
When Raw Data Prevails: Are Large Language Model Embeddings
Effective in Numerical Data Representation

for Medical Machine Learning Applications?

Anonymous ACL submission

Abstract
The introduction of Large Language Models001
(LLMs) has advanced data representation and002
analysis, bringing significant progress in their003
use for medical questions and answering. De-004
spite these advancements, integrating tabular005
data, especially numerical data pivotal in clini-006
cal contexts, into LLM paradigms has not been007
thoroughly explored. In this study, we examine008
the effectiveness of vector representations from009
last hidden states of LLMs for medical diag-010
nostics and prognostics using electronic health011
record (EHR) data. We compare the perfor-012
mance of these embeddings with that of raw013
numerical EHR data when used as feature in-014
puts to traditional machine learning (ML) algo-015
rithms that excel at tabular data learning, such016
as eXtreme Gradient Boosting. We focus on017
instruction-tuned LLMs in a zero-shot setting018
to represent abnormal physiological data and019
evaluating their utilities as feature extractors020
to enhance ML classifiers for predicting diag-021
noses, length of stay, and mortality. Further-022
more, we examine prompt engineering tech-023
niques on zero-shot and few-shot LLM embed-024
dings to measure their impact comprehensively.025
Although findings suggest the raw data features026
still prevails in medical ML tasks, zero-shot027
LLM embeddings demonstrate competitive re-028
sults, suggesting a promising avenue for future029
research in medical applications.030

1 Introduction031

Numerical data plays a pivotal role across var-032

ious domains. For instance, much of the data033

used for analytics from electronic health records034

(EHRs) are numerical values in tabular formats,035

documenting patient demographics (e.g., age), vi-036

tal signs, laboratory tests, and nurse assessments.037

Utilizing numerical data for predictive modeling038

has been instrumental in facilitating accurate diag-039

noses (Pang et al., 2021), risk stratifying (Zeiberg040

et al., 2019; Green et al., 2018), and outcome pre-041

dictions (Akel et al., 2021; Chang et al., 2019) in042

Figure 1: Physician Evaluation of LLMs’ Knowledge on Nor-
mal Vital Sign and Lab Test Values. This experiment probes
Mistral-7B-Instruct and Llama2-13B-Chat on reference ranges
for 24 vital signs and lab tests. Results show these models
have a strong understanding of normal medical values, crucial
for clinical applications. Table 1 listed all 24 feature names,
and more output examples are in Appendix B.

healthcare. Machine learning (ML) classifiers like 043

gradient boosted (Chen and Guestrin, 2016) have 044

excelled in these tasks for making accurate clini- 045

cal predictions (Churpek et al., 2024; Lolak et al., 046

2023; Moore and Bell, 2022). 047

Recent work shows Large Language Models 048

(LLMs)’ vast potential on text generation over 049

structured data input, including Chain-of-Thought 050

(CoT) reasoning over tabular data (Zheng et al., 051

2023), classification on diseases (Hegselmann et al., 052

2023). LLMs have also exhibited exceptional 053

promise in medical NLP tasks, evident in their stel- 054

lar performance in the United States Medical Li- 055

censing Examination (MedQA) (Nori et al., 2023). 056

However, the use of embedding representations, 057

particularly for medical diagnostics and outcome 058

predictions using standard EHR numerical data, 059

remains largely unexplored. In these areas, raw 060

data inputs have traditionally dominated feature 061

representation for ML algorithms before the era 062

of LLMs. This is exemplified by their use in 063

critical applications such as mortality prediction 064

and early sepsis warnings (Deng et al., 2022; Hou 065

et al., 2020), and patient infection (Bashiri et al., 066
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Figure 2: This study investigates the feasibility of using LLM embeddings for numerical EHR data features representation in
medical machine learning applications. To use LLMs, raw features are transformed into queries via templates. Under a zero-shot
setting, these queries are encoded into embeddings for ML classification. We explore the effects of prompt engineering, few-shot
learning using synthetic data generation, and parameter efficient tuning on LLM embeddings.

2022; Bhavani et al., 2020). The potential of LLM-067

derived features as a viable alternative to raw data068

features in ML applications is still unclear.069

This study aims to address this knowledge gap by070

examining the use of LLM embeddings for EHR071

numerical data representation in ML algorithms.072

Although LLMs are renowned for text generation,073

their embeddings may offer multiple advantages,074

such as leveraging LLMs’ pre-trained knowledge075

and sophisticated text understanding to enhance076

domain-specific tasks. Moreover, using LLMs to077

represent tabular data allows for a unified model078

that encodes both structured and unstructured text079

in EHRs, seamlessly integrating and contextualiz-080

ing information across modalities, such as embed-081

ded tables in clinical notes (Soenksen et al., 2022;082

Kline et al., 2022).083

Our work presents novel examination of the im-084

pact of different formats and embedding methods085

on LLM last layers and ML classifiers. We focus086

on open-source, zero-shot LLMs suitable for single-087

GPU systems, considering the resource limitations088

prevalent in many hospitals and academic research089

settings. To establish a foundation for this work,090

we probed Mistral-7B-Instruct and Llama2-13B,091

two open-source, general-domain LLMs, for their092

knowledge of reference ranges for vital signs and093

lab test values. We directly asked about the stan-094

dard physiological values and units of measurement095

for 24 EHR features identified as critical predictor096

variables for detecting clinical deterioration (Akel097

et al., 2021). As in Figure 1, physician judgment098

indicates that LLMs possess this knowledge, pro-099

viding initial evidence for further investigation.100

Our study utilizes three clinical prediction tasks 101

derived from two independent EHRs and four ML 102

classifier input settings. We investigate the im- 103

pact of table-to-text conversion formats, embed- 104

ding extraction methods, prompt engineering, and 105

few-shot techniques, along with early results from 106

parameter-efficient fine-tuning, on the quality of 107

LLM embeddings. Our main contributions are 108

threefold: 109

• We present a comprehensive study exploring var- 110

ious factors that influence the performance of 111

numerical EHR feature embeddings generated by 112

LLMs for medical ML applications. 113

• Our findings show that while LLM embeddings 114

paired with XGB classifiers can achieve perfor- 115

mance comparable to traditional raw data fea- 116

tures on some tasks, performance gaps persist, 117

necessitating further improvements to maximize 118

their effectiveness. 119

• We discuss the efficiency and robustness of LLM 120

feature representation for numerical data versus 121

raw data in training ML classifiers. 122

Results show that, despite external evidence indi- 123

cating that LLMs possess extensive knowledge of 124

medical facts, extracting usable representations of 125

this knowledge for downstream tasks will require 126

significant additional methodological progress. 127

2 Related Work 128

Recent studies highlight LLMs in tabular data 129

analysis: Hegselmann et al. (2023) introduces 130

TableLLM, which converts tables to text using a 131

manual template. Zheng et al. (2023) studies CoT 132

reasoning over tables. Akhtar et al. (2023) ex- 133
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amines the abilities of LLMs on numerical data134

