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Abstract
Recent LLM-based approaches have achieved impressive results on
Text-to-SQL benchmarks such as Spider and Bird. However, a key
limitation of these benchmarks is that their queries do not reflect
the complexity typically seen in real-world enterprise scenarios. In
this paper, we introduce HLR-SQL, a new approach designed to han-
dle such complex enterprise SQL queries. Unlike existing methods,
HLR-SQL imitates Human-Like Reasoning with LLMs by incremen-
tally composing queries through a sequence of intermediate steps,
gradually building up to the full query. We evaluate HLR-SQL on
a newly constructed benchmark, Spider-HJ, which systematically
increases query complexity by splitting tables in the original Spi-
der dataset to raise the average join count needed by queries. Our
experiments show that state-of-the-art models experience up to
a 70% drop in execution accuracy on Spider-HJ, while HLR-SQL
achieves a 9.51% improvement over the best existing approaches
on the Spider leaderboard.
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1 Introduction
LLMs dominate Text-to-SQL. Text-to-SQL, the task of trans-
lating natural language questions into SQL statements, has re-
cently gained traction because it enables non-expert users to query
databases, substantially enlarging their user bases. Recent state-of-
the-art approaches employ Large Language Models (LLMs) with
prompt engineering [4, 6, 12, 13] or supervised fine-tuning [10] and
achieve impressive translation accuracies on established academic
benchmarks such as Spider [16] and Bird [11]. For example, DAIL-
SQL [6], currently the best publicly listed approach on Spider, can
correctly translate 86.6% of queries in the Spider test set.
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Real-world queries are more complex. Existing benchmarks,
however, do not fully reflect the complexity of real-world settings.
For instance, as reported in [1], real-world databases are often
highly normalized, causing even simple natural language questions
to require 4.01 joins per query on average. In contrast, queries in the
Spider benchmark [16] require only 0.5 joins on average, and those
in Bird [11] only around 1 join (i.e., 2 tables). More importantly,
only 60 out of 7000 queries in Spider and 74 in Bird (approximately
0.85% and 0.78% of the respective training sets) require four or more
joins. This low maximum join count demonstrates that existing
benchmarks do not fully capture the real world with SQL queries
that involve many join operations.
Text-to-SQL for complex queries. In this paper, we thus set
out the goal of studying Text-to-SQL in scenarios that require a
high number of join clauses. As we show in our evaluation, exist-
ing approaches leading classical benchmarks fail on such complex
queries. To solve them, we argue that Text-to-SQL systems must
approach the task of SQL generation more like humans do. When a
human is tasked with formulating a complex SQL statement, they
typically do not write the whole statement in one go. Instead, they
start with a simpler statement like SELECT * FROM <tablename>,
which they might even execute. Based on this initial statement, we
then iteratively make it more complex or combine multiple simple
SQL statements using joins or nested queries.
Human-Like Reasoning for Text-to-SQL. Based on this idea,
we propose a novel approach to emulate human reasoning when
solving the Text-to-SQL task through iterative composition, which
involves actions such as note-taking, query refinement, database
exploration, and error correction. In this paper, we present a first
prototype called HLR-SQL, which implements this idea on top of an
LLM that uses an external memory to keep track of the artifacts of
the incremental query construction. An important aspect of HLR-
SQL is that rather than following a fixed procedure, it operates with
complete autonomy and may adopt different actions to incremen-
tally refine a query. As such, HLR-SQL autonomously revises and
combines queries from previous steps until it determines that a
satisfactory solution has been found.
A more realistic benchmark is needed. To better understand
the challenges arising from more complex queries with higher
join counts for the Text-to-SQL setting, we propose Spider-HJ, a
novel dataset derived from Spider [16]. Unlike Spider, where queries
require only 0.5 joins on average, and only 60 queries require four
or more joins, Spider-HJ features queries with an average of 5.64
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joins per query and a maximum of 20 joins. To obtain such a dataset,
we keep the high-quality natural language questions of Spider and
modify only the database schema in a way that requires more joins
to answer the questions. Thus, any performance decrease can be
directly attributed to the increased complexity of the underlying
schema. In this way, Spider-HJ enables a precise assessment of a
system’s resilience to an increase in necessary join operations.
Initial results. Our initial evaluation shows that increased query
complexity leads to a sharp decline in the execution accuracy of
current state-of-the-art approaches. For example, DAIL-SQL [6],
which is top-ranked on the Spider leaderboard, drops from 86.6%
on the Spider test set to just 15.14% on our dataset. In contrast,
HLR-SQL significantly improves over these approaches in accuracy
by approximately 10%, highlighting the benefits of HLR-SQL while
also making it clear that more research is needed.

