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Abstract

This paper introduces a new approach for continual plan-
ning and model learning in non-stationary stochastic envi-
ronments expressed using relational representations. Such
capabilities are essential for the deployment of sequential
decision-making systems in the uncertain, constantly evolv-5

ing real world. Working in such practical settings with un-
known (and non-stationary) transition systems and changing
tasks, the proposed framework models gaps in the agent’s cur-
rent state of knowledge and uses them to conduct focused,
investigative explorations. Data collected using these explo-10

rations is used for learning generalizable probabilistic mod-
els for solving the current task despite continual changes
in the environment dynamics. Empirical evaluations on sev-
eral benchmark domains show that this approach signicantly
outperforms planning and RL baselines in terms of sam-15

ple complexity in non-stationary settings. Theoretical results
show that the system reverts to exhibit desirable convergence
properties when stationarity holds.

1 Introduction
This paper addresses the problem of planning in non-20

stationary stochastic settings with unknown domain dy-
namics. In particular, we consider problems where a goal-
oriented agent is not given a closed-form model of the prob-
abilities of states that may result upon execution of an ac-
tion. Furthermore, these probabilities can change at poten-25

tially unknown time steps as the agent is executing in the
environment. Such settings are commonly encountered by
planning systems in the real-world. For example, an au-
tonomous warehouse robot would be expected to continue
achieving goals through different paths when some corri-30

dors get blocked due to spills or when the layouts of stor-
age racks change to accommodate changing inventory pro-
les. Currently, such changes require renewed modeling by
domain experts thus limiting the scope and deployability of
automated planning methods.35

These settings are technically challenging due to the need
to correctly model uncertainty about the agent’s knowl-
edge when a discrepancy is detected, and to conduct fo-
cused exploration that can improve the agent’s knowledge
for subsequent planning. Prior work on the problem inves-40

tigates the role of randomized exploration for addressing
non-stationarity. E.g., if the rate of novelty events induc-
ing non-stationarity are sufciently low compared to the

timesteps available for learning in each epoch of stationary
dynamics, Reinforcement Learning (RL) techniques such 45

as Q-Learning with variations of ϵ-greedy exploration can
be guaranteed to successively converge to optimal policies.
However, these methods are likely to be sample-inefcient
as the collection of new data is not easily focused towards
parts of the environment that changed. 50

We present a new framework for continual learning and
planning under non-stationarity for such settings (Sec. 3.2),
develop solution algorithms for this paradigm (Sec. 3.4) and
evaluate their performance across various forms of the prob-
lem, depending on whether the change in dynamics is known 55

to the agent and whether the agent conducts comprehensive
re-learning or need-based learning (Sec. 4).

Our approach addresses the challenges discussed above
with autonomous processes for deliberative data gathering,
planning, and model learning. It starts with the inputs avail- 60

able to a standard RL agent (a simulator, action names, and
a reward generator), but instead of learning a policy, it in-
teracts with the environment to rst learn a relational prob-
abilistic planning model geared towards solving the current
goal, and then uses it to compute solution policies. When 65

a discrepancy is detected, it ags aspects of the currently
learned model that are no longer accurate, and conducts in-
vestigative exploration with auto-generated epistemically-
guided policies to re-learn aspects that may have changed.
The problem of computing useful investigative policies 70

is non-trivial. This is reduced to a fully-observable non-
deterministic (FOND) (Cimatti, Roveri, and Traverso 1998)
planning problem and solved without interacting with the
simulator. The computed investigative policies are then ex-
ecuted and the resulting data is used to learn more accurate 75

models. Although these executions are not focused on pol-
icy learning for the current task, they are used to learn and
maintain relational Probabilistic Planning Domain Descrip-
tion Language (PPDDL) style models. We show that (i) this
signicantly increases transferability and generalizability of 80

learning, and (ii) the resulting paradigm vastly outperforms
SOTA RL and existing model-based RL paradigms.

Our main contribution is the rst known approach for us-
ing information about epistemic uncertainty of a logic-based
internal probabilistic model to create exploration strategies, 85

learn better models, and then compute plans even as transi-
tion systems change. Additionally, this is also the rst ap-



proach to interleave active learning with epistemic explo-
ration to discover a stochastic symbolic model suited for task
transfer in non-stationary environments. Empirical analysis90

on non-stationary versions of benchmark domains show that
in such settings our approach (i) signicantly reduces the
sample complexity compared to SOTA baselines; (ii) can
quickly adapt to changes in environment dynamics; and (iii)
performs very close to an oracle that has access to all the95

information about changes in the environment apriori.

2 Background
Relational Markov Decision Processes (RMDPs) We
model tasks as RMDPs expressed in PPDDL (Younes
et al. 2005). An RMDP environment or domain D↑ =100

⟨P↑,A↑⟩ is a tuple consisting of a set of parameterized
predicates P↑ and actions A↑. Here, P↑contains predi-
cates of the form p↑(x1, . . . , xm), and A↑contains actions
of the form a↑(x1, . . . , xn), where xi are the parameters.
We use ↑ to specify lifted predicates and actions with vari-105

ables as arguments and omit the parameterization when it
is clear from context. A grounded RMDP task (or prob-
lem) is dened as a tuple M = ⟨D↑, O, S,A, δ, R, s0, g, γ⟩
where O is a set of objects. A literal p(o1, . . . , on) rep-
resents a grounded predicate parameterized with objects110

oi ∈ O. Formally, predicates are grounded by comput-
ing a mapping between their parameters to the objects,
σ(p↑(x1, . . . , xn), [o1, . . . , on]) = p(o1, . . . , on), where
p↑ ∈ P↑, oi ∈ O. Similarly, σ can also be used to lift
grounded predicates and actions. We refer to P as the set115

of all possible grounded predicates derivable using P↑ and
O. For clarity, we use the notation e↑ to denote whether an
entity e is lifted and use e otherwise.

