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Abstract

Knowledge Distillation (KD) has evolved into a
practical technology for transferring knowledge
from a well-performing model (teacher) to a weak
model (student). A counter-intuitive phenomenon
known as capacity mismatch has been identified,
wherein KD performance may not be good when
a better teacher instructs the student. Various pre-
liminary methods have been proposed to alleviate
capacity mismatch, but a unifying explanation for
its cause still lacks. In this paper, we propose
a unifying analytical framework to pinpoint the
core of capacity mismatch based on calibration.
Through extensive analytical experiments, we ob-
serve a positive correlation between the calibra-
tion of the teacher model and the KD performance
with original KD methods. As this correlation
arises due to the sensitivity of metrics (e.g., KL di-
vergence) to calibration, we recommend employ-
ing measurements insensitive to calibration such
as ranking-based loss. Our experiments demon-
strate that ranking-based loss can effectively re-
place KL divergence, aiding large models with
poor calibration to teach better.

1. Introduction
Knowledge Distillation (KD) is a model reuse technique
that involves having a large model (teacher) teach a smaller
model (student). The function of KD is to enhance the per-
formance of smaller models on resource-constrained plat-
forms, such as mobile devices (Sandler et al., 2018; Zhang
et al., 2018; Ma et al., 2018; Tan & Le, 2019).

A prevailing intuition is that a more prominent teacher with
stronger expressive capabilities is more likely to impart
superior knowledge. However, recent studies have revealed
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Figure 1. The significance of our work: On the left, a large teacher
achieves high performance but struggles in low KD performance,
known as capacity mismatch. The right part depicts existing solu-
tions, including architecture adjustments and teacher regularization.
Our calibration-based framework provides an explanation for both
capacity mismatch and these solutions.

that increasing the capacity of the teacher adversely impacts
the performance of KD (Cho & Hariharan, 2019; Li et al.,
2021). Researchers attribute this phenomenon to a capacity
mismatch between the teacher’s and student’s models. Some
efforts have focused on narrowing the size gap between both
architectures (Mirzadeh et al., 2020; Zhu & Wang, 2021),
other approaches have aimed to regularize teacher networks
to narrow capacity gap (Cho & Hariharan, 2019; Wang et al.,
2022). Recently, several studies (Li et al., 2022; Zhao et al.,
2022) have aimed to provide a theoretical explanation for
why larger models may not teach better in KD. Although
these studies offer diverse perspectives to explain why a
larger teacher network may not inherently enhance teaching
performance, the explanations remain fragmented and lack
a more comprehensive framework (Li et al., 2023a;b).

The primary objective of this paper is to explore the reasons
behind the occurrence of capacity mismatch. We hold the
view that teacher’s accuracy does not directly reflect the
performance of the distilled student. Instead, we focus on
calibration of the teacher model. If the probability associ-
ated with the predicted class label can reflect its ground truth
correctness likelihood, we say this network is of calibrated
confidence (Guo et al., 2017). The research indicates that
larger teacher models, while achieving better performance,
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tend to have poorer calibration. Therefore, a hypothesis
arises: the decline in the calibration of the larger teacher
precisely leads to the deterioration of the student’s perfor-
mance. Through comparative experiments, we observe a
close alignment between changes in KD performance and
variations in teacher model’s calibration. We also find that a
poorly calibrated teacher is unable to guide the student to
learn good embeddings, thereby affecting KD performance.
These findings provide affirmation for our hypothesis.

We further demonstrate that this hypothesis aligns with the
foundational principles of various existing works (Cho &
Hariharan, 2019; Mirzadeh et al., 2020; Wang et al., 2022;
Liang et al., 2024). In (Mirzadeh et al., 2020), assistant mod-
els are employed to narrow the gap between the capacities
of the teacher and the student. Through our experiments, we
observe that the calibration of assistant models is superior
to that of teacher models. We also find an early-stopped
teacher (Cho & Hariharan, 2019; Wang et al., 2022) is also
well-calibrated. (Li et al., 2022) emphasizes on preserv-
ing the diversity of wrong-class logits. These can also be
interpreted as enhancing the calibration of teacher models.
Therefore, we propose a unified framework for analyzing
capacity mismatch from the perspective of calibration.

To enable models with poor calibration to teach effectively,
we explore the connection between distillation loss and
calibration. Distillation based on KL divergence, where
the student network directly mimics the teacher network,
fails to alleviate the negative impact of poor calibration in
large teacher models. Therefore, reducing the sensitivity
of distillation loss to teacher calibration is beneficial. We
adopt a representative ranking-based distillation method
DIST (Huang et al., 2022) and compare it with traditional
distillation methods. The experiments show that ranking-
based distillation methods are insensitive to calibration and
yield better distillation results than traditional methods.

