

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO GRASP ANYTHING BY PLAYING WITH RANDOM TOYS

Anonymous authors

Paper under double-blind review

ABSTRACT

Robotic manipulation policies often struggle to generalize to novel objects, limiting their real-world utility. In contrast, cognitive science suggests that children develop generalizable dexterous manipulation skills by mastering a small set of simple toys and then applying that knowledge to more complex items. Inspired by this, we study if similar generalization capabilities can also be achieved by robots. Our results indicate robots can learn generalizable grasping using **randomly assembled objects that are composed from just four shape primitives**—spheres, cuboids, cylinders, and rings. We show that training on these “toys” **enables robust generalization to real-world objects**, yielding strong zero-shot performance. Crucially, we find the key to this generalization is an object-centric visual representation induced by our proposed detection pooling mechanism. Evaluated in both simulation and on physical robots, our model achieves a 67% real-world grasping success rate on the YCB dataset, outperforming state-of-the-art approaches that rely on substantially more in-domain data. We further study how zero-shot generalization performance scales by varying the number and diversity of training toys and the demonstrations per toy. We believe this work offers a promising path to scalable and generalizable learning in robotic manipulation.

1 INTRODUCTION

“Treat nature by means of the cylinder, the sphere, the cone, everything brought into proper perspective.”

PAUL CÉZANNE

Robotic manipulation policies have recently achieved impressive progress, solving complex tasks in domains such as dexterous manipulation (Kumar et al., 2016; Chen et al., 2022; Wang et al., 2024; Chen et al., 2023; Qin et al., 2021), robust sim-to-real transfer (Chukwurah et al., 2024; Pinel et al., 2023; Ho et al., 2020), and long-horizon planning for multi-step tasks (Mishra et al., 2023; Simeonov et al., 2020; Pertsch et al., 2020). Yet, a fundamental challenge remains: they often fail to generalize their manipulation skills to novel objects, limiting their practical application. In stark contrast, humans show astonishing generalization capabilities in dexterous manipulation. For example, cognitive literature (Schneiberg et al., 2002; Oztop et al., 2004; Rochat, 1989; Thelen et al., 1993; Needham et al., 2002; Ruff, 1984; Bonaiuto & Arbib, 2015) suggests that children can learn to grasp by mastering only a small set of simple toys and then applying that skill to unseen complex objects. This raises a central question: *can robotic manipulation policies generalize similarly?*

In this work, we demonstrate that robots can learn to grasp novel real-world objects when trained only on *randomly constructed toys*. The design of these toys is inspired by a classic insight from Cézanne: that complex objects can be deconstructed into a vocabulary of simple shape primitives. Specifically, we construct our toys as random compositions of just four shape primitives: spheres, cuboids, cylinders, and rings. These “Cézanne toys” preserve the structural essence of real objects while remaining sufficiently out-of-distribution, providing a challenging yet principled testbed for generalization. Trained on these random toys, our policy learns to grasp complex, unseen real-world objects in a zero-shot manner. See Figure 1 for an overview.

The key to this generalization capability, as we empirically show, lies in the usage of *object-centric visual representations*. Specifically, we introduce detection pooling (DetPool) to obtain an object-

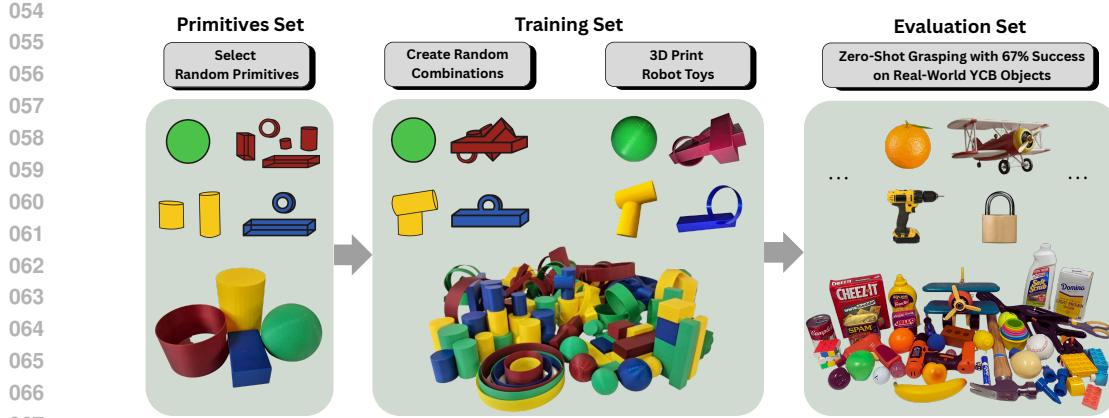


Figure 1: Our grasping policy, trained exclusively on random toy compositions (middle) built from just four basic primitives (left), zero-shot generalizes to real-world objects (right) and achieves an 67% success rate on 64 objects from the YCB dataset.

centric visual representation. This method first uses a mask of the target object to constrain the vision encoder’s attention to the object region, and then applies mean pooling on the output features corresponding to the object patches. In this way, we ensure the final vision representation only contains information about the object and not the background or other distractors. We find this visual representation is the key to enable a grasping policy to generalize between the vastly different objects in training and testing. We name our framework LEGO (*Learning to Grasp from tOys*).

To evaluate our model’s generalization capabilities, we conduct a comprehensive experimental evaluation. First, we test its zero-shot performance: trained on a small dataset of 250 “Cézanne toys” with 1,500 demonstrations, our policy achieves a 67% success rate on 64 real-world YCB (Calli et al., 2015) objects, significantly outperforming larger, state-of-the-art models like OpenVLA-OFT (Kim et al., 2025) and π_0 -FAST (Black et al., 2024; Pertsch et al., 2025) that are pretrained on much more data. Second, detailed ablations confirm that the key to this success is the object-centric representation induced by our DetPool mechanism, which significantly outperforms standard pooling baselines. Furthermore, we conduct thorough scaling experiments, finding that the zero-shot generalization performance scales with both toy diversity and the number of demonstrations, with the latter being more critical. Finally, we show this generalization capability is robust across robot diverse embodiments, including simple grippers and dexterous hands.

2 RELATED WORK

Cognitive Approaches for Manipulation. Developmental psychology has long been studying how infants acquire manipulation skills through exploration and practice (Thelen et al., 1993; Schneiberg et al., 2002; Needham et al., 2002). Early works (Ruff, 1984; Rochat, 1989; Yoshida & Smith, 2008) show that infants gradually learn manipulation skills by focusing on increasingly diverse object features such as shape, texture, and weight. Rakison & Butterworth (1998) demonstrate that infants generalize their manipulation skills to unseen objects by applying learned actions with familiar parts to the novel objects. Motivated by this literature, we explore whether robotic manipulation can achieve a similar level of generalization to unseen objects.

Existing approaches have explored infant-inspired learning as a foundation for modeling objects (Farhadi et al., 2009), either through descriptive attributes (Cohen et al., 2019; Sun et al., 2013), explicit segmentation (Liu et al., 2024; Li et al., 2024a;b; Vahrenkamp et al., 2016; Aleotti & Caselli, 2011), or representing objects as 3D primitives (Tulsiani et al., 2016; Monnier et al., 2023; Lin et al., 2025). Our work builds on these ideas and explores whether generalized object representations can emerge from just a few primitives.

Generalization in Robotic Manipulation. Robotic manipulation models have shown capability of mastering various real-world tasks (Zhao et al., 2023; Fu et al., 2024; Barreiros et al., 2025).

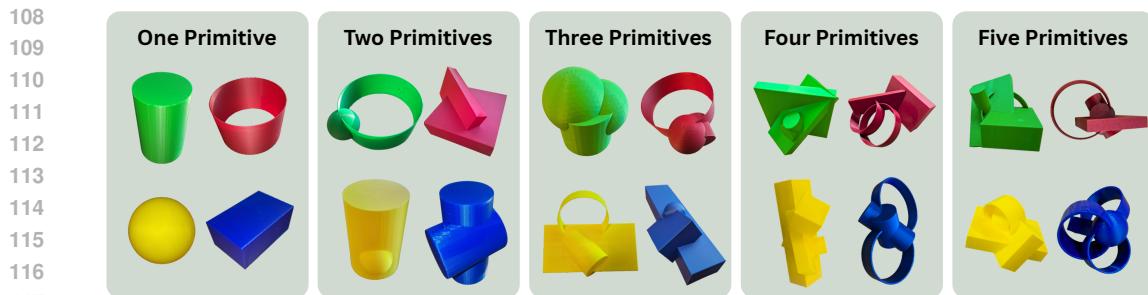


Figure 2: **Our Cézanne toys are composed of different number of primitives.** We generate each toy by randomly assembling 1-5 primitives and randomizing dimensions and colors.

However, they are often trained with a limited set of objects and environments and generalize poorly to new ones. One common approach to address this is through scaling up the training data (Brohan et al., 2022; Zitkovich et al., 2023; Intelligence et al., 2025; Eppner et al., 2021; Fang et al., 2020; Ye et al., 2025). In contrast, we show that strong generalization capabilities are still achievable even with training data of a couple of hours. Another line of works improves the generalizability of robotic model through heavy data augmentation (Hansen & Wang, 2021; Tobin et al., 2017; Sadeghi & Levine, 2016) while we achieve strong generalization without any augmentation. Other works improve the generalizability by learning better visual representations (Burns et al., 2023; Srirama et al., 2024). Compared to these approaches which usually require costly visual pretraining, we improve generalizability by obtaining object-centric visual representations via DetPool, which is light-weight and can be applied to any pretrained vision model.

Object-Centric Vision Models. Object-centric models are shown to improve performance and robustness in computer vision. Methods like Burgess et al. (2019); Engelcke et al. (2019); Locatello et al. (2020) learn object-centric representations from 2D images, typically for scene decomposition. Extending object-centric learning to the temporal domain, Herzog et al. (2021) introduce an object-region transformer that learns temporally coherent object-level features across video frames for tasks such as action recognition and dynamics prediction. Other approaches extend this idea into the 3D domain via world models (Ferraro et al., 2023; Jeong et al., 2025). Unlike these works, our approach focuses on the effect of object-centric representations on generalizable robotic manipulation.