A state s is a complete valuation of all possible predicates
p ∈ P . Following the closed-world assumption, predicates120

whose values are false are omitted from the state represen-
tation. The set of all possible subsets of predicates forms
the state space S of the RMDP M . Similarly, the action
space A ofM is formed by grounding each action a↑ ∈ A↑.
δ : S×A×S → [0, 1] is the transition function and is imple-125

mented by a simulator. For a given transition τ = (s, a, s′),
δ(s, a, s′) species the probability of executing action a ∈ A
in a state s ∈ S and reaching a state s′ ∈ S. Naturally,


s′∈S δ(s, a, s′) = 1 for any s ∈ S and a ∈ A.
The simulator ∆ : S × A → S is a function that returns130

a state s′ on executing a in s by sampling over δ. Execut-
ing an action ∆(s, a) constitutes one step on the simulator.
|∆| represents the total steps executed by the simulator and
∆S ∈ N

+ indicates the simulator step budget after which
the simulator cannot be used. s0 is the initial state and g is135

a conjunctive rst-order logic goal formula obtained using
P↑and O. A goal state sg ∈ S is a state such that sg |= g.
R : S × A → {0,−1} is the reward function and R(s, a)
indicates the reward obtained for executing action a in state
s. For all a ∈ A, we set R(sg, a) = 0 for any goal state140

sg and R(s, a) = −1 otherwise. γ ∈ [0, 1) is the discount
factor. Execution begins in the initial state and terminates
when a goal state is reached or when a horizonH ∈ N

+ has
been exceeded. An RMDP task is accomplished whenever
execution terminates in a goal state.145

Running Example Consider a robot that is deployed
to assist in a warehouse. The robot is equipped with
sensors and actuators (e.g., camera, wheels, grip-
pers, etc.) that can help it perform a variety of tasks
such as cleaning oors, restocking shelves, etc. Such 150

tasks could be specied by using a domain with P↑ =
{robot-at↑(rx, lx),box-at

↑(lx, bx),holding
↑(rx, bx),

handempty↑(rx)}. A
↑ would consist of actions such as

move-from↑(rx, lx, ly),pick-up
↑(rx, lx, bx), etc. with

their transition function implemented by a simulator. 155

Example RMDP task Consider an environment with one
robot r1, two locations l1, l2, and one box b1. An RMDP
task of moving b1 to l1 and parking r1 anywhere could
be modeled as M where O = {r1, l1, l2, b1}, s0 =
{handempty(r1), robot-at(r1, l1), box-at(b1, l2)}, 160

and g = box-at(b1, l1) ∧ ∃lx robot-at(r1, lx).
A solution to an RMDP is a deterministic policy π : S →

A that maps states to actions. The value of a state swhen fol-
lowing a policy π is dened as the expected cumulative re-
ward obtained when executing a in s and following π there- 165

after, i.e., V π(s) = R(s, a) + γ


s′∈S δ(s, a, s′)V π(s′)
The objective of an RMDP is to compute an optimal policy
π∗ that maximizes the expected reward obtained by follow-
ing it.1 Model-based RMDP algorithms compute π∗(s0) by
solving the Bellman Optimality Equation iteratively starting 170

from s0 (Sutton and Barto 1998):

V ∗(s) = max
a



R(s, a) + γ


s′∈S

δ(s, a, s′)V ∗(s′)



(1)

The above equation requires access to closed-form knowl-
edge of the transition function δ. When such informa-
tion is unavailable, RL-based RMDP algorithms use sam-
ple estimates of Q-values instead. Given a policy π, 175

the Q-value of a state s when executing action a is
dened as the expected reward obtained when execut-
ing a in s and following π thereafter, i.e. Qπ(s, a) =
Eπ [

∞

t=0 γ
tR(St, At)|S0 = s, A0 = a]. The Q-Learning

Equation (Watkins 1989) can be written as: as: 180

Q(s, a)=(1− α)Q(s, a)+α



R(s, a)+γmax
a′∈A

Q(s′, a′)



where α ∈ [0, 1] is the learning rate. It employs an explo-
ration strategy such as ϵ-greedy wherein a random action is
selected with probability ϵ and selecting the greedy action
argmax

a
Q(s, a) otherwise. Q-Learning has been shown to

converge to the optimal policy (Sutton and Barto 1998). 185

PPDDL transition models Our approach learns lifted
PPDDL models that can be used for stochastic planning
using Eqn. 1. We note that the simulator’s implementation
of the transition function could be arbitrary and does not
need to be a PPDDL model. Given an RMDP M , a PPDDL 190

model Ma for an action a(o1, . . . , on) ∈ A is a tuple
⟨Prea,Proba,Effa⟩. We omit the subscript when it is clear
from context. Pre represents the precondition and is ex-
pressed as a conjunctive formula of predicates p ∈ Pa where

1Without loss of generality, we focus on optimal policies that
are optimal w.r.t. the initial state s0.



Pa = {σ(p↑(x1, . . . , xm), [oi, . . . , oj ]|p
↑ ∈ P↑}. Prob is a195

list of probabilities such that


i Prob[i] = 1. Eff is a list of
effects. Each effect Eff[i] ∈ Eff is a tuple ⟨Eff[i]−,Eff[i]+⟩
both of which are sets composed of predicates p ∈ Pa.