Our contributions can be summarized as follows:

• We compare the KD performance achieved by teachers
with different levels of calibration and observe that a
better-calibrated teacher can teach better. These empir-
ical findings substantiate the consistency between KD
performance and calibration.

• We propose a unifying framework to explain previous
works alleviating capacity mismatch, demonstrating
that the commonality among them is the optimization
of the teacher’s calibration.

• We validate the superior performance of existing
ranking-based KD methods and delve into their in-
sensitivity to calibration. This observation underscores
the role of ranking methods in mitigating capacity mis-
match by reducing sensitivity to calibration.

2. Related Work
Similar to the concept of leveraging pre-trained models to
aid training (Zhou, 2016), knowledge distillation (Hinton
et al., 2015) allows a smaller model (student) to learn from
a larger model (teacher) to enhance its performance. The
idea of distilling knowledge can also date back to (Zhou &
Jiang, 2004; Buciluǎ et al., 2006), and the smaller model
can operate effectively on resource-constrained platforms
as a substitute for the larger model.

The “dark knowledge” in the teacher model encompasses
the information that the student needs to learn, and it can be
categorized into three formats (Gou et al., 2020). Response-
based knowledge (Hinton et al., 2015; Chen et al., 2017;
Meng et al., 2019; Li et al., 2023c) typically pertains to the
neural response of the last output layer of the teacher model.
Feature-based knowledge (Romero et al., 2015; Huang &
Wang, 2017; Zagoruyko & Komodakis, 2017) resides in
intermediate layers, such as feature maps. Relation-based
knowledge (Yim et al., 2017; Tian et al., 2020; Kweon et al.,
2021) involves the relationships between different layers
or data samples, such as the ranking of logits for different
classes (Huang et al., 2022). These previous methods em-
phasize the representation of knowledge and the process of
knowledge transfer, overlooking the nature of the teacher
itself. We reevaluate these methods from the perspective of
calibration and find that, conventional knowledge distilla-
tion methods exhibit a high dependence on the calibration
level of the teacher. This dependency contributes to the
issue of capacity mismatch.

Capacity mismatch refers to a counter-intuitive phenomenon
when teacher model is much larger than student. Accord-
ing to conventional wisdom, larger models generally exhibit
stronger generalization capabilities and are expected to teach
better students. However, (Cho & Hariharan, 2019) found
that as the teacher model continuously increases in size,
the performance of the student network initially improves
but eventually declines. Methods alleviating capacity mis-
match can be categorized into 2 major classes. One aspect is
from model architecture standpoint. (Mirzadeh et al., 2020)
introduced an intermediate-size model as an assistant to
mitigate the capacity gap between the large teacher and the
student. (Zhu & Wang, 2021) divided the distillation task
into multiple steps, distilling only the parts of the model
where the gradient direction aligns with the cross-entropy
loss. (Li et al., 2021) generated a new residual network
after each distillation step and integrated the student net-
work with the residual networks from each step. The other
aspect is to regularize teacher. (Cho & Hariharan, 2019)
observed that a fully trained teacher may not be an optimal
instructor and proposed stopping the teacher’s training from
a specific checkpoint. Similarly, the work by (Wang et al.,
2022) involved selecting an appropriate checkpoint of the
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teacher model through mutual information. (Kweon et al.,
2021) showed that adjusting teacher through bidirectional
distillation with the help of student can effectively cope with
a large performance gap between teacher and student. The
study by (Menon et al., 2021) closely aligns with our work.
It identified that when the teacher provides true (Bayes)
class-probabilities, it reduces the variance of the student
objective, thereby reducing the upper bound of generaliza-
tion error. The paper argues that accurate teachers do not
necessarily provide good probabilities and elucidates why
more accurate teachers can be detrimental to distillation
(Müller et al., 2019). While this article provides inspiration
for our work, it does not delve into the core reason of cali-
bration. The study by (Zhu et al., 2023) adoped a calibration
perspective, yet its emphasis is on recalibrating deep neural
networks trained on distilled data, rather than addressing
capacity mismatch in KD. For the first time, we approach
the understanding of capacity mismatch from the perspec-
tive of calibration. We establish a unifying framework of
the aforementioned works and show they implicitly correct
the teacher’s calibration.

3. Calibration Matters in KD
In this section, we first introduce the preliminaries of
KD. Then, we construct an optimally calibrated teacher
to demonstrate its superior teaching performance compared
to a poorly calibrated teacher. Following that, we con-
duct quantitative experiments to illustrate the correlation
between teacher’s calibration and KD performance. Finally,
we present t-SNE visualizations of students to depict how
teacher’s calibration influences student learning.