When it comes to manipulation, a variety of object-centric grasping approaches have been explored (Chen et al., 2024; Zurbrügg et al., 2024; Mandikal & Grauman, 2020). Papers such as Devin et al. (2017) address generalizable robot learning through object-centric methods by using attention mechanisms. However, they only evaluate the generalization between similar objects and do not explore the limit of generalization between vastly different objects such as random toys and real objects. The most similar approach to ours is OTTER (Huang et al., 2025), which uses the vision-language attention map in CLIP to obtain object-centric visual representations. However, it is only limited to CLIP, while our method can be applied to any vision transformer.

3 A CÉZANNE TOY GRASPING DATASET

To evaluate the generalization capabilities of robotic grasping policies, we explore a challenging zero-shot setting: training policies exclusively on a set of out-of-distribution (OOD) objects and testing on common real-world objects. To this end, we develop a systematic approach for generating a diverse set of random, OOD objects. We draw inspiration from Cézanne’s classic idea that complex objects can be abstracted into compositions of simple shape primitives. We thus generate our training objects by randomly combining these primitives. This process efficiently creates a training set of “Cézanne toys” composed of random primitives, which ensures they are OOD, while still retaining structural properties that enable generalization. An overview of this process is presented in Figure 1. Next, we detail our primitives’ designs, the toy generation process, and the resulting grasping dataset.

Designing the Primitives. Inspired by prior literature (Marr & Nishihara, 1978; Tulsiani et al., 2016; Li et al., 2019), we choose four primitive types: spheres, cuboids, cylinders, and rings (See

162 the left column of Figure 2). The primitive’s scale is randomized within specific ranges. Cuboids
 163 range from 2–7.2 cm in width, 1–20 cm in height, and 2–28 cm in length; spheres range from 1–8
 164 cm in diameter; cylinders range from 4–7 cm in diameter and 4–12 cm in height; and rings range
 165 from 6–20 cm in diameter, 0.6–1.8 cm in wall thickness, and 2–6 cm in height.

166 **Generating Cézanne Toys.** We generate Cézanne toys by randomly combining the primitives. Fig-
 167 ure 2 illustrates some examples of the generated toys. We start by choosing a random number of
 168 primitives, ranging from 1 to 5. We then randomly choose the corresponding number of primitives
 169 from the four basic types and the dimensions of each instance are randomized. The sampled primi-
 170 tives are then sequentially assembled to form the final toy. Specifically, the first primitive is placed
 171 at the origin, and the centroid of each subsequent primitive is randomly positioned within a previous
 172 primitive. This ensures the primitives overlap and form a coherent structure rather than scattered
 173 components. Each primitive is also assigned a random 3D rotation. Finally, the toy is randomly
 174 assigned one of four colors: blue, red, green or yellow. By repeating this process, we generate a
 175 training set of 250 diverse toys, including 27 made of two primitives, 35 of three, 38 of four, and 47
 176 of five, as well as individual primitives such as 46 cuboids, 18 balls, 20 cylinders, and 19 rings. All
 177 toys are both simulated and 3D printed for grasping data collection.

178 **Collecting Grasping Data.** We collect toy grasping trajectories in both simulation and real. In
 179 simulation, we use ManiSkill (Tao et al., 2025) with a Franka arm and gripper; in the real world,
 180 we use the same Franka arm with a Robotiq gripper, as well as a Unitree H1-2 humanoid equipped
 181 with Inspire RH56DFTP hands. We collect all data via teleoperation, except for grasping individual
 182 primitives in simulation, which is performed using motion planning. During collection, we ensure
 183 a diverse set of grasping poses per object, since individual objects can be grasped in many different
 184 ways. We collect 2,500 trajectories in simulation, 1,500 on the real Franka, and 500 on the H1-2.

185 4 THE LEGO METHOD

186 To enable a policy trained on our “Cézanne toys” to generalize to real-world objects, we introduce
 187 a novel object-centric approach. Our method’s key distinction from full-scene architectures is its
 188 use of a detection pooling mechanism to obtain an object-centric visual representation, which we
 189 empirically show is the key to robust generalization. This section details our including preliminaries
 190 (Section 4.1), full architecture (Section 4.2), and the detection pooling method (Section 4.3).

191 4.1 PRELIMINARIES

192 **Robotic Tasks.** Robotic tasks can be represented as temporal sequences of observations and actions.
 193 The observations typically consist of visual observations $i_{1:T}$ and proprioceptive states $s_{1:T}$, where
 194 T is the episode length, $i_t \in \mathbb{R}^{N \times H \times W \times 3}$ denotes the images captured by N cameras at time step
 195 t , and $s_t \in \mathbb{R}^{d_s}$ is the proprioception (e.g., the joint positions) of the robot at step t . The actions
 196 $a_{1:T} \in \mathbb{R}^{d_a}$ represent how robot commands its joints (e.g., target joint positions) at step t .

197 **Policy Learning.** The objective is to learn a policy that maps a history of the past C steps—visual
 198 inputs $i_{t-C+1:t}$ and robot states $s_{t-C+1:t}$ —to a future action sequence of length K , in order to
 199 successfully complete the task: $\pi(i_{t-C+1:t}, s_{t-C+1:t}) \rightarrow a_{t:t+K-1}$.

200 4.2 ARCHITECTURE

201 Below, we describe the different components of our policy architecture as well as the training objec-
 202 tive. Figure 3 (a) illustrates the overall LEGO architecture.

203 **Vision Encoder.** Given the observations $i_{t-C+1:t}$ and $s_{t-C+1:t}$ from past C steps, our model uses
 204 a vision encoder to encode each set of visual observations i_t into visual embeddings $e_t^{1:N}$, where
 205 $e_t^n \in \mathbb{R}^{d_e}$ is the embedding of the n -th camera image at step t , and d_e is the hidden dimension of the
 206 vision encoder. We use a pretrained MVP (Xiao et al., 2022) as the vision encoder. These resulting
 207 features are then input into a transformer-based architecture for further processing.

208 **Transformer Policy.** We use a transformer-based architecture as our main policy network. It first
 209 concatenates the visual embeddings $e_t^{1:N}$ and the proprioception s_t along the channel dimension into
 210 a single token, and then projects it with an MLP. The transformer backbone then takes the projected

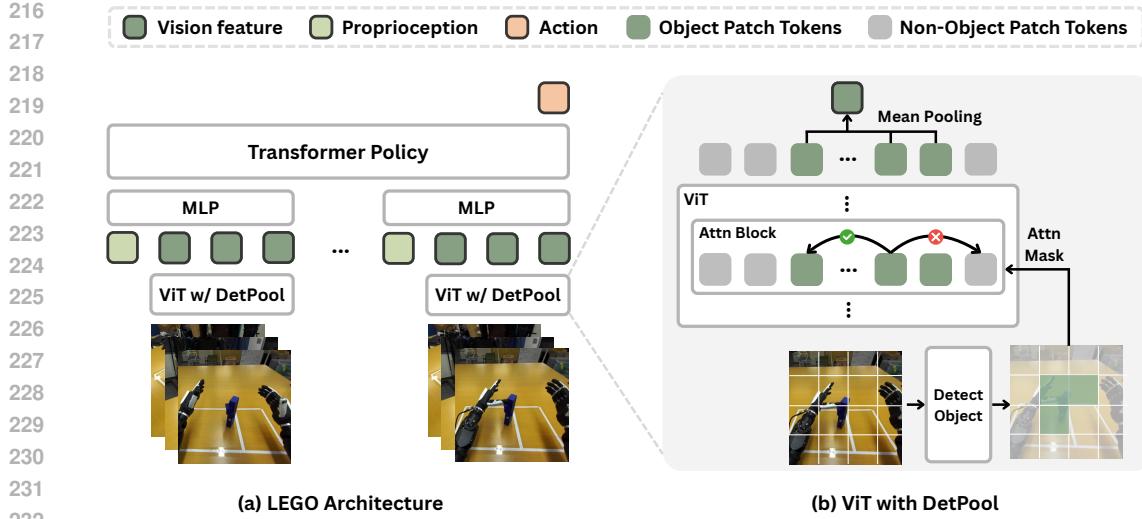


Figure 3: **The LEGO architecture with DetPool.** (a) LEGO uses a ViT with DetPool to extract features of the target object and uses a transformer to predict future actions based on the visual features and the proprioception. (b) The ViT extracts features that focus on the target object via DetPool which restrains the attention to the object patches using an attention mask and performs mean pooling on the output object patch tokens to get the final object-centric vision feature.

tokens from all past C steps and predicts the concatenated actions $a_{t:t+K-1}$ for the next K steps from the last token. The transformer is designed to have the same size as a ViT-B (Dosovitskiy et al., 2021) to get the best performance (see the ablation in Section 5.5).

Training Objective. Following the regular behavior cloning algorithm, the training loss is the mean ℓ_1 loss between the predicted actions $\hat{a}_{t:t+K-1}$ and the ground-truth actions $a_{t:t+K-1}$, i.e., $\mathcal{L} = \frac{1}{Kd_a} \|\hat{a}_{t:t+K-1} - a_{t:t+K-1}\|_1$.

To learn a policy that generalizes to novel objects, we design the vision encoder to be object-centric via detection pooling, which we introduce in the next section.

4.3 DETECTION POOLING

We design a detection pooling mechanism in the vision encoder such that the extracted visual feature is focused on the object to be grasped, as shown in Figure 3 (b). Specifically, we first obtain the object segmentation mask for each frame using SAM 2 (Ravi et al., 2024b). We then use the object mask to set the attention mask in the vision encoder such that there is no attention between object patch tokens and non-object patch tokens. In this way, we ensure that the object patch tokens only contain features from the object itself while ignoring features from non-object patch tokens. Note that this method still allows the vision encoder to understand where the object is in the scene due to the use of positional embeddings. At the end of the vision encoder, we obtain the object-centric visual feature by applying mean pooling on the object patch tokens, which is the final visual embedding we use for the policy model. We empirically find that DetPool is crucial for achieving strong zero-shot generalization compared to other pooling methods such as mean and attention pooling that do not restrict the attention mask within the ViT and only pool the final output tokens (Section 5.2).