An action a is applicable in a state s iff s |= Pre. An
effect Eff[i] when applied to a state s results in a state200

s \ Eff[i]− ∪ Eff[i]+. Applying an action a to a state s re-
sults in exactly one effect Eff[i] being applied with probabil-
ity Prob[i] if the action is applicable else the state remains
unchanged. A PPDDL transition modelM = {Ma|a ∈ A}
translates to a closed-form specication of the transition205

function δ of M , i.e., M ≡ δ. A lifted (grounded) PPDDL
model Ma↑(Ma) can be easily obtained from Ma(Ma↑)
using σ. As is the case with RMDP domains, several RMDP
tasks from a single domain can also share the same lifted
PPDDL model M↑ = {Ma↑ |a ∈ A↑}.210

Example The pick-up↑(rx, lx, bx) action described in the
running example could be modeled as a PPDDL model
Mpick-up↑ with precondition Pre = box-at↑(bx, lx) ∧

robot-at↑(rx, lx) ∧ handempty↑(rx) to indicate that
the action is applicable only when the robot is not hold-215

ing anything is at the same location as the box. The ef-
fects could be modeled as Eff[0] = ⟨{¬box-at↑(bx, lx),

¬handempty↑(rx)} {holding↑(rx, bx)}⟩ to indicate
that the robot successfully picked up the box and is cur-
rently holding it. Similarly, another effect Eff[1] = {} with220

Prob[1] = 0.1 could be used to model a slippery gripper with
a 10% chance to fail to pick-up the box.

Denition 2.1 (M-Consistent Transition). Given a PPDDL
modelM and an action a(o1, . . . , on) ∈ A of an RMDPM ,
a transition τ = (s, a, s′) where s, s′ ∈ S is said to be M-225

consistent, τ ⇌ M, iff s = s′ when s ̸|= Pre or ∃i such that
Prob[i] > 0 and s′ = s\Eff[i]−∪Eff[i]+ whenever s |= Pre.

A lifted PPDDL model Ma↑ is implicitly converted to a
grounded PPDDLmodelMσ(a↑,o1,...,on) when checking for
M-consistency w.r.t. a transition τ .230

PPDDL Model-Learning Given a dataset T that is com-
posed of a set of transitions τ = (s, a, s′) obtained from an
RMDP task, the PPDDL model-learning problem is to com-
pute a model M s.t. τ ⇌ M for any τ ∈ T . The two major
techniques of model learning are active and passive learn-235

ing. Active learners interactively explore the state space to
generate T for learning the model whereas passive learners
require T to be provided as input. We use active learning
as it has been shown to work well for deterministic, non-
stationary settings (Nayyar, Verma, and Srivastava 2022).240

3 Our Approach

We now begin by describing the problem that we address,
followed by a detailed overview of our approach.

Denition 3.1 (RMDP equivalence). Given a domain D↑

and RMDP tasks Mi and Mj derived using D, we dene245

Mi = Mj iff their objects are the same OMi
= OMj

, the
initial state and goals are equal soMi

= soMj
and gMi

=

gMj
, and the transition systems are equivalent δMi

= δMj
.

Denition 3.2 (Continual Planning under Non-Stationarity).
Given a stream of RMDP tasks M = ⟨M1, . . . ,Mn⟩ where250

Mi ̸= Mi+1, a simulator ∆ with budget ∆S per task, and
with the simulators transition system changing at arbitrary
intervals, the objective is to maximize the total tasks accom-
plished within |M |∆S .

The above problem setting captures many real-world sce- 255

narios where environment dynamics often change in situ,
i.e., while the agent is actively solving a stream of tasks and
without informing the agent. E.g., events like liquid spills on
the gripper affecting its friction, navigation pathways being
blocked, etc. are outside the robot’s control and can arbitrar- 260

ily change at any given moment. Implicitly, this translates
to the agent indirectly optimizing a new RMDP task with
the same goal but different transition system. The overall
objective is to enable solving all tasks in a sample-efcient
fashion thus making it essential to learn-and-transfer knowl- 265

edge. An agent that learns a xed model of the environment
or one that is incapable of detecting such change can thus
perform quite poorly or dangerously.

We consider the following taxonomy of the methods for
continual planning under non-stationarity; (a) Adaptive vs. 270

Non-adaptive learners where adaptive learners can automat-
ically adapt to unknown changes in the transition system,
whereas the other cannot; (b) Comprehensive vs. Need-
based learners where the former completely learn a new
model from scratch whereas the latter only perform updates 275

to x the model w.r.t. transitions that are not M-consistent.

3.1 Adaptive Model Learning

Our approach integrates planning and learning by continu-
ally learning and updating a PPDDL model of the environ-
ment and using it to accomplish tasks. We develop an active, 280

need-based learner that automatically detects and adapts
to changes in the transition system. Our approach actively
monitors simulator execution and performs active learning
when transitions are inconsistent with the current model. We
maintain sample efciency by performing directed explo- 285

ration while learning the model. We now describe the com-
ponents that facilitate continual learning for planning.
Active Query-based Model Learning (AQML) We use an
active learning approach as it can cope with non-stationarity.
Existing approaches using active learning are sample inef- 290

cient since they are comprehensive learners that relearn
from scratch. Building upon the Active Query-based Model
Learning framework (AQML) (Verma, Karia, and Srivastava
2023), we develop a paradigm that can work in the presence
of non-stationarity. 295

Denition 3.3 (Policy Trace). Given an RMDP M and
simulator ∆, a policy trace ∆π = ⟨s0, a0, . . . , an−1, sn⟩
of a policy π is a sequence of states and actions where
si ∈ S, ai ∈ A s.t. ai = π(si) and si+1 = ∆(si, ai).