3.1. Preliminary

In a C-class classification task with labels Y = [C] =
{1, 2, · · · , C}, we denote the output of a sample pair {x, y}
by the teacher neural network as ft(x), and fs(x) for a stu-
dent neural network. Upon applying these logits as inputs to
the softmax layer, the resulting predictions are represented
by pt and ps. We use a temperature parameter τ in the
softmax function and ∗ ∈ {t, s} to calculate pt(τ) and
ps(τ):

p∗(τ) = exp (f∗(x)/τ) /Z∗(τ), (1)

where Z∗(τ) =
∑C

j=1 exp(f∗,j(x)/τ). f∗,j(x) is a scalar
which refers to the logit of the j-th class in f∗(x).

In Vanilla Knowledge Distillation (KD) (Hinton et al., 2015),
the objective for the student is to assimilate knowledge
from the teacher by minimizing the Kullback-Leibler (KL)
divergence between the predictions of the student (ps) and
that of the teacher (pt). To account for potential inaccuracies
in the teacher’s predictions, cross-entropy loss (CE loss)
between the target label and the student’s output is also

incorporated. Consequently, the total loss of Vanilla KD
consists of two components, as expressed below:

ℓ = (1− α)ℓCE(y,ps(1)) + αℓKD(pt(τ),ps(τ)). (2)

Here, the CE loss term utilizes the target label to directly
refine the student model’s output. To facilitate a closer
match between the prediction of the student and the one-hot
target label, the temperature in this part is set to 1.

Our focus is solely on exploring the correlation between
teacher calibration and KD performance in this paper. There-
fore, any component in the total loss that is unrelated to the
property of teacher should be disregarded. In this context,
the CE loss in Equation (2) is excluded by setting the value
of α to 1 in our experiments.

Aside from accuracy, the reliability of a machine learning
model’s confidence in its predictions is also critical (Nixon
et al., 2019). For example, a 90% posterior credible inter-
val generally should contain the true outcome 90% of the
time (Kuleshov et al., 2018). One mathematical formulation
of the reliability of confidence is calibration (Nixon et al.,
2019). A well-calibrated network should provide a cali-
brated confidence measure in addition to its prediction, that
is, the probability associated with the predicted class label
should reflect its ground truth correctness likelihood. In a
multi-class classification task, the label space is Y . Label of
a sample is defined as Y ∈ Y = {1, . . . ,K}. Ŷ is a class
prediction of this sample and P̂ is its associated confidence,
i.e. probability correctness. Perfect calibration is defined as
(Guo et al., 2017):

P(Ŷ = Y | P̂ = p) = p, ∀p ∈ [0, 1] (3)

However, P̂ in (3) is continuous random variable. So P(Ŷ =
Y | P̂ = p) cannot be computed directly. There are several
measurements to approximate P(Ŷ = Y | P̂ = p), such
as Reliability Diagrams, Expected Calibration Error (ECE)
and Maximum Calibration Error (MCE). ECE is the most
popular used measurements. To calculate ECE, predictions
can be divided into M interval bins (each of size 1/M ) and
calculate the accuracy of each bin. Let Bm be the set of
indices of samples whose prediction confidence falls into
the interval Im = (m−1

M , m
M ]. ECE computes a weighted

average of this error across bins (Nixon et al., 2019):

ECE =

M∑
m=1

|Bm|
n

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (4)

where n is the number of samples. acc(Bm) and conf(Bm)
are the accuracy and confidence of bin Bm. Lower value of
ECE leads to better calibration.

3.2. Optimal-calibrated Teacher Teaches Better

First, we compare the KD performance between a conven-
tional teacher and an optimally calibrated teacher. Accord-
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Table 1. Comparison of the generalization performance on the 10-class classification and 100-class classification task between models
trained with one-hot labels and posterior distribution.

10-CLASS CLASSIFICATION 100-CLASS CLASSIFICATION

TEST RUN ONE-HOT LABEL POSTERIOR ONE-HOT LABEL POSTERIOR

TEST 1 87.06% 89.50% 91.50% 94.70%
TEST 2 88.67% 89.63% 94.00% 94.73%
TEST 3 88.77% 89.73% 94.37% 94.87%
TEST 4 90.27% 89.93% 94.66% 94.90%
TEST 5 90.87% 90.30% 95.47% 95.17%

AVERAGE 89.13% 89.82% 94.00% 94.87%
VARIANCE 179% 8% 180% 3%

ing to the definition of calibration, a model is considered
optimally calibrated if its output precisely matches the pos-
terior distribution.

However, the posterior distribution is always inaccessible
and intractable, with its functional formulation remaining
unknown. Hence, we utilize a pre-configured GMM to gen-
erate an artificial known posterior distribution, as GMM can
simulate any form of distribution by adjusting the param-
eters of individual Gaussian distributions. The posterior
distribution has the same form as the output of the teacher
model, so the posterior distribution can be essentially re-
garded as a teacher model with optimal calibration. A
model trained by the posterior distribution can be viewed
as a student distilled by an optimally calibrated teacher, as-
suming the training loss is also based on KL divergence. As
a contrast, we train another identical model using one-hot
labels. Being trained by one-hot labels can be considered as
being distilled by a conventionally poorly calibrated teacher.