understanding. Zhu et al. (2024), closest to our135

work, explores zero-shot LLM for structured longi-136

tudinal EHR data and finds that GPT-4 can outper-137

form XGB on clinical prediction tasks. Our study,138

however, uniquely focuses on open-box LLM em-139

beddings for enhancing ML algorithms.140

Raw EHR data are commonly used in medical141

ML applications, as found by a survey on medi-142

cal ML research (Si et al., 2021). They noted that143

labs and vital signs as frequent data types for pa-144

tient representation learning. Churpek et al. (2024)145

introduces an XGB algorithm predicting clinical de-146

teriorations using EHR features like demographics147

and lab values. Wang et al. (2020) used 104 clini-148

cal EHR features across various ML algorithms to149

establish baselines for clinical tasks such as mor-150

tality predictions. Our work uses the same dataset151

and tasks as (Wang et al., 2020) to compare LLM152

embeddings against traditional ML classifier out-153

comes on the same raw data feature baseline.154

3 Datasets and Tasks155

3.1 Diagnosis prediction for clinical156

deterioration157

Early warning systems often use rule-based and ML158

algorithms to identify patients at risk of deteriora-159

tion or death without providing diagnoses (Churpek160

et al., 2014; Kipnis et al., 2016). To address this,161

experts from multiple hospitals created a dataset162

that labels the diagnoses for patients who had a clin-163

ical deterioration event during their hospitalization.164

These expert-annotated diagnoses were performed165

with a full review of the EHR and served as the la-166

bels for our training data. Twenty-four tabular data167

features including demographics, vital signs, labs,168

interventions, and nursing assessments were ex-169

tracted from the structured EHR (eg. tabular data).170

They were previously identified as critical variables171

for clinical deterioration (Akel et al., 2021). The172

final datasets encompassed EHR data from 660173

adult patients in medical-surgical ward within a174

U.S. health system. The primary diagnoses were175

Sepsis, Arrhythmia (Arrhy.), and Congestive Heart176

Failure (CHF) volume overload, with prevalence177

rates of 43.18% for Sepsis, 15.30% for Arrhyth-178

mia, and 11.82% for CHF, respectively. We used179

5-fold validation on all 660 samples to generate180

five distinct test sets. 1181

1The dataset used in this study has been detailed in a clini-
cal journal article currently under review, with a preprint also

Input features Age, Systolic Blood Pressure, Diastolic Blood Pressure,
Oxygen Saturation, Temperature in Celsius, Proton Pump Inhibitor, Alert,
Voice, Pain, Unresponsive Scale (AVPU), Albumin, Alkaline Phosphatase,
Anion Gap, Total Bilirubin, Blood Urea Nitrogen, Blood Urea Nitro-
gen to Creatinine Ratio, Calcium, Chloride, Carbon Dioxide, Creatinine ,
Serum Glucose, Hemoglobin, Platelet Count, Potassium, Serum Glutamic-
Oxaloacetic Transaminase, Sodium, Total Protein, White Blood Cell Count
Target prediction Sepsis, Arrhythmia, Congestive Heart Failure (CHF)
Volume Overload

Table 1: Raw clinical data features from the EHR for diagno-
sis prediction task.

Table 1 outlines the structured input features 182

from the cohort EHR dataset and target diagnoses 183

utilized in our analysis. The input features com- 184

prised a comprehensive set of clinical data points 185

including demographic information like age, vital 186

signs such as Systolic and Diastolic Blood Pres- 187

sure, and body Temperature, as well as a range of 188

serum laboratory tests including electrolytes, liver 189

function panel, renal function, red blood counts, 190

etc. These inputs served as predictors and are rele- 191

vant findings in making diagnoses like Sepsis, Ar- 192

rhythmia, and CHF. Despite its smaller sample size, 193

this EHR dataset includes physicians’ manual chart 194

reviews and carefully curated data, providing accu- 195

rate annotations for patient diagnoses. 196

3.2 Mortality and length-of-stay prediction 197

The MIMIC-III dataset, derived from the EHR of 198

the Critical Care Units (ICU) at Beth Israel Dea- 199

coness Medical Center, has been utilized exten- 200

sively in research (Johnson et al., 2016). Wang 201

et al. (2020) further developed an open-source 202

pipeline for extracting, preprocessing, and repre- 203

senting data from the MIMIC-III database, namely 204

MIMIC-Extract. This pipeline aggregates various 205

data types, such as tabular demographic data avail- 206

able at admission, vital signs with repeated mea- 207

sures, laboratory test results, time-varying inter- 208

vention signals, and prediction labels needed for 209

clinical tasks. MIMIC-Extract introduces two clini- 210

cal prediction tasks: mortality and length-of-stay 211

(LOS) predictions. The mortality prediction task 212

uses tabular data from the first 24-hour window of 213

a patient’s ICU stay to predict mortality as a binary 214

classification task. The LOS prediction task, in 215

contrast, determines whether a patient’s stay will 216

exceed three (LOS 3) or seven days (LOS 7) based 217

on the same 24-hour data period. Importantly, to 218

avoid competing risk outcomes between death and 219

available. To maintain the anonymity of this paper, references
to the journal preprint were omitted. Details about the demo-
graphic characteristics of the patients, including gender, age,
and race, are included in Appendix.
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Diagnosis dataset Hospitalized patient of age [value] getting worse has labs
and vitals values of systolic blood pressure [value] mmHg, diastolic blood
pressure [value] mmHg, oxygen saturation[value] %, body temperature
[value] celsius degree, ... total protein [value], white blood cell [value].
What are the diagnoses for this patient?

MIMIC-Extract Hospitalized patient with lab and vital signs available: in
the past 24 hours, the observed alanine aminotransferas values are [list of
unique values sorted by temporal order], albumin values are [list of unique
values sorted by temporal order], anion gap values are [list of unique
values sorted by temporal order]...Predict if the patient mortality will occur
in-hospital.

Table 2: The template for NARRATIVE serialization method
for diagnosis prediction dataset (top) and MIMIC-Extract
dataset (bottom).