5 EXPERIMENTS

We evaluate LEGO on the YCB object benchmark (Calli et al., 2015) using the ManiSkill simulator (Tao et al., 2025). For comparison, we include vision-language-action (VLA) models such as π_0 -FAST and OpenVLA-OFT, which aim to generalize through large-scale pretraining. We further analyze how performance scales with the number of unique toys and demonstrations. Beyond simulation, we test LEGO on two real-world setups: a 7-DoF Franka Emika Panda with a 1-DoF

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Table 1: **Results of zero-shot grasping in simulation.** We compare our model with state-of-the-art models (OpenVLA-OFT and π_0 -FAST) finetuned on our dataset in simulation, as well as different pooling baselines. Our model outperforms the finetuned baselines in simulation, with our DetPool proving key to generalization by boosting performance 22-48% over other pooling baselines.

Method	# Demos					
	250	500	1000	1500	2000	2500
OpenVLA-OFT (Kim et al., 2025)	30.10	36.35	22.31	15.38	14.71	12.79
π_0 -FAST (Black et al., 2024)	8.85	7.60	7.69	8.56	4.23	4.13
Ours - Attn Pooling	34.71	40.10	44.23	48.27	49.81	51.63
Ours - CLS Pooling	24.71	20.29	36.92	41.44	42.40	49.81
Ours - Mean Pooling	32.98	30.38	36.15	39.90	40.29	40.58
Ours - Det Pooling	56.63	68.17	71.15	74.62	76.83	80.00

Robotiq 2F-85 adaptive gripper, where evaluation is done on the YCB benchmark, and an Unitree H1-2 humanoid with Inspire dexterous hands, evaluated on a 13-object set of everyday items. We include demonstration videos in the supplementary materials that show our collected data and the corresponding evaluation settings.

5.1 IMPLEMENTATION DETAILS

Model and Training Setup. LEGO is implemented using PyTorch (Paszke et al., 2019). Its architecture consists of a ViT-L encoder from MVP (Xiao et al., 2022) for feature extraction and a ViT-Base transformer backbone. The policy is conditioned on a history of $C = 16$ timesteps to predict $K = 16$ future actions. For our DetPool mechanism, we use SAM 2 (Ravi et al., 2024a) to obtain object masks for real-world images and use ground-truth masks in simulation. The model is trained on eight NVIDIA A6000 GPUs and evaluated on a single A6000.

State and Action Parameterization. We parameterize the proprioceptive space using the joint angles of the robot arm used and a continuous gripper state (when applicable). This yields an 8-dimensional vector for the Franka setup, and a 40-dimensional vector for our H1-2 setup (which includes feedforward torques and finger joints). The model then conditions on state vectors from past timesteps and predicts action vectors for future timesteps, where state and action vectors are represented using absolute joint angles, rather than relative (delta) angles.

5.2 SIMULATION EVALUATION

Experimental Setup. Our training set contains 2,500 demonstrations, comprising 10 successful grasps for each of our 250 unique toys. To analyze scaling laws, all models are also trained on subsets of this data. For evaluation, we use a set of 65 graspable objects from the YCB benchmark, selecting only those feasibly graspable by the Franka robot; each object is tested 16 times on a predefined grid, and we report the mean success rate across all trials.

Baselines. We compare LEGO (86M parameters) against two significantly larger, state-of-the-art VLAs that rely on large-scale pretraining: π_0 -FAST (3B) (Black et al., 2024) and OpenVLA-OFT (7B) (Kim et al., 2025). Both models are fine-tuned on the same data as ours. To validate the contribution of our core DetPool mechanism, we also conduct ablation studies, replacing DetPool with standard alternatives like attention pooling, CLS pooling, and mean pooling.

Results. Our simulation results, summarized in Table 1, highlight the superior generalization and scalability of LEGO compared to baselines. While LEGO’s performance scales reliably with more data—achieving a top success rate of 80% with 2,500 demonstrations, the state-of-the-art VLA baselines falter. We find that π_0 -FAST is too data-hungry for the small dataset and struggles with a real-to-sim domain gap from its pretraining. Similarly, OpenVLA-OFT shows initial promise with 250–500 demonstrations but quickly overfits as more data is added, causing its performance to deteriorate. On the other hand, while attention pooling is the strongest baseline, it is still significantly outperformed by our DetPool mechanism. In contrast, DetPool enables robust and scalable generalization, underscoring the effectiveness of object-centric visual representation for generalizability.

Table 2: **Zero-shot grasping results on the real Franka robot.** We compare our model against ShapeGrasp, OpenVLA-OFT (finetuned), and state-of-the-art π_0 -FAST (zero-shot and finetuned). Our model achieves a 66.67% success rate, outperforming all baselines except finetuned π_0 -FAST.

Method	Pretraining	Tuned on Toys	# Parameters	# Demos
				1500
OpenVLA-OFT (Kim et al., 2025)	OXE	✓	7B	9.47
π_0 -FAST (Black et al., 2024)	π Dataset + 75K DROID	✗	3B	61.82
π_0 -FAST (Black et al., 2024)	π Dataset + 75K DROID	✓	3B	76.56
ShapeGrasp (Li et al., 2024b)	GPT4o	✗	-	26.56
Ours	✗	✓	86M	66.67

5.3 FRANKA ROBOT EVALUATION

Experimental Setup. For real-world experiments, we use a 7-DoF Franka Emika Panda arm with a Robotiq 2F-85 gripper, consistent with the DROID benchmark. We 3D-print the 250 toys with the highest simulated success rates in simulation and collect 1,500 successful grasp demonstrations. All models are then evaluated on a test set of 64 YCB objects. Following the simulation protocol, each object is tested 16 times on a predefined grid, and we report the mean success rate.

Baselines. We compare LEGO with strong baselines. π_0 -FAST (Black et al., 2024) is a state-of-the-art VLA model trained on in-domain data from the DROID setting as well as a large-scale robotics dataset. OpenVLA-OFT (Kim et al., 2025) is a 7B-parameter VLA model pretrained on the Open-X Embodiment (OXE) dataset (Collaboration et al., 2023). ShapeGrasp (Li et al., 2024b) is a training-free, LLM-based approach that uses pretrained language models to decompose objects geometrically before selecting a graspable part.

A common theme across these methods is reliance on large-scale pretraining: either extensive in-domain robot–object interaction data or internet-scale multimodal data (for ShapeGrasp). In contrast, LEGO is trained from scratch using only 2,500 demonstrations, yet achieves competitive performance despite being orders of magnitude smaller in both dataset size and model scale.

Results. As shown in Table 2, LEGO achieves the second-best performance among all models tested, highlighting the effectiveness of our approach. It outperforms OpenVLA-OFT, a large pre-trained VLA model; ShapeGrasp, which leverages internet-scale multimodal data via an LLM; and π_0 -FAST in its zero-shot setting, trained on 75K in-domain DROID grasping examples. This also demonstrates the strength of our object-centric representation, as LEGO attains superior performance using far less data and a smaller model architecture.

The finetuned version of π_0 -FAST achieves the best overall performance, which we hypothesize is because finetuning on additional demonstrations from our DROID setup allows it to utilize its pretrained knowledge and adapt to the specific lighting and physical environment, improving performance. In contrast, OpenVLA-OFT is less effective. We observed that minor inaccuracies frequently caused grasp failures, indicating difficulty in generalizing to novel objects and settings.

5.4 H1-2 DEXTEROUS HANDS EVALUATION

Experimental Setup. We also perform real-world experiments with the Unitree H1-2, a humanoid robot with 27 degrees of freedom (DoFs). Each 7-DoF arm is equipped with a 6-DoF Inspire RH56DFTP hand, which has 12 total joints. The 6 DoFs capture the independent motions of the thumb and fingers, while the 12 joints result from each DoF being implemented as a pair of mechanically linked joints driven by a single linear servo. This hand design mimics human-like dexterity more closely than traditional gripper end-effectors, making it well-suited for experiments requiring fine-grained grasping.

We evaluate our model and the baselines on 13 everyday objects using the left arm and hand. Each object is tested five times across a predefined grid, and each trial is scored in the same manner as in the Franka experiments.

378
 379
 380
 381
 382 Table 3: **Results on H1-2 humanoid robot.** We compare our model with state-of-the-art models
 383 (π_0 -Fast and OpenVLA-OFT) that are finetuned on our data. We show our model achieves superior
 384 performance without any pretraining on real objects.
 385
 386
 387
 388
 389
 390
 391

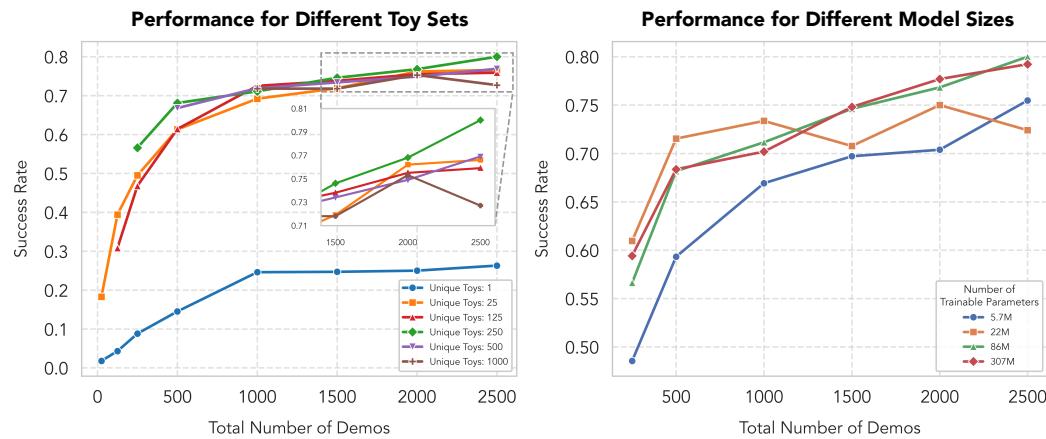
Method	Bell Pepper	Pink Cube	Baton Cookies	Solder Coil	Tomato	Pink Ribbed Ball	Piggles Stuffed Toy
OpenVLA-OFT	0	0	40	20	20	0	40
π_0 -FAST	20	20	0	20	20	20	40
Ours	60	40	60	40	60	60	60
	Mike Wazowski Stuffed Toy	Red Tape Dispenser	Red Solo Cup	Paper Towel Roll	Hand Sanitizer	Yo-Yo	Average
OpenVLA-OFT	60	0	0	60	0	0	18.46
π_0 -FAST	60	40	40	40	20	0	26.15
Ours	60	60	20	60	60	20	50.77