2 Human-Like Reasoning for Text-To-SQL
In this section, we present our vision of Text-to-SQL pipelines
that reason like humans do. Furthermore, we present our initial
prototype HLR-SQL that mimics this Human-Like Reasoning.

2.1 The Need for a New Approach
Modern Text-to-SQL approaches like DIN-SQL [13], DAIL-SQL [6],
and MAC-SQL [14] achieve strong performance but suffer from a
fundamental limitation: they typically rely on a fixed, predefined
sequence of generation steps. This restriction contrasts sharply
with how humans naturally use multiple steps to solve complex
tasks. In the case of Text-to-SQL, humans craft complex queries by
starting with simple queries, iteratively refining them, observing
feedback from the database by executing these simpler queries, and
then incrementally improving them. Naturally, this process will
take more iterations for complex SQL statements and thus be longer
than for simple statements. Especially queries involving multiple
joins and nested sub-queries over large-scale databases with many
tables benefit from such an iterative, human-like approach that au-
tomatically adapts the amount of “effort” (i.e., compute and number
of database interactions) to the complexity of the question at hand.

Some recent approaches, such as CHASE-SQL [12] and XiYan-
SQL [7], increase the amount of effort independently of the question
complexity by employing ensemble methods that generate multiple
sample solutions and then choose a final query using a specially
tuned selection model. MAC-SQL [14], on the other hand, tries to
first estimate question complexity and then decomposes questions
accordingly into multiple sub-questions. These sub-questions are
then translated independently into SQL sub-queries and combined
to obtain the final SQL. Unlike HLR-SQL, they do not incremen-
tally build queries and test sub-queries by executing them. As such,
wrong assumptions or mistakes early in the reasoning chain (i.e.,
in the formulation of early sub-queries) might lead to error propa-
gation, resulting in final SQL statements that are vastly different
from the ground truth and, thus, hard to fix.

For example, consider the query “Find the name of instructors
who taught in Fall 2009 but not in Spring 2010” in a database where
the instructor name is stored in an instructors table, and the courses
table stores information about when they taught. A potential first
sub-question could be “Which instructor taught in Fall 2009?” which

Previous Sub-SQL Queries:
SELECT * FROM courses
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Figure 1: HLR-SQL creates SQL statements by iteratively com-
bining and revising SQL sub-queries. The procedure starts by
putting the input question and the content of the memory
(initially empty) in a prompt 1○. Note that the figure shows a
later iteration where a sub-SQL from a previous iteration is
already in the memory. Given the prompt, the LLM decides
2○ to combine that existing query with a new query, which
it generates 3○. The generated query is run on the database
4○, and the result is stored in the memory 5○. This process of
iterative refinement repeats 6○ until the LLM acknowledges
the final SQL query (right side) to be correct.

already involves a join and can thus fail when the wrong join key
is used. In this case, MAC-SQL will be oblivious to the mistake as it
does not check sub-queries. In contrast, a human would first verify
the list of fall instructors by executing a respective SQL query on
the database and fixing it until it works, then separately identifying
those in Spring, and finally combining the two results in a larger
query, thereby reducing the likelihood of such error propagation.