Dataset Size Average input tokens

Diagnosis 660 346.97 ±2.21
MIMIC-Extract 23,884 1829.57 ±497.02

Table 3: Dataset description

LOS, patients who died within the 3- or 7-day LOS220

window were excluded from the LOS prediction.221

We adopted the same data partitioning used222

in (Wang et al., 2020), comprising 16,700, 2,394,223

and 4,790 patient records for the training, develop-224

ment, and testing sets. Each patient record includes225

104 time-varying tabular data features. More de-226

tailed demographic information can be found in the227

MIMIC-Extract study (Wang et al., 2020). The228

labels in the MIMIC-Extract dataset are highly229

skewed, with positive label distributions of 42.82%230

for LOS 3, 7.66% for LOS 7, 10.27% for Mort231

Hosp, and 7.10% for Mort ICU.232

4 Methods and Experiment Setup233

Figure 2 illustrates the study overview and experi-234

ment setup. We began with a patient’s tabular data235

input, represented using the Pandas DataFrame data236

structure (raw data). This raw data was converted237

to text using four distinct conversion methods, de-238

tailed in §4.1, and LLM encoded the converted text,239

with the last hidden states extracted to generate em-240

bedding features (§4.2). These embeddings were241

subsequently used to train various ML classifiers242

on two datasets for binary prediction tasks.243

We started with zero-shot, off-the-shelf LLMs244

for experiments (§4.3). We then investigated the245

impact of prompt-engineering techniques and few-246

shot learning configurations on the embeddings247

and subsequent predictions (§4.4). An initial inves-248

tigation was also conducted to assess the effects249

of parameter-efficient fine-tuning on LLM embed-250

dings for ML tasks, focusing on two of the models251

(§4.5).252

As baselines, we included traditional ML classi-253

fiers trained directly on raw tabular data inputs. To 254

benchmark the effectiveness of LLM embeddings, 255

we used randomly initialized embeddings of the 256

same size as the LLM-generated embeddings. 257

4.1 Table-to-text conversion 258

We employed four different methods to convert 259

EHR tables into input formats for LLMs: NAR- 260

RATIVES, JSON, HTML, and MARKDOWN. NAR- 261

RATIVES provide a continuous text description of 262

patient data, offering context and readability simi- 263

lar to clinical notes (Yu et al., 2023). JSON struc- 264

tures the data hierarchically, making it easy to parse 265

and interpret programmatically (Zhao et al., 2023). 266

HTML format leverages web-based structures to 267

present the data with tags (García-Ferrero et al., 268

2024). MARKDOWN offers a lightweight markup 269

language that provides formatting while remaining 270

readable in plain text (Zhao et al., 2023). 271

Table 2 includes two NARRATIVES templates 272

used to format these varied clinical measurements 273

into a standardized query. These templates detail 274

the format in which data from the EHR dataset 275

are presented, integrating both laboratory results 276

and vital signs into a single descriptive snapshot of 277

a patient’s current state. Each placeholder in the 278

template is populated with actual data points from 279

patient records, facilitating the transformation of 280

tabular EHR data into a format suitable for LLM 281

input, from which we then generate embeddings. 282

The primary distinction between the templates 283

for the diagnosis prediction dataset and the MIMIC- 284

Extract dataset lies in the types of values incor- 285

porated. For diagnosis prediction, data are values 286

collected immediately before the early warning sys- 287

tem triggers for clinical deterioration. In contrast, 288

MIMIC-Extract tasks include laboratory and vital 289

signs data from the 24 hours prior to the event. We 290

extracted all unique values observed during the first 291

24 hours of ICU admission in chronological order, 292

compiling these into a list format. If a feature has 293

no observations, it is omitted, resulting in variable 294

length sequences. 295

4.2 Embedding extraction methods 296

This section introduces the methods used to con- 297

vert input text to fixed-size vector for ML input. 298

We focused on the last hidden states of LLMs (as 299

in (Lu et al., 2021)), and employed three different 300

embedding extraction methods: Max Pooling cap- 301

tures the most salient features by taking the maxi- 302

mum value across all token embeddings for each 303
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dimension (Bao et al., 2023); Mean Pooling com-304