392
 393
 394 **Baselines.** We compare LEGO with OpenVLA-OFT and π_0 -FAST (see Section 5.3 for details).
 395
 396

397 **Results.** As shown in Table 3, LEGO achieves the highest success rate of 50.77% in a more chal-
 398 lengeing setting than the Franka DROID experiments, despite being trained from scratch with only
 399 500 demonstrations. In contrast, π_0 -FAST struggles due to limited demonstrations and the likely ab-
 400 sence of this embodiment in its pretraining data. OpenVLA-OFT also underperforms, having been
 401 pretrained on robot arm and gripper data without humanoid or dexterous-hand examples. These re-
 402 sults underscore LEGO’s data efficiency and the role of DetPool in enabling robust generalization.
 403

404 5.5 ABLATION STUDIES

405 We present our ablation studies below, conducted within the ManiSkill simulation environment,
 406 which offers a stable and reproducible setting for rigorously evaluating the impact of various factors.
 407



408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418 Figure 4: **Scaling studies.** **Left:** The zero-shot success rate scales with both the number of demos
 419 and the number of unique toys. We also find that once the number of demos is sufficient, 25 toys is
 420 already enough to achieve a robust zero-shot transfer. **Right:** The performances scales with the size
 421 of the policy transformer until it saturates at the size of 86M.
 422
 423
 424

425 **Effect of Number and Diversity of Demonstrations.** We perform an ablation study to examine
 426 how both the number of unique toys in the training set and the number of grasping demonstrations
 427 influence performance. Specifically, we construct six object sets containing 1, 25, 125, 250, 500,
 428 and 1000 unique toys, respectively. For each set, we collect 2,500 grasping demonstrations and train
 429 our model using varying numbers of demonstrations per set. The results, shown in the left panel
 430 of Figure 4, indicate that increasing the number of unique objects improves performance, but with
 431 diminishing returns. In contrast, the number of demonstrations has a stronger impact on learning
 432 generalizable grasping, a result consistent with findings from cognitive science literature.

432 **Effect of Model Size.** To investigate how the size of the policy’s transformer backbone affects
 433 performance, we conduct an ablation study. Using the 250-object set—which yields the best overall
 434 performance—we vary the transformer’s size and evaluate the policy across different numbers of
 435 demonstrations. The results, shown in the right panel of Figure 4, indicate that ViT-Base is the best
 436 overall choice: it matches or slightly surpasses ViT-Large in performance while being significantly
 437 smaller and thus allowing for faster inference.

438 **Importance of Individual Primitives.** To assess the relative importance of each of the four primitives,
 439 we conduct an ablation study in which the training set excludes toys containing a given primitive.
 440 For each case, the model is trained with varying numbers of demonstrations. The results,
 441 presented in Table 4, show that the sphere is the most critical primitive, as its exclusion results in the
 442 largest performance degradation. In contrast, the ring and cylinder appear to be less important, with
 443 a relatively small performance drop when they are omitted.

444 **Effect of Toy Complexity.** We perform an ablation study to measure the relationship between toy
 445 complexity, quantified by the number of constituent primitives, and model performance. The model
 446 is trained on demonstrations containing toys with 2-5 primitives. As shown in Table 5, toys with two
 447 primitives contribute the most to performance, while toys with five primitives are still beneficial but
 448 less influential. This is likely due to the evaluation set’s distribution of sizes, which contains more
 449 toys with two or three primitives; highly complex toys with five primitives are relatively rare.

450
 451 **Table 4: Ablation of primitive types.** We study
 452 the importance of each primitive type by remov-
 453 ing each one out of the primitive set.

455 Primitive 456 Removed	100	200	500	1000
457 Cuboid	37.88	56.35	65.38	72.12
458 Sphere	44.13	47.31	61.83	63.08
459 Ring	44.23	67.5	68.56	72.6
460 Cylinder	45.29	57.6	69.52	72.31

461
 462 **Table 5: Ablation of toy complexity.** We
 463 study the importance of each toy complexity
 464 level by training policies only on toys com-
 465 posed of a certain number of primitives.

466 Toy Complexity	25	125	250
467 Two Primitives	9.04	32.6	44.42
468 Three Primitives	7.31	15.77	23.17
469 Four Primitives	7.69	12.4	23.36
470 Five Primitives	4.32	10.87	10.19

6 CONCLUSION

471 In this work, we demonstrate that robots can acquire robust general-purpose grasping skills by learn-
 472 ing from a simple set of objects composed from just four basic shape primitives: spheres, cuboids,
 473 cylinders, and rings. We show that training on these toys enables a policy to generalize to a wide
 474 range of real-world objects. Our method learns an object-centric visual representation using a de-
 475 tection pooling and transformer architecture, and is trained on a dataset of 250 toys with 1,500
 476 demonstrations in the real Franka setting. This policy achieves a 67% zero-shot success rate on
 477 the YCB dataset, outperforming state-of-the-art models such as π_0 -FAST and OpenVLA-OFT de-
 478 spite them being trained on more diverse and larger datasets. Our findings on grasping scaling laws
 479 highlight how we can efficiently optimize performance with limited data. Ultimately, this work
 480 demonstrates a scalable path to robotic manipulation by showing that real-world grasping general-
 481 ization can emerge from learning on object composites of a few primitive shapes. We believe this
 482 work offers a promising path to scalable and generalizable learning in robotic manipulation.

7 LIMITATIONS AND FUTURE WORK

483 While we show that our method offers a promising path toward generalized grasping, it is important
 484 to acknowledge its limitations to guide future research. One key limitation is the diversity of the
 485 training domain: the model’s performance may degrade on objects with different physical properties.
 486 Furthermore, our current work focuses on simple, single-step grasping. Future work could extend
 487 this approach to complex, long-horizon tasks such as cloth folding and manipulation in dynamic
 488 scenes. Finally, the computational cost of the model’s architecture presents a challenge for real-
 489 world deployment on resource-constrained hardware, pointing toward a need for future optimization.

486 REFERENCES
487

488 Jacopo Aleotti and Stefano Caselli. Manipulation planning of similar objects by part correspon-
489 dence. *2011 15th International Conference on Advanced Robotics (ICAR)*, pp. 247–252, 2011.
490 URL <https://api.semanticscholar.org/CorpusID:18127179>.

491 Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau, Hongkai Dai, Ching-
492 Hsin Fang, Kuniyuki Hashimoto, Muhammad Zubair Irshad, Masha Itkina, et al. A care-
493 ful examination of large behavior models for multitask dexterous manipulation. *arXiv preprint*
494 *arXiv:2507.05331*, 2025.

495 Kevin Black, Mitsuhiro Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar, and
496 Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion models.
497 *arXiv preprint arXiv:2310.10639*, 2023.

498 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
499 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming
500 Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang
501 Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A
502 vision-language-action flow model for general robot control. *ArXiv*, abs/2410.24164, 2024. URL
503 <https://api.semanticscholar.org/CorpusID:273811174>.

504 James J. Bonaiuto and Michael A. Arbib. Learning to grasp and extract affordances: the integrated
505 learning of grasps and affordances (ilga) model. *Biological Cybernetics*, 109:639 – 669, 2015.
506 URL <https://api.semanticscholar.org/CorpusID:17366201>.

507 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
508 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
509 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

510 Christopher P. Burgess, Loïc Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matthew M.
511 Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and repre-
512 sentation. *ArXiv*, abs/1901.11390, 2019. URL <https://api.semanticscholar.org/CorpusID:59523721>.

513 Kaylee Burns, Zach Witzel, Jubayer Ibn Hamid, Tianhe Yu, Chelsea Finn, and Karol Hausman.
514 What makes pre-trained visual representations successful for robust manipulation? *arXiv preprint*
515 *arXiv:2312.12444*, 2023.

516 Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar.
517 The ycb object and model set: Towards common benchmarks for manipulation research. In *2015*
518 *international conference on advanced robotics (ICAR)*, pp. 510–517. IEEE, 2015.

519 Hanzhi Chen, Binbin Xu, and Stefan Leutenegger. Funcgrasp: Learning object-centric neural grasp
520 functions from single annotated example object. *2024 IEEE International Conference on Robotics*
521 *and Automation (ICRA)*, pp. 1900–1906, 2024. URL <https://api.semanticscholar.org/CorpusID:267547826>.

522 Yuanpei Chen, Yaodong Yang, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang,
523 Stephen Marcus McAleer, Yiran Geng, Hao Dong, Zongqing Lu, and Song-Chun Zhu. To-
524 wards human-level bimanual dexterous manipulation with reinforcement learning. *ArXiv*,
525 abs/2206.08686, 2022. URL <https://api.semanticscholar.org/CorpusID:249848184>.

526 Yuanpei Chen, Yiran Geng, Fangwei Zhong, Jiaming Ji, Jiechuan Jiang, Zongqing Lu, Hao Dong,
527 and Yaodong Yang. Bi-dexhands: Towards human-level bimanual dexterous manipulation. *IEEE*
528 *Transactions on Pattern Analysis and Machine Intelligence*, 46:2804–2818, 2023. URL <https://api.semanticscholar.org/CorpusID:265801841>.

