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ABSTRACT

Robotic manipulation policies often struggle to generalize to novel objects, lim-
iting their real-world utility. In contrast, cognitive science suggests that children
develop generalizable dexterous manipulation skills by mastering a small set of
simple toys and then applying that knowledge to more complex items. Inspired by
this, we study if similar generalization capabilities can also be achieved by robots.
Our results indicate robots can learn generalizable grasping using randomly as-
sembled objects that are composed from just four shape primitives—spheres,
cuboids, cylinders, and rings. We show that training on these “toys” enables
robust generalization to real-world objects, yielding strong zero-shot perfor-
mance. Crucially, we find the key to this generalization is an object-centric visual
representation induced by our proposed detection pooling mechanism. Evalu-
ated in both simulation and on physical robots, our model achieves a 67% real-
world grasping success rate on the YCB dataset, outperforming state-of-the-art
approaches that rely on substantially more in-domain data. We further study how
zero-shot generalization performance scales by varying the number and diversity
of training toys and the demonstrations per toy. We believe this work offers a
promising path to scalable and generalizable learning in robotic manipulation.

1 INTRODUCTION

“Treat nature by means of the cylinder, the sphere, the cone, everything brought into proper perspective.”

PAUL CÉZANNE

Robotic manipulation policies have recently achieved impressive progress, solving complex tasks
in domains such as dexterous manipulation (Kumar et al., 2016; Chen et al., 2022; Wang et al.,
2024; Chen et al., 2023; Qin et al., 2021), robust sim-to-real transfer (Chukwurah et al., 2024; Pinel
et al., 2023; Ho et al., 2020), and long-horizon planning for multi-step tasks (Mishra et al., 2023;
Simeonov et al., 2020; Pertsch et al., 2020). Yet, a fundamental challenge remains: they often
fail to generalize their manipulation skills to novel objects, limiting their practical application. In
stark contrast, humans show astonishing generalization capabilities in dexterous manipulation. For
example, cognitive literature (Schneiberg et al., 2002; Oztop et al., 2004; Rochat, 1989; Thelen et al.,
1993; Needham et al., 2002; Ruff, 1984; Bonaiuto & Arbib, 2015) suggests that children can learn
to grasp by mastering only a small set of simple toys and then applying that skill to unseen complex
objects. This raises a central question: can robotic manipulation policies generalize similarly?

In this work, we demonstrate that robots can learn to grasp novel real-world objects when trained
only on randomly constructed toys. The design of these toys is inspired by a classic insight from
Cézanne: that complex objects can be deconstructed into a vocabulary of simple shape primitives.
Specifically, we construct our toys as random compositions of just four shape primitives: spheres,
cuboids, cylinders, and rings. These “Cézanne toys” preserve the structural essence of real objects
while remaining sufficiently out-of-distribution, providing a challenging yet principled testbed for
generalization. Trained on these random toys, our policy learns to grasp complex, unseen real-world
objects in a zero-shot manner. See Figure 1 for an overview.

The key to this generalization capability, as we empirically show, lies in the usage of object-centric
visual representations. Specifically, we introduce detection pooling (DetPool) to obtain an object-
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Select
 Random Primitives
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Zero-Shot Grasping with 67% Success
on Real-World YCB Objects
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3D Print 
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Figure 1: Our grasping policy, trained exclusively on random toy compositions (middle) built from
just four basic primitives (left), zero-shot generalizes to real-world objects (right) and achieves an
67% success rate on 64 objects from the YCB dataset.

centric visual representation. This method first uses a mask of the target object to constrain the
vision encoder’s attention to the object region, and then applies mean pooling on the output features
corresponding to the object patches. In this way, we ensure the final vision representation only
contains information about the object and not the background or other distractors. We find this
visual representation is the key to enable a grasping policy to generalize between the vastly different
objects in training and testing. We name our framework LEGO (LEarning to Grasp from tOys).

To evaluate our model’s generalization capabilities, we conduct a comprehensive experimental eval-
uation. First, we test its zero-shot performance: trained on a small dataset of 250 “Cézanne toys”
with 1,500 demonstrations, our policy achieves a 67% success rate on 64 real-world YCB (Calli
et al., 2015) objects, significantly outperforming larger, state-of-the-art models like OpenVLA-
OFT (Kim et al., 2025) and π0-FAST (Black et al., 2024; Pertsch et al., 2025) that are pretrained on
much more data. Second, detailed ablations confirm that the key to this success is the object-centric
representation induced by our DetPool mechanism, which significantly outperforms standard pool-
ing baselines. Furthermore, we conduct thorough scaling experiments, finding that the zero-shot
generalization performance scales with both toy diversity and the number of demonstrations, with
the latter being more critical. Finally, we show this generalization capability is robust across robot
diverse embodiments, including simple grippers and dexterous hands.

2 RELATED WORK

Cognitive Approaches for Manipulation. Developmental psychology has long been studying how
infants acquire manipulation skills through exploration and practice (Thelen et al., 1993; Schneiberg
et al., 2002; Needham et al., 2002). Early works (Ruff, 1984; Rochat, 1989; Yoshida & Smith, 2008)
show that infants gradually learn manipulation skills by focusing on increasingly diverse object
features such as shape, texture, and weight. Rakison & Butterworth (1998) demonstrate that infants
generalize their manipulation skills to unseen objects by applying learned actions with familiar parts
to the novel objects. Motivated by this literature, we explore whether robotic manipulation can
achieve a similar level of generalization to unseen objects.

Existing approaches have explored infant-inspired learning as a foundation for modeling ob-
jects (Farhadi et al., 2009), either through descriptive attributes (Cohen et al., 2019; Sun et al.,
2013), explicit segmentation (Liu et al., 2024; Li et al., 2024a;b; Vahrenkamp et al., 2016; Aleotti
& Caselli, 2011), or representing objects as 3D primitives (Tulsiani et al., 2016; Monnier et al.,
2023; Lin et al., 2025). Our work builds on these ideas and explores whether generalized object
representations can emerge from just a few primitives.