We simulate a 10-class classification task with two input
dimensions. We construct a GMM with 10 categories, spec-
ifying 10 two-dimensional vectors as the means for each
category, and defining covariance matrices to represent the
relationships between these 10 categories. The GMM gen-
erates a dataset of 10,000 training samples along with their
corresponding one-hot labels. We compute the posterior
distribution for each training sample based on the specified
Gaussian distribution. Following this, the GMM generates
3,000 test samples. We train the model using the calculated
posterior distribution and compare its generalization perfor-
mance with being trained by one-hot labels. Each training
session consists of 200 epochs, and the learning rate is 0.03.

To mitigate the impact of random factors, we conducted
five training runs for each training approach. Analogous
experiments are conducted on a 100-class classification task.
The experimental results are presented in Table 1.

From the table above, it is evident that training with the
posterior distribution, indicating optimal model calibration,
yields increased accuracy and stability on the test dataset.

So teacher’s output closely resembling one-hot distribution
negatively impacts KD. This phenomenon can be elucidated
by considering the influence of “dark knowledge” as pro-
posed in (Hinton et al., 2015). For instance, in a 3-class
classification task, there is an image labeled as “cat”. Its
corresponding posterior distribution might be (0.8, 0.15,
0.05) for the labels “cat”, “dog” and “truck”. The disparity
between 0.15 and 0.05 signifies that a dog bears more re-
semblance to a cat than a truck. Model trained by one-hot
labels tend to output (1, 0, 0) for that image. Although this
model can achieve high accuracy, it might struggle to pre-
dict a new picture when distinguishing between a dog and
a cat becomes challenging even for human observers. This
difficulty arises because, when confronted with an image
resembling both a cat and a dog, being trained by one-hot
labels impedes the model from truly understanding why this
specific image is a cat/dog rather than the other one.

3.3. Relationship between Calibration and KD
Performance

After demonstrating that teachers with optimal calibration
are more conducive to improving KD performance, we fur-
ther delve into the relationship between calibration and KD
performance in more specific experiments.

We employ CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009)
and Tiny-Imagenet (Tavanaei, 2020) datasets for our experi-
ments. We use different versions of ResNet (He et al., 2016)
and WideResNet (Zagoruyko & Komodakis, 2016) as teach-
ers. Students are represented by models with lower capacity,
specifically ResNet14, MobileNetV2 (Sandler et al., 2018),
and WRN-22-1. The KD method is vanilla KD (Hinton
et al., 2015).

Among various calibration metrics (Guo et al., 2017), we
opt for Expected Calibration Error (ECE) (Naeini et al.,
2015), the most widely employed measurement. It has been
demonstrated that temperature scaling (TS) is a straight-
forward and effective calibration method, as highlighted in
(Guo et al., 2017). Consequently, we employ temperature

4



Revisit the Essence of Distilling Knowledge through Calibration

scaling to tune the calibration of teacher network.
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Figure 2. The distillation results for homogeneous teacher and stu-
dent architectures on the CIFAR-100 and Tiny-ImageNet dataset.
In each legend row in the figures, the first refers to the teacher
model, and the second to the student model.
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Figure 3. The distillation results for heterogeneous teacher and stu-
dent architectures on the CIFAR-100 and Tiny-ImageNet dataset.
In the left part, student in the upper is ResNet14. Student in the
lower is MoblileNetV2. In each legend row in the right figure,
the first refers to the teacher model, and the second to the student
model.

Our exploration of the correlation between calibration and
KD involves two main facets:

Given teacher-student pair The sole modification involves
adjusting the temperature of KD to alter the calibration of
the teacher model. We conduct experiments in both homo-
geneous scenarios (Figure 2) and heterogeneous scenarios
(Figure 3) on CIFAR-100 and Tiny-ImageNet datasets. In
homogeneous scenarios, both teacher and student models
adopt either ResNet or WideResNet architectures. In het-
erogeneous scenarios, the teacher and student models differ

Figure 4. The comparison of KD performance by different-
calibrated teachers with fixed temperature. In the upper figure,
student is ResNet14 on CIFAR-100 dataset. The lower figure
shows the results on CIFAR-10 dataset. Student in 3 subplots
are ResNet14, ResNet14 and WRN-22-1. Names of teachers are
shown in pictures.

in their architectures. We can see that calibration and KD
performance exhibit the same changing trend.

Given temperature We fix the temperature and see KD
performance of different teachers. Student model is also
determined. This time calibration is changed by the change
of teachers. We compare the KD performance on dataset
CIFAR-100 and CIFAR-10. Figure 4 demonstrates that
as the calibration deteriorates with different teacher, KD
performance declines.

From the results of the above experiments, where calibration
is adjusted through two methods, we observe a positive cor-
relation between KD performance and teacher calibration.