putes the average value of the token embeddings,305

providing a balanced representation reflecting the306

overall content (Ram et al., 2023); Last Token307

uses the embedding of the last token as the repre-308

sentation, capturing the concluding context or final309

summary (Shani et al., 2023; Fu et al., 2023). We310

included embeddings extracted from first token as311

a reference point despite it is not ideal due to the312

nature of decoder-only models.313

Our choice of ML classifiers comprised two tree-314

based methods and a linear model to provide a315

comprehensive assessment of various predictive316

approaches. Specifically, we utilized eXtreme Gra-317

dient Boosting (XGB)(Chen and Guestrin, 2016)318

and Random Forest (RF)(Breiman, 2001) as our319

tree-based classifiers due to their robustness and ef-320

ficiency in handling diverse datasets with accuracy.321

Additionally, Logistic Regression with regulariza-322

tion (LR) as our linear model was chosen for its323

effectiveness in preventing overfitting via Ridge324

and Least Absolute Shrinkage and Selection Opera-325

tor regularization(Zou and Hastie, 2005). Together,326

these classifiers form a balanced baseline setup327

that caters to both non-linear and linear decision328

boundaries in our data.329

4.3 Selection of LLMs330

We assessed a mix of general-domain models331

and models trained on medical text. Three332

widely-used, general-domain LLMs that have333

been instruction-finetuned are Mistral-7B-Instruct-334

v0.1 (Jiang et al., 2023), Llama2-13B-chat-hf,335

Llama2-70B-chat-hf (Touvron et al., 2023), and336

Llama3-8B-instruct (LLaMa, 2024). These mod-337

els are compatible with one Nvidia 80GB A100338

GPU, making them popular choices among avail-339

able LLMs. For the domain specific LLM, We se-340

lected Meditron-7B (Chen et al., 2023), a Llama2-341

7B based model continuously pretrained on medi-342

cal text. We also included ClinicalBERT (Alsentzer343

et al., 2019), pre-trained on MIMIC EHR text, rep-344

resenting encoders pre-trained on clinical text base-345

line compared to decoder-only LLMs.346

4.4 Prompt design and few-shot learning347

Because the majority of LLMs we tested are348

instruction-tuned and require varying input formats,349

we utilized the chat templates to ensure proper350

integration of input data (Zheng, 2024). In our351

study, the default setting involves including only352

the task-relevant question (shown on the right side353

of Fig 2) in the system message and the converted 354

EHR data in the user input, without additional 355

system instructions, predefined personas, or other 356

context. Given that instruction-tuned LLMs are 357

known to be sensitive to system instructions, we 358

designed four system instructions that vary by per- 359

sona (medical professional, AI system), tasks (assess pa- 360

tients, generate embeddings for ML classifiers), thinking 361

style (chain-of-thoughts), and question type (general as- 362

sessment, binary question), enabling us to explore the 363

influence of prompt characteristics on the embed- 364

dings. All prompts were paraphrased for better 365

perplexity scores, following prompt optimization 366

strategies (Gonen et al., 2023; Lu et al., 2023). 367

Two few-shot settings were explored besides 368

zero-shot prompt engineering. We generated syn- 369

thetic data for diagnosis prediction, by prompting 370

GPT-4 to generate values based on the attribute 371

names in Table 1. For each target diagnosis, GPT-4 372

generated one example confirming the diagnosis 373

(positive) and one example negating it (negative). 374

Moreover, GPT-4 was asked to generate CoT ex- 375

planations identifying abnormal values and their 376

clinical significance. An expert physician and clini- 377

cal informaticist reviewed these synthetic data pairs 378

for quality assurance. The complete set of prompts 379

are presented in Table 8. 380

4.5 Parameter efficient fine-tuning 381

While our paper primarily focuses on evaluating 382

zero-shot LLMs for numerical feature representa- 383

tion, we included parameter-efficient fine-tuning 384

experiment to suggest future directions for improve- 385

ment. We employed QLoRA (Dettmers et al., 2024) 386

on Mistral-7B-Instruct and Llama3-8B-Instruct, us- 387

ing the MIMIC-Extract dataset due to its larger 388

training set compared to the diagnosis dataset. We 389

trained Mistral with a sequence classification head 390

on top, saving checkpoints with the lowest valida- 391

tion loss. Based on validation performance, we 392

optimized the (q, k, v, o) layers with r = 16, a 393

learning rate of 3e-5, and a LoRA dropout of 0.1. 394

Each model was trained for 3 epochs with early 395

stopping to prevent overfitting. 396

4.6 Experiment setup 397

We used a 5-fold cross-validation on the diagnosis 398

dataset (660 patient records), resulting in 528 pa- 399

tients for training and 132 for testing per fold. For 400

mortality and LOS prediction tasks from MIMIC- 401

Extract data, we followed the data split from (Wang 402

et al., 2020). We evaluated performance using Area 403
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Model Sepsis AUROC Arrhythmia AUROC CHF AUROC Average
(95% CI) (95% CI) (95% CI) (95% CI)

Raw Data Features Baseline

LogisticRegression 71.10 (67.01, 75.18) 74.40 (69.35, 79.56) 54.79 (47.74, 61.79) 66.76 (61.37, 72.18)
RandomForest 65.26 (61.79, 68.48) 53.07 (50.58, 55.80) 50.89 (49.01, 53.43) 56.41 (53.79, 59.24)
XGB 71.17 (67.06, 75.11) 76.49 (71.32, 84.13) 58.47 (51.36, 65.15) 68.71 (63.25, 74.80)

LLM embedding + XGB classifier

Random 54.01 (49.89,58.44) 49.65(44.02,54.62) 50.02 (47.13, 52.29) 51.22 (47.01, 55.19)
Mistral-7b-Instructbest 71.12 (67.54, 74.92) 68.00 (61.52, 73.93) 51.80 (44.48, 58.65) 63.40 (57.73, 68.77)
Llama3-8b-Instructbest 63.84 (57.31, 69.87) 71.08 (65.69, 75.87) 63.84 (56.77, 70.37) 66.25 (60.15,72.35)
Llama2-13bbest 66.02 (61.64, 70.32) 58.62 (52.62, 64.46) 49.69 (48.83, 62.58) 58.11 (54.36, 65.79)
Llama2-70b-chatbest 68.57 (63.88, 71.53) 69.15 (67.08, 71.17) 53.87 (49.83, 58.52) 63.86 (60.93, 67.07)
Meditronbest 66.74 (62.30, 66.15) 72.26 (65.28, 77.43) 58.11 (50.64, 64.48) 63.90 (58.28, 65.45)
ClinicalBERT 58.80 (54.44, 63.04) 64.91 (61.84, 70.27) 49.67 (41.94, 57.51) 57.79 (52.74, 63.11)

LLM embedding + Logistic Regression classifier

Random 49.58 (47.68, 51.12) 49.22 (48.09, 50.43) 49.36 (47.12 51.06) 49.39 (47.63, 50.87)
Mistral-7b-Instructbest 62.61 (58.17, 66.95) 69.59 (64.67, 74.71) 48.98 (42.96,55.62) 60.39 (55.27, 65.76)
Llama3-8b-Instructbest 66.54 (62.32, 70.62) 70.22 (64.82, 74.11) 63.52 (55.91,69.20) 66.76 (61.50, 72.02)
Llama2-13b-chat-hfbest 66.95 (62.82, 70.88) 66.04 (60.04, 71.22) 58.54 (52.09, 65.09) 63.84 (58.32, 69.06)
Llama2-70b-chat-hfbest 69.50 (65.37, 73.43) 68.11 (61.75, 70.57) 62.72 (56.47, 68.39) 66.78 (61.20, 70.80)
Meditronbest 66.91 (62.83, 71.09) 68.61 (63.49, 73.72) 57.60 (51.02, 63.89) 64.37 (59.11, 69.90)
ClinicalBERT 47.28 (43.07, 51.63) 44.62 (38.79, 50.29) 46.98 (42.96, 55.62) 46.29 (41.61, 52.51)

Table 4: Comparing raw data features and LLM embeddings features for ML classifiers on Diagnosis dataset. We report the
best AUROC scores from LLM embedding across various embedding extraction and table-to-text conversion methods. The
“Random” row indicates the randomly initialized embedding input. For ClinialBERT, we used [CLS] token embedding as the
final representation. We use green color to highlight the LLM+ML results where it has CI overlapping with the best results (in
bold fonted text).