Denition 3.4 (p-distinguishing policies). Given an RMDP 300

M , a predicate p, policies π1, π2 and a simulator ∆, π1 and
π2 are p-distinguishing policies iff ∃i s.t. for policy traces

∆π1
and ∆π2

, p ∈ s
∆π1

i and p ̸∈ s
∆π2

i .

AQML is an epistemic method that seeks to prune the
space of models under consideration by guiding exploration 305

towards states that can help update the model. The key



observation is that for any given a↑ ∈ A↑, a predicate p↑ can
appear as a positive precondition, a negative precondition,
or not appear at all in Ma↑ . Similarly, p↑ could appear
in any of these modes in any of the effect lists of Ma↑ .310

This induces an exponentially large number of models over
which a model-learner must search. We can prune this
search space by selecting a predicate p↑ and generating

candidate models M
+p(Pre|Eff)

a↑ M
−p(Pre|Eff)

a↑ M
⊗p(Pre|Eff)

a↑ where

p↑ appears in a positive (+), negative (−), or absent (⊗)315

mode in the preconditions Pre↑ or effects Eff↑ respectively.
Ignoring probabilities, AQML uses a combination of any
two pairs of these models, and reduces query synthesis to a
Fully Observable Non-Deterministic (FOND) problem. The
central idea behind this reduction is that the two models320

being used correspond to two separate copies of each predi-
cate in the FOND problem, and a solution is found when a
state is reached such that the two copies of predicates do not
match. This problem can be passed to off-the-shelf solvers
and the solution to these FOND problems are policies that325

AQML uses as queries to the planning agent. Due to the
nature of these models where only a single predicate is
changed, solution policies of any pair of these models are
guaranteed to be p-distinguishing or unsolvable. AQML
then checks which model of the predicate p↑ is consistent330

with the simulator and updates Ma↑ appropriately (either
in preconditions or one of the effects). The process repeats
for the next predicate p′↑ with the difference being that the
learned information about p↑ can now be considered by the
FOND planner in the subsequent learning process.335

Example Upon identifying that ¬handempty↑(rx)

is an effect of the pick-up
↑(rx, lx, bx) action,

AQML can generate distinguishing queries by using
a FOND planner to resolve other uncertainties such
as whether ¬handempty↑(rx) is a precondition of340

put-down↑(rx, lx, bx). AQML does this by generating

two abstract models, one with predicate handempty↑(rx)
in the precondition of put-down↑(rx, lx, bx), and another
where it is absent. As part of the policy generated by the
FOND planner it would be ensured that¬handempty↑(rx)345

is true in the state before executing the put-down action
(possibly by executing a pick-up action).

The key insight is that unlike other methods, this learning
methodology does not wait for random exploration to gener-
ate p-distinguishing policies but rather actively encourages350

exploration by utilizing information about parts of the model
that are inaccurate. We discuss how such components are an-
notated in Sec. 3.2. This leads to improved sample efciency
in converging to a model M ≡ δ, i.e., M translates to a
closed-form specication of the transition function δ. Once355

a p-distinguishing policy is identied, probabilities can be
estimated using Maximum Likelihood Estimation (MLE) by
executing the policy η times where η is a congurable hyper-
parameter that represents the sampling frequency.

There are two difculties with vanilla AQML. Firstly,360

complete models are learned in a single pass in order to guar-
antee correctness. Secondly, this framework assumes sta-
tionarity of the simulator and the query synthesis process
is not resilient to changing environment dynamics during

the model-learning loop. As a result, AQML cannot ef- 365

ciently use learned information to update the model when
only small parts of the transition system change.

3.2 Non-stationarity Aware Model Learning

We signicantly alter the AQML framework so that it can
work even if the transition system changes during the model- 370

learning process (as policy traces are being generated using
the simulator) and enable it to selectively and correctly learn
information that is not consistent with the learned model.
We accomplish this by always monitoring executions of the
simulator. If a transition τ = (s, a, s′) is not consistent w.r.t. 375

the learned modelM, i.e., τ ̸⇌ M, then we simultaneously
update the model-learning process since a new query now
needs to be synthesized that can resolve the inconsistency.
To do so, we identify the predicates p↑ in the preconditions
(or effects) of a that were inconsistent with the model and 380

then we add p↑ in the precondition (or effect) of a to be
relearned. This also applies to inconsistencies identied as
policy traces are being generated as a part of the model-
learning process. The new FOND problem will not include
p↑ in the action a in any form in its precondition (or effect) 385

and thus the planner will need to compute an alternate solu-
tion for the current query.
Example If a predicate ¬p↑ ∈ Prea, p ∈ s and s ̸= s′ then
this means that the action executed successfully on the sim-
ulator and the precondition ¬p↑ is incorrectly represented in 390

the currently learned model M↑
a and must be relearned. We

then add M
+lpre
a and M

⊗lpre
a to the list of models that need

to be considered again by the query-synthesis process.

