Perakis, 2023) study mixed integer reformulations for stochastic
optimization with bagging approximated objectives such as random forests and ensembles of neural
networks with the ReLU activation. These works focus on computational tractability instead of
generalization performance. Anderson & Nguyen (2020) empirically evaluates several statistical
techniques including bagging against the plain SAA and finds bagging advantageous for portfolio
optimization problems. Birge (2023) investigates a batch mean approach for continuous optimization
that creates subsamples by dividing the data set into non-overlapping batches instead of resampling
and aggregates SAA solutions on the subsamples via averaging, which is empirically demonstrated
to reduce solution errors for constrained and high-dimensional problems. Another related batch
of works (Lam & Qian, 2018a;b; Chen & Woodruff, 2024; 2023; Eichhorn & Römisch, 2007)
concern the use of bagging for constructing confidence bounds for generalization errors of data-driven
solutions, but they do not attempt to improve generalization. Related to bagging, bootstrap has
been utilized to quantify algorithmic uncertainties for randomized algorithms such as randomized
least-squares algorithms (Lopes et al., 2018), randomized Newton methods (Chen & Lopes, 2020),
and stochastic gradient descent (Fang et al., 2018; Zhong et al., 2023), which is orthogonal to our
focus on generalization performance.

APPENDIX B IMPLICATIONS OF THEOREM 1 FOR STRONG BASE LEARNERS

We provide a brief discussion of Theorem 1 applied to fast convergent base learners. Based on
Theorem 1, the way pmax

k and Ek,δ enter into (9) reflects how the generalization performance
of the base learning algorithm is inherited by our framework. To explain, large pmax

k and small
Ek,δ correspond to better generalization of the base learning algorithm. This can be exploited
by the bound (9) with the presence of max(1 − pmax

k , Ek,δ), which is captured with our sharper
concentration of U-statistics with binary kernels. In particular, for base learning algorithms with fast
generalization convergence, say 1 − pmax

k = O(e−k) and Ek,δ = O(e−k) for simplicity, we have
C1 max(1− pmax

k , Ek,δ) = O(e−k) and hence the first term in (9) becomes O(e−n) which matches
the error of the base learning algorithm applied directly to the full data set.

APPENDIX C TECHNICAL PROOFS

C.1 PRELIMINARIES

An important tool in the development of our theories is the U-statistic that naturally arises in
subsampling without replacement. We first present the definition of U-statistic and its concentration
properties.

Definition 1 Given the i.i.d. data set {z1, . . . , zn} ⊂ Z and a (not necessarily symmetric) kernel of
order k ≤ n is a function κ : Zk → R such that E [|κ(z1, . . . , zk)|] < ∞, the U-statistic associated
with the kernel κ is

U(z1, . . . , zn) =
1

n(n− 1) · · · (n− k + 1)

∑
1≤i1,i2,··· ,ik≤n s.t. is ̸=it ∀1≤s<t≤k

κ(zi1 , . . . , zik).
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Lemma 1 (MGF dominance of U-statistics from Hoeffding (1963)) For any integer 0 < k ≤ n
and any kernel κ(z1, . . . , zk), let U(z1, . . . , zn) be the corresponding U-statistic defined in Definition
1, and

κ̄(z1, . . . , zn) =
1

⌊n/k⌋

⌊n/k⌋∑
i=1

κ(zk(i−1)+1, . . . , zki) (11)

be the average of the kernel across the first ⌊n/k⌋k data. Then, for every t ∈ R, it holds that

E [exp(tU)] ≤ E [exp(tκ̄)] .

Proof of Lemma 1. By symmetry, we have that

U(z1, . . . , zn) =
1

n!

∑
bijection π:[n]→[n]

κ̄(zπ(1), . . . , zπ(n)),

where we denote [n] := {1, . . . , n}. Then, by the convexity of the exponential function and Jensen’s
inequality, we have that

E [exp(tU)] = E

exp
t · 1

n!

∑
bijection π:[n]→[n]

κ̄(zπ(1), . . . , zπ(n))


≤ E

 1

n!

∑
bijection π:[n]→[n]

exp
(
t · κ̄(zπ(1), . . . , zπ(n))

)
= E [exp (t · κ̄(z1, . . . , zn))] .

This completes the proof. □

Next, we present our sharper concentration bound for U-statistics with binary kernels:

Lemma 2 (Concentration bound for U-statistics with binary kernels) Let κ(z1, . . . , zk;ω) be a
{0, 1}-valued kernel of order k ≤ n that possibly depends on additional randomness ω that is indepen-
dent of the data {z1, . . . , zn}, κ∗(z1, . . . , zk) := E [κ(z1, . . . , zk;ω)|z1, . . . , zk], and U(z1, . . . , zn)
be the U-statistic associated with κ∗. Then, it holds that

P (U − E [κ] ≥ ϵ) ≤ exp
(
− n

2k
·DKL (E [κ] + ϵ∥E [κ])

)
,

P (U − E [κ] ≤ −ϵ) ≤ exp
(
− n

2k
·DKL (E [κ]− ϵ∥E [κ])

)
,

where DKL(p∥q) := p ln p
q + (1 − p) ln 1−p

1−q is the KL-divergence between two Bernoulli random
variables with parameters p and q, respectively.

Proof of Lemma 2. We first consider the direction U − E [κ] ≥ ϵ. Let

κ̃∗ :=
1

n̂

n̂∑
i=1

κ∗(zk(i−1)+1, . . . , zki),

and

κ̃ :=
1

n̂

n̂∑
i=1

κ(zk(i−1)+1, . . . , zki;ωi),

where we use the shorthand notation n̂ := ⌊n
k ⌋, and ωi’s are mutually independent and also indepen-

dent from {z1, . . . , zn}. Then, since E [κ] = E [κ∗], for all t > 0 it holds that

P (U − E [κ] ≥ ϵ) = P (exp (tU) ≥ exp (t (E [κ] + ϵ)))

(i)

≤ exp (−t (E [κ] + ϵ)) · E [exp (tU)]

(ii)

≤ exp (−t (E [κ] + ϵ)) · E [exp (tκ̃∗)]

(iii)

≤ exp (−t (E [κ] + ϵ)) · E [exp (tκ̃)] ,

(12)
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where we apply the Markov inequality in (i), step (ii) is due to Lemma 1, and step (iii) uses Jensen’s
inequality and the convexity of the exponential function. Due to independence, κ̃ can be viewed
as the sample average of n̂ i.i.d. Bernoulli random variables, i.e., κ̃ ∼ 1

n̂

∑n̂
i=1 Bernoulli (E [κ]).

Hence, we have that

E [exp (tκ̃)] = E

[
exp

(
t

n̂

n̂∑
i=1

Bernoulli (E [κ])

)]

=

(
E
[
exp

(
t

n̂
Bernoulli (E [κ])

)])n̂

=

[
(1− E [κ]) + E [κ] · exp

(
t

n̂

)]n̂
,

(13)

where we use the moment-generating function of Bernoulli random variables in the last line. Substi-
tuting (13) into (12), we have that

P (U − E [κ] ≥ ϵ) ≤ exp (−t (E [κ] + ϵ)) ·
[
(1− E [κ]) + E [κ] · exp

(
t

n̂

)]n̂
=: f(t). (14)

Now, we consider minimizing f(t) for t > 0. Let g(t) = log f(t), then it holds that

g′(t) = −(E [κ] + ϵ) +
E [κ] · exp

(
t
n̂

)
(1− E [κ]) + E [κ] · exp

(
t
n̂

) .
By setting g′(t) = 0, it is easy to verify that the minimum point of f(t), denoted by t⋆, satisfies that

E [κ] · exp
(
t

n̂

)
· (1− E [κ]− ϵ) = (1− E [κ]) · (E [κ] + ϵ)

⇔ exp(t) =

[
(1− E [κ]) · (E [κ] + ϵ)

E [κ] · (1− E [κ]− ϵ)

]n̂
.

(15)

Substituting (15) into (14) gives

P (U − E [κ] ≥ ϵ) ≤
(

1− E [κ]

1− E [κ]− ϵ

)n̂

·
[
E [κ] · (1− E [κ]− ϵ)

(1− E [κ]) (E [κ] + ϵ)

]n̂(E[κ]+ϵ)

=

[(
1− E [κ]

1− E [κ]− ϵ

)1−E[κ]−ϵ

·
(

E [κ]

E [κ] + ϵ

)E[κ]+ϵ
]n̂

= exp (−n̂ ·DKL (E [κ] + ϵ∥E [κ])) . (16)

Since n/k ≤ 2n̂, the first bound immediately follows from (16).

Since DKL(p∥q) = DKL(1− p∥1− q), the bound for the reverse side U − E [κ] ≤ −ϵ then follows
by applying the first bound to the flipped binary kernel 1− κ and 1− U . This completes the proof of
Lemma 2. □

Next lemma gives lower bounds for KL divergences which help analyze the bounds in Lemma 2:

Lemma 3 Let DKL(p∥q) := p ln p
q + (1− p) ln 1−p

1−q be the KL-divergence between two Bernoulli
random variables with parameters p and q, respectively. Then, it holds that

DKL(p∥q) ≥ p ln
p

q
+ q − p. (17)

If p ∈ [γ, 1− γ] for some γ ∈ (0, 1
2 ], it also holds that

DKL(p∥q) ≥ − ln (2(q(1− q))γ) . (18)

Proof of Lemma 3. To show (17), some basic calculus shows that for any fixed q, the function
g(p) := (1− p) ln 1−p

1−q is convex in p, and we have that

g(q) = 0, g′(q) = −1.
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Therefore g(p) ≥ g(q) + g′(q)(p− q) = q − p, which implies (17) immediately.

