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Abstract

Visual token reduction lowers inference costs caused by
extensive image features in large vision-language models
(LVLMs). Unlike relevant studies that prune tokens in
self-attention-only LVLMs, our work uniquely addresses
cross-attention-based models, which achieve superior per-
formance. We identify that the key-value (KV) cache size for
image tokens in cross-attention layers significantly exceeds
that of text tokens in self-attention layers, posing a major
compute bottleneck. To mitigate this issue, we exploit the
sparse nature in cross-attention maps to selectively prune
redundant visual features. Our Trimmed Llama effectively
reduces KV cache demands without requiring additional
training. By benefiting from 50%-reduced visual features,
our model can reduce inference latency and memory usage
while achieving benchmark parity.

1. Introduction
Large Vision Language Models (LVLMs), such as LLaVA
[18], commonly utilize self-attention-only architectures in
their large language models (LLMs). These models pro-
cess visual inputs as sequences of hundreds or thousands
of tokens [6, 15] alongside textual prompts (see Figure
1(a)). However, their computational complexity grows
quadratically with input length, limiting deployment in high-
resolution or feature-rich environments.

In contrast, cross-attention-based architectures, exempli-
fied by Flamingo [1], integrate visual features into LLMs as
key-value (KV) pairs in text-visual attention computations
(see Figure 1(b)). This design achieves linear computational
scaling for image processing, enabling efficient processing
of visual inputs. Recent advancements, such as Llama-3.2-
Vision [9, 20], demonstrate their capability, positioning them
as robust alternatives to self-attention-only models.
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Figure 1. Comparison of LVLM architectures. (a) Self-attention-
only models process both image and text embeddings in all atten-
tion layers. (b) Cross-attention-based models use image features
exclusively for KV operations in cross-attention layers, enabling
efficient multimodal integration.

Enhancing LVLM efficiency involves optimizing vision
token computations by exploiting the characteristics of
causal self-attention [5, 11, 12, 19, 26]. However, the study
of efficient text-visual cross-attention mechanisms has not
been thoroughly investigated.

In this work, we uncover the sparsity in cross-attention
maps of LVLMs, revealing a consistent layer-wise pattern
where the majority of visual features are selected in earlier
layers, with minimal variation in subsequent layers. With
these insights, we propose a novel method named Trimmed
Llama that leverages the sparsity and inter-layer resem-
blance of cross-attention patterns to trim out redundant im-
age features during inference (see Figure 2). Our approach is
training-free and can achieve a minimal performance trade-
off while reducing KV cache budget and computation cost,
resulting in efficient inference. Our contributions are sum-
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Figure 2. Proposed method. Image features are pruned in the
first cross-attention block using a criterion derived from attention
weights. The features serve as inputs for the keys and values in
subsequent cross-attention layers, with the compressed keys and
values stored in the KV cache (blue-shaded area).

(language token length = 512)
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Figure 3. KV cache memory. (a) As batch size increases, the KV
cache volume from image features grows. (b) As the language token
count grows, the KV cache size in cross-attention still dominates
that of self-attention, up to a certain number of tokens.

marized as follows.
◦ Discovery of sparsity in cross-attention: Unlike prior

work solely focusing on self-attention-only LVLMs, we
target recent cross-attention-based models. We iden-
tify that visual attention mechanisms in different cross-
attention layers exhibit a shared sparse pattern.

◦ Novel visual token pruning method: Based on the ob-
served sparsity, we leverage head-wise attention scores
to filter out unimportant visual features, thereby reducing
KV cache overhead.

◦ Solid empirical validation: We test our approach across
diverse benchmarks, ranging from vision-based multiple-
choice questions to image grounded open-ended genera-
tion task, achieving performance on par with the original
model while utilizing only 50% of the image features.