Under the Receiver Operating Characteristic (AU-404

ROC) with 95% confidence intervals (CI).405

For all ML classifiers, we determined the best pa-406

rameters through grid search on the validation set.407

Specifically, we tuned the number of estimators,408

maximum depth, learning rate, and minimum child409

weight for XGB classifiers, and alpha and L1 ra-410

tio for LR classifiers (see Appendix E). For LLMs411

under 13B, the maximum input length was 1042412

for the diagnosis dataset and 3076 for the MIMIC413

dataset, resulting in a 4096-dimensional embed-414

ding. For 70B LLM, the max input length was415

1500 and 4-bit quantization was set to avoid GPU416

memory errors, producing an 8192-dimensional417

embedding. All experiments ran on an Ubuntu418

server with an Nvidia 80GB A100 GPU.419

5 Results420

5.1 Main results for diagnosis prediction421

Table 4 presents AUROC scores for predicting Sep-422

sis, Arrhythmia, and CHF with different ML mod-423

els, demonstrating the effects of using LLM em-424

beddings compared to raw data features. XGB with425

raw data features stood out in the baseline, demon-426

strating the highest AUROC for Sepsis and Ar-427

rhythmia, and the highest average AUROC across428

all diagnoses. LR and RF, while using raw data429

input, showed moderately lower effectiveness.430

For LLM embeddings with zero-shot setting, we431

observed performance gain over a randomly initial-432

ized embedding approach into XGB with substan- 433

tial gains in all decoder LLMs. ClinicalBERT was 434

the only model, as an older pre-trained encoder, 435

that did not show notable performance gains over 436

the randomly initialized embedding model. Further, 437

Mistral embedding with XGB classifiers achieved 438

a competitive AUROC of 71.12 (vs. 71.16 of raw 439

data with XGB). Llama2-13B scored an AUROC of 440

58.54 on CHF prediction, the best among all mod- 441

els. This demonstrates that LLM embeddings can 442

match or nearly match the performance of models 443

trained with raw data inputs. 444

5.2 Main results for mortality prediction and 445

length-of-stay 446

Figure 3: Accuracy (left) and AUROC (right) for in-ICU mor-
tality (mort ICU), in-Hospital morality (mort Hosp), hospital
LOS exceeding 3 days (LOS 3) and 7 days (LOS 7). The Lo-
gistic Regression (LR) and Random Forest (RF) baselines are
reported from (Wang et al., 2020). The LLM results are from
LLM embeddings + XGB settings. The CIs mostly overlap;
for clarity in presentation, they were omitted from this figure.

Figure 3 displays performance for various mod- 447

els on tasks of in-ICU mortality (mort ICU), in- 448
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hospital mortality (mort Hosp), and hospital length-449

of-stay for more than 3 (LOS 3) and 7 days (LOS450

7). The raw data features with XGB model con-451

sistently outperforms others with an AUROC of452

92.02 in mort ICU and 89.83 in mort Hosp. LLM453

embeddings from Mistral, Llama3-8b, and Med-454

itron, while slightly lagging behind the raw data455

features with ML classifiers in the mortality tasks,456

performed comparably in the LOS 7 tasks. Mistral457

with XGB achieved accuracy of 92.34 and AU-458

ROC of 72.36 on LOS 7 task, showing competitive459

performance to XGB with raw data features, with460

accuracy of 92.32 and an AUROC of 76.93. The461

gap between LLM embeddings and raw data for462

mortality and LOS tasks suggests a need to improve463

time-varying feature representation.464

5.3 Comparisons across different embedding465

methods and data conversion methods466

Figure 4 presents AUROC values for different467

embedding methods and data conversion formats468

across three models: Mistral, Meditron, and469

Llama3-8b. Max pooling achieves the highest per-470

formance for Mistral (64.62) and Meditron (62.54),471

while mean pooling is most effective for Llama3-472

8b (64.69). The last token method yields moder-473

ate performance across all models, with AUROCs474

around 57, while first token embeddings result in475

the lowest AUROC values, indicating a less effec-476

tive representation for these models.477

Figure 4: Comparison across different embedding methods
and different format on the Diagnosis dataset. For simplicity,
we used NARRATIVE and max pooling for the other analysis
after this section.

When encoding data with different formats, Mis-478

tral shows preference for NARRATIVES, JSON, and479

HTML. The MARKDOWN format generally yielded480

the lowest performance across the models, particu-481

larly for Mistral. JSON and HTML formats showed482

competitive performance, with JSON being slightly483

more effective for Meditron and Llama3-8b. No-484

tably, Llama3-8b exhibited the highest variability485

across formats, with AUROCs ranging from 57.40 486

(HTML) to 66.13 (NARRATIVES). 487

5.4 Impact of prompt engineering and 488

few-shot learning 489

We compared performance of Mistral and Llama3 490

using different system instructions under zero-shot 491

and few-shot settings, as well as CoT examples. 492

Mistral, under 0-shot with a system instruction with 493

persona of medical professional and the task of as- 494

sessing patient condition (prompt 1 in Table 8), 495

achieved an AUROC of 71.35 on Sepsis prediction, 496

the highest of all models. Llama3 with zero-shot 497

prompting using prompt 1 in Table 8 showed re- 498

ported AUROC of 73.51 on Arrhythmia, surpass- 499

ing its counterpart at 71.08 but still below raw data 500

XGB baseline (76.49). CoT and few-shot exhibited 501

various performance and often resulted in lower 502

AUROC scores compared to Table 4. Full results 503

are provided in Appendix C. 504

5.5 Parameter efficient fine-tuning results 505

Setting LOS 3 LOS 7 Mort ICU Mort Hosp

Mistral 67.84 72.36 84.16 80.71
MistralQLoRA 65.26 67.66 75.69 73.66

Performance Drop 2.58 4.70 8.47 7.05

Llama3-8b 68.54 70.38 85.61 83.06
Llama3-8bQLoRA 66.69 68.56 75.14 71.15
Performance Drop 1.85 1.82 10.47 11.91

Table 5: AUROC comparison before and after training LLM
with QLoRA on MIMIC tasks.

Table 5 presents results of Mistral and Llama3- 506

8b under the QLoRA across all four tasks from 507

MIMIC-Extract. The performance drops are no- 508

ticeable, especially in the two mortality predictions. 509

To further understand the reason behind the perfor- 510

mance drops, we plotted the confusion matrices for 511

LOS 3 and Mort ICU, comparing Mistral’s predic- 512

tions before and after QLoRA in Figure 5. For LOS 513

3 prediction, the Mistral model with QLoRA shows 514

an increase in true negatives and a decrease in false 515

positives. However, the false negatives rises from 516

1133 to 1473, and true positive drops from 918 to 517

578. On the Mort ICU task, the Mistral model with 518

QLoRA correctly predicts no false positives, but 519

it fails to predict any positive cases (0 true posi- 520

tives). The performance drop can be attributed to 521

the imbalanced class distribution in the dataset, as 522

the models show a tendency to favor the majority 523

class (negative cases). During QLoRA, the LLM 524

might learn the class prevalence, biasing its rep- 525

resentation and making it challenging to correctly 526

7



Figure 5: Confusion matrices for Mistral prediction on LOS
3 and Mort ICU tasks. Right: Mistral without QLoRA; left:
Mistral after QLoRA.