529 Naomi Chukwurah, Abiodun Sunday Adebayo, and Olanrewaju Oluwaseun Ajayi. Sim-to-real
530 transfer in robotics: Addressing the gap between simulation and real-world performance. *Journal*
531 *of Frontiers in Multidisciplinary Research*, 2024. URL <https://api.semanticscholar.org/CorpusID:276984724>.

540 Vanya Cohen, Benjamin Burchfiel, Thao Nguyen, Nakul Gopalan, Stefanie Tellex, and George Dim-
 541 itri Konidaris. Grounding language attributes to objects using bayesian eigenobjects. *2019*
 542 *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 1187–1194,
 543 2019. URL <https://api.semanticscholar.org/CorpusID:170078764>.

544 Open X-Embodiment Collaboration, Abby O'Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
 545 dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
 546 Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
 547 atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
 548 Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
 549 Yavary, Arhan Jain, Ashwin Balakrishna, Ayaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
 550 Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
 551 Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
 552 Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
 553 Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov,
 554 Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,
 555 Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
 556 Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang,
 557 Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen,
 558 Hiroki Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch,
 559 Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyun Kim, Jaimyn Drake,
 560 Jan Peters, Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey
 561 Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu,
 562 Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey
 563 Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Jun-
 564 hyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana
 565 Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
 566 Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krish-
 567 nan Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent
 568 Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott,
 569 Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka,
 570 Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip,
 571 Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin
 572 Kim, Muhammad Zubair Irshad, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J
 573 Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier
 574 Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi, Patrick "Tree" Miller, Patrick Yin,
 575 Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel,
 576 Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto
 577 Mart'in-Mart'in, Rohan Baijal, Rosario Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan
 578 Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kir-
 579 mani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani,
 580 Shubham Tulsiani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon
 581 Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian
 582 Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchan-
 583 dani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas
 584 Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong, Trevor Dar-
 585 rell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vincent Vanhoucke, Vitor Guizilini, Wei Zhan,
 586 Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong Wang, Xinghao Zhu,
 587 Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao Lu, Yecheng Ja-
 588 son Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan
 589 Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue Cao,
 590 Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu
 591 Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang,
 592 Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X mod-
 593 els. <https://arxiv.org/abs/2310.08864>, 2023.

594 Coline Devin, P. Abbeel, Trevor Darrell, and Sergey Levine. Deep object-centric representations
 595 for generalizable robot learning. *2018 IEEE International Conference on Robotics and Au-
 596 tomation (ICRA)*, pp. 7111–7118, 2017. URL <https://api.semanticscholar.org/CorpusID:33758357>.

594 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 595 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 596 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 597 scale. *ICLR*, 2021.

598 Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
 599 scene inference and sampling with object-centric latent representations. *ArXiv*, abs/1907.13052,
 600 2019. URL <https://api.semanticscholar.org/CorpusID:198986015>.

602 Clemens Eppner, Arsalan Mousavian, and Dieter Fox. Acronym: A large-scale grasp dataset based
 603 on simulation. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp.
 604 6222–6227. IEEE, 2021.

605 Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. Grasnet-1billion: A large-scale bench-
 606 mark for general object grasping. In *Proceedings of the IEEE/CVF conference on computer vision
 607 and pattern recognition*, pp. 11444–11453, 2020.

609 Ali Farhadi, Ian Endres, Derek Hoiem, and David Alexander Forsyth. Describing objects by their
 610 attributes. *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1778–1785,
 611 2009. URL <https://api.semanticscholar.org/CorpusID:14940757>.

612 Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, and B. Dhoedt. Focus: Object-centric world
 613 models for robotics manipulation. *ArXiv*, abs/2307.02427, 2023. URL <https://api.semanticscholar.org/CorpusID:259342267>.

616 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
 617 with low-cost whole-body teleoperation. *arXiv preprint arXiv:2401.02117*, 2024.

618 Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data aug-
 619mentation. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp.
 620 13611–13617. IEEE, 2021.

622 Roei Herzig, Elad Ben-Avraham, Karttikeya Mangalam, Amir Bar, Gal Chechik, Anna Rohrbach,
 623 Trevor Darrell, and Amir Globerson. Object-region video transformers. *2022 IEEE/CVF Con-
 624ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3138–3149, 2021. URL
 625 <https://api.semanticscholar.org/CorpusID:238744000>.

626 Daniel Ho, Kanishka Rao, Zhuo Xu, Eric Jang, Mohi Khansari, and Yunfei Bai. Retinagan: An
 627 object-aware approach to sim-to-real transfer. *2021 IEEE International Conference on Robotics
 628 and Automation (ICRA)*, pp. 10920–10926, 2020. URL <https://api.semanticscholar.org/CorpusID:226278453>.

630 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 631 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
 632 arXiv:2106.09685*, 2021.

634 Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken Goldberg,
 635 and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual feature
 636 extraction. *arXiv preprint arXiv:2503.03734*, 2025.

637 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 638 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. $pi_0.5$: a vision-language-action
 639 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

640 Youngjoon Jeong, Junha Chun, Soonwoo Cha, and Taesup Kim. Object-centric world model
 641 for language-guided manipulation. *ArXiv*, abs/2503.06170, 2025. URL <https://api.semanticscholar.org/CorpusID:276903201>.

644 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 645 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
 646 lis, P Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Ye Ma, Patrick Tree Miller, Jimmy
 647 Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon Lee, Marius
 Memmel, Sung Yul Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black, Cheng

648 Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean-Pierre Mercat, Abdul Rehman, Pannag R.
649 Sanketi, Archit Sharma, C. Blake Simpson, Quang Uyen Vuong, Homer Rich Walke, Blake
650 Wulfe, Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Zhao, Christopher Agia, Ro-
651 han Baijal, Mateo Guaman Castro, Da Ling Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake,
652 Ethan Paul Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu,
653 Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy
654 Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail
655 O'Neill, Rosa Maria Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew Wang,
656 Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth,
657 Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J.
658 Lim, Jitendra Malik, Roberto Mart'in-Mart'in, Subramanian Ramamoorthy, Dorsa Sadigh, Shu-
659 ran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea
660 Finn. Droid: A large-scale in-the-wild robot manipulation dataset. *ArXiv*, abs/2403.12945, 2024.
661 URL <https://api.semanticscholar.org/CorpusID:268531351>.
662
663 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
664 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag R. Sanketi, Quan Vuong, Thomas Kollar,
665 Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
666 Openvla: An open-source vision-language-action model. *ArXiv*, abs/2406.09246, 2024. URL
667 <https://api.semanticscholar.org/CorpusID:270440391>.
668
669 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
670 mizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.
671
672 Vikash Kumar, Emanuel Todorov, and Sergey Levine. Optimal control with learned local models:
673 Application to dexterous manipulation. *2016 IEEE International Conference on Robotics and
674 Automation (ICRA)*, pp. 378–383, 2016. URL <https://api.semanticscholar.org/CorpusID:7586242>.
675
676 Haosheng Li, Weixin Mao, Weipeng Deng, Chenyu Meng, Rui Zhang, Fan Jia, Tiancai Wang,
677 Haoqiang Fan, Hongan Wang, and Xiaoming Deng. Seggrasp: Zero-shot task-oriented grasping
678 via semantic and geometric guided segmentation. *ArXiv*, abs/2410.08901, 2024a. URL <https://api.semanticscholar.org/CorpusID:273323195>.
679
680 Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas J Guibas. Supervised fitting
681 of geometric primitives to 3d point clouds. In *Proceedings of the IEEE/CVF Conference on
682 Computer Vision and Pattern Recognition*, pp. 2652–2660, 2019.
683
684 Samuel Li, Sarthak Bhagat, Joseph Campbell, Yaqi Xie, Woojun Kim, Katia P. Sycara, and Simon
685 Stepputtis. Shapegrasp: Zero-shot task-oriented grasping with large language models through
686 geometric decomposition. *2024 IEEE/RSJ International Conference on Intelligent Robots and
687 Systems (IROS)*, pp. 10527–10534, 2024b. URL <https://api.semanticscholar.org/CorpusID:268723780>.
688
689 Toru Lin, Kartik Sachdev, Linxi Fan, Jitendra Malik, and Yuke Zhu. Sim-to-real reinforcement learn-
690 ing for vision-based dexterous manipulation on humanoids. *arXiv preprint arXiv:2502.20396*,
691 2025.
692
693 Weiyu Liu, Jiayuan Mao, Joy Hsu, Tucker Hermans, Animesh Garg, and Jiajun Wu. Com-
694 posable part-based manipulation. *ArXiv*, abs/2405.05876, 2024. URL <https://api.semanticscholar.org/CorpusID:265154271>.
695
696 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
697 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot at-
698 tention. *ArXiv*, abs/2006.15055, 2020. URL <https://api.semanticscholar.org/CorpusID:220127924>.
699
700 Priyanka Mandikal and Kristen Grauman. Learning dexterous grasping with object-centric visual
701 affordances. *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 6169–
702 6176, 2020. URL <https://api.semanticscholar.org/CorpusID:233439776>.

702 David Marr and Herbert Keith Nishihara. Representation and recognition of the spatial organization
 703 of three-dimensional shapes. *Proceedings of the Royal Society of London. Series B. Biological
 704 Sciences*, 200(1140):269–294, 1978.

705

706 Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
 707 Long-horizon skill planning with diffusion models. In *Conference on Robot Learning*, 2023.
 708 URL <https://api.semanticscholar.org/CorpusID:261685884>.

709

710 Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A. Efros, and Mathieu Aubry. Differentiable
 711 blocks world: Qualitative 3d decomposition by rendering primitives. *ArXiv*, abs/2307.05473,
 712 2023. URL <https://api.semanticscholar.org/CorpusID:259766537>.

713

714 Amy Work Needham, Tracy M. Barrett, and Karen Peterman. A pick-me-up for infants' exploratory
 715 skills: Early simulated experiences reaching for objects using 'sticky mittens' enhances young
 716 infants' object exploration skills. *Infant Behavior & Development*, 25:279–295, 2002. URL
<https://api.semanticscholar.org/CorpusID:16427970>.