2. Cross-attention Redundancy
2.1. Motivation: Heavy Computation from Cross-

Attention KV Cache
Benefit of Cross-Attention Layers in LVLMs. Higher
image resolutions generally improve model performance

[7, 17, 27] but result in more image tokens. This poses
a computational challenge for self-attention-only models
[8, 18, 21], whose complexity grows quadratically with to-
ken count. Cross-attention architectures [1, 20], by contrast,
mitigate these issues by limiting the handling of image to-
kens to specific layers, avoiding quadratic scaling.

KV Cache of Cross-Attention Layers. Though cross-
attention layers in LVLMs improve efficiency, their KV
caches are still heavy. For Llama-3.2-11B-Vision-Instruct
[20] as our baseline, visual token length ranges from 1,601
tokens (e.g., 384×384 resolution) to 6,404 tokens (e.g., 720p,
1080p). Figure 3(a) shows that the KV cache memory in
cross-attention layers grows significantly with batch size.
Figure 3(b) shows that the KV cache size from image fea-
tures in cross-attention layers surpasses that from text fea-
tures in self-attention layers, up to a certain number of lan-
guage tokens. Moreover, the cross-attention KV cache re-
mains constant regardless of generation steps. This analysis
emphasizes the cross-attention KV cache as a key bottleneck
in model inference.

2.2. Insights from Structured and Sparse Cross-
Attention Patterns

To investigate the processing of image tokens within the
model, we analyze the attention patterns across multiple lay-
ers of the cross-attention mechanism. For a 384×384 image
as the input of Llama-3.2-11B-Vision-Instruct, we aggregate
the attention weights by summing them along two key dimen-
sions, head-wise and query-wise. In Figure 4a, we observe
that certain image tokens consistently attract attention from
query tokens. This suggests that the model is selectively
focusing on a relatively small subset of image features while
ignoring others, indicating a potential mechanism for feature
selection during cross-modal processing.

Figure 4b depicts the attention patterns across different
cross-attention layers, which reveal two distinct phenom-
ena. First, a vertically structured attention pattern is evident
within each layer, signifying that attention weights are con-
sistently allocated to the same indices, regardless of the
specific language query. This behavior suggests the potential
to identify globally salient indices. Second, there is an inter-
layer consistency in attention patterns; the distribution of
attention remains remarkably stable across successive layers.
This lack of substantial variation implies that the model’s
cross-attention mechanism might converge to a fixed pattern
early, with minimal variation afterward. These findings con-
tribute to our understanding of how cross-modal attention
mechanisms operate, particularly in visual-linguistic tasks,
and suggest avenues to optimize inference efficiency.



Model Method SEED-Bench
Image MME MME-cog. MME-per. MMVP LLaVA-

Bench

Llama-3.2-V Inst. 11B

Original 72.6 1685.9 307.1 1378.7 46.7 88.3

Kratio = 0.25
72.3 1687.3 312.5 1374.8 47.3 88.1

61.5% 65.1% 65.1% 65.1% 61.9% 72.7%

Kratio = 0.20
72.1 1682.8 307.9 1374.9 47.3 87.3

51.7% 53.7% 53.7% 53.7% 46.7% 61.6%

Kratio = 0.15
71.4 1669.1 305.7 1363.4 45.3 88.3

40.7% 41.6% 41.6% 41.6% 37.2% 49.1%

Kratio = 0.10
69.8 1675.8 297.86 1378.0 39.3 84.9

28.2% 28.9% 28.9% 28.9% 26.7% 35.3%

Kratio = 0.05
62.3 1586.1 297.5 1288.6 33.0 83.5

14.2% 15.5% 15.5% 15.5% 14.2% 20.5%

Llama-3.2-V Inst. 90B
Original 76.3 2029.2 423.9 1605.3 56.7 92.0

Kratio = 0.25
75.9 2034.2 444.6 1589.6 54.7 93.9

74.2% 71.6% 71.6% 71.6% 71.3% 75.2%

Kratio = 0.15
75.4 2065.2 423.9 1641.3 56.6 92.2

51.0% 48.4% 48.4% 48.4% 45.7% 52.4%

Table 1. Performance of Llama-3.2-Vision-Instruct on various benchmarks. The value in grey denotes the mean percentage of remaining
image features for each Kratio. Bold values denote performance comparable to or better than the full-cache baseline.