3.3 Goodness of Fit Tests

Another key difculty when operating in non-stationary en- 395

vironments is when the transitions themselves are consistent
w.r.t. the preconditions and effects but are drawn from a sig-
nicantly different distribution. For example, two models of
an action with similar preconditions and effects but differing
only in the probabilities of effects can impact the ability of 400

an agent to solve a task.
Example In our running example of a slippery gripper,
as the probability of slippage increases, the optimal policy
might switch to navigating to a human operator and com-
municating to them to pick up the object. 405

Such changes cannot be quickly reected if only MLE
estimates are used to compute probabilities since these esti-
mates can be slow to adapt to the new distribution. We mit-
igate this by including goodness-of-t tests in the planning
and learning loop that actively invigilate whether the distri- 410

butions have undergone shift and can promptly restart the
MLE estimation process.

We use Pearson’s chi-square test (Pearson 1992) for de-
tecting o.o.d. effects as follows. Once a model Ma↑ for
an action has been learned (or a new task is specied), 415

we initialize a table entry Freqa↑ [i] = 0 for each effect
Eff[i] ∈ Ma↑ . Whenever a new M-consistent transition
(s, a, s′) is obtained using the simulator, we identify the
index i s.t. s′ = s \ Eff[i]− ∪ Eff[i]+. We then increment
Freqa↑ [i] and perform a goodness of t test using Pearson’s 420



Algorithm 1: Continual Learning and Planning

Input : RMDP M , Simulator ∆, Simulator Budget ∆S ,
Learned Model M↑, Horizon H , Sampling Count
η, Threshold θ, Failure Threshold β

Output: M↑

1 s ← s0; h ← 0; f ← 0

2 π ← modelBasedSolver(S,A, s0, g,M
↑, R, γ, H)

3 while |∆| < ∆S do

4 if f > β or unreachableGoal(s0, g,M
↑,π) then

5 explore(M↑,∆)

6 if needsLearning(M) then
7 M↑ ← learnModel(∆,M↑)

8 π ← modelBasedSolver(S,A, s0, g,M
↑, R, γ, H)

9 a ← π(s)
10 s′ ← ∆(s, a)
11 h ← h+ 1

12 if (s, a, s′) ⇌ M↑ then

13 M←goodnessOfFitTest(s, a, s′,∆,M↑, θ,Freq)

14 else

15 M↑←addInconsistentPredicates(s, a, s′,M↑)

16 if s |= g or h ≥ H then
17 s ← s0; f ← f + 1 iff s ̸|= g

18 else
19 s ← s′

20 return M↑

chi-square test with 0 degrees of freedom.

χ2 =

n


i=1

(Freqa↑ [i]− F × Proba↑ [i]))2

F × Proba↑ [i]

where F =
n


i=1

Freqa↑ [i] is total observed frequency for a. If

the condence computed using χ2 is less than some thresh-
old θ (0.05 in our experiments), the goodness-of-t test is
deemed to have failed and we reset the probabilities for all425

effects in a. To ensure that we have enough samples, we
only perform this test when F > 100. We then update the
probabilities using the recorded frequencies via MLE, i.e.,

Proba↑ [i] =
Freq

a↑ [i]

F
.

3.4 Continual Learning and Planning (CLaP)430

Our approach of continual learning of PPDDL models
has two key advantages. Firstly, since we learn models,
Eqn. 1 can be used to compute policies for the task with-
out needing to collect experience from the simulator. Sec-
ondly, lifted PPDDL models are generalizable in that they435

can be zero-shot transferred to tasks with differing ob-
ject names, quantities, and/or goals. For example, the same

pick-up
↑(rx, lx, bx) action described earlier can be reused

by different RMDP tasks with differing numbers of robots,
locations, and/or packages. This methodology allows our ap-440

proach to solve tasks efciently.
Alg. 1 describes our overall process for continual learning

and planning. The algorithm takes as input an RMDP task

M , a simulator ∆, a simulator budget ∆S , a learned model
M↑, and hyperparameters H, η,β, and θ representing the 445

horizon, sampling count, failure threshold, and condence
threshold respectively. Note that in the context of Alg. 1, M
only species the initial state s0 and goal g for the task. The
transition system represented by the simulator can arbitrar-
ily change at any time but the agent still perceives it as the 450

same task. Alg. 1 attempts to compute a policy π for M us-
ing the learned model M↑ (line 2) using an off-the-shelf
RMDP solver such as LAO* (Hansen and Zilberstein 2001).

If the transition graph of π derived usingM↑ has no path
to the goal or if the goal has not been reached for a certain 455

threshold (lines 4-5) the agent performs an exploration of the
state space using the simulator in order to nd a transition
that is not M-consistent. Initially, when the learned model
is empty, this step allows the agent to quickly discover tran-
sitions for which useful learning can be performed. We used 460

randomwalks of lengthH to conduct this exploration step in
our experiments. If an inconsistent transition is discovered
as part of the exploration process, then several models to
consider are added to the model learner using the approach
in Sec. 3.2. This causes model learning to be invoked to re- 465

solve the inconsistency and updates the learned model M↑

(line 7). We note that, as mentioned in Sec. 3.2, if new in-
consistencies are identied during the model learning then
they are resolved as well. Since the model has been updated,
a new policy is computed (line 8). 470

Once any learning steps are complete and π has been
computed, we execute an action a = π(s) on the simula-
tor (lines 9-10). If (s, a,∆(s, a)) ⇌ M, then a goodness
of t test is performed to improve probability estimates as
noted in Sec. 3.3 (line 13). An inconsistent transition always 475

adds new models for the inconsistencies that need to be re-
solved by the model learner (line 15). If the goal is reached
or the horizon is exceeded, the simulator is reset to the ini-
tial state and the total failures are incremented accordingly
(lines 16-17). Finally, once the budget is exhausted (line 3) 480

the learned model is returned (line 20) that can be used for
solving future tasks.