The lower bound (18) follows from
DKL(p∥q) ≥ −p ln q − (1− p) ln(1− q) + min

p∈[γ,1−γ]
{p ln p+ (1− p) ln(1− p)}

≥ −γ ln q − γ ln(1− q)− ln 2 = − ln(2(q(1− q))γ).

This completes the proof of Lemma 3. □

To incorporate all the proposed algorithms in a unified theoretical framework, we consider a set-valued
mapping

A(z1, . . . , zk;ω) : Zk × Ω → 2Θ (19)
where ω denotes algorithmic randomness that is independent of the data {z1, . . . , zk}. Each of our
proposed algorithms attempts to solve the probability-maximization problem

max
θ∈Θ

p̂k(θ) := P∗ (θ ∈ A(z∗1 , . . . , z∗k;ω)) , (20)

for a certain choice of A, where {z∗1 , . . . , z∗k} is subsampled from the i.i.d. data {z1, . . . , zn}
uniformly without replacement, and P∗ denotes the probability with respect to the algorithmic
randomness ω and the subsampling randomness conditioned on the data. Note that this problem is an
empirical approximation of the problem

max
θ∈Θ

pk(θ) := P (θ ∈ A(z1, . . . , zk;ω)) . (21)

The problem actually solved with a finite number of subsamples is

max
θ∈Θ

p̄k(θ) :=
1

B

B∑
b=1

1(θ ∈ A(zb1, . . . , zbk;ωb)). (22)

Specifically, Algorithm 1 uses
A(z∗1 , . . . , z∗k;ω) = {A(z∗1 , . . . , z

∗
k;ω)} (23)

where A denotes the base learning algorithm, and Algorithm 2 uses

A(z∗1 , . . . , z∗k2
;ω) =

{
θ ∈ S :

1

k2

k2∑
i=1

l(θ, z∗i ) ≤ min
θ′∈S

1

k2

k2∑
i=1

l(θ′, z∗i ) + ϵ

}
(24)

conditioned on the solution set S retrieved in Phase I. Note that no algorithmic randomness is involved
in (24) once the set S is given. We define:

Definition 2 For any δ ∈ [0, 1], let

Pδ
k := {θ ∈ Θ : pk(θ) ≥ max

θ′∈Θ
pk(θ

′)− δ} (25)

be the set of δ-optimal solutions of problem (21). Let
θmax
k ∈ argmax

θ∈Θ
pk(θ)

be a solution with maximum probability that is chosen in a unique manner if there are multiple such
solutions. Let

P̂δ
k := {θ ∈ Θ : p̂k(θ) ≥ p̂k(θ

max
k )− δ} (26)

be the set of δ-optimal solutions relative to θmax
k for problem (20).

and

Definition 3 Let

Θδ :=

{
θ ∈ Θ : L(θ) ≤ min

θ′∈Θ
L(θ′) + δ

}
(27)

be the set of δ-optimal solutions of problem (1). In particular, Θ0 represents the set of optimal
solutions. Let

Θ̂δ
k :=

{
θ ∈ Θ :

1

k

k∑
i=1

l(θ, zi) ≤ min
θ′∈Θ

1

k

k∑
i=1

l(θ′, zi) + δ

}
(28)

be the set of δ-optimal solutions of the SAA with i.i.d. data (z1, . . . , zk).
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C.2 PROOF FOR THEOREM 1

We consider Algorithm 3, a more general version of Algorithm 1 that operates on the set-valued
learning algorithm A in (19) and reduces to exactly Algorithm 1 in the special case (23). Again we
omit the algorithmic randomness ω in A for convenience.

Algorithm 3 Majority Vote Ensembling for Set-Valued Learning Algorithms

1: Input: A set-valued learning algorithm A, n i.i.d. observations z1:n = (z1, . . . , zn), positive
integers k < n, and ensemble size B.

2: for b = 1 to B do
3: Randomly sample zbk = (zb1, . . . , z

b
k) uniformly from z1:n without replacement, and obtain

Θb
k = A(zb1, . . . , zbk)

4: end for
5: Output θ̂n ∈ argmaxθ∈Θ

∑B
b=1 1(θ ∈ Θb

k).

We have the following finite-sample result for Algorithm 3:

Theorem 3 (Finite-sample bound for Algorithm 3) Consider discrete decision space Θ. Recall
pk(θ) defined in (21). Let pmax

k := maxθ∈Θ pk(θ) and
η̄k,δ := pmax

k − max
θ∈Θ\Θδ

pk(θ), (29)

where maxθ∈Θ\Θδ pk(θ) evaluates to 0 if Θ\Θδ is empty. For every k ≤ n and δ ≥ 0 such that
η̄k,δ > 0, the solution output by Algorithm 3 satisfies that

P
(
L(θ̂n) > min

θ∈Θ
L(θ) + δ

)
≤ |Θ|

[
exp

(
− n

2k
·DKL

(
pmax
k − 3η

4

∥∥∥pmax
k − η

))
+ 2 exp

(
− n

2k
·DKL

(
pmax
k − η

4

∥∥∥pmax
k

))
+

exp

(
−B

24
· η2

min (pmax
k , 1− pmax

k ) + 3η/4

)
+

1

(
pmax
k +

η

4
≤ 1
)
· exp

(
− n

2k
·DKL

(
pmax
k +

η

4

∥∥∥pmax
k

)
− B

24
· η2

1− pmax
k + η/4

)]
(30)

for every η ∈ (0, η̄k,δ]. In particular, if η̄k,δ > 4/5, (30) is further bounded by

|Θ|

(
3min

(
e−2/5, C1 max(1− pmax

k , max
θ∈Θ\Θδ

pk(θ))

) n
C2k

+ exp

(
− B

C3

))
, (31)

where C1, C2, C3 > 0 are universal constants, and DKL(p∥q) := p ln p
q + (1 − p) ln 1−p

1−q is the
Kullback–Leibler divergence between two Bernoulli distributions with means p and q.

Proof of Theorem 3. We first prove excess risk tail bounds for the problem (21), split into two lemmas,
Lemmas 4 and 5 below.

Lemma 4 Consider discrete decision space Θ. Recall from Definition 2 that pmax
k = pk(θ

max
k ) holds

for θmax
k . For every 0 ≤ ϵ ≤ δ ≤ pmax

k , it holds that

P
(
P̂ϵ
k ̸⊆ Pδ

k

)
≤ |Θ|

[
exp

(
− n

2k
·DKL

(
pmax
k − δ + ϵ

2

∥∥∥pmax
k − δ

))
+ exp

(
− n

2k
·DKL

(
pmax
k − δ − ϵ

2

∥∥∥pmax
k

))]
.

Proof of Lemma 4. By Definition 2, we observe the following equivalence{
P̂ϵ
k ̸⊆ Pδ

k

}
=

⋃
θ∈Θ\Pδ

k

{
θ ∈ P̂ϵ

k

}
=

⋃
θ∈Θ\Pδ

k

{p̂k(θ) ≥ p̂k (θ
max
k )− ϵ} .
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Hence, by the union bound, it holds that

P
(
P̂ϵ
k ̸⊆ Pδ

k

)
≤

∑
θ∈Θ\Pδ

k

P (p̂k(θ) ≥ p̂k (θ
max
k )− ϵ) .

We further bound the probability P ({p̂k(θ) ≥ p̂k (θ
max
k )− ϵ}) as follows

P (p̂k(θ) ≥ p̂k (θ
max
k )− ϵ)

≤ P
({

p̂k(θ) ≥ pk(θ
max
k )− δ + ϵ

2

}
∩
{
p̂k (θ

max
k ) ≤ pk(θ

max
k )− δ − ϵ

2

})
≤ P

(
p̂k(θ) ≥ pk(θ

max
k )− δ + ϵ

2

)
+ P

(
p̂k (θ

max
k ) ≤ pk(θ

max
k )− δ − ϵ

2

)
. (32)

On one hand, the first probability in (32) is solely determined by and increasing in pk(θ) = E [p̂k(θ)].
On the other hand, we have pk(θ) < pk (θ

max
k ) − δ for every θ ∈ Θ\Pδ

k by the definition of Pδ
k .

Therefore we can slightly abuse the notation to write

P (p̂k(θ) ≥ p̂k (θ
max
k )− ϵ) ≤ P

(
p̂k(θ) ≥ pk(θ

max
k )− δ + ϵ

2

∣∣∣pk(θ) = pk(θ
max
k )− δ

)
+P
(
p̂k (θ

max
k ) ≤ pk(θ

max
k )− δ − ϵ

2

)
≤ P

(
p̂k(θ)− pk(θ) ≥

δ − ϵ

2

∣∣∣pk(θ) = pk(θ
max
k )− δ

)
+P
(
p̂k (θ

max
k )− pk(θ

max
k ) ≤ −δ − ϵ

2

)
.