Generalization in Robotic Manipulation. Robotic manipulation models have shown capability
of mastering various real-world tasks (Zhao et al., 2023; Fu et al., 2024; Barreiros et al., 2025).
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One Primitive Two Primitives Five PrimitivesFour PrimitivesThree Primitives

Figure 2: Our Cézanne toys are composed of different number of primitives. We generate each
toy by randomly assembling 1-5 primitives and randomizing dimensions and colors.

However, they are often trained with a limited set of objects and environments and generalize poorly
to new ones. One common approach to address this is through scaling up the training data (Brohan
et al., 2022; Zitkovich et al., 2023; Intelligence et al., 2025; Eppner et al., 2021; Fang et al., 2020;
Ye et al., 2025). In contrast, we show that strong generalization capabilities are still achievable
even with training data of a couple of hours. Another line of works improves the generalizability of
robotic model through heavy data augmentation (Hansen & Wang, 2021; Tobin et al., 2017; Sadeghi
& Levine, 2016) while we achieve strong generalization without any augmentation. Other works
improve the generalizability by learning better visual representations (Burns et al., 2023; Srirama
et al., 2024). Compared to these approaches which usually require costly visual pretraining, we
improve generalizability by obtaining object-centric visual representations via DetPool, which is
light-weight and can be applied to any pretrained vision model.

Object-Centric Vision Models. Object-centric models are shown to improve performance and
robustness in computer vision. Methods like Burgess et al. (2019); Engelcke et al. (2019); Locatello
et al. (2020) learn object-centric representations from 2D images, typically for scene decomposition.
Extending object-centric learning to the temporal domain, Herzig et al. (2021) introduce an object-
region transformer that learns temporally coherent object-level features across video frames for tasks
such as action recognition and dynamics prediction. Other approaches extend this idea into the 3D
domain via world models (Ferraro et al., 2023; Jeong et al., 2025). Unlike these works, our approach
focuses on the effect of object-centric representations on generalizable robotic manipulation.

When it comes to manipulation, a variety of object-centric grasping approaches have been ex-
plored (Chen et al., 2024; Zurbrügg et al., 2024; Mandikal & Grauman, 2020). Papers such as Devin
et al. (2017) address generalizable robot learning through object-centric methods by using attention
mechanisms. However, they only evaluate the generalization between similar objects and do not
explore the limit of generalization between vastly different objects such as random toys and real
objects. The most similar approach to ours is OTTER (Huang et al., 2025), which uses the vision-
language attention map in CLIP to obtain object-centric visual representations. However, it is only
limited to CLIP, while our method can be applied to any vision transformer.

3 A CÉZANNE TOY GRASPING DATASET

To evaluate the generalization capabilities of robotic grasping policies, we explore a challenging
zero-shot setting: training policies exclusively on a set of out-of-distribution (OOD) objects and
testing on common real-world objects. To this end, we develop a systematic approach for gener-
ating a diverse set of random, OOD objects. We draw inspiration from Cézanne’s classic idea that
complex objects can be abstracted into compositions of simple shape primitives. We thus generate
our training objects by randomly combining these primitives. This process efficiently creates a train-
ing set of “Cézanne toys” composed of random primitives, which ensures they are OOD, while still
retaining structural properties that enable generalization. An overview of this process is presented
in Figure 1. Next, we detail our primitives’ designs, the toy generation process, and the resulting
grasping dataset.

Designing the Primitives. Inspired by prior literature (Marr & Nishihara, 1978; Tulsiani et al.,
2016; Li et al., 2019), we choose four primitive types: spheres, cuboids, cylinders, and rings (See
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the left column of Figure 2). The primitive’s scale is randomized within specific ranges. Cuboids
range from 2–7.2 cm in width, 1–20 cm in height, and 2–28 cm in length; spheres range from 1–8
cm in diameter; cylinders range from 4–7 cm in diameter and 4–12 cm in height; and rings range
from 6–20 cm in diameter, 0.6–1.8 cm in wall thickness, and 2–6 cm in height.

Generating Cézanne Toys. We generate Cézanne toys by randomly combining the primitives. Fig-
ure 2 illustrates some examples of the generated toys. We start by choosing a random number of
primitives, ranging from 1 to 5. We then randomly choose the corresponding number of primitives
from the four basic types and the dimensions of each instance are randomized. The sampled primi-
tives are then sequentially assembled to form the final toy. Specifically, the first primitive is placed
at the origin, and the centroid of each subsequent primitive is randomly positioned within a previous
primitive. This ensures the primitives overlap and form a coherent structure rather than scattered
components. Each primitive is also assigned a random 3D rotation. Finally, the toy is randomly
assigned one of four colors: blue, red, green or yellow. By repeating this process, we generate a
training set of 250 diverse toys, including 27 made of two primitives, 35 of three, 38 of four, and 47
of five, as well as individual primitives such as 46 cuboids, 18 balls, 20 cylinders, and 19 rings. All
toys are both simulated and 3D printed for grasping data collection.

Collecting Grasping Data. We collect toy grasping trajectories in both simulation and real. In
simulation, we use ManiSkill (Tao et al., 2025) with a Franka arm and gripper; in the real world,
we use the same Franka arm with a Robotiq gripper, as well as a Unitree H1-2 humanoid equipped
with Inspire RH56DFTP hands. We collect all data via teleoperation, except for grasping individual
primitives in simulation, which is performed using motion planning. During collection, we ensure
a diverse set of grasping poses per object, since individual objects can be grasped in many different
ways. We collect 2,500 trajectories in simulation, 1,500 on the real Franka, and 500 on the H1-2.

4 THE LEGO METHOD

To enable a policy trained on our “Cézanne toys” to generalize to real-world objects, we introduce
a novel object-centric approach. Our method’s key distinction from full-scene architectures is its
use of a detection pooling mechanism to obtain an object-centric visual representation, which we
empirically show is the key to robust generalization. This section details our including preliminaries
(Section 4.1), full architecture (Section 4.2), and the detection pooling method (Section 4.3).