identify the minority class.527

5.6 LLM Embedding vs LLM Generation528

The final experiments compare the performance of529

LLM embeddings combined with ML classifiers530

against direct outputs from LLMs. This compar-531

ison shows that, although LLM embeddings gen-532

erally do not outperform raw data features, they533

offer a more robust and reliable solution than rely-534

ing on LLMs to directly answer Yes or No ques-535

tions. Our exploration revealed significant limita-536

tions in LLM generation for binary prediction tasks.537

For instance, Mistral frequently predicted ’Yes’ for538

sepsis, arrhythmia, and CHF AORC, resulting in539

AUROC scores being 50, whereas LLM embed-540

dings achieved AUROCs of 71.12 for sepsis, 72.26541

for arrhythmia, and 63.54 for CHF AUROC. Simi-542

lar patterns were observed from Llama3-8b results543

(Table 12). On MIMIC-Extract tasks with highly544

skewed class distributions, Mistral and Llama3-545

8b, when generating direct Yes/No answers, again546

showed reduced ability to discriminate between547

positive and negative cases (Table 13). These find-548

ings underscore the need for embeddings, which549

provide a more nuanced and effective approach550

for clinical predictions. We refer readers to Ap-551

pendix D for more details.552

6 Discussion553

To understand the discrepancy between the two554

data representations, we examined the training ef-555

fectiveness of raw data features and LLM embed-556

dings by controlling the training set size. Figure 6557

compares the performance of the raw data XGB558

baseline model with the Mistral and Meditron em-559

beddings across different training set sizes for two560

Figure 6: AUROC comparison between Raw data, embed-
dings from Mistral and Meditron with XGB classifiers, by
controlling the training set size on two MIMIC tasks.

tasks in the MIMIC dataset. The raw data XGB 561

baseline model shows a significant increase in AU- 562

ROC scores with larger training sets, achieving 563

high performance. In contrast, both the Mistral and 564

Meditron embeddings paired with XGB models 565

exhibit much smaller improvements, consistently 566

performing lower than the raw data XGB baseline. 567

This highlights the greater effectiveness of XGB 568

when learning from raw data features compared to 569

LLM embeddings for these prediction tasks. 570

Our findings suggest that raw data features pro- 571

vide more informative input for ML models com- 572

pared to LLM-generated embeddings. While LLM 573

embeddings capture complex representations, they 574

may not be as tailored for binary medical predic- 575

tion tasks. Additionally, computing efficiency is an 576

important consideration, as LLMs require signifi- 577

cantly more GPU memory than raw data features. 578

However, zero-shot LLM embeddings achieve 579

comparable performance in certain scenarios, high- 580

lighting their potential for rapid deployment with- 581

out extensive training. A promising direction is 582

distilling these embeddings into a smaller space 583

while retaining their extensive knowledge (Lee 584

et al., 2024). BehnamGhader et al. (2024) recently 585

proposes LLM2Vec, a method to train decoder-only 586

LLMs as text encoders with unsupervised training, 587

which merits further investigation. 588

7 Conclusion 589

We present the first analysis of LLM embeddings 590

for numerical EHR data features in medical ML ap- 591

plications, showing the opportunity and challenges 592

of using LLM embeddings as a substitute of raw 593

data features. We hope to encourage future research 594

on improving LLM embeddings, particularly for 595

imbalanced label prediction, and advancing health 596

predictions with multi-modal data, while address- 597

ing interpretability and bias. 598
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8 Limitation599

In our study, we focused on investigating some600

of the most common LLMs, including Meditron,601

Mistral, Llama2, and Llama3. Due to GPU con-602

straints, some experiments, such as Qlora, were603

conducted on only one or two models, limiting the604

comprehensiveness of our analysis. We did not605

include black-box LLMs via API because, despite606

using fully de-identified data, both EHR datasets607

are protected under Data Use Agreement, restrict-608

ing us sharing with third parties. Additionally, we609

acknowledge that we did not explore all possible610

methods of prompting LLMs, which may have in-611

fluenced our results. Furthermore, our examination612

was restricted to the last layers of the LLMs, poten-613

tially overlooking valuable information encoded in614

other layers.615

Regardless of these limitations, our findings are616

consistent across models: zero-shot LLM embed-617

dings paired with machine learning classifiers gen-618

erally underperform compared to raw data features,619

though they sometimes achieve comparable perfor-620

mance.621

9 Ethical Statement622

Following the ACL’s ethical review guidelines, our623

study on leveraging LLMs for medical diagnosis624

within EHR emphasizes ethical integrity by priori-625

tizing harm avoidance, privacy protection, fairness,626

transparency, and respect for intellectual property.627

While our research aims to advance medical di-628

agnostics through LLMs, there is a potential risk629

that misinterpretations of model predictions could630

inadvertently lead to diagnostic errors or bias in631

clinical decision-making. Therefore, rigorous vali-632

dation protocols, including expert medical review633

and bias detection mechanisms are needed to en-634

sure that model predictions are both accurate and635

equitable across diverse patient populations.636

We have rigorously ensured data de-637

identification, obtained ethical approvals,638

actively mitigated biases, and maintained openness639

in our methodologies and findings to uphold640

honesty and reproducibility. Our commitment641

extends to respecting intellectual property through642

proper attribution and license adherence, with643

the overarching goal of contributing positively644

to healthcare outcomes and societal well-being.645

This approach underscores the importance of646

robust, secure research practices in developing647

computational tools for healthcare, aligning with648

our ethical responsibility to advance the field for 649

the public good. 650
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A Diagnosis Prediction Dataset Patient 905

Demographics 906

Group Distribution

Total 660 Patients
Gender Male (52%), Female (48%)
Ages Adults (36%), Geriatric (64%)
Race White\Caucasian (89%), Black\African

American (6%), Asian\Mideast Indian
(2%), American Indian\Alaska Native
(1%), Pacific Islander\Hawaiian Native
(<1%) , Declined\Unknown (<1%)

Table 6: Patient demographic description of diagnosis pre-
diction dataset. Note that in this work, we exclude the demo-
graphic information from ML input.