2.2 Our Approach: HLR-SQL
HLR-SQL tries to mimic the human-like, iterative problem-solving
approach to SQL query composition. Instead of committing to a
single static pipeline, an LLM agent refines queries based on inter-
mediate feedback, splitting a complex problem into smaller tasks
and revising incorrect assumptions repeatedly along the way. We
call this cycle the draft, test, learn, and improve process.
Key aspects of HLR-SQL. Most importantly, the agent in HLR-
SQL is completely autonomous in its iterative Text-to-SQL construc-
tion. This means that it can terminate or continue depending on its
assessment of the problem’s complexity and the quality of its cur-
rent solution. Nevertheless, to prevent endless loops, HLR-SQL can
only re-iterate until a maximum of iterations is reached. Another
key aspect of HLR-SQL is its memory, which tracks all information
about previous steps and sub-results that have been obtained so
far. To achieve complete autonomy, in each step, we provide the
LLM with the question, the available data, and its memory from
previous steps and let it decide which next steps it wants to take.
Composition process in HLR-SQL. Figure 1 shows the behav-
ior of HLR-SQL using a simple example. Denoted as 1○, the user
submits a natural language question to the agent, which triggers
the incremental query construction. In Figure 1, there is already
a previous SQL sub-query present in the memory, which resulted
from a previous iteration. In step 2○, HLR-SQL picks one of four
capabilities to refine this query: (1) Formulate Sub-Question in NL:
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The LLM formulates a sub-question in natural language by breaking
down the input question into sub-question(s) similar to chain-of-
thought prompting [15]. (2) Generate or combine SQL sub-queries:
Here, the LLM either generates completely new SQL fragments or
uses the existing SQL sub-queries frommemory and combines them
with a new sub-query, which it generates. (3) Formulate final SQL
statement: The LLM chooses this capability if it intends to create
the final SQL query that solves the original Text-to-SQL problem it
was presented with. (4) Acknowledge final SQL: As a last capability,
HLR-SQL also provides the option to acknowledge the final SQL
query. This step terminates the overall procedure.

If the agent selects capability (2) or (3), the agent will output a
SQL string and execute it over the database (see 3○+ 4○ in Figure 1).
A sample of the query execution result is put into the memory of
the agent for further refinement. In our example in Figure 1, the
LLM chooses to combine the existing SQL sub-query with a new
sub-query that joins the instructors and courses tables, which is then
executed on the actual database (step 4○) and the result stored in
the memory (step 5○). After multiple iterations, HLR-SQL will then
output and acknowledge the results of the final SQL query (see
right side of Figure 1).
Autonomy and error recovery. A benefit of HLR-SQL is the self-
reliance of the agent when exploring different parts of the problem
as it sees fit. This allows it to fix assumption errors that go beyond
simple SQL syntax errors. An example of this might be a synonym
mismatch where the user asks for “films,” but the column is labeled
“movies.” Our agent can test both columns and adapt based on the
obtained sub-results.

3 Spider-HJ: A Benchmark with Many Joins
Existing benchmarks are great resources for advancing Text-to-
SQL research [3, 5]. Yet, they so far have less of a focus on complex
queries that require many joins (see Table 1). In this paper, we
thus present a new benchmark called Spider-HJ, which builds on
Spider [16] but contains queries with increasing SQL complexity in
terms of the number of joins. We leverage the existing NL-to-SQL
pairs from the Spider dataset and introduce schema modifications
that necessitate additional join operations. As such, we can ac-
curately reason that any performance differences are due to the
increase in the number of required joins and the schema complexity.
Constructing a dataset with many joins. To increase the total
number of joins required for a given question, we adopt a multi-
stage process that transforms the original database schema from
Spider along with the SQL queries into several variants all cor-
responding to the same natural language question. Each of these
variants has an increased number of joins. For example, if a query
selects columns 𝑐1, 𝑐2 of table 𝑇 , we create three variants: one that
splits off 𝑐1 (introducing one extra join), one that splits off 𝑐2 using
another join key (introducing one extra join), and one that splits off
both columns from the original table (introducing two extra joins).