4.1 PRELIMINARIES

Robotic Tasks. Robotic tasks can be represented as temporal sequences of observations and actions.
The observations typically consist of visual observations i1:T and proprioceptive states s1:T , where
T is the episode length, it ∈ RN×H×W×3 denotes the images captured by N cameras at time step
t, and st ∈ Rds is the proprioception (e.g., the joint positions) of the robot at step t. The actions
a1:T ∈ Rda represent how robot commands its joints (e.g., target joint positions) at step t.

Policy Learning. The objective is to learn a policy that maps a history of the past C steps—visual
inputs it−C+1:t and robot states st−C+1:t—to a future action sequence of length K, in order to
successfully complete the task: π(it−C+1:t, st−C+1:t) → at:t+K−1.

4.2 ARCHITECTURE

Below, we describe the different components of our policy architecture as well as the training objec-
tive. Figure 3 (a) illustrates the overall LEGO architecture.

Vision Encoder. Given the observations it−C+1:t and st−C+1:t from past C steps, our model uses
a vision encoder to encode each set of visual observations it into visual embeddings e1:Nt , where
ent ∈ Rde is the embedding of the n-th camera image at step t, and de is the hidden dimension of the
vision encoder. We use a pretrained MVP (Xiao et al., 2022) as the vision encoder. These resulting
features are then input into a transformer-based architecture for further processing.

Transformer Policy. We use a transformer-based architecture as our main policy network. It first
concatenates the visual embeddings e1:Nt and the proprioception st along the channel dimension into
a single token, and then projects it with an MLP. The transformer backbone then takes the projected

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ViT w/ DetPool

Transformer Policy

Detect
Object

...
ViT w/ DetPool

MLP MLP

...
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...
...ViT

Object Patch Tokens Non-Object Patch TokensProprioception Action

(a) LEGO Architecture (b) ViT with DetPool

...

Attn
Mask

Mean Pooling
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Figure 3: The LEGO architecture with DetPool. (a) LEGO uses a ViT with DetPool to extract
features of the target object and uses a transformer to predict future actions based on the visual
features and the proprioception. (b) The ViT extracts features that focus on the target object via
DetPool which restrains the attention to the object patches using an attention mask and performs
mean pooling on the output object patch tokens to get the final object-centric vision feature.

tokens from all past C steps and predicts the concatenated actions at:t+K−1 for the next K steps
from the last token. The transformer is designed to have the same size as a ViT-B (Dosovitskiy et al.,
2021) to get the best performance (see the ablation in Section 5.5).

Training Objective. Following the regular behavior cloning algorithm, the training loss is the
mean ℓ1 loss between the predicted actions ât:t+K−1 and the ground-truth actions at:t+K−1, i.e.,
L = 1

Kda
∥ât:t+K−1 − at:t+K−1∥1.

To learn a policy that generalizes to novel objects, we design the vision encoder to be object-centric
via detection pooling, which we introduce in the next section.

4.3 DETECTION POOLING

We design a detection pooling mechanism in the vision encoder such that the extracted visual fea-
ture is focused on the object to be grasped, as shown in Figure 3 (b). Specifically, we first obtain the
object segmentation mask for each frame using SAM 2 (Ravi et al., 2024b). We then use the object
mask to set the attention mask in the vision encoder such that there is no attention between object
patch tokens and non-object patch tokens. In this way, we ensure that the object patch tokens only
contain features from the object itself while ignoring features from non-object patch tokens. Note
that this method still allows the vision encoder to understand where the object is in the scene due
to the use of positional embeddings. At the end of the vision encoder, we obtain the object-centric
visual feature by applying mean pooling on the object patch tokens, which is the final visual embed-
ding we use for the policy model. We empirically find that DetPool is crucial for achieving strong
zero-shot generalization compared to other pooling methods such as mean and attention pooling that
do not restrict the attention mask within the ViT and only pool the final output tokens (Section 5.2).

5 EXPERIMENTS

We evaluate LEGO on the YCB object benchmark (Calli et al., 2015) using the ManiSkill simu-
lator (Tao et al., 2025). For comparison, we include vision-language-action (VLA) models such
as π0-FAST and OpenVLA-OFT, which aim to generalize through large-scale pretraining. We fur-
ther analyze how performance scales with the number of unique toys and demonstrations. Beyond
simulation, we test LEGO on two real-world setups: a 7-DoF Franka Emika Panda with a 1-DoF
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Table 1: Results of zero-shot grasping in simulation. We compare our model with state-of-the-art
models (OpenVLA-OFT and π0-FAST) finetuned on our dataset in simulation, as well as different
pooling baselines. Our model outperforms the finetuned baselines in simulation, with our DetPool
proving key to generalization by boosting performance 22-48% over other pooling baselines.

Method # Demos

250 500 1000 1500 2000 2500

OpenVLA-OFT (Kim et al., 2025) 30.10 36.35 22.31 15.38 14.71 12.79
π0-FAST (Black et al., 2024) 8.85 7.60 7.69 8.56 4.23 4.13
Ours - Attn Pooling 34.71 40.10 44.23 48.27 49.81 51.63
Ours - CLS Pooling 24.71 20.29 36.92 41.44 42.40 49.81
Ours - Mean Pooling 32.98 30.38 36.15 39.90 40.29 40.58
Ours - Det Pooling 56.63 68.17 71.15 74.62 76.83 80.00

Robotiq 2F-85 adaptive gripper, where evaluation is done on the YCB benchmark, and an Unitree
H1-2 humanoid with Inspire dexterous hands, evaluated on a 13-object set of everyday items. We
include demonstration videos in the supplementary materials that show our collected data and the
corresponding evaluation settings.

5.1 IMPLEMENTATION DETAILS

Model and Training Setup. LEGO is implemented using PyTorch (Paszke et al., 2019). Its ar-
chitecture consists of a ViT-L encoder from MVP (Xiao et al., 2022) for feature extraction and a
ViT-Base transformer backbone. The policy is conditioned on a history of C = 16 timesteps to
predict K = 16 future actions. For our DetPool mechanism, we use SAM 2 (Ravi et al., 2024a) to
obtain object masks for real-world images and use ground-truth masks in simulation. The model is
trained on eight NVIDIA A6000 GPUs and evaluated on a single A6000.