In addition to response-based KD methods like vanilla KD,
we also investigate the relationship between feature-based
KD methods and calibration. We select the FitNet method
(Romero et al., 2015) and conduct comparative experiments
on CIFAR-100. The results, which are shown in the ap-
pendix, indicate that our findings also apply to feature-based
knowledge.

3.4. t-SNE Visualization of Student

We demonstrate how different levels of calibration in teacher
models affect KD performance. We employ t-SNE visual-
ization to showcase the classification results of the trained
student model for each category. Here, we choose WRN-
28-3 as the teacher model and ResNet14 as student. The
student’s classification results on the CIFAR-10 dataset is
depicted in Figure 5. From the visualization results, we
can observe that when the calibration of the teacher model
deteriorates, although the inter-class distances are slightly
larger, some confusing samples that are similar to several
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classes are not easily distinguishable. In the right panel of
Figure 5, there are a certain number of undistinguished sam-
ples among the green, purple, yellow, and pink categories.
These samples are so many and even can be considered as
an additional 11th category. This result indicates that when
the calibration of the teacher model is poor, the distillation
process fails to teach the student to distinguish confusing
categories effectively. The student model is unable to con-
struct a robust embedding, leading to suboptimal distillation
performance.

Figure 5. The t-SNE visualization results of the features of student
models distilled by teachers with different levels of calibration.
Different colors and markers represent different categories.

4. Unifying Explanation to Previous Works
The forthcoming section aims to illustrate that previous
works (Mirzadeh et al., 2020; Cho & Hariharan, 2019; Zhu
& Wang, 2021; Li et al., 2021) alleviating capacity mismatch
can be cohesively explicated by examining the interplay
between calibration and KD.

As discussed in Section 2, (Mirzadeh et al., 2020) and (Cho
& Hariharan, 2019) represent two methods addressing ca-
pacity mismatch from two major perspectives (architecture
adjustment and teacher regularization). The justification of
explaining these methods through calibration can be applied
to explaining similar approaches.

4.1. Architecture-based Method: TAKD

Introduction of TAKD Mirzadeh et al. (Mirzadeh et al.,
2020) raised Teacher Assistant Knowledge Distillation
(TAKD), employing assistant models to tackle the prob-
lem of capacity mismatch. The size of the assistant model
lies between that of the teacher model and the student model.
TAKD involves distilling knowledge from the teacher net-
work to the assistant network first, followed by distilling
knowledge from the assistant network to the student network.
They contend that the incorporation of assistant models can
reduce the upper bound of error in KD.

We propose an alternative explanation for the effectiveness
of the TAKD method. In TAKD, the assistant model dis-
tilled by teacher is utilized to distill student. Calibration
of the assistant model may be better than teacher model
trained solely by one-hot labels. Consequently, the assistant
model instructing the student model can be interpreted as
a smaller model with better calibration taking on the role
of the teacher model. A question naturally arises: Is the
success of TAKD due to the smaller size of the assistant
model or the better calibration of the assistant model?

We conduct experiments to investigate the success factor
of TAKD. We fix the distillation temperature to 1.8 on
the CIFAR-100 dataset, so calibration of assitant model
is changed only by its size. To align with scenarios involv-
ing capacity mismatch, we employ larger teacher networks,
such as WRN-28-3 and WRN-28-4, as the teacher model.
Conversely, the student network utilizes a smaller model,
such as ResNet14 and WRN-22-1. Initially, the teacher
model instructs the assistant model, and we employ the
Expected Calibration Error (ECE) as an evaluation metric
to gauge the calibration of the assistant model on the test
dataset. After being trained by teacher, the ECE of assistant
model is recorded. The results are presented in Table 2. To
mitigate experimental variability, we employ fixed sets of
diverse random seeds and conducted multiple comparative
experiments using the same set of teacher-assistant-student
models in the appendix.

Firstly, we observe a correlation between the TAKD per-
formance and the calibration of the assistant model. Sub-
sequently, we note that as the assistant model increases in
size, its calibration improves, resulting in enhanced TAKD
performance. This strongly underscores that the success
of TAKD is attributed to the improved calibration of the
assistant model, rather than its size.

We also perform experiments on the Tiny-ImageNet dataset
(results shown in Table 3). In this case, we keep the teacher-
assistant-student pair fixed. We manipulate the distillation
temperature to induce significant changes in the calibration
of the assistant model and observe whether there are sub-
stantial variations in the TAKD performance. The results
confirm our hypothesis.

Based on the aforementioned experimental results, it is ev-
ident that the performance of TAKD improves with the
enhancement of the assistant’s calibration. At this point,
we can explain why TAKD can alleviate capacity mismatch
based on calibration: The TAKD process comprises multi-
ple stages, involving several rounds of assistant distillation
followed by the ultimate stage of student network distilla-
tion. The former stages aim to boost the performance of the
better-calibrated assistant model in the final stage.
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Table 2. Results of TAKD performance by assistant models varied on size on CIFAR-100 dataset.