B Probing LLMs for Inherent Knowledge 907

of Normal Ranges 908

A foundational question for using LLM embed- 909
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they possess inherent knowledge about the normal911

range of values for clinical data. To assess this, we912

first asked the LLMs about standard physiological913

ranges, measurement units, and reasoning from the914

feature set of tabular data outlined in Table 1. A915

board-certified physician assessed the LLM gen-916

erations using a 1 to 5 Likert scale across three917

dimensions: correctness of the range, accuracy of918

measurement units, and quality of explanations919

("Reasoning"). Our probing experiments were con-920

ducted on Mistral and Llama2-13b, as these are921

general-domain LLMs that have been fine-tuned922

to follow instructions. This experiment was done923

prior to the release of Llama3 models, therefore924

we did not include them. We did not employ auto-925

mated metrics because there is no single set of ref-926

erence ranges for some features, as they are highly927

dependent on patients’ ages, sex, and other demo-928

graphic factors.929

In our exploration of language model capabilities930

within the healthcare domain, we specifically probe931

the model’s understanding of standard ranges and932

measurement units for EHR data features. The933

following table illustrates Mistral’s performance on934

tasks designed to evaluate its ability to accurately935

identify and articulate the normal physiological936

ranges and corresponding units for 24 distinct EHR937

features. This assessment not only tests the model’s938

grasp of medical terminology and concepts but also939

its potential application in clinical settings where940

precise knowledge of such parameters is crucial.941

C Prompt Design942

To test the impact of prompt engineering on LLM943

embeddings, we designed four distinct prompts,944

varying by persona, thinking style, and question945

types. Our prompt engineering strategy builds on946

prior work that utilizes perplexity to select opti-947

mal prompts (Gonen et al., 2023). Initially, we948

crafted meta-language prompts delineating clinical949

scenarios and tasks. We then employed GPT-4, a950

state-of-the-art LLM, to generate five paraphrases951

for each prompt to capture a range of expressions.952

We evaluated each paraphrase’s naturalness and953

fluency by calculating its perplexity score, select-954

ing the most coherent paraphrase for each scenario955

for our experiments. The optimized prompts are956

detailed in Table 8.957

We also used these prompts in few-shot experi-958

ments. Given the complexity of the MIMIC-Extract959

dataset, which includes 104 features with data col-960

Question: What is the reference range for the Pulse Pres-
sure Index?
Reference: 0.1, 1
LLM (Mistral): The reference range for Pulse Pressure
Index (PPI) is not a commonly used vital sign or lab re-
sult label. It measures the ratio of the pulse pressure to
the systolic blood pressure, used to assess cardiovascular
risk. The PPI is typically reported as a percentage, with a
normal range being less than 10%. However, the specific
reference range may vary by population and clinical con-
text. It is important to consult healthcare professionals for
personalized PPI interpretations.
Physician Evaluation (Range, Unit, Reasoning): 3, 5, 5

Question: What is the reference range for Serum Carbon
Dioxide Level?
Reference: 22, 29 mmol/L
LLM (Mistral): The reference range for serum carbon
dioxide (CO2) level is typically between 21 to 29 mil-
limoles per liter (mmol/L) for serum measurements, or 2.5
to 3.5 mmol/L for arterial blood gas (ABG) measurements.
Note that CO2 level units are mmol/L or ppm, and the
range may vary by laboratory or tested population.
Physician Evaluation (Range, Unit, Reasoning): 5, 4, 2

Table 7: Mistral’s probing output examples for Normal
Ranges and Units of EHR data features

lected over 24 hours, creating high-quality syn- 961

thetic data is challenging. Thus, we focused our 962

efforts on the diagnosis prediction use case, which 963

involves simpler inputs of twenty-four clinical fea- 964

tures, facilitating quality control over the synthetic 965

data generation. 966

As illustrated in Figure 2, we used GPT-4 to cre- 967

ate synthetic data depicting patient cases of clinical 968

deterioration with features in Table 1. This data set 969

includes both positive and negative diagnosis cases, 970

which were reviewed by an expert physician and 971

clinical informaticist for quality assurance. Our 972

few-shot experiments varied in complexity: the 973

first modified Prompt 1 to include example input- 974

output pairs ("Simple" few-shot setting), while the 975

second added a CoT explanation detailing the di- 976

agnostic reasoning into Prompt 3. The CoT was 977

structured to identify and reason over abnormal 978

values to conclude diagnoses, enhancing the data’s 979

interpretability and educational value. 980

D Results of LLM Direct Generation 981

We tested the ability of Mistral and Llama3 to di- 982

rectly predict Yes or No answers to questions from 983

the Diagnosis and MIMIC-Extract datasets. To 984

achieve this, we added specific instructions direct- 985

ing the LLMs to respond only with "Yes" or "No," 986

then parsed the outputs to 1 or 0 labels and com- 987

puted AUROC and Accuracy. For this experiment, 988

we set the maximum token limit to 25 and the top 989
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Prompt Description

Prompt 1 -Persona: Medical Professional As a healthcare provider, please assess the patient’s condition provided below and
outline the likely causes or diagnoses for their clinical worsening. List only the diagnoses and keep your response brief.
Prompt 2 -Persona: AI System You are an AI with medical expertise. Create an embedding for the probable problems or
diagnoses that are causing clinical deterioration, based on the patient’s condition detailed below, to aid in training a diagnostic
prediction machine learning classifier. Be brief in your description.
Prompt 3 -Persona: Medical Professional (Chain-of-Thought) As a medical expert, please examine the patient’s condition by
first identifying any abnormal values. Next, critically analyze these values to assess their impact, and clearly state your final
diagnosis regarding what might be causing the clinical deterioration. Keep your summary brief.
Prompt 4 -Persona: Medical Professional (Binary Question) You are a medical doctor. Based on the patient’s condition,
determine the likelihood that diagnosis X is causing their clinical deterioration. Be aware that diagnosis X occurs in Y% of
similar cases.

Table 8: System prompts for medical diagnosis assistance with different persona settings.

Model Setting AUROC CI (%)

Mistral-7b-instruct sys1 54.85 [48.18, 62.11]
sys2 53.88 [47.37, 60.67]
sys3 51.16 [44.34, 57.67]
sys4 54.04 [46.84, 61.56]

Fewshot 54.43 [46.62, 61.05]
CoT 57.96 [60.72, 69.24]

Llama2-13b-chat sys1 56.49 [49.90, 63.09]
sys2 55.61 [48.43, 62.31]
sys3 50.41 [43.19, 57.33]
sys4 60.24 [53.28, 67.09]

Fewshot 53.12 [46.38, 59.84]
CoT 54.10 [51.84, 60.59]

Llama3-8b-instruct sys1 52.81 [46.47, 59.21]
sys2 51.11 [44.64, 57.27]
sys3 49.03 [42.19, 55.74]
sys4 55.23 [48.28, 61.79]

Fewshot 53.24 [46.60, 59.99]
CoT 51.44 [48.58, 53.77]

Table 9: AUROCs for various models and settings on CHF
Volume Overload prediction.