State and Action Parameterization. We parameterize the proprioceptive space using the joint
angles of the robot arm used and a continuous gripper state (when applicable). This yields an 8-
dimensional vector for the Franka setup, and a 40-dimensional vector for our H1-2 setup (which
includes feedforward torques and finger joints). The model then conditions on state vectors from
past timesteps and predicts action vectors for future timesteps, where state and action vectors are
represented using absolute joint angles, rather than relative (delta) angles.

5.2 SIMULATION EVALUATION

Experimental Setup. Our training set contains 2,500 demonstrations, comprising 10 successful
grasps for each of our 250 unique toys. To analyze scaling laws, all models are also trained on
subsets of this data. For evaluation, we use a set of 65 graspable objects from the YCB benchmark,
selecting only those feasibly graspable by the Franka robot; each object is tested 16 times on a
predefined grid, and we report the mean success rate across all trials.

Baselines. We compare LEGO (86M parameters) against two significantly larger, state-of-the-art
VLAs that rely on large-scale pretraining: π0-FAST (3B) (Black et al., 2024) and OpenVLA-OFT
(7B) (Kim et al., 2025). Both models are fine-tuned on the same data as ours. To validate the
contribution of our core DetPool mechanism, we also conduct ablation studies, replacing DetPool
with standard alternatives like attention pooling, CLS pooling, and mean pooling.

Results. Our simulation results, summarized in Table 1, highlight the superior generalization and
scalability of LEGO compared to baselines. While LEGO’s performance scales reliably with more
data—achieving a top success rate of 80% with 2,500 demonstrations, the state-of-the-art VLA
baselines falter. We find that π0-FAST is too data-hungry for the small dataset and struggles with a
real-to-sim domain gap from its pretraining. Similarly, OpenVLA-OFT shows initial promise with
250–500 demonstrations but quickly overfits as more data is added, causing its performance to de-
teriorate. On the other hand, while attention pooling is the strongest baseline, it is still significantly
outperformed by our DetPool mechanism. In contrast, DetPool enables robust and scalable general-
ization, underscoring the effectiveness of object-centric visual representation for generalizability.
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Table 2: Zero-shot grasping results on the real Franka robot. We compare our model against
ShapeGrasp, OpenVLA-OFT (finetuned), and state-of-the-art π0-FAST (zero-shot and finetuned).
Our model achieves a 66.67% success rate, outperforming all baselines except finetuned π0-FAST.

Method Pretraining Tuned on Toys # Parameters # Demos

1500

OpenVLA-OFT (Kim et al., 2025) OXE 7B 9.47
π0-FAST (Black et al., 2024) π Dataset + 75K DROID 3B 61.82
π0-FAST (Black et al., 2024) π Dataset + 75K DROID 3B 76.56
ShapeGrasp (Li et al., 2024b) GPT4o - 26.56
Ours 86M 66.67

5.3 FRANKA ROBOT EVALUATION

Experimental Setup. For real-world experiments, we use a 7-DoF Franka Emika Panda arm with a
Robotiq 2F-85 gripper, consistent with the DROID benchmark. We 3D-print the 250 toys with the
highest simulated success rates in simulation and collect 1,500 successful grasp demonstrations. All
models are then evaluated on a test set of 64 YCB objects. Following the simulation protocol, each
object is tested 16 times on a predefined grid, and we report the mean success rate.

Baselines. We compare LEGO with strong baselines. π0-FAST (Black et al., 2024) is a state-
of-the-art VLA model trained on in-domain data from the DROID setting as well as a large-scale
robotics dataset. OpenVLA-OFT (Kim et al., 2025) is a 7B-parameter VLA model pretrained on
the Open-X Embodiment (OXE) dataset (Collaboration et al., 2023). ShapeGrasp (Li et al., 2024b)
is a training-free, LLM-based approach that uses pretrained language models to decompose objects
geometrically before selecting a graspable part.

A common theme across these methods is reliance on large-scale pretraining: either extensive in-
domain robot–object interaction data or internet-scale multimodal data (for ShapeGrasp). In con-
trast, LEGO is trained from scratch using only 2,500 demonstrations, yet achieves competitive per-
formance despite being orders of magnitude smaller in both dataset size and model scale.

Results. As shown in Table 2, LEGO achieves the second-best performance among all models
tested, highlighting the effectiveness of our approach. It outperforms OpenVLA-OFT, a large pre-
trained VLA model; ShapeGrasp, which leverages internet-scale multimodal data via an LLM; and
π0-FAST in its zero-shot setting, trained on 75K in-domain DROID grasping examples. This also
demonstrates the strength of our object-centric representation, as LEGO attains superior perfor-
mance using far less data and a smaller model architecture.

The finetuned version of π0-FAST achieves the best overall performance, which we hypothesize
is because finetuning on additional demonstrations from our DROID setup allows it to utilize its
pretrained knowledge and adapt to the specific lighting and physical environment, improving per-
formance. In contrast, OpenVLA-OFT is less effective. We observed that minor inaccuracies fre-
quently caused grasp failures, indicating difficulty in generalizing to novel objects and settings.

5.4 H1-2 DEXTEROUS HANDS EVALUATION

Experimental Setup. We also perform real-world experiments with the Unitree H1-2, a humanoid
robot with 27 degrees of freedom (DoFs). Each 7-DoF arm is equipped with a 6-DoF Inspire
RH56DFTP hand, which has 12 total joints. The 6 DoFs capture the independent motions of the
thumb and fingers, while the 12 joints result from each DoF being implemented as a pair of mechan-
ically linked joints driven by a single linear servo. This hand design mimics human-like dexterity
more closely than traditional gripper end-effectors, making it well-suited for experiments requiring
fine-grained grasping.

We evaluate our model and the baselines on 13 everyday objects using the left arm and hand. Each
object is tested five times across a predefined grid, and each trial is scored in the same manner as in
the Franka experiments.
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Table 3: Results on H1-2 humanoid robot. We compare our model with state-of-the-art models
(π0-Fast and OpenVLA-OFT) that are finetuned on our data. We show our model achieves superior
performance without any pretraining on real objects.