3.5 Theoretical Results

Denition 3.5 (Variational Distance (VD)). Given an
RMDP M , let Z = {(s, a, s′)|s, s′ ∈ S, a ∈ A} be a set 485

of transitions. Also letM andM′ be two models. The Vari-
ational Distance (VD) between these two models is then de-
ned as VDZ(M,M′) = 1

|Z|



ζ∈Z

|1ζ⇌M − 1ζ⇌M′ |.

Denition 3.6 (Locally Convergent Model Learning).
Given an RMDP M , let M be the current model and Mδ 490

be the accurate (unknown) model s.t. Mδ ≡ δ. Consider
ε to be an error bound on the variational distance between
two models. Model learning is locally convergent iff ∀ε such
that 0 < ε < VDτn(M,Mδ), ∃n ∈ N and a set τn of
n distinct transitions sampled from δ, s.t. the model M′

495

learned using any T containing τn(τn ⊆ T ) will satisfy:
VDT (M

′,Mδ) ≤ ε < VDτn(M,Mδ).

Theorem 1. Let M be an RMDP with a series of transi-
tion system changes δ1, . . . , δn at timesteps t1, . . . , tn im-
plemented using a simulator∆, then during each stationary 500



epoch between ti and ti+1 Alg. 1 performs locally conver-
gent model learning.

Proof (Sketch). Let M be the learned model at timestep i.
By the correctness property of AQML (Thm. 2 in Verma,
Karia, and Srivastava (2023)) the set of transitions that M505

can generate must be a subset of the ones that Mδi can. Let
Z = {s : (s, a, s′)|s, s′ ∈ S, a ∈ A)} and let z = |Z|. Let
VD(M,Mδ) be x/z. ε has to be such that 0 < ε < x/z.
Let M′ be the model learned using a set of transitions τn
that are consistent with Mδ but cannot be generated by M.510

Choose τn such that τn has exactly n(> zϵ) elements. Now,
using the model M′ that AQML learns, it will be able to
generate τn in addition to all the transitions that M could
generate. This implies: VD (M,Mδ) − V D(M′,Mδ)=
x/z−(x−n)/z > x/z−(x−zϵ)/z = x/z−x/z+(zϵ)/z =515

ε, and we have the desired result with τn as the set that
is required for local convergence. By properties of AQML
(Thm. 1 in Verma, Karia, and Srivastava (2023)) any super-
set of transitions valid under Mδ that contains τn will also
reduce VD by at least ε.520

4 Experiments

We implemented our approach (Alg. 1) in Python and per-
formed an empirical evaluation on four benchmark domains
using a single core on a Xeon E5-2680 v4 CPU running at
2.4 GHz with a memory limit of 8 GiB. We found that our525

approach leads to signicantly better transfer performance
as compared to the baselines. We describe the empirical
setup that we used for conducting the experiments followed
by a discussion of the obtained results (Sec. 4.1).2

Domains We used four benchmark domains that have been530

used in various International Probabilistic Planning Compe-
titions (IPPCs)3 for our experiments. We used these bench-
mark domains since ground truth models for them are avail-
able and we synthesized simulators using these domains.

We briey describe the domains that we used below. We535

refer to each domain as D↑(|P↑|, |A↑|) to indicate the total
number of predicates and actions in the domain.

Tireworld(4, 2) is a popular domain that has been used in
several IPPCs. The objective of this IPPC benchmark is to
drive from the initial position to the goal position (account-540

ing for at tires that can stochastically occur).

FirstResponders(13, 10) is a domain inspired from emer-
gency services. The objective is to put out all res and treat
all victims. To do so, a planning agent needs to be able to
plan to reach locations under re and put them out (relling545

water as needed) and also treat victims either at the re site
or ferry them to a hospital if the injuries are too severe.

Elevators(9, 10) is a stochastic extension of the determin-
istic Miconic (Long and Fox 2003) domain wherein there
are several new objectives such as coins to be collected and550

elements such as shafts and gates that constrain navigation.

Blocksworld(5, 4) is an environment where the goal is to ar-
range blocks in specic congurations. The IPPC variant is

2Source code is included in the submission (see App. B).
3https://www.icaps-conference.org/competitions/

ExplodingBlocks wherein the table can be destroyed whilst
stacking blocks. We tried to generate problems for Explod- 555

ingBlocks but were unsuccessful and as a result used the er-
godic version instead where stacking blocks has a chance to
drop them on the table. Nevertheless, the non-stationarity we
introduce (described below) can often introduce dead-end
states (i.e., states from which the goal cannot be reached). 560

Task Generation All tasks in the benchmark suite share a
single transition system and, to the best of our knowledge,
there are no ofcial problem generators that can introduce
non-stationarity and generate tasks for it. Thus, we intro-
duced non-stationarity by generating new domain les ob- 565

tained by changing a randomly selected action from the do-
main le of the previous task that was generated. We per-
formed between 0-3 changes in both the preconditions and
effects of the selected action by adding or deleting a pred-
icate or by modifying an existing predicate in the action’s 570

model and ensured that at least one change was made. This
method of introducing non-stationarity resulted in the tran-
sition system of the nal task being signicantly different
from the benchmark task with several actions changed.
Task Setup We generated ve different tasks M0, . . . ,M4 575

with different initial states and goals. M0 was the bench-
mark task and the others were generated using Breadth First
Search. We used γ = 0.9 and horizon H = 40 for all tasks.
BaselinesWe used Q-Learning as our non-transfer RL base-
line. We also used an Oracle that has complete access to 580

the closed-form model of the simulator and uses LAO∗ to
compute policies. This baseline provides an upper bound
on the performance achievable by any algorithm. We also
use two AQML-based methods: A+C-Learner and U+C-
Learner. Both approaches learn comprehensive models. The 585

former (latter) is adaptive (non-adaptive) to transition sys-
tem changes, i.e., A+C-Learner tries to compute a policy
and if an inconsistency is detected, learns from scratch
whereas U+C-Learner is informed that the transition system
has changed in order to relearn. We used QACE (Verma, 590

Karia, and Srivastava 2023) as the AQML-based model-
learning algorithm in these baselines. These methods are
compared against our learner (CLaP) which is an active,
adaptive, need-based learning system implementing Alg. 1.