k to 50.990

Table 12 presents results of Mistral directly gen-991

erating "Yes/No" answers for the Diagnosis dataset.992

For all tasks (Sepsis, Arrhythmia, CHF), Mistral993

achieved an AUROC of 50.00, indicating no dis-994

criminatory ability. Accuracy varied across tasks,995

with Sepsis at 43.18%, Arrhythmia at 15.30%, and996

CHF at 11.82%, corresponding to the positive class997

distribution, demonstrating poor performance in998

direct prediction. Llama3 exihibited similar perfor-999

mance: it reported AUROC scores between 47.121000

(Arrhythmia) to 50.28 (Sepsis), underperforming1001

its embedding counterparts reported in Table 4. Ad-1002

mittedly, extra effort in prompt engineering and pa-1003

rameter searching could improve direct generation1004

results. However, compared to their embedding +1005

ML classifier counterparts in the same zero-shot1006

setting and input format (NARRATIVES, without1007

additional system instructions such as personas),1008

their performance is significantly lower.1009

Model Setting AUROC CI (%)

Mistral-7b-instruct sys1 62.27 [56.47, 67.67]
sys2 63.84 [58.06, 69.31]
sys3 64.92 [58.98, 70.05]
sys4 66.11 [60.20, 71.52]

Fewshot 68.43 [62.82, 73.98]

Llama2-13b-chat sys1 69.24 [63.52, 74.84]
sys2 61.90 [56.04, 67.63]
sys3 61.44 [56.35, 66.68]
sys4 64.43 [58.63, 69.95]
sys5 67.74 [62.35, 73.22]

Llama3-8b-instruct sys1 71.12 [65.91, 76.05]
sys2 72.13 [66.12, 77.88]
sys3 70.24 [64.94, 75.58]
sys4 73.51 [68.09, 78.54]
sys5 73.10 [67.29, 78.18]

Table 10: One Time AUROC and Confidence Intervals for
various models and settings on Arrhythmia prediction. Scores
are multiplied by 100.

On the MIMIC-Extract tasks, table 13 shows 1010

the results of Mistral-7b-Instruct and Llama3-8b- 1011

Instruct in directly generating "Yes/No" answers 1012

for various tasks in the MIMIC-Extract dataset. 1013

Both models demonstrated no discriminatory abil- 1014

ity, with AUROC scores close to 50 for all tasks. 1015

Accuracy varied, with notable high accuracy for 1016

MORT ICU and MORT HOSP tasks, particularly 1017

for Llama3-8b-Instruct (92.88% and 89.71%, re- 1018

spectively). However, these high accuracy scores 1019

likely reflect class imbalance rather than model 1020

performance. The contrast between the LLM di- 1021

rect prediction performance and LLM embedding 1022

+ classifier performance further suggests that LLM 1023

embeddings provide a more robust method. 1024

E Parameter Grids for ML Classifiers 1025

We conducted a comprehensive grid search 1026

for hyperparameter optimization on two classi- 1027

fiers: XGBoost (XGB) and Logistic Regression. 1028

For the XGB classifier, the parameter grid in- 1029
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Model Setting AUROC CI (%)

Mistral-7b-instruct sys1 71.35 [67.39, 75.73]
sys2 67.63 [63.53, 71.80]
sys3 65.67 [61.50, 69.78]
sys4 67.87 [63.29, 71.88]

Fewshot 67.32 [63.26, 71.20]
CoT 64.29 [60.72, 69.24]

Llama2-13b-chat sys1 68.79 [64.87, 72.59]
sys2 69.82 [65.66, 73.92]
sys3 68.92 [64.64, 73.09]
sys4 64.62 [60.40, 68.73]

Fewshot 66.49 [62.21, 70.59]
CoT 65.13 [62.30, 69.25]

Llama3-8b-instruct sys1 67.05 [62.96, 71.11]
sys2 66.07 [61.94, 70.28]
sys3 64.80 [60.74, 69.11]
sys4 66.81 [63.08, 70.90]

Fewshot 66.87 [62.90, 70.84]
CoT 62.12 [58.37, 66.96]

Table 11: AUROC Confidence Intervals for various models
and settings on Sepsis prediction. Scores are multiplied by
100.

Model Task AUROC Accuracy

Mistral-7b-instruct Sepsis 50.00 43.18
Arrythmia 50.00 15.30

CHF 50.00 11.82

Llama3-8b-instruct Sepsis 50.28 54.69
Arrythmia 47.12 73.63

CHF 47.61 77.12

Table 12: Results of Mistral and Llama3-8B directly
generating "Yes/No" to the Diagnosis dataset. To align
with the results reported for emebdding+ML classifiers
settings, the LLMs are zero-shot, and no additional
system instructions are included in the chat template.

Model Task AUROC Accuracy

Mistral-7b-Inst LOS 3 49.72 56.05
LOS 7 49.86 87.93

MORT ICU 50.04 91.98
MORT HOSP 49.79 86.93

Llama3-8b-Inst LOS 3 50.73 57.24
LOS 7 50.10 92.29

Mort ICU 49.99 92.88
Mort Hosp 49.99 89.71

Table 13: Results of Mistral and Meditron direct gener-
ation of "Yes/No" to the MIMIC-Extract dataset

cluded nestimators set to [50, 100, 250, 500],1030

maxdepth ranging from [2, 5, 10, 15, 20],1031

learningrate values of [0.005, 0.01, 0.05, 0.1],1032

and minchildweight values of [1, 2, 3]. This ex-1033

tensive search aimed to identify the best combina-1034

tion of hyperparameters to enhance model perfor-1035

mance.1036

For the Logistic Regression classifier, we varied1037

Parameter Values
n_estimators 50, 100, 250, 500
max_depth 2, 5, 10, 15, 20
learning_rate 0.005, 0.01, 0.05, 0.1
min_child_weight 1, 2, 3

Table 14: Parameter grid for XGBoost (XGB) classifier.

Parameter Values
alpha 0.1, 0.5, 1.0
l1_ratio 0.1, 0.5, 0.9

Table 15: Parameter grid for Logistic Regression (LR).

alpha with values of [0.1, 0.5, 1.0] and l1ratio with 1038

values of [0.1, 0.5, 0.9]. This grid search was de- 1039

signed to fine-tune the regularization parameters to 1040

achieve optimal balance between model complexity 1041

and performance. 1042

Grid-searching on XGB parameters took 25-40 1043

minutes on GPU. On LR, it took about 25 minutes 1044

to search for the best parameters. Training both 1045

classifiers took less than 5 minutes, even on the 1046

MIMIC-Extract dataset where there are more than 1047

16000 samples. 1048
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