Method
Bell

Pepper
Pink
Cube

Baton
Cookies

Solder
Coil

Tomato
Pink

Ribbed Ball
Piggles

Stuffed Toy

OpenVLA-OFT 0 0 40 20 20 0 40
π0-FAST 20 20 0 20 20 20 40
Ours 60 40 60 40 60 60 60

Mike Wazowski
Stuffed Toy

Red
Tape Dispenser

Red
Solo Cup

Paper
Towel Roll

Hand
Sanitizer

Yo-Yo Average

OpenVLA-OFT 60 0 0 60 0 0 18.46
π0-FAST 60 40 40 40 20 0 26.15
Ours 60 60 20 60 60 20 50.77

Baselines. We compare LEGO with OpenVLA-OFT and π0-FAST (see Section 5.3 for details).

Results. As shown in Table 3, LEGO achieves the highest success rate of 50.77% in a more chal-
lenging setting than the Franka DROID experiments, despite being trained from scratch with only
500 demonstrations. In contrast, π0-FAST struggles due to limited demonstrations and the likely ab-
sence of this embodiment in its pretraining data. OpenVLA-OFT also underperforms, having been
pretrained on robot arm and gripper data without humanoid or dexterous-hand examples. These re-
sults underscore LEGO ’s data efficiency and the role of DetPool in enabling robust generalization.

5.5 ABLATION STUDIES

We present our ablation studies below, conducted within the ManiSkill simulation environment,
which offers a stable and reproducible setting for rigorously evaluating the impact of various factors.

Performance for Different Toy Sets Performance for Different Model Sizes

Figure 4: Scaling studies. Left: The zero-shot success rate scales with both the number of demos
and the number of unique toys. We also find that once the number of demos is sufficient, 25 toys is
already enough to achieve a robust zero-shot transfer. Right: The performances scales with the size
of the policy transformer until it saturates at the size of 86M.

Effect of Number and Diversity of Demonstrations. We perform an ablation study to examine
how both the number of unique toys in the training set and the number of grasping demonstrations
influence performance. Specifically, we construct six object sets containing 1, 25, 125, 250, 500,
and 1000 unique toys, respectively. For each set, we collect 2,500 grasping demonstrations and train
our model using varying numbers of demonstrations per set. The results, shown in the left panel
of Figure 4, indicate that increasing the number of unique objects improves performance, but with
diminishing returns. In contrast, the number of demonstrations has a stronger impact on learning
generalizable grasping, a result consistent with findings from cognitive science literature.
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Effect of Model Size. To investigate how the size of the policy’s transformer backbone affects
performance, we conduct an ablation study. Using the 250-object set—which yields the best overall
performance—we vary the transformer’s size and evaluate the policy across different numbers of
demonstrations. The results, shown in the right panel of Figure 4, indicate that ViT-Base is the best
overall choice: it matches or slightly surpasses ViT-Large in performance while being significantly
smaller and thus allowing for faster inference.

Importance of Individual Primitives. To assess the relative importance of each of the four primi-
tives, we conduct an ablation study in which the training set excludes toys containing a given prim-
itive. For each case, the model is trained with varying numbers of demonstrations. The results,
presented in Table 4, show that the sphere is the most critical primitive, as its exclusion results in the
largest performance degradation. In contrast, the ring and cylinder appear to be less important, with
a relatively small performance drop when they are omitted.

Effect of Toy Complexity. We perform an ablation study to measure the relationship between toy
complexity, quantified by the number of constituent primitives, and model performance. The model
is trained on demonstrations containing toys with 2-5 primitives. As shown in Table 5, toys with two
primitives contribute the most to performance, while toys with five primitives are still beneficial but
less influential. This is likely due to the evaluation set’s distribution of sizes, which contains more
toys with two or three primitives; highly complex toys with five primitives are relatively rare.

Table 4: Ablation of primitive types. We study
the importance of each primitive type by remov-
ing each one out of the primitive set.

Primitive
Removed

100 200 500 1000

Cuboid 37.88 56.35 65.38 72.12
Sphere 44.13 47.31 61.83 63.08
Ring 44.23 67.5 68.56 72.6
Cylinder 45.29 57.6 69.52 72.31

Table 5: Ablation of toy complexity. We
study the importance of each toy complexity
level by training polices only on toys com-
posed of a certain number of primitives.

Toy Complexity 25 125 250

Two Primitives 9.04 32.6 44.42
Three Primitives 7.31 15.77 23.17
Four Primitives 7.69 12.4 23.36
Five Primitives 4.32 10.87 10.19

6 CONCLUSION

In this work, we demonstrate that robots can acquire robust general-purpose grasping skills by learn-
ing from a simple set of objects composed from just four basic shape primitives: spheres, cuboids,
cylinders, and rings. We show that training on these toys enables a policy to generalize to a wide
range of real-world objects. Our method learns an object-centric visual representation using a de-
tection pooling and transformer architecture, and is trained on a dataset of 250 toys with 1,500
demonstrations in the real Franka setting. This policy achieves a 67% zero-shot success rate on
the YCB dataset, outperforming state-of-the-art models such as π0-FAST and OpenVLA-OFT de-
spite them being trained on more diverse and larger datasets. Our findings on grasping scaling laws
highlight how we can efficiently optimize performance with limited data. Ultimately, this work
demonstrates a scalable path to robotic manipulation by showing that real-world grasping general-
ization can emerge from learning on object composites of a few primitive shapes. We believe this
work offers a promising path to scalable and generalizable learning in robotic manipulation.

7 LIMITATIONS AND FUTURE WORK

While we show that our method offers a promising path toward generalized grasping, it is important
to acknowledge its limitations to guide future research. One key limitation is the diversity of the
training domain: the model’s performance may degrade on objects with different physical properties.
Furthermore, our current work focuses on simple, single-step grasping. Future work could extend
this approach to complex, long-horizon tasks such as cloth folding and manipulation in dynamic
scenes. Finally, the computational cost of the model’s architecture presents a challenge for real-
world deployment on resource-constrained hardware, pointing toward a need for future optimization.
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A TOYS DESIGN

A.1 REAL 3D TOYS DESIGN AND MANUFACTURING

Primitive Design. To design the toys, we wrote a Python script that uses the SAPIEN physics
engine to generate random dimensions for a set of primitives in the amount desired, such as a cuboid
and a cylinder for a two primitive toy. These primitives are assembled into a toy by placing them at
random offsets between them that ensure the primitives are still physically connected to each other.
Finally, we export the toy mesh into an STL file using the Trimesh library. We list out the dimension
ranges of the primitives in Table 6.