TEACHER ASSISTANT SIZE OF ASSISTANT STUDENT ECE OF ASSISTANT KD PERFORMANCE

WRN-28-3 RESNET110 1.7M RESNET14 9.57% 68.44%
WRN-28-3 WRN-28-2 1.5M RESNET14 9.94% 67.96%
WRN-28-3 WRN-28-1 0.38M RESNET14 9.92% 67.97%

RESNET110 RESNET56 0.86M RESNET14 9.24% 69.00%
RESNET110 RESNET32 0.47M RESNET14 9.62% 68.13%
RESNET110 RESNET20 0.28M RESNET14 9.92% 68.12%

WRN-28-3 WRN-28-2 1.5M WRN-22-1 10.34% 71.01%
WRN-28-3 WRN-28-1 0.38M WRN-22-1 11.08% 70.36%

Table 3. Results of TAKD performance by different calibration of fixed assistant models on dataset Tiny-ImageNet.

TEACHER ASSISTANT STUDENT TAU ECE OF ASSISTANT KD PERFORMANCE

WRN-16-3 RESNET32 WRN-16-1 1.8 23.5% 49.66%
WRN-16-3 RESNET32 WRN-16-1 4.0 48.03% 46.04%

WRN-28-3 WRN-28-2 WRN-28-1 1.8 15.55% 56.45%
WRN-28-3 WRN-28-2 WRN-28-1 4.0 50.13% 52.87%

4.2. Teacher Regularization: ESKD

Introduction of ESKD (Cho & Hariharan, 2019) initially
highlights the detrimental impact of a large teacher network
on instructing the student. They posit that a large teacher
network, when trained for only a few epochs, exhibits be-
havior akin to a smaller network. In response, they propose
the early-stopped method, where a large teacher network is
trained for only a few epochs (referred to as an early-stopped
teacher) and subsequently employed for distillation. This ap-
proach is abbreviated as ESKD (Early-Stopped Knowledge
Distillation). It needs to be supplemented that, the authors
proposed two approaches to enhance KD performance in
(Cho & Hariharan, 2019). One involves discontinuing the
KD loss after a certain number of distillation epochs, utiliz-
ing only the target label for guidance in subsequent teaching.
The other approach advocates early termination of teacher
training. Since we focus on correlation between ESKD and
calibration of teacher, we omit the discussion of the former
method, as it leaves the calibration of the teacher model
unchanged.

The efficacy of ESKD can also be attributed to the effec-
tiveness of calibration. The calibration of the early-stopped
teacher is not inferior and may even be superior to that of the
fully trained teacher. To conduct the relative experiments,
we save training checkpoints of the teacher model every 10
epochs on CIFAR-100 dataset. Subsequently, we select the
trained teacher models at several checkpoints and compare
the performance of students taught by them. Results are in
Table 4.

It is evident that teachers trained with fewer epochs can

Table 4. The ECE value and the KD performance of a teacher
network in training checkpoints.

Teacher Student Tau Checkpoint ECE KD

WRN-16-3 WRN-16-1 1.0 140 7.26% 67.12%
200 7.2% 67.31%

WRN-16-3 WRN-16-1 1.6 140 7.91% 68.43%
200 7.89% 68.01%

WRN-28-3 WRN-28-1 1.0 130 8.47% 71.09%
200 9.65% 69.67%

WRN-28-3 WRN-28-1 1.6 140 4.96% 71.59%
200 5.16% 71.71%

achieve comparable performance and calibration to the fully
trained teacher. This observation suggests that an extensive
training duration for the teacher model might be unneces-
sary, as numerous epochs contribute minimally to both accu-
racy enhancement and calibration refinement. Consequently,
we opt to train the teacher model for only 100 epochs, initi-
ating the learning rate decay after the 50th epoch. We use
TS to tune calibration of these teachers and compare their
KD performance. From the results in Table 5, we can see
the calibration and KD performance of such a short-trained
teacher is a little superior to a full-trained teacher. More
training results are in appendix.

Here, we can explain the effectiveness of regularization
methods for teacher models, such as ESKD, from the per-
spective of model calibration: These methods optimize the
calibration of large teacher models through techniques such
as early stopping and selecting checkpoints, imparting more
accurate knowledge to the students.

7
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Table 5. The comparison between teacher trained with fewer
epochs and full-trained teacher. T refers to temperature.