Note that, with κ(z1, . . . , zk;ω) := 1 (θ ∈ A(z1, . . . , zk;ω)), the probability p̂k(θ) can be viewed as
a U-statistic with the kernel κ∗(z1, . . . , zk) := E [κ(z1, . . . , zk;ω)|z1, . . . , zk]. A similar representa-
tion holds for p̂k (θmax

k ) as well. Therefore, we can apply Lemma 2 to conclude that

P
(
P̂ϵ
k ̸⊆ Pδ

k

)
≤

∑
θ∈Θ\Pδ

k

P (p̂k(θ) ≥ p̂k (θ
max
k )− ϵ)

≤
∣∣Θ\Pδ

k

∣∣ [P(p̂k(θ)− pk(θ) ≥
δ − ϵ

2

∣∣∣pk(θ) = pk(θ
max
k )− δ

)
+ P

(
pk (θ

max
k )− p̂k (θ

max
k ) ≤ −δ − ϵ

2

)]
≤ |Θ|

[
exp

(
− n

2k
·DKL

(
pk (θ

max
k )− δ +

δ − ϵ

2

∥∥∥pk (θmax
k )− δ

))
+ exp

(
− n

2k
·DKL

(
pk (θ

max
k )− δ − ϵ

2

∥∥∥pk (θmax
k )

))]
,

which completes the proof of Lemma 4. □

Lemma 5 Consider discrete decision space Θ. For every ϵ ∈ [0, 1] it holds for the solution output
by Algorithm 3 that

P∗

(
θ̂n /∈ P̂ϵ

k

)
≤ |Θ| · exp

(
−B

6
· ϵ2

min (p̂k(θmax
k ), 1− p̂k(θmax

k )) + ϵ

)
,

where |·| denotes the cardinality of a set and P∗ denotes the probability with respect to both the
resampling randomness conditioned on the observations and the algorithmic randomness.

Proof of Lemma 5. We observe that p̄k(θ) is an conditionally unbiased estimator for p̂k(θ), i.e.,
E∗ [p̄k(θ)] = p̂k(θ). We can express the difference between p̄k(θ) and p̄k(θ

max
k ) as the sample

average

p̄k(θ)− p̄k(θ
max
k ) =

1

B

B∑
b=1

[
1(θ ∈ A(zb1, . . . , zbk))− 1(θmax

k ∈ A(zb1, . . . , zbk))
]
,
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whose expectation is equal to p̂k(θ)− p̂k(θ
max
k ). We denote by

1
∗
θ := 1(θ ∈ A(z∗1 , . . . , z∗k)) for θ ∈ Θ

for convenience, where (z∗1 , . . . , z
∗
k) represents a random subsample. Then by Bernstein’s inequality,

we have every t ≥ 0 that

P∗

(
p̄k(θ)− p̄k(θ̂

max
k )− (p̂k(θ)− p̂k(θ

max
k )) ≥ t

)
≤ exp

(
−B · t2

2Var∗(1∗
θ − 1

∗
θmax
k

) + 4/3 · t

)
.

(33)

Since

Var∗(1
∗
θ − 1

∗
θmax
k

) ≤ E∗

[
(1∗

θ − 1
∗
θmax
k

)2
]

≤ p̂k(θ) + p̂k(θ
max
k ) ≤ 2p̂k(θ

max
k ),

and

Var∗(1
∗
θ − 1

∗
θmax
k

) ≤ Var∗(1− 1
∗
θ − 1 + 1

∗
θmax
k

)

≤ E∗

[
(1− 1

∗
θ − 1 + 1

∗
θmax
k

)2
]

≤ 1− p̂k(θ) + 1− p̂k(θ
max
k ) ≤ 2(1− p̂k(θ)),

we have Var∗(1∗
θ−1

∗
θmax
k

) ≤ 2min(p̂k(θ
max
k ), 1− p̂k(θ)). Substituting this bound to (33) and taking

t = p̂k(θ
max
k )− p̂k(θ) lead to

P∗

(
p̄k(θ)− p̄k(θ̂

max
k ) ≥ 0

)
≤ exp

(
−B · (p̂k(θ

max
k )− p̂k(θ))

2

4min(p̂k(θmax
k ), 1− p̂k(θ)) + 4/3 · (p̂k(θmax

k )− p̂k(θ))

)
≤ exp

(
−B · (p̂k(θ

max
k )− p̂k(θ))

2

4min(p̂k(θmax
k ), 1− p̂k(θmax

k )) + 16/3 · (p̂k(θmax
k )− p̂k(θ))

)
≤ exp

(
−B

6
· (p̂k(θ

max
k )− p̂k(θ))

2

min(p̂k(θmax
k ), 1− p̂k(θmax

k )) + p̂k(θmax
k )− p̂k(θ)

)
.

Therefore, we have that

P∗

(
θ̂n /∈ P̂ϵ

k

)
= P∗

 ⋃
θ∈Θ\P̂ϵ

k

{
p̄k(θ) = max

θ′∈Θ
p̄k(θ

′)

}
≤

∑
θ∈Θ\P̂ϵ

k

P∗

(
p̄k(θ) = max

θ′∈Θ
p̄k(θ

′)

)
≤

∑
θ∈Θ\P̂ϵ

k

P∗ (p̄k(θ) ≥ p̄k(θ
max
k ))

≤
∑

θ∈Θ\P̂ϵ
k

exp

(
−B

6
· (p̂k(θ

max
k )− p̂k(θ))

2

min(p̂k(θmax
k ), 1− p̂k(θmax

k )) + p̂k(θmax
k )− p̂k(θ)

)
.

Note that the function x2/(min(p̂k(θ
max
k ), 1 − p̂k(θ

max
k )) + x) in x ∈ [0, 1] is monotonically

increasing and that p̂k(θmax
k ) − p̂k(θ) > ϵ for all θ ∈ Θ\P̂ϵ

k. Therefore, we can further bound the
probability as

P∗

(
θ̂n /∈ P̂ϵ

k

)
≤

∣∣∣Θ\P̂ϵ
k

∣∣∣ · exp(−B

6
· ϵ2

min (p̂max
k , 1− p̂max

k ) + ϵ

)
.

Noting that
∣∣∣Θ\P̂ϵ

k

∣∣∣ ≤ |Θ| completes the proof of Lemma 5. □

We are now ready for the proof of Theorem 3. We first note that, if η̄k,δ > 0, it follows from
Definition 2 that

Pη
k ⊆ Θδ for any η ∈ (0, η̄k,δ).
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Therefore, for any η ∈ (0, η̄k,δ), we can write that

P
(
θ̂n /∈ Θδ

)
≤ P

(
θ̂n /∈ Pη

k

)
≤ P

({
θ̂n /∈ P̂η/2

k

}
∪
{
P̂η/2
k ̸⊆ Pη

k

})
≤ P

(
θ̂n /∈ P̂η/2

k

)
+ P

(
P̂η/2
k ̸⊆ Pη

k

)
.

(34)

We first evaluate the second probability on the right-hand side of (34). Lemma 4 gives that

P
(
P̂η/2
k ̸⊆ Pη

k

)
≤ |Θ|

[
exp

(
− n

2k
·DKL

(
pmax
k − 3η

4

∥∥∥pmax
k − η

))

+exp
(
− n

2k
·DKL

(
pmax
k − η

4

∥∥∥pmax
k

))]
.

(35)

Next, by applying Lemma 5 with ϵ = η/2, we can bound the first probability on the right-hand side
of (34) as

P
(
θ̂n /∈ P̂η/2

k

)
≤ |Θ| · E

[
exp

(
−B

24
· η2

min (p̂k(θmax
k ), 1− p̂k(θmax

k )) + η/2

)]
. (36)

Conditioned on the value of p̂k(θmax
k ), we can further upper-bound the right-hand side of (36) as

follows

E
[
exp

(
−B

24
· η2

min (p̂k(θmax
k ), 1− p̂k(θmax

k )) + η/2

)]
≤ P

(
p̂k(θ

max
k ) ≤ pmax

k − η

4

)
· exp

(
−B

24
· η2

pmax
k + η/4

)
+

P
(
|p̂k(θmax

k )− pmax
k | < η

4

)
· exp

(
−B

24
· η2

min (pmax
k , 1− pmax

k ) + 3η/4

)
+

P
(
p̂k(θ

max
k ) ≥ pmax

k +
η

4

)
· exp

(
−B

24
· η2

1− pmax
k + η/4

)
≤ P

(
p̂k(θ

max
k ) ≤ pmax

k − η

4

)
+ exp

(
−B

24
· η2

min (pmax
k , 1− pmax

k ) + 3η/4

)
+

P
(
p̂k(θ

max
k ) ≥ pmax

k +
η

4

)
· exp

(
−B

24
· η2

1− pmax
k + η/4

)
(i)

≤ exp
(
− n

2k
·DKL

(
pmax
k − η

4

∥∥∥pmax
k

))
+

exp

(
−B

24
· η2

min (pmax
k , 1− pmax

k ) + 3η/4

)
+

1

(
pmax
k +

η

4
≤ 1
)
· exp

(
− n

2k
·DKL

(
pmax
k +

η

4

∥∥∥pmax
k

))
· exp

(
−B

24
· η2

1− pmax
k + η/4

)
where inequality (i) results from applying Lemma 2 with p̂k(θ

max
k ), the U-statistic estimate for pmax

k .
Together, the above equations imply that

P
(
θ̂n /∈ Θδ

)
≤ |Θ|

[
exp

(
− n

2k
·DKL

(
pmax
k − 3η

4

∥∥∥pmax
k − η

))
+

2 exp
(
− n

2k
·DKL

(
pmax
k − η

4

∥∥∥pmax
k

))
+

exp

(
−B

24
· η2

min (pmax
k , 1− pmax

k ) + 3η/4

)
+

1

(
pmax
k +

η

4
≤ 1
)
· exp

(
− n

2k
·DKL

(
pmax
k +

η

4

∥∥∥pmax
k

)
− B

24
· η2

1− pmax
k + η/4

)]
.
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Since the above probability bound is left-continuous in η and η can be arbitrarily chosen from
(0, η̄k,δ), the validity of the case η = η̄k,δ follows from pushing η to the limit η̄k,δ . This gives (30).