A+C/U+C-Learner are SOTA methods for learning 595

stochastic PPDDL models (deterministic model learners are
inapplicable in our setting). We also considered ILM (Ng
and Petrick 2019) since it can learn stochastic noisy deictic
rules but were unable to get it to work despite employing
signicant effort (and contacting the authors). 600

Hyperparameters We used α = 0.3 for Q-Learning, η =
100 for the AQML-based methods and CLaP. Additionally,
we used β = 10 and θ = 0.05 for CLaP.

4.1 Analysis of Results

As mentioned in Sec. 2, we consider a task accomplished 605

when a goal state is reached. We used a simulator budget
∆S = 100k for each task. The transition system is kept sta-
tionary for ∆S steps. The simulator is then loaded with a
new task Mi+1 and a new transition system δi+1.

Fig. 1 shows the obtained results from our experiments 610

with 10 different random seeds used by the algorithms. We



Figure 1: Results (best viewed in color) from our experiments averaged across 10 runs with 1-std deviation (shaded). (a) plots
the learning curves of the methods, (b) plots the avg. reward obtained by greedily running the policy computed 10 times
(for clarity, the Oracle’s avg. reward is annotated with × periodically), (c) plots the total steps needed to achieve steady-state
performance equal to the Oracle’s (truncated at 40k for clarity). Higher values are better for (a) and (b); lower for (c). Vertical
squiggly lines denote the step where a new task Mi+1 and transition system δi+1 were loaded (Mi ̸= Mi+1 and δi ̸= δi+1).

analyze the results to answer the following questions.

a. Is CLaP sample efcient?

b. Are CLaP solutions performant?

c. Are CLaP solutions generalizable?615

Evaluation Metrics We use the following evaluation met-
rics to answer the questions above; We answer (a) by plot-
ting learning curves that showcase how many tasks were ac-
complished during the learning process; We answer (b) by
comparing the policy quality wherein at every k = 100 sim-620

ulator steps, we freeze the computed policy and generate 10
policy traces each starting from the initial state s0 of the task
with a maximum horizon of 40. These simulations do not
count towards the simulators budget. We report the average
reward obtained while doing so; We answer (c) by comput-625

ing the adaptive delay (Balloch et al. 2022) which measures
how many steps are necessary in the environment before the
steady-state performance converges to that of the Oracle’s.

It is clear from Fig. 1 that our approach of continual learn-
ing and planning (CLaP) outperforms both non-transfer (Q-630

Learning) and model-based methods; A+C/U+C-Learner.
(a) Sample Efciency Our results in Fig. 1(a) show that
CLaP has a much better sample complexity compared to the
baselines. The learning curves from FirstResponders, Ele-
vators and Blocksworld show that our approach can accom-635

plish signicantly more tasks than the baselines. Q-Learning
does not learn and transfer any knowledge and thus needs to
collect large amounts of experience to solve tasks.

A+C-Learner and U+C-Learner cannot efciently correct
the model when transition systems change since they need to640

learn all actions to converge. This drawback of comprehen-
sive learners is highlighted in the results on the Elevators do-
main where even Q-Learning was able to outperform these
methods. For the Elevators domain, the transition system
change rendered some actions executable from states that 645

were reachable only over very long horizons. The transition
system of most of these actions had not changed and were
not very useful to solve the task. The comprehensive learn-
ers exhausted the simulator’s budget trying to relearn these
task-irrelevant actions and thus were not able to solve the 650

task. CLaP on the other hand only lazily-evaluates whether
to learn a fraction of the model or not and was able to quickly
x the learned model and compute a policy that could solve
the task. These trends can also be seen in FirstResponders
where comprehensive learners must relearn 10 actions from 655

scratch every time an inconsistency is observed.
(b) Better Task Performance Fig. 1(b) shows that avg. re-
wards of CLaP policies are very close to the Oracle’s. This
suggests that our learned models are often good approxima-
tions of the transition system. CLaP’s policies converge to 660

those of the Oracle’s across all tasks in our evaluation.
(c) Better Generalizablity Our approach has a signicantly
lower adaptive delay (Fig. 1(c)), i.e., CLaP is able to uti-
lize and transfer the learned knowledge across problems ef-
ciently compared to the baselines that take a signicant num- 665

ber of samples to converge to the Oracle’s performance. For
example, CLaP zero-shot transferred (adaptive delay was 0)
between Blocksworld tasks M1 and M2 requiring no learn-
ing to solve task M2 while also matching the Oracle’s per-



formance. In cases where adaptation was needed (e.g., be-670

tween Blocksworld tasksM0,M1, andM2,M3) CLaP few-
shot learns the required knowledge to accomplish the task
with policy qualities similar to that of the Oracle. In general,
CLaP’s adaptive delay was the best amongst all baselines.