Table 6: Dimension ranges for primitive shapes.

Shape Diameter/Width (cm) Height (cm) Length (cm)
Cuboid 2–7.2 1–20 2–28
Sphere 1–8 N/A N/A
Cylinder 4–7 4–12 N/A
Ring 6–20 2–6 0.6–1.8 (wall thickness)

Toy Manufacturing. We printed a total of 250 toys in PLA filament, in addition to multiple test
prints to validate the toy geometry and print quality. This was done using a fleet of eight Bambu
P1P printers over a span of four weeks, enabling a maximum throughput of 200 toys per week by
printing multiple toys on a single print bed (excluding FivePrimitive toys, whose size meant that
they took up the entire print bed and took significantly longer to print). The fleet was managed using
the Bambu Farm Manager platform.

The biggest challenge with printing the toys was the delicate geometry of the rings. The original
designs had very thin ring walls that would snap during removal from the print bed. To compensate,
we redesigned the toys to have thicker ring walls to strengthen the print. In addition, the intersection
of shape primitives often resulted in large overhanging bodies, which required large amounts of tree
supports to be modelled and printed. Toys with larger primitive counts had significantly higher print
times due to their increased volume and complexity. Certain FivePrimitive toys had to be scaled
down in size by 20% to fit in the 256mm x 256mm x 256mm print volume.

We have provided the full Bambu printer settings used for our prints for ease of reproducibility in
Tables 8, 9, 10, and 11. Any omitted settings are assumed to take the default value. Organizing
the toys into boxes and using a label printer to label them with their names is important for keeping
track of all the toys, such as if a reprint is needed.

B ADDITIONAL EXPERIMENTS

Table 7: Effect of toy colors on zero-shot generalization. We compare the zero-shot performance
of model trained on single-color toys with multi-color ones. Training on toys with multiple colors
boost performance by about 1%-4% although training on single-color toys still yields a strong gen-
eralization to real objects.

Toy Colors 250 500 1000 1500 2000 2500

Red 50.1 66.44 68.94 72.6 75.48 76.35
Red + Green + Blue + Yellow 56.63 68.17 71.15 74.62 76.82 80

Effect of Color. We measure the impact of toy color on performance by conducting an ablation
study comparing a policy trained on a set of only red toys to our original set where toys were
randomly assigned one of four colors (red, green, blue, yellow). As shown in Table 7, color diversity
improves performance. This is likely because exposure to toys with varying colors during training
helps the model learn more robust visual features so it can generalize better to real-world objects.
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C REAL ROBOT HARDWARE CONFIGURATION

C.1 FRANKA EMIKA PANDA

We deploy our policy on a Franka Panda Robot with 7 DoFs equipped with a RobotiQ gripper and
a ZED 2i wrist camera. The 7 DoFs allow for precise and dexterous manipulation of the gripper to
grasp various types of objects from every part. Two additional ZED 2i cameras are positioned to the
left and right sides of the robot. Each camera provides an RGB stream at 720p and 30 FPS, without
depth information. The hardware configuration is shown in Figure 5.

Left Camera Right Camera

Wrist Camera

Manipulation
Region

Figure 5: Hardware Configuration for Franka Emika Panda with Robotiq Gripper.

C.2 H1-2 HUMANOID WITH DEXTEROUS HANDS

We also deploy our policy to a Unitree H1-2 humanoid robot. The robot is equipped with two
Inspire RH56DFTP dexterous hands, each with 6 DoFs, 12 motors and a linear drive design with six
miniature linear servo drives and six pressure sensors integrated inside. Given these characteristics,
the hands are a good fit to emulate real dexterous operations by a human. The robot is also equipped
with a ZED 2i head camera mounted below the original head camera to improve the quality of the
egocentric data captured. Two ZED 2i cameras are positioned to the side of the robot, creating
a similar setup to the one used for the Franka arm. Each camera provides an RGB stream at 720p
resolution and 30 FPS, without depth information. The hardware configuration is shown in Figure 6.

D ROBOT DEMONSTRATIONS COLLECTION

D.1 MANISKILL SIMULATION MOTION PLANNING

ManiSkill (Tao et al., 2025) is a simulation environment built on the SAPIEN framework. We
generated a dataset of demonstrations for a Franka arm grasping and lifting single primitive objects
using scripted planners.
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Head Camera

Left CameraRight Camera

Left Hand 
Manipulation Region

Figure 6: Hardware Configuration for H1-2 Humanoid with Inspire Dexterous Hands.

D.2 MANISKILL SIMULATION TELEOPERATION

Using ManiSkill, we also designed a simulation environment to collect data via human teleopera-
tion. The teleoperation data collection process was then standardized as follows: the arm was first
positioned slightly above the target grasp pose, then moved down to the grasp position, its grip-
per was closed to secure the object, and the object was then lifted upward. While it is possible
to fully automate the data generation pipeline using grasping planners for more complex toys, we
encountered engineering challenges that ultimately led us to rely on teleoperation.

D.3 FRANKA REAL ROBOT TELEOPERATION

We teleoperated the Franka robot using a Meta Quest 3 headset, with only the right-hand controller
mapped to arm control. Each pick-up demonstration was executed in one smooth motion on a foam-
covered table to protect the objects. We recorded videos from the left and right ZED cameras as
well as the wrist camera, and additionally logged the robot’s proprioceptive states. We adopt the
Franka-DROID robot settings provided by the DROID dataset (Khazatsky et al., 2024).