717

718 Erhan Oztop, Nina S. Bradley, and Michael A. Arbib. Infant grasp learning: a computa-
 719 tional model. *Experimental Brain Research*, 158:480–503, 2004. URL <https://api.semanticscholar.org/CorpusID:8738077>.

720

721 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 722 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 723 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

724

725 Karl Pertsch, Oleh Rybkin, Frederik Ebert, Chelsea Finn, Dinesh Jayaraman, and Sergey
 726 Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. *ArXiv*,
 727 abs/2006.13205, 2020. URL <https://api.semanticscholar.org/CorpusID:219981151>.

728

729 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 730 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 731 models. *arXiv preprint arXiv:2501.09747*, 2025.

732

733 Ricardo Garcia Pinel, Robin Strudel, Shizhe Chen, Etienne Arlaud, Ivan Laptev, and Cordelia
 734 Schmid. Robust visual sim-to-real transfer for robotic manipulation. *2023 IEEE/RSJ Inter-
 735 national Conference on Intelligent Robots and Systems (IROS)*, pp. 992–999, 2023. URL
<https://api.semanticscholar.org/CorpusID:260315942>.

736

737 Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
 738 Wang. Dexmv: Imitation learning for dexterous manipulation from human videos. In *Eu-
 739 ropean Conference on Computer Vision*, 2021. URL <https://api.semanticscholar.org/CorpusID:236986915>.

740

741 Ilija Radosavovic, Baifeng Shi, Letian Fu, Ken Goldberg, Trevor Darrell, and Jitendra Malik. Robot
 742 learning with sensorimotor pre-training. In *Conference on Robot Learning*, pp. 683–693. PMLR,
 743 2023.

744

745 David H. Rakison and George Butterworth. Infants' use of object parts in early categorization. *De-
 746 velopmental Psychology*, 34:49–62, 1998. URL <https://api.semanticscholar.org/CorpusID:210399125>.

748

749 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 750 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 751 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
 752 ichtenhofer. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*,
 753 2024a. URL <https://arxiv.org/abs/2408.00714>.

754

755 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 and videos. *arXiv preprint arXiv:2408.00714*, 2024b.

756 Philippe Rochat. Object manipulation and exploration in 2- to 5-month-old infants. *Developmental Psychology*, 25:871–884, 1989. URL <https://api.semanticscholar.org/CorpusID:197658959>.

757

758

759

760 Holly A. Ruff. Infants' manipulative exploration of objects: Effects of age and object characteristics. *Developmental Psychology*, 20:9–20, 1984. URL <https://api.semanticscholar.org/CorpusID:201316353>.

761

762

763 Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image. *arXiv preprint arXiv:1611.04201*, 2016.

764

765

766 Sheila Schneiberg, Heidi Sveistrup, Bradford J. McFadyen, P. Mckinley, and Mindy F. Levin. The development of coordination for reach-to-grasp movements in children. *Experimental Brain Research*, 146:142–154, 2002. URL <https://api.semanticscholar.org/CorpusID:15714879>.

767

768

769

770 Anthony Simeonov, Yilun Du, Beomjoon Kim, Francois Robert Hogan, Joshua B. Tenenbaum, Pulkit Agrawal, and Alberto Rodriguez. A long horizon planning framework for manipulating rigid pointcloud objects. In *Conference on Robot Learning*, 2020. URL <https://api.semanticscholar.org/CorpusID:226964745>.

771

772

773

774

775 Mohan Kumar Srirama, Sudeep Dasari, Shikhar Bahl, and Abhinav Gupta. Hrp: Human affordances for robotic pre-training. *arXiv preprint arXiv:2407.18911*, 2024.

776

777

778 Yuyin Sun, Liefeng Bo, and Dieter Fox. Attribute based object identification. *2013 IEEE International Conference on Robotics and Automation*, pp. 2096–2103, 2013. URL <https://api.semanticscholar.org/CorpusID:8413785>.

779

780

781 Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Arnav Gurha, Viswesh Nagaswamy Rajesh, Yong Woo Choi, Yen-Ru Chen, Zhiao Huang, Roberto Calandra, Rui Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation and rendering for generalizable embodied ai. *Robotics: Science and Systems*, 2025.

782

783

784

785

786 Esther Thelen, Daniela Corbetta, Kathi Kamm, John P. Spencer, Klaus Schneider, and Ronald F. Zernicke. The transition to reaching: mapping intention and intrinsic dynamics. *Child development*, 64 4:1058–98, 1993. URL <https://api.semanticscholar.org/CorpusID:7142337>.

787

788

789

790

791 Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In *2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)*, pp. 23–30. IEEE, 2017.

792

793

794

795 Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning shape abstractions by assembling volumetric primitives. *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1466–1474, 2016. URL <https://api.semanticscholar.org/CorpusID:2380406>.

796

797

798

799

800 Nikolaus Vahrenkamp, Leonard Westkamp, Natsuki Yamanobe, Eren Erdal Aksoy, and Tamim Asfour. Part-based grasp planning for familiar objects. *2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)*, pp. 919–925, 2016. URL <https://api.semanticscholar.org/CorpusID:12049991>.

801

802

803

804 Chen Wang, Haochen Shi, Weizhuo Wang, Ruohan Zhang, Fei-Fei Li, and Karen Liu. Dex-cap: Scalable and portable mocap data collection system for dexterous manipulation. *ArXiv*, abs/2403.07788, 2024. URL <https://api.semanticscholar.org/CorpusID:268363547>.

805

806

807

808

809 Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for motor control. *arXiv preprint arXiv:2203.06173*, 2022.

810 Jianglong Ye, Keyi Wang, Chengjing Yuan, Ruihan Yang, Yiquan Li, Jiyue Zhu, Yuzhe Qin, Xueyan
811 Zou, and Xiaolong Wang. Dex1b: Learning with 1b demonstrations for dexterous manipulation.
812 *arXiv preprint arXiv:2506.17198*, 2025.

813
814 Hanako Yoshida and Linda B. Smith. What's in view for toddlers? using a head camera to study
815 visual experience. *Infancy : the official journal of the International Society on Infant Studies*, 13 3:
816 229–248, 2008. URL <https://api.semanticscholar.org/CorpusID:18371897>.

817 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
818 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

819
820 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
821 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
822 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

823
824 René Zurbrügg, Yifan Liu, Francis Engelmann, Suryansh Kumar, Marco Hutter, Vaishakh Patil, and
825 Fisher Yu. Icgnet: A unified approach for instance-centric grasping. *2024 IEEE International
826 Conference on Robotics and Automation (ICRA)*, pp. 4140–4146, 2024. URL <https://api.semanticscholar.org/CorpusID:267034845>.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **A TOYS DESIGN**
865866 **A.1 REAL 3D TOYS DESIGN AND MANUFACTURING**
867868 **Primitive Design.** To design the toys, we wrote a Python script that uses the SAPIEN physics
869 engine to generate random dimensions for a set of primitives in the amount desired, such as a cuboid
870 and a cylinder for a two primitive toy. These primitives are assembled into a toy by placing them at
871 random offsets between them that ensure the primitives are still physically connected to each other.
872 Finally, we export the toy mesh into an STL file using the Trimesh library. We list out the dimension
873 ranges of the primitives in Table 6.874
875 Table 6: Dimension ranges for primitive shapes.
876

Shape	Diameter/Width (cm)	Height (cm)	Length (cm)
Cuboid	2–7.2	1–20	2–28
Sphere	1–8	N/A	N/A
Cylinder	4–7	4–12	N/A
Ring	6–20	2–6	0.6–1.8 (wall thickness)

883 **Toy Manufacturing.** We printed a total of 250 toys in PLA filament, in addition to multiple test
884 prints to validate the toy geometry and print quality. This was done using a fleet of eight Bambu
885 P1P printers over a span of four weeks, enabling a maximum throughput of 200 toys per week by
886 printing multiple toys on a single print bed (excluding FivePrimitive toys, whose size meant that
887 they took up the entire print bed and took significantly longer to print). The fleet was managed using
888 the Bambu Farm Manager platform.889 The biggest challenge with printing the toys was the delicate geometry of the rings. The original
890 designs had very thin ring walls that would snap during removal from the print bed. To compensate,
891 we redesigned the toys to have thicker ring walls to strengthen the print. In addition, the intersection
892 of shape primitives often resulted in large overhanging bodies, which required large amounts of tree
893 supports to be modelled and printed. Toys with larger primitive counts had significantly higher print
894 times due to their increased volume and complexity. Certain FivePrimitive toys had to be scaled
895 down in size by 20% to fit in the 256mm x 256mm x 256mm print volume.896 We have provided the full Bambu printer settings used for our prints for ease of reproducibility in
897 Tables 8, 9, 10, and 11. Any omitted settings are assumed to take the default value. Organizing
898 the toys into boxes and using a label printer to label them with their names is important for keeping
899 track of all the toys, such as if a reprint is needed.901 **B ADDITIONAL EXPERIMENTS**
902903
904 Table 7: **Effect of toy colors on zero-shot generalization.** We compare the zero-shot performance
905 of model trained on single-color toys with multi-color ones. Training on toys with multiple colors
906 boost performance by about 1%–4% although training on single-color toys still yields a strong gen-
907 eralization to real objects.

Toy Colors	250	500	1000	1500	2000	2500
Red	50.1	66.44	68.94	72.6	75.48	76.35
Red + Green + Blue + Yellow	56.63	68.17	71.15	74.62	76.82	80

913
914 **Effect of Color.** We measure the impact of toy color on performance by conducting an ablation
915 study comparing a policy trained on a set of only red toys to our original set where toys were
916 randomly assigned one of four colors (red, green, blue, yellow). As shown in Table 7, color diversity
917 improves performance. This is likely because exposure to toys with varying colors during training
helps the model learn more robust visual features so it can generalize better to real-world objects.