(a) Attention weights at the first cross-attention layer (x-axis: index of
image features).

(b) Cross-attention weight patterns across different layers (x-axis: index
of image features; y-axis: index of text query features).

Figure 4. Aggregated cross-attention weights. (a) The attention
weights at the first cross-attention layer are summed over attention
heads and text queries. (b) The attention weights for each cross-
attention layer are summed over heads and visualized with the
sequence length clipped to 400 for better visibility. Over different
layers, specific image tokens consistently attract more attention
from query tokens, indicating a structured sparse pattern.

3. Trimming Visual Features in Cross-
Attention-Based LVLMs

With insights from Section 2.2, our method leverages head-
wise attention scores accumulated across language sequences
to remove unimportant image features. For each attention
head of the first cross-attention layer, the top-k most salient
image features are identified based on their attention scores.
Then, the union of these top-k sets across all heads is merged
to determine the final selection of important features, ensur-

ing a focused representation of the image.
Precisely, the sum of query-wise attention weights is com-

puted for the cumulative importance score ph
i = ∑m−1

j=0 α
j,h
i

(m: input query tokens, i: image feature index, j: query
token index, h: head index, L: set of image feature indices,
H: set of head indices, and α

j,h
i : attention score of image

feature). The importance scores ph
i are aggregated into Ph,

where ph
i ∈ Ph, ∀i ∈ L, ∀h ∈ H.

Each image feature f h
i at head h belongs to Fh = { f h

i |
i = 0, 1, 2, . . . , |L| − 1}. Critical tokens are selected by
evaluating the importance of image tokens uniquely per
head, such that Th = {i | ph

i ∈ top-k(Ph, top-k =
Kratio · |L|)}. The selected features for each head are
Fh

select = { f h
i | 1Th = 1}, and the total set of selected

feature is Fselect =
⋃

h∈H Fh
select. Here, Kratio is an input

parameter that determines the fraction of the feature space
selected based on top-k criteria for each attention head.

4. Experimental Setup
Models. We used the Llama-3.2-Vision-{11B, 90B}-Instruct
models [9] in our experiments. Compared to other cross-
attention-based LVLMs like Open-Flamingo [2] and Otter
[14], the Llama-3.2-Vision family exhibits superior capabil-
ities by leveraging a significantly larger amount of visual
tokens. Due to the limited visual tokens and lower perfor-
mance of earlier models, we focused on the recent Llama-
3.2-Vision for better compression results.
Benchmark Datasets. We used various benchmark datasets
[28] to assess its performance in vision-language tasks.
Specifically, we conducted experiments on MMVP [24] for
binary classification question answering focusing on CLIP
[22] blind pairs, MME [10] for fine-grained task-driven
benchmark, SEED-Bench [13] as vision-grounded multiple



Feature Util. Batch 1 Batch 4 Batch 8 Batch 16 Batch 32

100% (Orig.) 95.1ms 358.4ms 751.7ms 1648.6ms 3940.0ms

50.9% 91.2ms (4.1%) 332.9ms (7.1%) 660.8ms (12.1%) 1414.7ms (14.2%) 3165.5ms (19.7%)

39.6% 91.0ms (4.3%) 317.5ms (11.4%) 646.3ms (14.0%) 1347.7ms (18.3%) 2916.7ms (26.0%)

Table 2. Inference latency of the backbone LLM evaluated
across different feature utilization ratios. Parenthetical values
indicate the relative latency reduction compared to the baseline
model. The experiment was conducted using Llama-3.2-11B-
Vision-Instruct on an A100 80GB GPU.