To simplify the bound in the case η̄k,δ > 4/5. Consider the bound (30) with η = η̄k,δ. Since
pmax
k ≥ η̄k,δ by the definition of η̄k,δ , it must hold that pmax

k + η̄k,δ/4 > 4/5+1/5 = 1, therefore the
last term in the finite-sample bound (30) vanishes. To simplify the first two terms in the finite-sample
bound, we note that

pmax
k − 3η̄k,δ

4
≤ 1− 3

4
· 4
5
=

2

5
,

pmax
k − 3η̄k,δ

4
≥ η̄k,δ −

3η̄k,δ
4

≥ 1

5
,

pmax
k − η̄k,δ

4
≤ 1− 1

4
· 4
5
=

4

5
,

pmax
k − η̄k,δ

4
≥ η̄k,δ −

η̄k,δ
4

≥ 3

5
,

and that pmax
k − η̄k,δ ≤ 1− η̄k,δ ≤ 1/5, therefore by the bound (18) from Lemma 3, we can bound

the first two terms as

exp

(
− n

2k
·DKL

(
pmax
k − 3η̄k,δ

4

∥∥∥pmax
k − η̄k,δ

))
≤ exp

( n

2k
ln
(
2((pmax

k − η̄k,δ)(1− pmax
k + η̄k,δ))

1/5
))

=
(
2((pmax

k − η̄k,δ)(1− pmax
k + η̄k,δ))

1/5
)n/(2k)

≤
(
2(pmax

k − η̄k,δ)
1/5
)n/(2k)

=
(
25(pmax

k − η̄k,δ)
)n/(10k)

,

and similarly

exp
(
− n

2k
·DKL

(
pmax
k − η̄k,δ

4

∥∥∥pmax
k

))
≤ exp

( n

2k
ln
(
2(pmax

k (1− pmax
k ))1/5

))
=

(
2(pmax

k (1− pmax
k ))1/5

)n/(2k)
≤

(
2(1− pmax

k )1/5
)n/(2k)

=
(
25(1− pmax

k )
)n/(10k)

.

On the other hand, by Lemma 3 both DKL (p
max
k − 3η̄k,δ/4∥pmax

k − η̄k,δ) and
DKL (p

max
k − η̄k,δ/4∥pmax

k ) are bounded below by η̄2k,δ/8, therefore

exp

(
− n

2k
·DKL

(
pmax
k − 3η̄k,δ

4

∥∥∥pmax
k − η̄k,δ

))
≤ exp

(
− n

2k
·
η̄2k,δ
8

)
≤ exp

(
− n

25k

)
,

and the same holds for exp (−n/(2k) ·DKL (p
max
k − η̄k,δ/4∥pmax

k )). For the third term in the bound
(30) we have

η̄2k,δ
min(pmax

k , 1− pmax
k ) + 3η̄k,δ/4

≥ (4/5)2

min(1, 1/5) + 3/4
≥ 16

25
,

and hence

exp

(
−B

24
·

η̄2k,δ
min (pmax

k , 1− pmax
k ) + 3η̄k,δ/4

)
≤ exp

(
− B

75/2

)
.

The first desired bound then follows by setting C1, C2, C3 to be the appropriate constants. This
completes the proof of Theorem 3. □
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Proof of Theorem 1. Algorithm 1 is a special case of Algorithm 3 with the learning algorithm
(23) that outputs a singleton, therefore the results of Theorem 3 automatically apply. Since Ek,δ =∑

θ∈Θ\Θδ pk(θ) ≥ maxθ∈Θ\Θδ pk(θ), it holds that ηk,δ ≤ η̄k,δ. When ηk,δ > 0 we also have
η̄k,δ > 0, therefore (8) follows from setting η to be ηk,δ in (30), and (9) follows from upper bounding
maxθ∈Θ\Θδ pk(θ) with Ek,δ in (31). □

C.3 PROOF FOR THEOREM 2

We first present two lemmas to be used in the main proof. The first lemma characterizes the
exponentially improving quality of the solution set retrieved in Phase I:

Lemma 6 (Quality of retrieved solutions in Algorithm 2) For every k and δ ≥ 0, the set of re-
trieved solutions S from Phase I of Algorithm 2 with k1 = k and without data splitting satisfies
that

P
(
S ∩Θδ = ∅

)
≤ min

(
e−(1−Ek,δ)/C4 , C5Ek,δ

) n
C6k

+ exp

(
−B1

C7
(1− Ek,δ)

)
, (37)

where C4, C5, C6, C7 > 0 are universal constants. The same bound with n replaced by n/2 holds
true for Algorithm 2 with data splitting.

Proof of Lemma 6. Let (z∗1 , . . . , z
∗
k) be a random subsample and P∗ be the probability with respect to

the subsampling randomness conditioned on the data and the algorithmic randomness. Consider the
two probabilities

P
(
A(z1, . . . , zk) ∈ Θδ

)
, P∗

(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

)
.

We have 1− Ek,δ = P
(
A(z1, . . . , zk) ∈ Θδ

)
, and the conditional probability

P
(
S ∩Θδ = ∅

∣∣∣P∗
(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

))
=
(
1− P∗

(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

))B1
.

Therefore we can write

P
(
S ∩Θδ = ∅

)
= E

[(
1− P∗

(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

))B1
]

≤ P
(
P∗
(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

)
<

1− Ek,δ
e

)
+

(
1− 1− Ek,δ

e

)B1

(38)

where e is the base of the natural logarithm. Applying Lemma 2 with κ(z1, . . . , zk;ω) :=
1
(
A(z1, . . . , zk;ω) ∈ Θδ

)
gives

P
(
P∗
(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

)
<

1− Ek,δ
e

)
≤ exp

(
− n

2k
·DKL

(
1− Ek,δ

e

∥∥∥1− Ek,δ
))

.

Further applying the bound (17) from Lemma 3 to the KL divergence on the right-hand side leads to

DKL

(
1− Ek,δ

e

∥∥∥1− Ek,δ
)

≥ 1− Ek,δ
e

ln
1

e
+ 1− Ek,δ −

1− Ek,δ
e

=

(
1− 2

e

)
(1− Ek,δ)

and

DKL

(
1− Ek,δ

e

∥∥∥1− Ek,δ
)

= DKL

(
1− 1− Ek,δ

e

∥∥∥Ek,δ)
≥

(
1− 1− Ek,δ

e

)
ln

1− (1− Ek,δ)/e
Ek,δ

− (1− Ek,δ) +
1− Ek,δ

e
by bound (17)

≥
(
1− 1− Ek,δ

e

)
ln

(
1− 1− Ek,δ

e

)
−
(
1− 1

e

)
ln Ek,δ − 1 +

1

e

≥
(
1− 1

e

)
ln

(
1− 1

e

)
−
(
1− 1

e

)
ln Ek,δ − 1 +

1

e

=

(
1− 1

e

)
ln

e− 1

e2Ek,δ
.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Combining the two bounds for the KL divergence we have

P
(
P∗
(
A(z∗1 , . . . , z

∗
k) ∈ Θδ

)
<

1− Ek,δ
e

)
≤ min

(
exp

(
− n

2k
·
(
1− 2

e

)
(1− Ek,δ)

)
,

(
e2Ek,δ
e− 1

)(1−1/e) n
2k

)
.

Note that the second term on the right-hand side of (38) satisfies that (1− (1− Ek,δ)/e)B1 ≤
exp (−B1(1− Ek,δ)/e). Thus, we derive that

P
(
S ∩Θδ = ∅

)
≤min

(
exp

(
− n

2k
·
(
1− 2

e

)
(1− Ek,δ)

)
,

(
e2Ek,δ
e− 1

)(1−1/e) n
2k

)
+ exp

(
−B1(1− Ek,δ)

e

)

≤min

(
exp

(
−1− 2/e

1− 1/e
· (1− Ek,δ)

)
,
e2Ek,δ
e− 1

)(1−1/e) n
2k

+ exp

(
−B1(1− Ek,δ)

e

)
.

The conclusion then follows by setting C4, C5, C6, C7 to be the appropriate constants. □

The second lemma gives bounds for the excess risk sensitivity η̄k,δ in the case of the set-valued
learning algorithm (24):

Lemma 7 (Bounds of η̄k,δ for the set-valued learning algorithm (24)) Consider discrete deci-
sion space Θ. If the set-valued learning algorithm

A(z1, . . . , zk;ω) :=

{
θ ∈ Θ :

1

k

k∑
i=1

l(θ, zi) ≤ min
θ′∈Θ

1

k

k∑
i=1

l(θ′, zi) + ϵ

}
is used with ϵ ≥ 0, it holds that

pmax
k = max

θ∈Θ
pk(θ) ≥ 1− Tk

( ϵ
2

)
, (39)

max
θ∈Θ\Θδ

pk(θ) ≤ Tk

(
δ − ϵ

2

)
, (40)

and hence

η̄k,δ ≥ 1− Tk

( ϵ
2

)
− Tk

(
δ − ϵ

2

)
, (41)

where Tk is the tail probability defined in Theorem 2.