918 C REAL ROBOT HARDWARE CONFIGURATION
919920 C.1 FRANKA EMIKA PANDA
921

922 We deploy our policy on a Franka Panda Robot with 7 DoFs equipped with a Robotiq gripper and
923 a ZED 2i wrist camera. The 7 DoFs allow for precise and dexterous manipulation of the gripper to
924 grasp various types of objects from every part. Two additional ZED 2i cameras are positioned to the
925 left and right sides of the robot. Each camera provides an RGB stream at 720p and 30 FPS, without
926 depth information. The hardware configuration is shown in Figure 5.

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
Figure 5: Hardware Configuration for Franka Emika Panda with Robotiq Gripper.955 C.2 H1-2 HUMANOID WITH DEXTEROUS HANDS
956

957 We also deploy our policy to a Unitree H1-2 humanoid robot. The robot is equipped with two
958 Inspire RH56DFTP dexterous hands, each with 6 DoFs, 12 motors and a linear drive design with six
959 miniature linear servo drives and six pressure sensors integrated inside. Given these characteristics,
960 the hands are a good fit to emulate real dexterous operations by a human. The robot is also equipped
961 with a ZED 2i head camera mounted below the original head camera to improve the quality of the
962 egocentric data captured. Two ZED 2i cameras are positioned to the side of the robot, creating
963 a similar setup to the one used for the Franka arm. Each camera provides an RGB stream at 720p
964 resolution and 30 FPS, without depth information. The hardware configuration is shown in Figure 6.
965

966 D ROBOT DEMONSTRATIONS COLLECTION
967968 D.1 MANISKILL SIMULATION MOTION PLANNING
969

970 ManiSkill (Tao et al., 2025) is a simulation environment built on the SAPIEN framework. We
971 generated a dataset of demonstrations for a Franka arm grasping and lifting single primitive objects
using scripted planners.

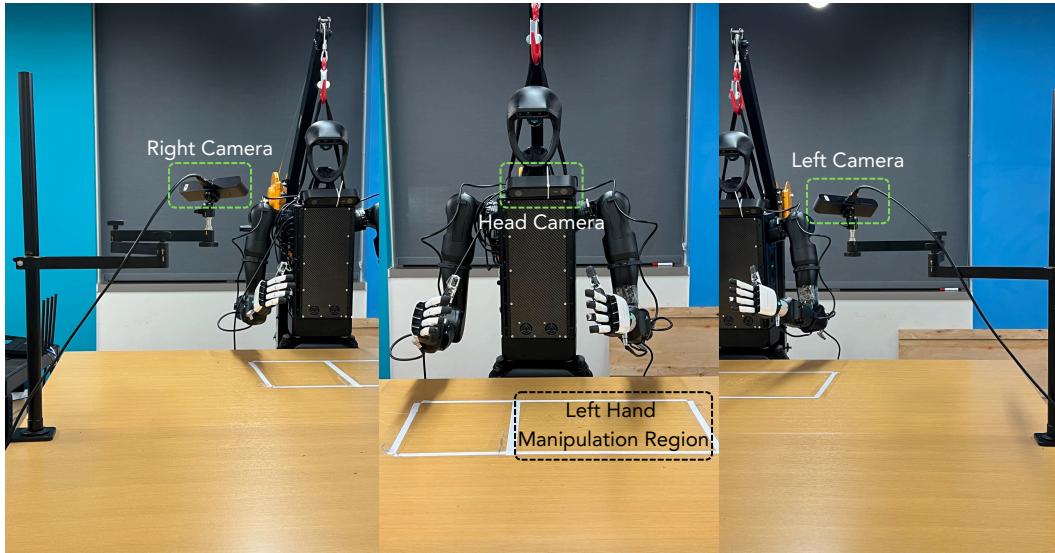


Figure 6: Hardware Configuration for H1-2 Humanoid with Inspire Dexterous Hands.

993 D.2 MANISKILL SIMULATION TELEOPERATION

994
 995 Using ManiSkill, we also designed a simulation environment to collect data via human teleopera-
 996 tion. The teleoperation data collection process was then standardized as follows: the arm was first
 997 positioned slightly above the target grasp pose, then moved down to the grasp position, its grip-
 998 per was closed to secure the object, and the object was then lifted upward. While it is possible
 999 to fully automate the data generation pipeline using grasping planners for more complex toys, we
 1000 encountered engineering challenges that ultimately led us to rely on teleoperation.

1001 D.3 FRANKA REAL ROBOT TELEOPERATION

1002 We teleoperated the Franka robot using a Meta Quest 3 headset, with only the right-hand controller
 1003 mapped to arm control. Each pick-up demonstration was executed in one smooth motion on a foam-
 1004 covered table to protect the objects. We recorded videos from the left and right ZED cameras as
 1005 well as the wrist camera, and additionally logged the robot’s proprioceptive states. We adopt the
 1006 Franka-DROID robot settings provided by the DROID dataset (Khazatsky et al., 2024).
 1007

1008 D.4 H1-2 WITH DEXTEROUS HANDS TELEOPERATION

1009 To collect real-world data for the H1-2 humanoid robot, we used a teleoperation setup with the
 1010 Apple Vision Pro (AVP) VR headset, built on Unitree’s XR Teleoperate platform. The headset
 1011 provides an RGB 2D view from the head camera, giving the operator a human-like perspective via
 1012 the Vuer visualization toolkit. Our tracking script controls both dexterous hands and monitors the
 1013 arms’ poses; however, due to hardware limitations, we restricted data collection to the left arm and
 1014 hand. Each recorded episode corresponds to a single toy-grasping demonstration.
 1015

1016 E DETPOOLING

1017 **Creating Attention Masks.** To pool visual features, we first extract the target object’s segmen-
 1018 tation mask from camera views. In the ManiSkill Franka simulation, ground truth object masks are directly
 1019 available and used to identify vision encoder patches overlapping with the object. For the real Franka
 1020 and H1-2 dexterous hand setups, we manually annotated 200 toy images with bounding boxes to
 1021 train a Faster R-CNN detector with a ResNet-101 backbone¹. The detector’s bounding boxes are
 1022

1023 ¹<https://github.com/facebookresearch/detectron2>

1026
1027

Table 8: Print Quality Settings

Setting	Value
Layer Height	0.3 mm
Initial Layer Height	0.3 mm
Line Width (All)	0.62 mm
Seam Position	Aligned
Smart Scarf Seam Application	On
Scarf Application Angle	155°
Scarf Steps	10
Scarf Joint for Inner Walls	On
Role-based Wipe Speed	On
Slice Gap Closing Radius	0.049 mm
Resolution	0.012 mm
Arc Fitting	On
Elephant Foot Comp.	0.15 mm
Ironing Type	No Ironing
Initial Layer Density	90%

1044
1045
1046

Table 10: Print Strength Settings

Setting	Value
Wall Generator	Classic
Order of Walls	Inner/Outer
Bridge Flow	1
Wall Loops	2
Top/Bottom Shell Pattern	Monotonic
Top Shell Layers	3
Top Shell Thickness	0.8 mm
Bottom Shell Layers	3
Bottom Shell Thickness	0 mm
Internal Infill Pattern	Rectilinear
Sparse Infill Density	10%
Sparse Infill Pattern	Triangles
Infill/Wall Overlap	15%
Infill Direction	45°
Ensure Vertical Shell	Enabled

1063

then used as input to SAM 2 to obtain segmentation masks, from which the attention masks are constructed in the same manner as in simulation.

1064
1065
1066

Pooling Visual Features. For detector-based pooling, we follow a standard vision processing pipeline. The image is first patchified and passed through Transformer blocks. From the final block, we obtain spatial feature maps, and then apply the attention mask obtained above to pool the corresponding spatial features, yielding the final pooled features. For the visual encoder, we adopt the off-the-shelf ViT-L MVP model, which was pre-trained with a masked autoencoder objective and has been demonstrated to be effective for robotic control in prior work (Radosavovic et al., 2023).

1073
1074
1075

F ROBOTIC POLICY TRAINING DETAILS

1076
1077
1078
1079

Observation. For the simulated Franka robot setting, we use three camera views as visual inputs: two fixed cameras mounted on the tabletop and one wrist-mounted camera. For the real Franka robot, the hardware configuration follows the standard DROID setup, with two tabletop-mounted cameras and one wrist-mounted camera. For LEGO policy training, we use only the two tabletop-mounted cameras as visual inputs.

Table 9: Print Speed Settings

Setting	Value
Initial Layer Speed	35 mm/s
Initial Layer Infill	55 mm/s
Outer Wall Speed	120 mm/s
Inner Wall Speed	150 mm/s
Top Surface Speed	150 mm/s
Sparse Infill Speed	100 mm/s
Travel Speed	500 mm/s
Normal Printing Accel.	10000 mm/s ²
Travel Acceleration	10000 mm/s ²
Initial Layer Travel Accel.	6000 mm/s ²
Initial Layer Accel.	500 mm/s ²
Inner Wall Accel.	0 mm/s ²
Outer Wall Accel.	5000 mm/s ²
Top Surface Accel.	2000 mm/s ²
Sparse Infill Accel	100%

Table 11: Print Support Settings

Setting	Value
Enable Support	On
Type	Tree(auto)
Style	Default
Threshold Angle	30°
Remove Small Overhangs	On
Raft Layers	0
Top Z Distance	0.2 mm
Bottom Z Distance	0.2 mm
Top Interface Layers	2
Top Interface Spacing	0.5 mm
Support/Object XY Distance	0.35 mm
Support/Object First Layer Gap	0.2 mm
Tree Support Branch Distance	5 mm
Tree Support Branch Diameter	2 mm
Tree Support Branch Angle	45°

1080
 1081 **Action Space.** The LEGO policy is conditioned on the previous and current states, represented by
 1082 the 7-DoF arm joint positions and the 1-DoF gripper state. The policy is trained to predict future
 1083 action chunks, consisting of joint poses and gripper states.

1084 **Training Details.** We adopt a learning rate of 5×10^{-4} with a weight decay of 0.01. Training is con-
 1085 ducted for 900 epochs with a 30-epoch warm-up and a global batch size of 512. In comparison to
 1086 foundation VLA models such as π_0 -FAST (Black et al., 2023) and OpenVLA-OFT (Kim et al.,
 1087 2024), our approach demonstrates substantially lower GPU memory requirements and achieves
 1088 faster convergence, highlighting the efficiency of the proposed architecture.