Method SEED-Bench Image MME MMVP LLaVA-Bench

Ours (budget < 0.50) 71.4 1669.1 47.3 88.3
40.7% 41.6% 46.7% 49.1%

Random (0.50) 67.00 1537.1 44.7 83.2
Spatial (0.50) 71.8 1627.7 46.0 85.9

Table 3. Comparison of visual token pruning methods at a
compression ratio of 50%. The value in grey denotes the mean
ratio of remaining image features used during generation.

choice question answering benchmark and LLaVA-Bench
[18] for open-ended vision-grounded generation.

5. Results
Main Results. Table 1 demonstrates that our method con-
sistently outperforms or achieves comparable performance
while leveraging 40∼50% of the image features. Notably,
the pruning ratios are adaptively allocated for each task, as
evidenced by LLaVA-Bench, an open-ended generation task
utilizing more image features compared to other benchmarks.
Figure 5 shows that our approach effectively maintains per-
formance across benchmarks, even as the compression ratio
increases. Figure 6 shows that our method effectively pre-
serves salient visual information (e.g., text cues or everyday
objects) while pruning unimportant features.
Latency Reduction. Table 2 shows the inference speedup
for the first token when utilizing 40∼50% of the image fea-
tures. Our method reduces latency by pruning key and value
inputs in the cross-attention layers. Since image features are
pruned after the first cross-attention layer, both the key-value
projections and the attention operations are consequently
reduced. Furthermore, the impact of the reduction grows
more significant with larger batch sizes.
KV Cache Memory Reduction. By removing image fea-
tures after the initial cross-attention layer, we achieve opti-
mal computational efficiency in reducing FLOPs. Figure 3
shows the impact of our approach on KV cache memory (in-
dicated with ‘Compression’). The amount of reduced cache
size is amplified with larger batch sizes, highlighting the
efficiency of our method under high-throughput conditions.
Ablation Study. We evaluate the impact of using attention
weights as a visual feature pruning criterion. As shown in
Table 3, random sampling—where image features are se-
lected randomly—fails to achieve consistent performance
across all benchmarks. Additionally, we investigated spatial

(a) MME (b) MMVP (c) LLaVA-Bench

Figure 5. Results under different compression ratios. Even
with up to 50% reduction of visual features, our method retains the
performance of the original model.

Figure 6. Visualization of compression. Purple patches indicate
features trimmed by our method.

sampling, a structured approach that selects image tokens in
a fixed pattern—every alternate feature index—to approxi-
mate holistic image representations. While spatial sampling
showed competitive performance on multiple-choice ques-
tion benchmarks, which we consider less challenging due to
the availability of explicit answer choices, it underperformed
in more demanding task-driven evaluations (e.g., MME) and
open-ended generative tasks (e.g., LLaVA-Bench).

6. Related Work
LVLMs. LLaVA [18] and its relevant models [8, 21] com-
bine an LLM with a vision encoder to integrate visual modal-
ity features. Similarly, also using an LLM backbone, the
recent LLaMA-3.2-Vision [20] leverages visual features
through cross-attention layers, a design inspired by Flamingo
[1]. This design replaces compute-heavy self-attention lay-
ers with cross-modality interaction. We aim to optimize
cross-attention-based LVLMs, a relatively under-explored.
Visual Token Reduction for Efficient LVLMs. Processing
visual features efficiently in LVLMs remains a key challenge.
Strategies such as token compression [3, 23] and sparse atten-
tion [4, 16, 26, 29] optimize visual inputs for the LLM back-
bones. Examples include FastV [5], which exploits sparsity
in higher-layer visual attention. ElasticCache and LOOK-M
[19, 25], which merge KV caches to reduce overhead and
ZipVL [12], employing mixed-precision KV caching and
importance-based sparse attention for computational gains.
However, these advances predominantly target self-attention-
based architectures, leaving cross-attention mechanisms un-
derexplored. Moreover, the non-causal relationship between
visual inputs and language queries renders direct application
of these methods in cross-attention infeasible. Our approach
targets effective reducing of cross-attention KV cache with-
out compromising model performance.