FEW-TRAINED FULL-TRAINED

NAME WRN-16-3 WRN-16-3
CLASSIFICATION 74.28% 75.17%

ECE(T=1.6) 7.48% 7.89%
KD(T=1.6) 68.62% 68.01%

NAME WRN-28-3 WRN-28-3
CLASSIFICATION 75.58% 76.83%

ECE(T=1.6) 3.48% 5.16%
KD(T=1.6) 71.95% 71.71%

4.3. Explanation to Other Methods

The first two sections elucidated two representative methods
for mitigating capacity mismatch. Other relative methods
can be interpreted through the lens of calibration. For in-
stance, in Residual KD (Li et al., 2021), the authors em-
ployed various residual-student models, employing a train-
ing process akin to TAKD. (Liang et al., 2024) applied
TAKD to self distillation, which shares the same princi-
ple of TAKD in alleviating capacity mismatch. We have
previously explored the correlation between TAKD and cal-
ibration, so a similar connection with calibration can be
inferred for the above-mentioned work. (Wang et al., 2022)
used information bottleneck to find the suitable checkpoint
of the teacher model. The effectiveness of searching for
checkpoints has been discussed in Section 4.2. Many other
methods share a similar attribution to calibration, but due to
space constraints, we will not delve into them here.

5. Fundamental Approach to Alleviate
Capacity Mismatch

The correlation between calibration of teacher model and
KD performance arises from the fact that most existing KD
methods require the student to closely mimic the teacher.
Distance measurements, such as KL divergence, are com-
monly used to precisely align the outputs of the student and
teacher. So when capacity mismatch happens, the teacher
model is too large that its calibration may not be so good
(Guo et al., 2017). The calibration of the student network
will also be adversely affected. Hence the student has poor
generalization ability and KD performance is bad.

It is practical to raise KD methods which are not sensitive
to calibration to solve capacity mismatch. We attempt to
relax the training requirements for the student, not insisting
on an exact match with the teacher output. Instead, we only
focus on some key indicators to align with the teacher, such
as maintaining the order of likelihood probabilities across
all classes, which is achieved through ranking-based KD.

We have designed ablation experiments to show ranking-
based KD method is not sensitive to calibration as KL-based
KD (distance measurement is KL divergence). We select
DIST (Huang et al., 2022) as a representative of ranking-
based methods. The CE loss in DIST is also dropped and
we only use inter-class and intra-class relation loss. DIST
focuses on ensuring consistency in the class relationships
between teacher and student model outputs. We take the
inter-relation loss in DIST as an example to demonstrate
how DIST calculates loss:

Here we define Yi as the i-th sample in dataset. Y (s)
i is the

student output of Yi, while Y
(t)
i is the teacher output of Yi.

When the batch size is B, the inter-relation loss in DIST is
formulated as: (Huang et al., 2022)

Linter :=
1

B

B∑
i=1

dp

(
Y

(s)
i , Y

(t)
i

)
(5)

where dp(u,v) := 1− ρp(u,v), here ρp(u,v) is the Pear-
son correlation coefficient between u and v:

ρp(u,v) :=
Cov(u,v)

Std(u) Std(v)

=

∑C
i=1 (ui − ū) (vi − v̄)√∑C

i=1 (ui − ū)
2 ∑C

i=1 (vi − v̄)
2

(6)

Combining (5) and (6), it is evident that the DIST method
prioritizes the comparison of the consistency in output prob-
ability rankings for each category between the teacher net-
work and the student network.

We manipulate the two types of KD methods on CIFAR-100
dataset with a wide range of temperature. By calculating
Spearman correlation (Dodge, 2008) between ECE and KD
performance, it is easy to compare the sensitivity of each
KD method to calibration. The detailed results are shown in
Table 6 and more results are displayed in appendix.

From the results we can see that when applying DIST, the
absolute value of the Spearman correlation coefficient is
smaller than that of the KL-based KD. Thus, KD perfor-
mance of ranking-based KD is not sensitive to calibration
as KL-based KD does. We also visualize the relevant exper-
imental data and fit a line on the graph to show the relation-
ship between KD performance and calibration, as depicted
in Figure 6. As we can see, the curve’s slope for results of
vanilla KD approaches ±1, indicating that the performace
of the KL-based method varies more significantly with in-
creasing or decreasing calibration. In contrast, the curve
for the ranking-based method is relatively flat, suggesting
that the KD performance of the ranking-based method is in-
sensitive to calibration. The above experimental results and

8
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Table 6. Some experimental results to show the sensitivity of KD with different measurements with calibration

TEACHER STUDENT RESULTS (TOP-1 ACC (%)) SPEARMAN (%)

RESNET-56 RESNET-14

TAU 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 -
ECE 12.04 1.79 10.39 21.33 31.01 38.92 45.03 51.97 57.04 59.92 61.65 -
KD 68.09 68.28 68.56 68.57 67.98 67.84 67.46 67.01 67.20 66.75 66.80 -91.82

DIST 67.35 68.19 68.77 68.63 68.92 68.41 68.41 68.9 68.93 68.39 66.97 0.46

RESNET-110 RESNET-14

TAU 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 -
ECE 14.08 4.70 6.00 16.89 27.12 35.84 42.78 52.93 57.22 59.65 61.12 -
KD 67.18 67.72 68.30 67.83 68.42 67.44 67.28 66.77 66.87 67.15 65.98 -76.36