Proof of Lemma 7. Let L̂k(θ) :=
1
k

∑k
i=1 l(θ, zi). Let θ∗ be an optimal solution of (1). We have

max
θ∈Θ

pk(θ) ≥ pk(θ
∗) = P

(
θ∗ ∈ Θ̂ϵ

k

)
≥ P

(
Θ0 ⊆ Θ̂ϵ

k

)
.

To bound the probability on the right hand side, we write{
Θ0 ̸⊆ Θ̂ϵ

k

}
⊆

⋃
θ∈Θ0,θ′∈Θ

{
L̂k(θ) > L̂k(θ

′) + ϵ
}

=
⋃

θ∈Θ0,θ′∈Θ

{
L̂k(θ)− L(θ) > L̂k(θ

′)− L(θ′) + L(θ′)− L(θ) + ϵ
}

⊆
⋃

θ∈Θ0,θ′∈Θ

{
L̂k(θ)− L(θ) > L̂k(θ

′)− L(θ′) + ϵ
}

⊆
⋃

θ∈Θ0,θ′∈Θ

{
L̂k(θ)− L(θ) >

ϵ

2
or L̂k(θ

′)− L(θ′) < − ϵ

2

}
⊆

⋃
θ∈Θ

{∣∣∣L̂k(θ)− L(θ)
∣∣∣ > ϵ

2

}
=

{
max
θ∈Θ

∣∣∣L̂k(θ)− L(θ)
∣∣∣ > ϵ

2

}
,
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therefore

max
θ∈Θ

pk(θ) ≥ P
(
max
θ∈Θ

∣∣∣L̂k(θ)− L(θ)
∣∣∣ ≤ ϵ

2

)
≥ 1− Tk

( ϵ
2

)
. (42)

This proves (39). To bound the other term maxθ∈Θ\Θδ pk(θ), for any θ ∈ Θ\Θδ it holds that

pk(θ) = P
(
θ ∈ Θ̂ϵ

k

)
≤ P

(
Θ̂ϵ

k ̸⊆ Θδ
)
, (43)

and hence maxθ∈Θ\Θδ pk(θ) ≤ P
(
Θ̂ϵ

k ̸⊆ Θδ
)

. To bound the latter, we have{
Θ̂ϵ

k ̸⊆ Θδ
}

⊆
⋃

θ,θ′∈Θ s.t. L(θ′)−L(θ)>δ

{
L̂k(θ

′) ≤ L̂k(θ) + ϵ
}

=
⋃

θ,θ′∈Θ s.t. L(θ′)−L(θ)>δ

{
L̂k(θ

′)− L(θ′) + L(θ′)− L(θ) ≤ L̂k(θ)− L(θ) + ϵ
}

⊆
⋃

θ,θ′∈Θ s.t. L(θ′)−L(θ)>δ

{
L̂k(θ

′)− L(θ′) + δ < L̂k(θ)− L(θ) + ϵ
}

⊆
⋃

θ,θ′∈Θ s.t. L(θ′)−L(θ)>δ

{
L̂k(θ

′)− L(θ′) < −δ − ϵ

2
or L̂k(θ)− L(θ) >

δ − ϵ

2

}

⊆
⋃
θ∈Θ

{∣∣∣L̂k(θ)− L(θ)
∣∣∣ > δ − ϵ

2

}
=

{
max
θ∈Θ

∣∣∣L̂k(θ)− L(θ)
∣∣∣ > δ − ϵ

2

}
,

therefore

max
θ∈Θ\Θδ

pk(θ) ≤ P
(
max
θ∈Θ

∣∣∣L̂k(θ)− L(θ)
∣∣∣ > δ − ϵ

2

)
≤ Tk

(
δ − ϵ

2

)
. (44)

This immediately gives (40). (41) is obvious given (39) and (40). □

To prove Theorem 2, we introduce some notation. For every non-empty subset W ⊆ Θ, we use the
following counterpart of Definition 3. Let

Wδ :=

{
θ ∈ W : L(θ) ≤ min

θ′∈W
L(θ′) + δ

}
(45)

be the set of δ-optimal solutions in the restricted decision space W , and

Ŵδ
k :=

{
θ ∈ W :

1

k

k∑
i=1

l(θ, zi) = min
θ′∈W

1

k

k∑
i=1

l(θ′, zi) + δ

}
(46)

be the set of δ-optimal solutions of the SAA with an i.i.d. data set of size k.

Proof of Theorem 2 for ROVEs. Given the retrieved solution set S and the chosen ϵ, the rest of
Phase II of Algorithm 2 exactly performs Algorithm 3 on the restricted problem minθ∈S E [l(θ, z)]

to obtain θ̂n with the data z⌊n/2⌋+1:n, the set-valued learning algorithm (24), the chosen ϵ value and
k = k2, B = B2.

To show the upper bound for the unconditional convergence probability P
(
θ̂n /∈ Θ2δ

)
, note that

{
S ∩Θδ ̸= ∅

}
∩
{
L(θ̂n) ≤ min

θ∈S
L(θ) + δ

}
⊆
{
θ̂n ∈ Θ2δ

}
,

and hence by union bound we can write

P
(
θ̂n /∈ Θ2δ

)
≤ P

(
S ∩Θδ = ∅

)
+ P

(
L(θ̂n) > min

θ∈S
L(θ) + δ

)
. (47)
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P
(
S ∩Θδ = ∅

)
has a bound from Lemma 6. We focus on the second probability.

For a fixed retrieved subset S ⊆ Θ, define the tail of the maximum deviation on S

TS
k (·) := P

(
sup
θ∈S

∣∣∣∣∣1k
k∑

i=1

l(θ, zi)− L(θ)

∣∣∣∣∣ > ·

)
.

It is straightforward that TS
k (·) ≤ Tk(·) where Tk is the tail of the maximum deviation over the whole

space Θ. Since P (ϵ ∈ [ϵ, ϵ]) = 1, we have

1− TS
k2

( ϵ
2

)
− TS

k2

(
δ − ϵ

2

)
≥ 1− TS

k2

( ϵ
2

)
− TS

k2

(
δ − ϵ

2

)
.

If Tk2 ((δ − ϵ)/2)+Tk2 (ϵ/2) < 1/5, we have TS
k2

((δ − ϵ)/2)+TS
k2

(ϵ/2) < 1/5 and subsequently
1− TS

k2
((δ − ϵ)/2)− TS

k2
(ϵ/2) > 4/5, and hence η̄k2,η ≥ 1− TS

k2
((δ − ϵ)/2)− TS

k2
(ϵ/2) > 4/5

by Lemma 7 for Phase II of ROVEs conditioned on S and ϵ, therefore the bound (31) from Theorem
3 applies. Using the inequalities (39) and (40) to upper bound the min(1− pmax

k , pmax
k − η̄k,δ) term

in (31) gives

P
(
L(θ̂n) > min

θ∈S
L(θ) + δ

∣∣S, ϵ)
≤ |S|

(
3min

(
e−2/5, C1 max

(
TS
k2

( ϵ
2

)
, TS

k2

(
δ − ϵ

2

))) n
2C2k2

+ exp

(
−B2

C3

))

= |S|

(
3min

(
e−2/5, C1T

S
k2

(
min(ϵ, δ − ϵ)

2

)) n
2C2k2

+ exp

(
−B2

C3

))

≤ |S|

(
3min

(
e−2/5, C1Tk2

(
min(ϵ, δ − ϵ)

2

)) n
2C2k2

+ exp

(
−B2

C3

))
.

Further relaxing |S| to B1 and taking full expectation on both sides give

P
(
L(θ̂n) > min

θ∈S
L(θ) + δ

)
≤ B1

(
3min

(
e−2/5, C1Tk2

(
min(ϵ, δ − ϵ)

2

)) n
2C2k2

+ exp

(
−B2

C3

))
.

This leads to the desired bound (10) after the above bound is plugged into (47) and the bound (37)
from Lemma 6 is applied with k = k1. □

Proof of Theorem 2 for ROVE. For every non-empty subset W ⊆ Θ and k2, we consider the indicator

1
θ,W,ϵ
k2

(z1, . . . , zk2
) := 1

(
1

k2

k2∑
i=1

l(θ, zi) ≤ min
θ′∈W

1

k2

k2∑
i=1

l(θ′, zi) + ϵ

)
for θ ∈ W, ϵ ∈ [0, δ/2],

which indicates whether a solution θ ∈ W is ϵ-optimal for the SAA formed by {z1, . . . , zk2}. Here
we add ϵ and W to the superscript to emphasize its dependence on them. The counterparts of the
solution probabilities pk, p̂k, p̄k for 1θ,W,ϵ

k2
are

pW,ϵ
k2

(θ) := E
[
1
θ,W,ϵ
k2

(z1, . . . , zk2)
]
,

p̂W,ϵ
k2

(θ) := E∗

[
1
θ,W,ϵ
k2

(z∗1 , . . . , z
∗
k2
)
]
,

p̄W,ϵ
k2

(θ) :=
1

B2

B2∑
b=1

1
θ,W,ϵ
k2

(zb1, . . . , z
b
k2
).