The steps of our benchmark construction process are as follows:
(1) Parsing the original SQL query: Each SQL query is first parsed
to identify the specific columns used in its execution. This step
ensures that splitting these columns necessitates joins. (2) Partition-
ing and augmenting the used columns: The columns identified are
separated into new tables. For each column, a corresponding table

Dataset Avg. # joins Max. # joins
Spider 0.54 8
Bird 1.02 6
Spider-HJ (ours) 5.64 20

Table 1: Comparison of Spider, Bird, and Spider-HJ regard-
ing join counts. Our dataset contains 10 times more joins
on average than Spider and also a 2.5 times increase in the
maximum join counts found in the benchmark.

is created. This process can lead to unrealistically many small tables
that only contain foreign keys and the queried column. To make
sure that the resulting tables have a realistic number of columns,
we append a random number of columns (between 3-5) that are
generated by an LLM. (3) Random column selection and processing:
Since we only split columns that are required by the query into
new tables, this makes it very obvious which tables must be joined.
Therefore, we randomly select up to 5 additional columns from
the original schema — even if they are not directly referenced by
the query — and subject them to a similar partitioning process.
These columns are also allocated to new tables and padded with
three to five LLM-generated columns, thereby making it less ob-
vious for an LLM that split tables are needed in the golden query.
(4) Generating multiple schema variants: For each base SQL query,
we systematically generate all possible combinations of column
splits. This results in multiple schema variants corresponding to
the same natural language question, thereby increasing the number
of required join operations and introducing nuanced variations in
the database schema. We repeat this process to incrementally add
more joins.
Characteristics of Spider-HJ. By adopting this approach, we
generate more than 20,000 questions with an average join count
of 5.64 joins per question. As shown in Table 1, this is more than
10 times the average joins per question of Spider and more than
5 times in comparison to Bird. A benefit of this approach is that
we can make use of the quality of the existing natural language
questions of Spider, only increasing the complexity of the schema
and SQL query without changing the question complexity.

4 Initial Experimental Evaluation
In this section, we present our initial evaluation of HLR-SQL on
Spider-HJ. Our initial results indicate that it can better adapt to the
more complex schemata than other recent Text-to-SQL approaches.

4.1 Experiment Setup
Dataset. To examine the effect of varying the number of joins,
we use the previously-introduced Spider-HJ dataset and randomly
sample 400 distinct queries for the different join counts present in
Spider-HJ. For the join counts 16, 18, and 20, there are only 381, 301,
120 questions in Spider-HJ. Therefore, we include all of them.
Metric. In line with other Text-to-SQL research, we employ ex-
ecution accuracy (EX) as our primary metric. A generated query
is considered as correct if its execution result matches that of the
golden SQL query, regardless of differences in query formulation.
Models. We use GPT-4o-Mini-2024-07-18 because it is consid-
erably more cost-efficient than GPT-4o while still demonstrating
remarkable performance on the original Spider test set [9].
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(a) HLR-SQL vs Baselines (b) HLR-SQL: # of Steps
Figure 2: Subplot (a) shows the accuracy on Spider-HJ. Subplot
(b) shows the amount and type of iterative steps of HLR-SQL.
Baselines. As baselines, we use the top three publicly available
and listed approaches on the Spider leaderboard [16]:DIN-SQL[13],
DAIL-SQL[6], and C3-SQL[4]. We slightly adapted all approaches
to work with GPT-4o-Mini-2024-07-18. These modifications ensure
that the comparisons are fair by using the same LLM for all methods.
HLR-SQL. Since HLR-SQL can autonomously continue querying
indefinitely, we impose an upper limit of 25 iterative steps. At the
25th step, HLR-SQL is required to make its final guess, and no
further steps are allowed. Additionally, we limit the size of sub-
results from sub-queries to 10 rows to not exceed the context limit.

4.2 Exp. 1: Varying #Joins
In this experiment, we analyze the accuracies of all baselines and
HLR-SQL on the Spider-HJ dataset. We break down the results by
the number of joins in the SQL query ranging from 2-20 joins. The
results of the baselines and HLR-SQL are shown in Figure 2 (a). On
the x-axis, we display the number of joins, increasing from left to
right. On the y-axis, we display the different execution accuracies.