DIST 67.23 68.09 68.20 68.74 68.15 68.88 68.65 68.74 69.35 67.88 67.18 1.82

WRN-28-1 RESNET-14

TAU 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 -
ECE 8.70 5.09 17.73 28.59 37.22 43.67 48.34 54.06 57.07 58.78 59.83 -
KD 67.76 67.73 67.55 67.48 67.11 67.09 66.9 66.82 66.64 66.28 65.68 -99.10

DIST 67.22 68.26 68.19 68.48 68.84 68.35 68.12 67.99 67.79 67.36 66.33 -50.00

the success of DIST demonstrate that selecting distillation
methods insensitive to calibration is crucial in alleviating
capacity mismatch. This choice can assist in achieving good
distillation performance with a given large teacher network.
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Figure 6. Visualization of KD with different measurements. Green
scatters represent ranking-based KD while red scatters represent
KL-based KD. Curve slope can show if measurements is related to
calibration closely.

6. Conclusion
In this paper, we provide a novel perspective on capacity
mismatch through calibration. We observe a significant
impact of the calibration of the teacher model on student
performance in our experiments. To alleviate the sensitivity
to calibration, we propose employing calibration-insensitive
metrics, such as ranking-based loss, as substitutes for KL
divergence in the KD loss. Our findings suggest that these
calibration-insensitive metrics contribute to enhancing the
teaching effectiveness of large teachers.

We contend that our interpretation, rooted in model cali-
bration, is both comprehensive and robust. We introduce
a unifying framework to systematically summary previous
research on capacity mismatch. We hope that our work can
cast light on future relevant studies.
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A. Appendix
A.1. Results of corrlation between calibration and feature-based KD performance

Figure 7 demonstrates that for feature-based KD methods, teacher’s calibration is also correlated to KD performance.
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Figure 7. KD performance by feature-based KD methods on the CIFAR-100 dataset. In each legend row, the first refers to the teacher
model, while the second pertains to the student model.

A.2. Results of TAKD with different random seeds

Table 7. Results of TAKD performance with different assitant models. The random seed is fixed to several predefined values to reduce
experimental randomness.

TEACHER ASSISTANT STUDENT ECE OF ASSISTANT KD PERFORMANCE RANDOM SEED

WRN-28-4 WRN-28-2 WRN-22-1 9.99% 70.52% 0
WRN-28-4 WRN-28-1 WRN-22-1 10.20% 70.30% 0

WRN-28-4 WRN-28-2 WRN-22-1 10.28% 70.77% 1
WRN-28-4 WRN-28-1 WRN-22-1 10.60% 70.14% 1

WRN-28-4 WRN-28-2 WRN-22-1 9.70% 70.14% 2
WRN-28-4 WRN-28-1 WRN-22-1 10.57% 70.04% 2

WRN-28-4 WRN-28-2 WRN-22-1 10.03% 70.32% 5
WRN-28-4 WRN-28-1 WRN-22-1 10.32% 70.34% 5

WRN-28-4 WRN-28-2 RESNET14 10.06% 68.48% 1
WRN-28-4 WRN-28-1 RESNET14 10.45% 67.93% 1

WRN-28-4 WRN-28-2 RESNET14 9.82% 69.16% 2
WRN-28-4 WRN-28-1 RESNET14 10.38% 68.83% 2
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A.3. More results of early-stopped teacher

Table 8. The detailed comparison between teacher trained with fewer epochs and full-trained teacher. T refers to temperature.

FEW-TRAINED FULL-TRAINED

NAME WRN-16-3 WRN-16-3
CLASSIFICATION 74.28% 75.17%

ECE(T=1.6) 7.48% 7.89%
KD(T=1.6) 68.62% 68.01%
ECE(T=3.0) 37.56% 39.90%
KD(T=3.0) 67.77% 67.54%
ECE(T=4.0) 50.27% 51.56%
KD(T=4.0) 67.35% 67.01%

NAME WRN-28-3 WRN-28-3
CLASSIFICATION 75.58% 76.83%

ECE(T=1.6) 3.48% 5.16%
KD(T=1.6) 71.95% 71.71%
ECE(T=3.0) 37.74% 41.76%
KD(T=3.0) 71.58% 71.39%
ECE(T=4.0) 52.29% 53.46%
KD(T=4.0) 71.23% 71.11%

A.4. More results of sensitivity comparison

Table 9. The detailed results of sensitivity of KD with different measurements with calibration.

Teacher Student Spearman (KD and ECE) Spearman (DIST and ECE)

WRN-28-2 WRN-22-1 -31.82% 8.18%
WRN-28-4 MobileNetV2 -38.18% 8.18%
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