D.4 H1-2 WITH DEXTEROUS HANDS TELEOPERATION

To collect real-world data for the H1-2 humanoid robot, we used a teleoperation setup with the
Apple Vision Pro (AVP) VR headset, built on Unitree’s XR Teleoperate platform. The headset
provides an RGB 2D view from the head camera, giving the operator a human-like perspective via
the Vuer visualization toolkit. Our tracking script controls both dexterous hands and monitors the
arms’ poses; however, due to hardware limitations, we restricted data collection to the left arm and
hand. Each recorded episode corresponds to a single toy-grasping demonstration.

E DETPOOLING

Creating Attention Masks. To pool visual features, we first extract the target object’s segmentation
mask from camera views. In the ManiSkill Franka simulation, ground truth object masks are directly
available and used to identify vision encoder patches overlapping with the object. For the real Franka
and H1-2 dexterous hand setups, we manually annotated 200 toy images with bounding boxes to
train a Faster R-CNN detector with a ResNet-101 backbone 1 . The detector’s bounding boxes are

1https://github.com/facebookresearch/detectron2
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Table 8: Print Quality Settings

Setting Value
Layer Height 0.3 mm
Initial Layer Height 0.3 mm
Line Width (All) 0.62 mm
Seam Position Aligned
Smart Scarf Seam Application On
Scarf Application Angle 155◦
Scarf Steps 10
Scarf Joint for Inner Walls On
Role-based Wipe Speed On
Slice Gap Closing Radius 0.049 mm
Resolution 0.012 mm
Arc Fitting On
Elephant Foot Comp. 0.15 mm
Ironing Type No Ironing
Initial Layer Density 90%

Table 9: Print Speed Settings

Setting Value
Initial Layer Speed 35 mm/s
Initial Layer Infill 55 mm/s
Outer Wall Speed 120 mm/s
Inner Wall Speed 150 mm/s
Top Surface Speed 150 mm/s
Sparse Infill Speed 100 mm/s
Travel Speed 500 mm/s
Normal Printing Accel. 10000 mm/s2

Travel Acceleration 10000 mm/s2

Initial Layer Travel Accel. 6000 mm/s2

Initial Layer Accel. 500 mm/s2

Inner Wall Accel. 0 mm/s2

Outer Wall Accel. 5000 mm/s2

Top Surface Accel. 2000 mm/s2
Sparse Infill Accel 100%

Table 10: Print Strength Settings

Setting Value
Wall Generator Classic
Order of Walls Inner/Outer
Bridge Flow 1
Wall Loops 2
Top/Bottom Shell Pattern Monotonic
Top Shell Layers 3
Top Shell Thickness 0.8 mm
Bottom Shell Layers 3
Bottom Shell Thickness 0 mm
Internal Infill Pattern Rectilinear
Sparse Infill Density 10%
Sparse Infill Pattern Triangles
Infill/Wall Overlap 15%
Infill Direction 45◦
Ensure Vertical Shell Enabled

Table 11: Print Support Settings

Setting Value
Enable Support On
Type Tree(auto)
Style Default
Threshold Angle 30◦
Remove Small Overhangs On
Raft Layers 0
Top Z Distance 0.2 mm
Bottom Z Distance 0.2 mm
Top Interface Layers 2
Top Interface Spacing 0.5 mm
Support/Object XY Distance 0.35 mm
Support/Object First Layer Gap 0.2 mm
Tree Support Branch Distance 5 mm
Tree Support Branch Diameter 2 mm
Tree Support Branch Angle 45◦

then used as input to SAM 2 to obtain segmentation masks, from which the attention masks are
constructed in the same manner as in simulation.

Pooling Visual Features. For detector-based pooling, we follow a standard vision processing
pipeline. The image is first patchified and passed through Transformer blocks. From the final block,
we obtain spatial feature maps, and then apply the attention mask obtained above to pool the cor-
responding spatial features, yielding the final pooled features. For the visual encoder, we adopt the
off-the-shelf ViT-L MVP model, which was pre-trained with a masked autoencoder objective and
has been demonstrated to be effective for robotic control in prior work (Radosavovic et al., 2023).

F ROBOTIC POLICY TRAINING DETAILS

Observation. For the simulated Franka robot setting, we use three camera views as visual inputs:
two fixed cameras mounted on the tabletop and one wrist-mounted camera. For the real Franka
robot, the hardware configuration follows the standard DROID setup, with two tabletop-mounted
cameras and one wrist-mounted camera. For LEGO policy training, we use only the two tabletop-
mounted cameras as visual inputs.
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Action Space. The LEGO policy is conditioned on the previous and current states, represented by
the 7-DoF arm joint positions and the 1-DoF gripper state. The policy is trained to predict future
action chunks, consisting of joint poses and gripper states.

Training Details. We adopt a learning rate of 5×10−4 with a weight decay of 0.01. Training is con-
ducted for 900 epochs with a 30-epoch warm-up and a global batch size of 512. In comparison to
foundation VLA models such as π0-FAST (Black et al., 2023) and OpenVLA-OFT (Kim et al.,
2024), our approach demonstrates substantially lower GPU memory requirements and achieves
faster convergence, highlighting the efficiency of the proposed architecture.

G BASELINES IMPLEMENTATION DETAILS

G.1 π0-FAST

We adopt π0-FAST (Black et al., 2024) as a baseline for our simulated Franka, real-world Franka,
and real-world H1-2 Dexterous Hands experiments, following the official code and instructions 2 .

Simulated Franka Robot. On the ManiSkill simulation platform, we fully finetuned the released
base autoregressive π0-FAST model on our simulated toy dataset. We use joint position control,
adapting the pretrained model to predict the absolute 7-DoF joint pose and 1-DoF gripper status. We
use left camera view and wrist camera view as visual inputs, and use “pick the toy” as the language
instruction. We follow the default learning rate in the original implementation and finetune the
model for 10K steps with a batch size of 32 for each setting reported in Table 1.

Real Franka Robot. For the real-world Franka robot, we use the DROID setting. Instead of velocity
control, we adopt joint position control and finetune the released base autoregressive π0-FAST on
our teleoperated toy dataset. The pretrained model is adapted to predict the absolute 7-DoF joint
pose and 1-DoF gripper status. We use left camera view and wrist camera view as visual inputs, and
use “pick the toy” as the language instruction. Following the default learning rate, we train for 10K
steps under both the 500-demonstration and 1500-demonstration settings shown in Table 2.