As shown in Figure 2, the execution accuracy of all baselines
decreases significantly with increasing joins counts. This shows
the difficulty of state-of-the-art approaches to adapt to the more
complex schema. Additionally, we can see that HLR-SQL (green)
continuously outperforms all baselines. However, it also shows the
same behavior overall, indicating that high join counts are more
challenging in general.

4.3 Exp. 2: Conversation Length
Since humans take more iterative steps to come to a final SQL for
more complex queries, we expect HLR-SQL to do the same. To
understand the actual behavior of HLR-SQL, we analyze the con-
versation length (number of iterative prompts) for each join count,
as shown in Figure 2 (b). As can be seen, the average conversation
length generally increases with the number of joins. Furthermore,
the unexpected performance increase from 7 to 8 joins is also repre-
sented in the behavior of HLR-SQL, as we can see a decrease in the
average conversation length. This leads us to believe that there are
indeed additional characteristics that make these questions easier,
even though their number of join operations is higher. The same
can be seen for the performance increase from 10 to 16 joins. From
this, we conclude that the LLM correctly uses its given capabili-
ties more for harder questions, which aligns with human behavior.
However, the overall performance shows that for highly complex
queries, further improvements are necessary to fully imitate human
behavior and human performance.

5 The Road Ahead
In this paper, we examined the impact of complex SQL queries on
the Text-to-SQL task. Our experiments have shown that current
state-of-the-art approaches have focused too much on queries with
low join counts (i.e., less than 4 joins), which is far from realistic
scenarios. We argue that in order to solve these queries, a new
human-like approach is necessary. Our initial prototype HLR-SQL
shows substantial improvements over existing approaches for these
queries by mimicking human reasoning and iteratively generating
and testing more and more complex queries. However, many open
questions remain.
Real-world data and other dimensions of complexity. While
a high number of joins is certainly a major driver of complexity in
real-world SQL queries, they can also be complex due to a variety of
other reasons. For instance, queries can be nested or contain com-
plex selection, filter, or group-by expressions. Moreover, real-world
data can also be complex, for example by containing ambiguous
or cryptic column names and table values. In the future, we thus
intend to evaluate our approach on newer datasets such as BEAVER
[1] and Spider 2.0 [8] that incorporate these complexities.
Text-to-SQL as a reasoning task. Despite the superior perfor-
mance of HLR-SQL on complex queries of Spider-HJ, there are
still many queries where it fails, especially with high join counts.
Thus, an in-depth error analysis is necessary to understand the
failure points of HLR-SQL and when they diverge from human
behavior. Moreover, with the announcement of OpenAI o1 and
Deepseek R1 [2], reinforcement learning trained reasoning models
have shown promising results for reasoning tasks such as mathe-
matical problem solving [2]. Following our argument in this paper,
we think that these can be a very good fit for Text-to-SQL as well.
However, currently, these models cannot interact with the database
during reasoning like HLR-SQL can do, which is crucial to mimic
human behavior and generate complex SQL statements, as we have
shown in this paper.
A database interface designed for LLMs. So far, the interface
between HLR-SQL and the database is that HLR-SQL generates
SQL sub-queries that are executed on the database. However, for
many human-like sub-tasks, SQL on its own is too limited. For
example, assuming we want to select all courses in fall, we need to
know how fall is represented in the database, which could be fall,
autumn, or even a numerical value. This requires a method to look
for semantically similar values in the database. Recent approaches
solve these issues before SQL generation during schema linking,
where they find potentially relevant values from the database and
include them in the Text-to-SQL prompt. However, this again results
in a static Text-to-SQL pipeline that starts with schema linking and
ends with SQL generation. In contrast, we think that schema linking
should be part of the reasoning process, and finding values in the
database should be realized by extending the database interface for
the LLM with a keyword search to search for values semantically
similar to “fall.” Similarly, we plan to add additional interfaces
that the LLM can use during its reasoning process. For example,
an interface might be used to automatically detect and return all
possible join paths between two tables, such that the LLM can use
this join condition.
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