1089 G BASELINES IMPLEMENTATION DETAILS

1090 G.1 π_0 -FAST

1091 We adopt π_0 -FAST (Black et al., 2024) as a baseline for our simulated Franka, real-world Franka,
 1092 and real-world H1-2 Dexterous Hands experiments, following the official code and instructions ².

1093 **Simulated Franka Robot.** On the ManiSkill simulation platform, we fully finetuned the released
 1094 base autoregressive π_0 -FAST model on our simulated toy dataset. We use joint position control,
 1095 adapting the pretrained model to predict the absolute 7-DoF joint pose and 1-DoF gripper status. We
 1096 use left camera view and wrist camera view as visual inputs, and use “pick the toy” as the language
 1097 instruction. We follow the default learning rate in the original implementation and finetune the
 1098 model for 10K steps with a batch size of 32 for each setting reported in Table 1.

1099 **Real Franka Robot.** For the real-world Franka robot, we use the DROID setting. Instead of velocity
 1100 control, we adopt joint position control and finetune the released base autoregressive π_0 -FAST on
 1101 our teleoperated toy dataset. The pretrained model is adapted to predict the absolute 7-DoF joint
 1102 pose and 1-DoF gripper status. We use left camera view and wrist camera view as visual inputs, and
 1103 use “pick the toy” as the language instruction. Following the default learning rate, we train for 10K
 1104 steps under both the 500-demonstration and 1500-demonstration settings shown in Table 2.

1105 **Real H1-2 Robot with Dexterous Hands.** We also extend the setting to include humanoid arms
 1106 with dexterous hands. Specifically, we finetune the released base autoregressive π_0 -FAST on our
 1107 500-demonstration teleoperated toy dataset using delta joint control. We experiment with both ab-
 1108 solute joint control and delta joint control for the 7-DoF right arm, 6-DoF wrist torque, and 6-DoF
 1109 finger angles (totally a 20-dim action). We use left camera view and head camera view as visual
 1110 inputs, and use “pick the toy with dual arms” as the language instruction. Results show that delta
 1111 control outperforms absolute control.

1112 However, in this new embodiment-specific setting (compared with DROID setting, which the pre-
 1113 trianing covers it), we find that π_0 -FAST tends to overfit with limited data, likely due to its large
 1114 model size. To mitigate overfitting, we select an early checkpoint where the cross-entropy loss
 1115 reaches a reasonable value greater than 1 (but for DROID, it will not overfit even with a $1e - 2$ loss
 1116 probably since its pretrained on large amount of DROID data). For the reported results in this paper,
 1117 we follow the default learning rate and train for 1K steps using 500 demonstrations, as summarized
 1118 in Table 2.

1119 G.2 OPENVLA-OFT

1120 We use OpenVLA-OFT (Kim et al., 2025) as a baseline for both simulation and real-world experi-
 1121 ments, following the official implementation and finetuning instructions ³. We use LoRA (Hu et al.,
 1122 2021) finetuning with a rank of 32 for all experiments.

1123 **Simulated Franka Robot.** On the ManiSkill simulation platform, we use delta joint position control
 1124 and input images from the front, base, and wrist cameras. The model is trained with a batch size of
 1125 2 and an initial learning rate of 1.25e-4, decayed to 1.25e-5 after 100,000 steps. Training runs for a
 1126 total of 150,000 steps, with checkpoints at every 20,000 steps evaluated to select the best-performing
 1127 model for each experiment.

1128 ²<https://github.com/Physical-Intelligence/openpi>

1129 ³<https://github.com/moojink/openvla-of>

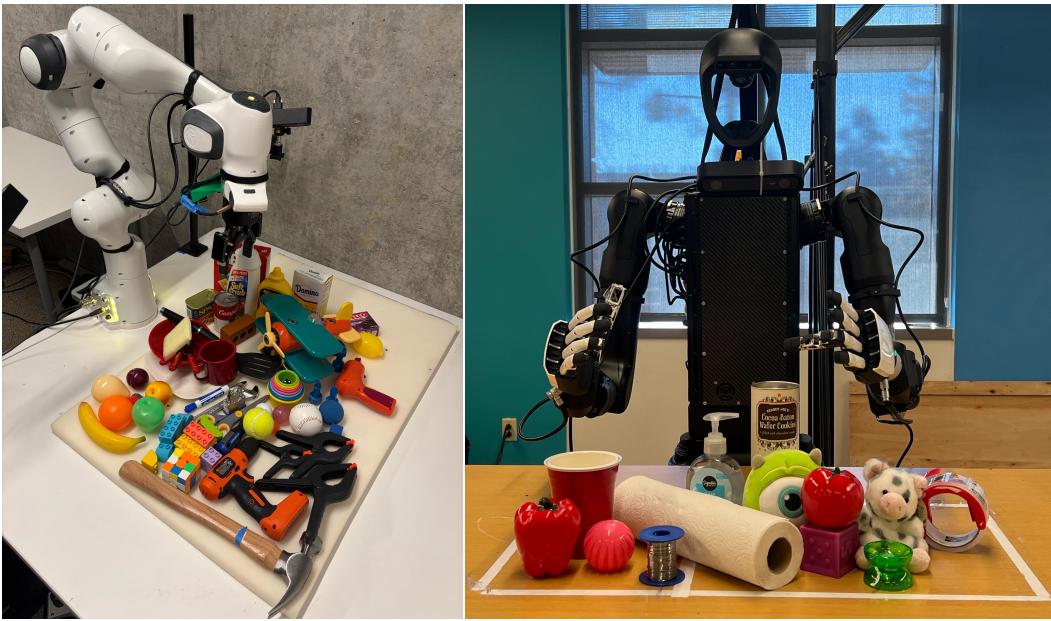


Figure 7: **Real-world Evaluation Settings.** We have DROID Franka setting with YCB dataset on the left and H1-2 robot with dexterous hands and 13 everyday objects.

Real Franka Robot. In the real Franka DROID setting, we use delta joint position control, consistent with the simulation experiments. The model receives images from the left, right, and wrist cameras. Training uses a batch size of 2 and an initial learning rate of 1.25e-4, decayed to 1.25e-5 after 100,000 steps, for a total of 150,000 steps. We used the last checkpoint for evaluation.

Real H1-2 Robot with Dexterous Hands. The model is conditioned on images from the left, right, and head cameras. It receives a 26-dimensional state vector—corresponding to 7 DoF per arm and 6 DoF per hand—and predicts a 40-dimensional output, which includes absolute joint targets for all joints as well as feedforward torques for both arms. Training uses a batch size of 2 and an initial learning rate of 1.25e-4, decayed to 1.25e-5 after 100,000 steps, for a total of 150,000 steps. We used the last checkpoint for evaluation.

G.3 SHAPEGRASP

We evaluate ShapeGrasp on our real Franka setup using the official implementation⁴. ShapeGrasp uses GPT-4o to identify a graspable part from a decomposition graph, where nodes represent object parts (modeled as convex shapes) and their spatial relationships. It outputs a pixel location along with a z -axis rotation for a top-down grasp. Using a calibrated Intel RealSense D435 camera, we project the pixel-level grasp prediction into 3D space. An executable grasp trajectory is then generated by interpolating between the robot’s current pose and the predicted grasp pose.

H EVALUATION DETAILS

For the simulated Franka robot, we use the default task environment “PickClutterYCB-v1” for evaluation, with details available in the official documentation. For the real-world experiments, we consider two settings, as shown in Figure 7. The left panel illustrates the standard DROID setup with the YCB dataset used for evaluation, while the right panel shows the H1-2 robot equipped with Inspired dexterous hands and the 13 everyday objects used for evaluation.

⁴<https://github.com/samwli/ShapeGrasp>

1188
1189

H.1 MANISKILL SIMULATION EVALUATION

1190
1191
1192
1193
1194
1195
1196
1197
1198

To evaluate policies in simulation, we defined a 0.15×0.15 m square workspace, subdivided into a 4×4 grid. The grid was constructed from the Cartesian product of the sets $\{-0.075, -0.025, 0.025, 0.075\}$ along both the x and y axes, resulting in 16 evenly spaced placements. For each trial, the object was placed at one grid location with its z -rotation initialized using a random seed. Each object was tested across all 16 placements, and success rates were averaged across objects and placements. A trial was considered successful (1) if the robot lifted the object above a height threshold of 0.3 m. For OpenVLA-OFT policies, we reduced the success threshold to 0.15 m, as the gripper would often prematurely open after grasping the object for these policies. Trials in which the object was not lifted above the threshold were marked unsuccessful (0).

1199
1200

H.2 FRANKA ROBOT EVALUATION

1201
1202
1203
1204
1205
1206

To evaluate our policy on the Franka Panda arm, we defined a 0.5×0.28 m rectangular workspace on the table, subdivided into a 4×4 grid. For each trial, the object was placed in one of the 16 grid cells, with its z -axis orientation randomized. We evaluated policies by testing each object across all 16 placements and averaged the results to compute the final success rate. A trial was considered successful (1) if the robot securely lifted the object above a height threshold of 0.2 m, and unsuccessful (0) otherwise.

1207

H.3 H1-2 HUMANOID DEXTEROUS HANDS EVALUATION

1208
1209
1210
1211
1212
1213
1214
1215
1216

To evaluate our policy on the H1-2, we defined a grasping workspace by taping off a 40 cm \times 36 cm rectangular zone on the table, positioned within the head-mounted ZED camera’s field of view and centered between the two Inspire hands. This rectangle was subdivided into six equally sized 3 in \times 3 in squares. For each object tested, we conducted five grasping trials, placing the object in a different square for each trial. Performance was scored as 1 if the robot successfully picked up the object and 0 otherwise. All trials were executed using the left arm and hand. During evaluation, we encountered technical issues with the Inspire hands—most notably unresponsive thumb joints on both sides—which limited the scope of humanoid grasping experiments we were able to carry out.

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241