We need to show the uniform convergence of these probabilities for ϵ ∈ [0, δ/2]. To do so, we define
a slighted modified version of 1θ,W,ϵ

k2

1
θ,W,ϵ−
k2

(z1, . . . , zk2
) := 1

(
1

k2

k2∑
i=1

l(θ, zi) < min
θ′∈W

1

k2

k2∑
i=1

l(θ′, zi) + ϵ

)
for θ ∈ W, ϵ ∈ [0, δ/2],
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which indicates a strict ϵ-optimal solution, and let pW,ϵ−
k2

, p̂W,ϵ−
k2

, p̄W,ϵ−
k2

be the corresponding coun-
terparts of solution probabilities. For any integer m > 1 we construct brackets of size at most 1/m to
cover the family of indicator functions {1θ,W,ϵ

k2
: ϵ ∈ [0, δ/2]}, i.e., let m′ = ⌊pW,δ/2

k2
(θ)m⌋ and

ϵ0 := 0,

ϵi := inf
{
ϵ ∈ [0, δ/2] : pW,ϵ

k2
(θ) ≥ i/m

}
for 1 ≤ i ≤ m′,

ϵm′+1 :=
δ

2
,

where we assume that ϵi, i = 0, . . . ,m′+1 are strictly increasing without loss of generality (otherwise
we can delete duplicated values). Then for any ϵ ∈ [ϵi, ϵi+1), we have that

p̄W,ϵ
k2

(θ)− pW,ϵ
k2

(θ) ≤ p̄
W,ϵi+1−
k2

(θ)− pW,ϵi
k2

(θ)

≤ p̄
W,ϵi+1−
k2

(θ)− p
W,ϵi+1−
k2

(θ) + p
W,ϵi+1−
k2

(θ)− pW,ϵi
k2

(θ)

≤ p̄
W,ϵi+1−
k2

(θ)− p
W,ϵi+1−
k2

(θ) +
1

m

and that

p̄W,ϵ
k2

(θ)− pW,ϵ
k2

(θ) ≥ p̄W,ϵi
k2

(θ)− p
W,ϵi+1−
k2

(θ)

≥ p̄W,ϵi
k2

(θ)− pW,ϵi
k2

(θ) + pW,ϵi
k2

(θ)− p
W,ϵi+1−
k2

(θ)

≥ p̄W,ϵi
k2

(θ)− pW,ϵi
k2

(θ)− 1

m
.

Therefore

sup
ϵ∈[0,δ/2]

∣∣∣p̄W,ϵ
k2

(θ)− pW,ϵ
k2

(θ)
∣∣∣

≤ max
0≤i≤m′+1

max
(∣∣∣p̄W,ϵi

k2
(θ)− pW,ϵi

k2
(θ)
∣∣∣ , ∣∣∣p̄W,ϵi−

k2
(θ)− pW,ϵi−

k2
(θ)
∣∣∣)+ 1

m
. (48)

To show that the random variable in (48) converges to 0 in probability, we note that the U-statistic
has the minimum variance among all unbiased estimators, in particular the following simple sample
average estimators based on the first ⌊n/k2⌋ · k2 data

p̃W,ϵ
k2

(θ) :=
1

⌊n/k2⌋

⌊n/k2⌋∑
i=1

1
θ,W,ϵ
k2

(zk2(i−1)+1, . . . , zk2i),

p̃W,ϵ−
k2

(θ) :=
1

⌊n/k2⌋

⌊n/k2⌋∑
i=1

1
θ,W,ϵ−
k2

(zk2(i−1)+1, . . . , zk2i).
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Therefore we can write

E

[(
max

0≤i≤m′+1
max

(∣∣∣p̄W,ϵi
k2

(θ)− pW,ϵi
k2

(θ)
∣∣∣ , ∣∣∣p̄W,ϵi−

k2
(θ)− pW,ϵi−

k2
(θ)
∣∣∣))2

]

≤
∑

0≤i≤m′+1

(
E
[(

p̄W,ϵi
k2

(θ)− pW,ϵi
k2

(θ)
)2]

+ E
[(

p̄W,ϵi−
k2

(θ)− pW,ϵi−
k2

(θ)
)2])

≤
∑

0≤i≤m′+1

(
E
[(

p̄W,ϵi
k2

(θ)− p̂W,ϵi
k2

(θ)
)2]

+ E
[(

p̂W,ϵi
k2

(θ)− pW,ϵi
k2

(θ)
)2])

+

∑
0≤i≤m′+1

(
E
[(

p̄W,ϵi−
k2

(θ)− p̂W,ϵi−
k2

(θ)
)2]

+ E
[(

p̂W,ϵi−
k2

(θ)− pW,ϵi−
k2

(θ)
)2])

since p̄W,ϵi
k2

(θ) and p̄W,ϵi−
k2

(θ) are conditionally unbiased for p̂W,ϵi
k2

(θ) and p̂W,ϵi−
k2

(θ)

≤
∑

0≤i≤m′+1

(
E
[
E∗

[(
p̄W,ϵi
k2

(θ)− p̂W,ϵi
k2

(θ)
)2]]

+ E
[(

p̃W,ϵi
k2

(θ)− pW,ϵi
k2

(θ)
)2])

+

∑
0≤i≤m′+1

(
E
[
E∗

[(
p̄W,ϵi−
k2

(θ)− p̂W,ϵi−
k2

(θ)
)2]]

+ E
[(

p̃W,ϵi−
k2

(θ)− pW,ϵi−
k (θ)

)2])

≤ (m′ + 2)

(
2

B2
+

2

⌊n/k2⌋

)
≤ (m+ 2)

(
2

B2
+

4

n/k2

)
.

By Minkowski inequality, the supremum satisfies

E

[
sup

ϵ∈[0,δ/2]

∣∣∣p̄W,ϵ
k2

(θ)− pW,ϵ
k2

(θ)
∣∣∣] ≤

√
(m+ 2)

(
2

B2
+

4

n/k2

)
+

1

m
.

Choosing m such that m → ∞, m/B2 → 0 and mk2/n → 0 leads to the convergence
supϵ∈[0,δ/2]

∣∣∣p̄W,ϵ
k2

(θ)− pW,ϵ
k2

(θ)
∣∣∣ → 0 in probability. Since Θ has finite cardinality and has a fi-

nite number of subsets, it also holds that

sup
W⊆Θ,θ∈W,ϵ∈[0,δ/2]

∣∣∣p̄W,ϵ
k2

(θ)− pW,ϵ
k2

(θ)
∣∣∣→ 0 in probability. (49)

Recall the bound (43) from the proof of Lemma 7. Here we have the similar bound
maxθ∈W\Wδ pW,ϵ

k2
(θ) ≤ P

(
Ŵϵ

k2
̸⊆ Wδ

)
, and hence

sup
ϵ∈[0,δ/2]

max
θ∈W\Wδ

pW,ϵ
k (θ) ≤ sup

ϵ∈[0,δ/2]

P
(
Ŵϵ

k2
̸⊆ Wδ

)
= P

(
Ŵδ/2

k2
̸⊆ Wδ

)
.

We bound the probability P
(
Ŵδ/2

k2
̸⊆ Wδ

)
more carefully. We let

∆o := min {L(θ′)− L(θ) : θ, θ′ ∈ Θ, L(θ′) > L(θ)} > 0,

L̂k2
(θ) :=

1

k2

k2∑
i=1

l(θ, zi),
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and have{
Ŵδ/2

k2
̸⊆ Wδ

}
⊆

⋃
θ,θ′∈W s.t. L(θ′)−L(θ)>δ

{
L̂k2(θ

′) ≤ L̂k2(θ) +
δ

2

}

⊆
⋃

θ,θ′∈Θ s.t. L(θ′)−L(θ)>δ

{
L̂k2(θ

′)− L(θ′) + L(θ′)− L(θ) ≤ L̂k2(θ)− L(θ) +
δ

2

}

⊆
⋃

θ,θ′∈Θ s.t. L(θ′)−L(θ)>δ

{
L̂k2(θ

′)− L(θ′) + max(∆, δ) ≤ L̂k2(θ)− L(θ) +
δ

2

}
by the definition of ∆o

⊆
⋃

θ,θ′∈Θ

{
L̂k2

(θ′)− L(θ′) + max

(
∆o −

δ

2
,
δ

2

)
≤ L̂k2

(θ)− L(θ)

}

⊆
⋃

θ,θ′∈Θ

{
L̂k2(θ

′)− L(θ′) ≤ −max

(
∆o

2
− δ

4
,
δ

4

)
or L̂k2(θ)− L(θ) ≥ max

(
∆o

2
− δ

4
,
δ

4

)}

⊆
⋃
θ∈Θ

{∣∣∣L̂k2(θ)− L(θ)
∣∣∣ ≥ max

(
∆o

2
− δ

4
,
δ

4

)}
⊆

⋃
θ∈Θ

{∣∣∣L̂k2(θ)− L(θ)
∣∣∣ ≥ ∆o

4

}
⊆

{
sup
θ∈Θ

∣∣∣L̂k2
(θ)− L(θ)

∣∣∣ ≥ ∆o

4

}
,

where the last line holds because max (∆o/2− δ/4, δ/4) ≥ ∆o/4. This gives

sup
ϵ∈[0,δ/2]

max
θ∈W\Wδ

pW,ϵ
k2

(θ) ≤ Tk2

(
∆o

4

)
→ 0 as k2 → ∞.