7. Conclusion
We introduce Trimmed-Llama, a plug-and-play inference
optimization method for cross-attention-based LVLMs, lever-
aging insights from cross-attention weight patterns. By iden-
tifying and exploiting inter-layer repetitive cross-attention
patterns, our method trims redundant KV caches and reduces
computational overhead without additional training.
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A. Appendix
A.1. Cross-attention Weight Patterns
Figure 7 presents the vertical patterns observed in the cross-
attention layers and inter-layer similarities. The attention
weights are extracted from samples of LLaVA-Bench’s im-
age resized to 384×384 and corresponding instruction, offer-
ing a visualization of attention distributions across layers.

Figure 7. Additional results of cross-attention weights. (Left)
Images utilized for the extraction of attention weights. (Right)
Cross-attention weight patterns of different layers from correspond-
ing image (x-axis: the index of image features; y-axis: the index of
text query features).

x

Image Token Index

H
ea

d 
di

m
en

si
on

: Salient     
: Redundant

Compression Ratio = 

Figure 8. Visualization of our token pruning algorithm. The 2D
grid represents image token indices (x-axis) and attention heads
(y-axis). The final compression ratio is determined by the fraction
of tokens not selected as salient.

A.2. Visual Token Pruning Algorithm
Figure 8 illustrates our proposed algorithm using a concep-
tual example. Here, the attention map is reduced to two

dimensions by summing along the language query dimen-
sion. The hyperparameter Kratio denotes the proportion of
salient image tokens retained per attention head. In this ex-
ample, Kratio = 0.25 is used, meaning that each head selects
the top-k (k = 0.25 ∗ 32 = 8) most attended image tokens.

Based on these selections, an image token is deemed
salient if selected by any attention head (indicated by verti-
cal red arrows in the figure), whereas redundant tokens are
those not selected by any head (represented by vertical blue
arrows). This algorithm effectively captures head-specific
token importance, ensuring adaptive attention token filtering
across different attention heads.

Figure 9. Visualization of computational cost reduction. The
heatmap illustrating the theoretical FLOPs reduction ratio is pre-
sented with varying KV cache budgets and input sequence lengths.

A.3. Computational Cost Estimation
The reduction of computational cost achieved by our ap-
proach is presented below. The computation covers multi-
head self-attention and cross-attention modules along with
feed-forward networks. The image feature is pruned after
the first layer with dynamic budget ratio R produced by the
compression method. For estimation, n denotes the lan-
guage token length, m and d denote the feature dimension
of the MLP and attention module, and nk denotes the length
of the image feature. The number of cross-attention and
self-attention layers is indicated as C and S, respectively.

FLOPssel f : 4nd2 + 2n2d + 2ndm

FLOPscross : 2nd2 + 2nkd2 + 2nnkd + 2ndm

FLOPsprune : 2nd2 + 2nkRd2 + 2nnkRd + 2ndm
The theoretical reduction ratio is then calculated as fol-

lows. Figure 9 shows a heatmap visualization with different
budget ratios R and input sequence lengths n.

1 −
S ∗ FLOPssel f + FLOPscross + (C − 1) ∗ FLOPsprune

S ∗ FLOPssel f + C ∗ FLOPscross


	Introduction
	Cross-attention Redundancy
	Motivation: Heavy Computation from Cross-Attention KV Cache
	Insights from Structured and Sparse Cross-Attention Patterns

	Trimming Visual Features in Cross-Attention-Based LVLMs
	Experimental Setup
	Results
	Related Work
	Conclusion
	Appendix
	Cross-attention Weight Patterns
	Visual Token Pruning Algorithm
	Computational Cost Estimation