Real H1-2 Robot with Dexterous Hands. We also extend the setting to include humanoid arms
with dexterous hands. Specifically, we finetune the released base autoregressive π0-FAST on our
500-demonstration teleoperated toy dataset using delta joint control. We experiment with both ab-
solute joint control and delta joint control for the 7-DoF right arm, 6-DoF wrist torque, and 6-DoF
finger angles (totally a 20-dim action). We use left camera view and head camera view as visual
inputs, and use “pick the toy with dual arms” as the language instruction. Results show that delta
control outperforms absolute control.

However, in this new embodiment-specific setting (compared with DROID setting, which the pre-
trianing covers it), we find that π0-FAST tends to overfit with limited data, likely due to its large
model size. To mitigate overfitting, we select an early checkpoint where the cross-entropy loss
reaches a reasonable value greater than 1 (but for DROID, it will not overfit even with a 1e− 2 loss
probably since its pretrained on large amount of DROID data). For the reported results in this paper,
we follow the default learning rate and train for 1K steps using 500 demonstrations, as summarized
in Table 2.

G.2 OPENVLA-OFT

We use OpenVLA-OFT (Kim et al., 2025) as a baseline for both simulation and real-world experi-
ments, following the official implementation and finetuning instructions 3. We use LoRA (Hu et al.,
2021) finetuning with a rank of 32 for all experiments.

Simulated Franka Robot. On the ManiSkill simulation platform, we use delta joint position control
and input images from the front, base, and wrist cameras. The model is trained with a batch size of
2 and an initial learning rate of 1.25e-4, decayed to 1.25e-5 after 100,000 steps. Training runs for a
total of 150,000 steps, with checkpoints at every 20,000 steps evaluated to select the best-performing
model for each experiment.

2https://github.com/Physical-Intelligence/openpi
3https://github.com/moojink/openvla-oft

21

https://github.com/Physical-Intelligence/openpi
https://github.com/moojink/openvla-oft


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 7: Real-world Evaluation Settings. We have DROID Franka setting with YCB dataset on
the left and H1-2 robot with dexterous hands and 13 everyday objects.

Real Franka Robot. In the real Franka DROID setting, we use delta joint position control, con-
sistent with the simulation experiments. The model receives images from the left, right, and wrist
cameras. Training uses a batch size of 2 and an initial learning rate of 1.25e-4, decayed to 1.25e-5
after 100,000 steps, for a total of 150,000 steps. We used the last checkpoint for evaluation.

Real H1-2 Robot with Dexterous Hands. The model is conditioned on images from the left, right,
and head cameras. It receives a 26-dimensional state vector—corresponding to 7 DoF per arm and
6 DoF per hand—and predicts a 40-dimensional output, which includes absolute joint targets for all
joints as well as feedforward torques for both arms. Training uses a batch size of 2 and an initial
learning rate of 1.25e-4, decayed to 1.25e-5 after 100,000 steps, for a total of 150,000 steps. We
used the last checkpoint for evaluation.

G.3 SHAPEGRASP

We evaluate ShapeGrasp on our real Franka setup using the official implementation4 . ShapeGrasp
uses GPT-4o to identify a graspable part from a decomposition graph, where nodes represent ob-
ject parts (modeled as convex shapes) and their spatial relationships. It outputs a pixel location
along with a z-axis rotation for a top-down grasp. Using a calibrated Intel RealSense D435 camera,
we project the pixel-level grasp prediction into 3D space. An executable grasp trajectory is then
generated by interpolating between the robot’s current pose and the predicted grasp pose.

H EVALUATION DETAILS

For the simulated Franka robot, we use the default task environment “PickClutterYCB-v1” for eval-
uation, with details available in the official documentation. For the real-world experiments, we
consider two settings, as shown in Figure 7. The left panel illustrates the standard DROID setup
with the YCB dataset used for evaluation, while the right panel shows the H1-2 robot equipped with
Inspired dexterous hands and the 13 everyday objects used for evaluation.

4https://github.com/samwli/ShapeGrasp
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H.1 MANISKILL SIMULATION EVALUATION

To evaluate policies in simulation, we defined a 0.15 × 0.15 m square workspace, subdi-
vided into a 4 × 4 grid. The grid was constructed from the Cartesian product of the sets
{−0.075,−0.025, 0.025, 0.075} along both the x and y axes, resulting in 16 evenly spaced place-
ments. For each trial, the object was placed at one grid location with its z-rotation initialized using
a random seed. Each object was tested across all 16 placements, and success rates were averaged
across objects and placements. A trial was considered successful (1) if the robot lifted the object
above a height threshold of 0.3 m. For OpenVLA-OFT policies, we reduced the success threshold
to 0.15 m, as the gripper would often prematurely open after grasping the object for these policies.
Trials in which the object was not lifted above the threshold were marked unsuccessful (0).

H.2 FRANKA ROBOT EVALUATION

To evaluate our policy on the Franka Panda arm, we defined a 0.5 × 0.28 m rectangular workspace
on the table, subdivided into a 4 × 4 grid. For each trial, the object was placed in one of the 16
grid cells, with its z-axis orientation randomized. We evaluated policies by testing each object
across all 16 placements and averaged the results to compute the final success rate. A trial was
considered successful (1) if the robot securely lifted the object above a height threshold of 0.2 m,
and unsuccessful (0) otherwise.

H.3 H1-2 HUMANOID DEXTEROUS HANDS EVALUATION

To evaluate our policy on the H1-2, we defined a grasping workspace by taping off a 40 cm ×
36 cm rectangular zone on the table, positioned within the head-mounted ZED camera’s field of
view and centered between the two Inspire hands. This rectangle was subdivided into six equally
sized 3 in×3 in squares. For each object tested, we conducted five grasping trials, placing the object
in a different square for each trial. Performance was scored as 1 if the robot successfully picked up
the object and 0 otherwise. All trials were executed using the left arm and hand. During evaluation,
we encountered technical issues with the Inspire hands—most notably unresponsive thumb joints on
both sides—which limited the scope of humanoid grasping experiments we were able to carry out.
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