We also conducted a directed experiment to evaluate the675

adaptability of our method to changing distributions. To do
this, we generate two tasks from a 2-armed bandit domain.
Pulling any of the levers stochastically takes the agent to the
goal. Thus, the optimal policy is to repeatedly pull the lever
with the highest probability of reaching the goal. In task one,680

the rst (second) lever would succeed with probability 0.8
(0.5). In the second, it was 0.1 (0.9) respectively with pre-
conditions and effects unchanged. CLaP utilizes goodness of
t tests and thus was able to adapt to this distribution shift
and chose lever 1 (2) for task one (two). A+C-Learner can-685

not adapt to such changes and continued to use lever 1 for
task two. This resulted in its policies being 9x worse than
CLaP’s with overall only ≈950 goals achieved compared to
CLaP’s ≈1550 (∆S = 1000 per task, η = 10). Plots are
available in the appendix.690

Limitations and Future Work Currently, CLaP does not
consider the task goal in the model learning process (line
7 of Alg. 1). Making optimistic estimates about the model
w.r.t. the goal might allow the model learner to expend fewer
samples for learning a model that can accomplish the task.695

We do not take into account transition system changes or
goals that could be provided in advance. CLaP could uti-
lize that information to develop a curriculum so that useful,
unlikely-to-change actions are prioritized to be learned early
even if they do not contribute towards the current task’s goal.700

When is it better to learn-from-scratch There were not
many performance gains compared to A+C/U+C-Learner in
the Tireworld domain. This is because Tireworld is a small
domain with only 2 (4) actions (predicates) that need to be
learned. It is intuitively clear that if the transition system sig-705

nicantly changes then relearning from scratch could save
some computational effort. Devising heuristics that can eval-
uate whether learning from scratch would be easier than cor-
recting the model is an interesting problem that we plan to
investigate in future work.710

5 Related Work
There has been plenty of work for transfer in RL (Mnih et al.
2013; Schulman et al. 2017) and on non-stationarity (com-
monly referred to as novelty in the RL literature). We focus
on approaches that transfer across RMDP tasks. Tadepalli,715

Givan, and Driessens (2004) provides an extensive overview
for relational RL approaches.
Model-Based Reinforcement Learning The Dyna frame-
work (Sutton 1990) forms the basis of several model-based
reinforcement learning (MBRL) approaches wherein expe-720

rience from the environment is used to simultaneously learn
a model and use the model to generate synthetic expe-
rience that is used for learning updates. Ng and Petrick
(2019) use conjunctive rst-order features to learn models
and generalizable policies that transfer to related classes of725

RMDPs. Their approach does not perform guided explo-
ration to resolve ambiguities. REX (Lang, Toussaint, and

Kersting 2012) enables MBRL to automatically learn tasks
autonomously. One challenge with this approach is learn-
ing accurate models since exploration can be sparse when 730

using REX. V-MIN (Martı́nez et al. 2017) integrates model-
learning and planning with RL by requesting demonstrations
from a teacher if it cannot nd a policy whose expected value
is greater than a certain threshold. The requirement of an
available teacher limits the transfer capabilities of this ap- 735

proach. Taskable RL (TRL) (Illanes et al. 2020) and RePReL
(Kokel et al. 2023) show how Hierarchical Reinforcement
Learning (HRL) using the options framework can be used
for TRL. They use symbolic plans to guide the RL process.
This approach requires models provided as input and are not 740

learned. In contrast, our generates its own data for learning
models using an active learning process.
Learning Models for Non-Stationary Settings GRL
(Karia and Srivastava 2022) train a neural network to learn
reactive policies that can transfer to problems from the same 745

domain but with different state spaces. Their approach is
limited to only changes in the state space and cannot adapt to
changes in the transition dynamics. Nayyar, Verma, and Sri-
vastava (2022) and Musliner et al. (2021) learn models for
non-stationary environments that can be integrated into the 750

interleaved learning and planning loop. However, their ap-
proach only learns deterministic models and requires the use
of optimal agents and observation traces to identify changes
in transition dynamics. Bryce, Benton, and Boldt (2016) ad-
dress the problem of learning the updated mental model of a 755

user using particle ltering given prior knowledge about the
user’s mental model. However, they assume that the entity
being modeled can tell the learning system about aws in the
learned model if needed. Eiter et al. (2010) propose a frame-
work for updating action laws depicted in the form of graphs 760

representing the state space. They assume that changes can
only happen in effects, and that knowledge about the state
space and what effects might change is available beforehand.
There is a recent body of work on adapting symbolic models
to novelties in open-world environments for reinforcement 765

learning (Goel et al. 2022; Balloch et al. 2023; Sreedharan
and Katz 2023; Mohan et al. 2023). These methods are lim-
ited to deterministic settings and/or can only learn new mod-
els from passively collected data.

6 Conclusions 770

We developed a sample-efcient method for transferring
epistemial knowledge between an interleaved learning and
planning process. Our approach can easily handle non-
stationary environments on-the-y by automatically detect-
ing any changes that are inconsistent with the learned model. 775

We reduce sample complexity by only considering the parts
of the model that are inconsistent with the simulator’s exe-
cution and selectively update the model. We are resilient to
changes in the transition system even if it occurs during the
model learning process. We show that when the transition 780

system is stationary our approach is locally convergent. Fur-
thermore, our learned lifted models easily transfer to new
tasks. Our empirical results show that our approach signi-
cantly reduces sample complexity whilst remaining perfor-
mant w.r.t. the optimal policy. 785
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