We also have the trivial bound infϵ∈[0,δ/2] maxθ∈W pW,ϵ
k2

(θ) = maxθ∈W pW,0
k2

(θ) ≥ 1/ |W|, where
the inequality comes from the fact that

∑
θ∈W pW,0

k2
(θ) ≥ 1. Now choose a k < ∞ such that

Tk2

(
∆o

4

)
≤ 1

2 |Θ|
for all k2 ≥ k

and we have for all k2 ≥ k and all non-empty W ⊆ Θ that

inf
ϵ∈[0,δ/2]

(
max
θ∈W

pW,ϵ
k2

(θ)− max
θ∈W\Wδ

pW,ϵ
k2

(θ)

)
≥ inf

ϵ∈[0,δ/2]
max
θ∈W

pW,ϵ
k2

(θ)− sup
ϵ∈[0,δ/2]

max
θ∈W\Wδ

pW,ϵ
k2

(θ)

≥ 1

|W|
− 1

2 |Θ|
≥ 1

2 |Θ|
.

Due to the uniform convergence (49), we have

min
W⊆Θ

inf
ϵ∈[0,δ/2]

(
max
θ∈W

p̄W,ϵ
k2

(θ)− max
θ∈W\Wδ

p̄W,ϵ
k2

(θ)

)
→ min

W⊆Θ
inf

ϵ∈[0,δ/2]

(
max
θ∈W

pW,ϵ
k2

(θ)− max
θ∈W\Wδ

pW,ϵ
k2

(θ)

)
in probability, and hence

P
(
min
W⊆Θ

inf
ϵ∈[0,δ/2]

(
max
θ∈W

p̄W,ϵ
k2

(θ)− max
θ∈W\Wδ

p̄W,ϵ
k2

(θ)

)
≤ 0

)
→ 0. (50)
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Finally, we combine all the pieces to get{
θ̂n ̸∈ Θ2δ

}
⊆

{
S ∩Θδ = ∅

}
∪
{
θ̂n ̸∈ Sδ

}
⊆

{
S ∩Θδ = ∅

}
∪
{
max
θ∈S

p̄S,ϵ
k2

(θ)− max
θ∈S\Sδ

p̄S,ϵ
k2

(θ) ≤ 0

}
⊆

{
S ∩Θδ = ∅

}
∪
{
ϵ >

δ

2

}
∪
{

inf
ϵ∈[0,δ/2]

(
max
θ∈S

p̄S,ϵ
k2

(θ)− max
θ∈S\Sδ

p̄S,ϵ
k2

(θ)

)
≤ 0

}
⊆

{
S ∩Θδ = ∅

}
∪
{
ϵ >

δ

2

}
∪
{
min
W⊆Θ

inf
ϵ∈[0,δ/2]

(
max
θ∈W

p̄W,ϵ
k2

(θ)− max
θ∈W\Wδ

p̄W,ϵ
k2

(θ)

)
≤ 0

}
.

By Lemma 6 we have P
(
S ∩Θδ = ∅

)
→ 0 under the conditions that lim supk→∞ Ek,δ < 1

and k1, n/k1, B1 → ∞. Together with the condition P (ϵ ≥ δ/2) → 0 and (50), we conclude
P
(
θ̂n ̸∈ Θ2δ

)
→ 0 by the union bound. □

APPENDIX D SUPPLEMENTARY MATERIAL FOR NUMERICAL EXPERIMENTS

This section supplements Section 3. We first provide details for the architecture of the neural
networks in Section D.1, and the considered stochastic programs in Section D.2. Section D.3 presents
a comprehensive profiling of hyperparameters of our methods, and Section D.4 provides additional
experimental results.

D.1 MLP ARCHITECTURE

The input layer of our MLPs has the same number of neurons as the input dimension, and the output
layer is a single neuron that gives the final prediction. All activations are ReLU. For experiments
on synthetic data, the architecture of hidden layers is as follows under different numbers of hidden
layers H:

• H = 2: Each hidden layer has 50 neurons.

• H = 4: There are 50, 300, 300, 50 neurons from the first to the fourth hidden layer.

• H = 6: There are 50, 300, 500, 500 300, 50 neurons from the first to the sixth hidden layer.

• H = 8: There are 50, 300, 500, 800, 800 500 300, 50 neurons from the first to the eighth
hidden layer.

For experiments on real data, the MLP with 4 hidden layers has 100, 300, 300, 100 neurons from the
first to the fourth hidden layer.

D.2 STOCHASTIC PROGRAMMING PROBLEMS

Resource allocation (Kleywegt et al., 2002) The decision maker wants to choose a subset of m
projects. A quantity q of low-cost resource is available to be allocated, and any additional resource
can be obtained at an incremental unit cost c. Each project i has an expected reward ri. The amount
of resource required by each project i is a random variable, denoted by Wi. We can formulate the
problem as

max
θ∈{0,1}m


m∑
i=1

riθi − cE

[
m∑
i=1

Wiθi − q

]+ . (51)

In the experiment, we consider the three-product scenario, i.e., m = 3, and assume that the random
variable Wi follows the Pareto distribution.

Supply chain network design (Shapiro et al., 2021, Chapter 1.5) Consider a network of suppliers,
processing facilities, and customers, where the goal is to optimize the overall supply chain efficiency.
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The supply chain design problem can be formulated as a two-stage stochastic optimization problem

min
θ∈{0,1}|P |

∑
p∈P

cpθp + E[Q(θ, z)], (52)

where P is the set of processing facilities, cp is the cost of opening facility p, and z is the vector of
(random) parameters, i.e., (h, q, d, s, R,M) in (53). Function Q(θ, z) represents the total processing
and transportation cost, and it is equal to the optimal objective value of the following second-stage
problem:

miny≥0,z≥0 q⊤y + h⊤z

s.t. Ny = 0,

Cy + z ≥ d,

Sy ≤ s,

Ry ≤ Mθ,

(53)

where N,C, S are appropriate matrices that describe the network flow constraints. More details about
this example can be found in (Shapiro et al., 2021, Chapter 1.5). In our experiment, we consider the
scenario of 3 suppliers, 2 facilities, 3 consumers, and 5 products. We choose supply s and demand d
as random variables that follow the Pareto distribution.

Maximum weight matching and stochastic linear program We explore both the maximum
weight matching problem and the linear program that arises from it. Let G = (V,E) be a general
graph, where each edge e ∈ E is associated with a (possibly) random weight we. For each node
v ∈ V , denote E(v) as the set of edges incident to v. Based on this setup, we consider the following
linear program

maxθ∈[0,1]|E| E
[∑

e∈E weθe
]

subject to
∑

e∈E(v) aeθe ≤ 1, ∀v ∈ V,
(54)

where ae is some positive coefficient. When ae = 1 for all e ∈ E and θ is restricted to the discrete
set {0, 1}|E|, (54) is equivalent to the maximum weight matching problem. For the maximum weight
matching, we consider a complete bipartite graph with 5 nodes on each side (the dimension is 25).
The weights of nine edges are Pareto distributed and the remaining are prespecified constants. For
the linear programming problem, we consider a 28-dimensional instance (the underlying graph is an
8-node complete graph), where all we follows the Pareto distribution.

Mean-variance portfolio optimization Consider constructing a portfolio based on m assets. Each
asset i has a rate of return ri that is random with mean µi. The goal is to minimize the variance of the
portfolio while ensuring that the expected rate of return surpasses a target level b. The problem can
be formulated as

minθ E
[
(
∑m

i=1(ri − µi)θi)
2
]

subject to
∑m

i=1 µiθi ≥ b,∑m
i=1 θi = 1,

θi ≥ 0 ∀i = 1, . . . ,m

(55)

where θ is the decision variable and each µi is assumed known. In the experiment, we consider a
scenario with 10 assets, i.e., m = 10, where each rate of return ri is a linear combination of the rates
of return of 100 underlying assets in the form ri = r̃10(i−1)+1/2 +

∑100
j=1 r̃j/200. Each of these

underlying assets has a Pareto rate of return r̃j , j = 1, . . . , 100.

D.3 HYPERPARAMETER PROFILING

We test the effect of different hyperparameters in our ensemble methods, including subsample sizes
k, k1, k2, ensemble sizes B,B1, B2, and threshold ϵ. Throughout this profiling stage, we use the
sample average approximation (SAA) as the base algorithm. To profile the effect of subsample sizes
and ensemble sizes, we consider the resource allocation problem.

Subsample size We explored scenarios where k (equivalently k1 and k2) is both dependent on and
independent of the total sample size n (see Figures 5a, 6a, and 6b). The results suggest that a constant
k generally suffices, although the optimal k varies by problem instance. For example, Figures 6a and

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) Profiling for k (MoVE). (b) Profiling for ϵ (multiple optima). (c) Profiling for ϵ (unique optima).

Figure 5: Profiling for subsample size k and threshold ϵ. (a): Resource allocation problem, where
B = 200; (b) and (c): Linear program, where k1 = k2 = max(10, 0.005n), B1 = 20, and B2 = 200.

(a) Profiling for k (instance 1). (b) Profiling for k (instance 2). (c) Profiling for ϵ (near optima).

Figure 6: Profiling results for subsample size k and threshold ϵ. (a) and (b): Resource allocation
problem using MoVE, where B = 200; (c): Linear program with multiple near optima using ROVE,
where k1 = k2 = max(10, 0.005n), B1 = 20, and B2 = 200.

6b show that k = 2 yields the best performance; increasing k degrades results. Conversely, in Figure
5a, k = 2 proves inadequate, with larger k delivering good results. The underlying reason is that
the effective performance of MoVE requires θ∗ ∈ argmaxθ∈Θ pk(θ). In the former, this is achieved
with only two samples, enabling MoVE to identify θ∗ with a subsample size of 2. For the latter, a
higher number of samples is required to meet this condition, explaining the suboptimal performance
at k = 2. In Figure 7, we simulate pk(θ) for the two cases, which further explains the influence of
the subsample size.

Ensemble size In Figure 8, we illustrate the performance of MoVE and ROVE under different
B,B1, B2, where we set k = k1 = k2 = 10 and ϵ = 0.005. From the figure, we find that the
performance of our ensemble methods is improving in the ensemble sizes.

Threshold ϵ The optimal choice of ϵ in ROVE and ROVEs is problem-dependent and related
to the number of (near) optimal solutions. This dependence is illustrated by the performance of
ROVE shown in Figures 5b and 5c. Hence, we propose an adaptive strategy defined as follows: Let
g(ϵ) := 1/B2 ·

∑B2

b=1 1(θ̂n(ϵ) ∈ Θ̂ϵ,b
k2
), where we use θ̂n(ϵ) to emphasize the dependency of θ̂n on

ϵ. Then, we select ϵ∗ := min {ϵ : g(ϵ) ≥ 1/2}. By definition, g(ϵ) is the proportion of times that
θ̂n(ϵ) is included in the “near optimum set” Θ̂ϵ,b

k2
. The choice of ϵ∗ makes it more likely for the true

optimal solution to be included in the “near optimum set”, instead of being ruled out by suboptimal
solutions. Practically, ϵ∗ can be efficiently determined using a binary search as an intermediate step
between Phases I and II. To prevent data leakage, we compute ϵ∗ using z1:⌊n

2 ⌋ (Phase I data) for
ROVEs. From Figure 5, we observe that this adaptive strategy exhibits decent performance for all
scenarios. Similar behaviors can also be observed for ROVEs in Figure 9.

D.4 ADDITIONAL EXPERIMENTAL RESULTS

Here, we present additional figures that supplement the experiments and discussions in Section 3.
Recall that MoVE refers to Algorithm 1, ROVE refers to Algorithm 2 without data splitting, and
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(a) Figure 5a: suboptimal probability. (b) Figure 5a: pk(θ∗)−maxθ ̸=θ∗ pk(θ).

(c) Figure 6a: suboptimal probability. (d) Figure 6a: pk(θ∗)−maxθ ̸=θ∗ pk(θ).

Figure 7: Performance of MoVE (B = 200) in resource allocation, corresponding to the two instances
in Figures 5a and 6a. Subfigures (b) and (d) explain the behaviors of MoVE with different subsample
sizes k: In (b), we find that pk(θ∗) − maxθ ̸=θ∗ pk(θ) < 0 for k ≤ 4, which results in the poor
performance of MoVE with k = 2 in Figure 5a; In (d), we have p2(θ

∗)−maxθ ̸=θ∗ p2(θ) ≈ 0.165,
thereby enabling MoVE to distinguish the optimal solution only using subsamples of size two, which
results in the good performance of MoVE with k = 2 in Figure 6a.

(a) MoVE. (b) ROVE with B2 = 200. (c) ROVE with B1 = 20.

Figure 8: Profiling for ensemble sizes B,B1, B2 in resource allocation. Subsample size is chosen as
k = k1 = k2 = 10.
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(a) Multiple optima. (b) Multiple near optimum. (c) Single optimum.

Figure 9: Performance of ROVEs in three instances of linear programs under different thresholds
ϵ. The setting is identical to that of Figures 5b, 5c, and 6c for ROVE. Hyperparameters: k1 =
k2 = max(10, 0.005n), B1 = 20, and B2 = 200. Compared with profiling results for ROVE, we
observe that the value of ϵ has similar impacts on the performance of ROVEs. Moreover, the proposed
adaptive strategy also behaves well for ROVEs.

ROVEs refers to Algorithm 2 with data splitting. We briefly introduce each figure below and refer
the reader to the figure caption for detailed discussions. Figures 10-16 all follow the recommended
configuration listed in Section 3.

• Figure 10 supplements the results in Figure 1 with MLPs with H = 2, 4 hidden layers.
• Figure 11 shows results for MLP regression on a slightly different synthetic example than in Section

3.1.
• Figures 12 and 13 show results for regression on synthetic data with least squares regression and

Ridge regression as the base learning algorithms respectively.
• Figure 14 shows results on the stochastic linear program example with light-tailed uncertainties.
• Figure 15 contains additional results on the supply chain network design example for different

choices of hyperparameters and a different problem instance with strong correlation between
solutions.

• In Figure 16, we apply our ensemble methods to resource allocation and maximum weight matching
using DRO with Wasserstein metric as the base algorithm. This result, together with Figure 3 where
the base algorithm is SAA, demonstrates that the benefit of our ensemble methods is agnostic to
the underlying base algorithm.

• In Figure 17, we simulate the generalization sensitivity η̄k,δ, defined in (29), which explains the
superior performance of ROVE and ROVEs in the presence of multiple optimal solutions.
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(a) Pareto noise, H = 2. (b) Pareto noise, H = 6. (c) Pareto noise, H = 2, n = 216.

(d) Gaussian noise, H = 2. (e) Gaussian noise, H = 6. (f) Gaussian noise, H = 2, n = 216.

Figure 10: Results of neural networks on synthetic data with the same setup described in Section
3.1. (a)(b)(d)(e): Expected out-of-sample costs (MSE) with 95% confidence intervals under different
noise distributions and varying numbers of hidden layers (H). (c) and (f): Tail probabilities of
out-of-sample costs. In (a), ROVEs slightly underperforms the base learner probably due to the weak
expressiveness and hence high bias of the MLP with 2 hidden layers.

(a) Average performance with 95% CIs. (b) Tail performance for n = 216.

Figure 11: Results on synthetic data with an MLP of H = 4 hidden layers. The setup is the same as in
Section 3.1 except that the dimension of X is now 30 and the data generation becomes Y = (1/30) ·∑30

j=1 log(Xj + 1) + ε, where each Xj is drawn independently from Unif(0, 2 + 198(j − 1)/29).
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(a) d = 10. (b) Tail performance. d = 10, n = 216.

(c) d = 50. (d) Tail performance. d = 50, n = 216.

Figure 12: Linear regression on synthetic data with least squares regression as the base learning
algorithm. Given the input dimension d, the data generation is Y =

∑d
i=1(−10 + 20(i− 1)/(d−

1))Xi + ε1 − ε2 where each Xi is independent Unif(0, 2+ 18(i− 1)/(d− 1)) and each εj , j = 1, 2
is Pareto(2.1) and independent of X . (a) and (c): Expected out-of-sample error with 95% confidence
interval. (b) and (d): Tail probabilities of out-of-sample errors.
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(a) d = 10. (b) Tail performance. d = 10, n = 216.

(c) d = 50. (d) Tail performance. d = 50, n = 216.

Figure 13: Linear regression on synthetic data with Ridge regression as the base learning algorithm.
The same data generation as in Figure 12. (a) and (c): Expected out-of-sample error with 95%
confidence interval. (b) and (d): Tail probabilities of out-of-sample errors.

(a) Instance 1. (b) Instance 2. (c) Instance 3.

Figure 14: Results for linear programs with light-tailed objectives. The base algorithm is SAA.
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(a) k = k1 = k2 = max(10, n/10). (b) A different instance with strong correlation.

Figure 15: Results for supply chain network design. (a): The same problem instance as in Section 3.2
under a different hyperparameter choice: k = max(10, n/10), B = 200 for MoVE and k1 = k2 =
max(10, n/10), B1 = 20, B2 = 200 for ROVE and ROVEs. (b): The same setup as in Section 3.2
but on a different problem instance for which the objectives under different solutions are strongly
correlated. The strong correlation cancels out most of the heavy-tailed noise between solutions,
making the base algorithm less susceptible to these noises, thus our ensemble methods appear less
effective.

(a) Resource allocation. (b) Maximum weight matching.

Figure 16: Results for resource allocation and maximum weight matching when the base algorithm is
DRO using 1-Wasserstein metric with the l∞ norm.
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Figure 17: Comparison of η̄k,δ for MoVE and ROVE in a linear program with multiple optima
(corresponds to the instance in Figure 3e). Threshold ϵ is chosen as ϵ = 4 when k = k1 = k2 = 10
and ϵ = 2.5 when k = k1 = k2 = 50, according to the adaptive strategy. Note that η̄k,δ =
maxθ∈Θ pk(θ) − maxθ∈Θ\Θδ pk(θ) by (29), which measures the generalization sensitivity. For
MoVE, we have pk(θ) = P(θ̂SAA

k = θ); and for ROVE, we have pk(θ) = P(θ ∈ Θ̂ϵ
k), where Θ̂ϵ

k is
the ϵ-optimal set of SAA defined in (28). From the figure, we can observe that the issue brought by
the presence of multiple optimal solutions can be alleviated using the two-phase strategy in ROVE.
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