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Abstract001

Large language models (LLMs) operate in two002
learning modes: fine-tuning (FT) and in-context003
learning (ICL). We ask which mode exhibits004
greater language proficiency, and whether their005
inductive biases in pattern recognition differ.006
We propose three desiderata for the compari-007
son: (D1) a precise specification of the learn-008
ing task, (D2) an equal resource allocation to009
FT and ICL, and (D3) a comparable evalua-010
tion metric to find the better mode. Several011
prior studies attempted to compare FT and ICL012
without satisfying all three desiderata, resulting013
in mixed and inconclusive results. To satisfy014
these desiderata, we propose a formal language015
learning task, where syntactic pattern recog-016
nition is the main focus. We also introduce017
a discriminative test for language proficiency,018
enabling direct comparison of FT and ICL.019

Empirically, we find that (a) FT has greater lan-020
guage proficiency than ICL on in-distribution021
generalization, but both perform equally well022
on out-of-distribution generalization. (b) Their023
inductive bias, measured as the correlation of024
string generation, is usually similar, but simi-025
larity decreases with better language learning.026
(c) Unlike FT, ICL performance differs sub-027
stantially across models of varying sizes and028
families, and becomes sensitive to tokens used029
in the languages. Thus, our controlled setup030
reveals subtle behavior of FT and ICL, which is031
difficult to capture in natural language datasets.032

1 Introduction033

Large language models (LLMs) have two princi-034

pal learning modes: fine-tuning (FT) (Kaplan et al.,035

2020) and in-context learning (ICL) (Brown et al.,036

2020), to learn a new language, e.g., adapting to037

new domains. FT simulates a closed-book exam,038

where LLMs learn by updating model parameters.039

ICL simulates an open-book exam, where LLMs040

learn from in-context examples without any param-041

eter update. Both learning modes are applied in042
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Figure 1: Fine-tuning (left) and in-context learning
(right) are two learning modes of an LLM. On formal
language learning, the task is to generate unseen strings
from the language through syntactic pattern recognition
(desideratum D1). Under an equal setting (D2), fine-
tuning updates parameters (θ → θ∗) based on training
strings and generates a test string with a cross-entropy
loss. In-context learning takes a concatenated input
prompt, where training strings are the prefix to generate
the test string. A comparable evaluation metric is thus
needed, since both input prompts and parameters of the
models are different between learning modes (D3).

various natural language processing (NLP) tasks, 043

such as text summarization (Radford et al., 2019), 044

question-answering (Yang et al., 2018), etc. There- 045

fore, it is a natural question to ask which mode 046

is more language proficient or more effective in 047

learning a new language, i.e., which mode recog- 048

nizes patterns in the language better. A related ques- 049

tion is whether their inductive bias in learning is 050

similar or different, i.e., whether they have similar 051

(implicit or explicit) assumptions about recogniz- 052

ing patterns in the language (Mitchell, 1980). An- 053

swering such questions objectively has significant 054

implications for the future deployment of LLMs in 055

various tasks (Raiaan et al., 2024). 056

Our Contributions. What are the set of princi- 057

ples for comparing language proficiency of FT and 058

ICL? The question is relevant for any scientific 059

study to compare two related processes (see mo- 060

tivation in Figure 1). Our key contribution is the 061
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introduction of three-fold desiderata, as explained062

below, for comparing FT and ICL, and a controlled063

experimental framework realizing these desiderata.064

Several prior studies attempted to compare FT and065

ICL without satisfying all three desiderata, result-066

ing in mixed and inconclusive results. Specifically,067

the closest to our work is Mosbach et al. (2023),068

who partially satisfy desideratum D1 and D2, but069

fail to satisfy D3 (details in Section 2).070

D1. Specification of the Learning Task: Syntax-071

focused Learning with Zero-prompting. We com-072

pare FT and ICL on learning a probabilistic for-073

mal language, which is a distribution of strings ac-074

cepted by a probabilistic grammar (Manning, 2003;075

Chater and Manning, 2006). The task is to generate076

new strings from the language by learning syntactic077

patterns from training strings (Section 3).078

There are advantages of comparing FT and ICL079

on formal languages: (a) they contain syntax only,080

which is not ambiguous like semantics – the main081

focus of prior studies (Mosbach et al., 2023). The082

syntactic pattern recognition evaluates the native083

auto-regressive next token generation ability of084

LLMs. (b) Formal languages provide full con-085

trol over the data distribution, and facilitate a pre-086

cise differentiation between in-distribution and out-087

of-distribution languages via language distance,088

needed to evaluate generalization on in- and out-of-089

distribution tasks. (c) They are synthetic in nature090

and avoid data contamination (Xu et al., 2024). Sat-091

isfying all these aspects is hard for publicly avail-092

able natural language datasets.093

A practical challenge is communicating the task094

to the LLMs, since different LLMs may not under-095

stand the prompt instruction similarly (Wu et al.,096

2025). To avoid the subjectivity in designing097

prompt instructions, we consider a zero-prompting098

setup: the LLM only sees training strings, and we099

evaluate how well a new string is generated by the100

LLM, without any explicit instruction.101

D2. Allocation of Equal Resources. A fair com-102

parison requires allocating an equal resource to FT103

and ICL. We provide the same training and test104

data to both learning modes of the same LLM, con-105

sistent with Mosbach et al. (2023). In addition,106

FT and ICL have disjoint hyperparameters, such as107

batch-size, learning rates, and fine-tuning epochs108

in FT versus repetitions of examples, temperature109

in inference in ICL. We propose to compare the110

best performance of FT and ICL over respective hy-111

perparameter settings, which is loosely performed112

by Mosbach et al. (2023); Yin et al. (2024).113

D3. Comparable Evaluation Metric. There are 114

two potential tests for language proficiency of 115

LLMs: generative and discriminative tests – the 116

latter is proposed by us. The generative test fo- 117

cuses on strings in the language and computes their 118

probability of generation. We argue that the gener- 119

ation probability is not comparable across learn- 120

ing modes and models. The discriminative test, 121

however, checks whether strings in the language 122

are generated with higher probability than strings 123

outside the language, i.e., whether a classification 124

is possible between in-language and out-language 125

strings based on their generation probability. We 126

claim that the classification score produced by the 127

discriminative test is comparable between FT and 128

ICL, unlike the generative test (Section 4). 129

Experimental Results. We experiment with 18 130

open-source LLMs from 6 model families and mul- 131

tiple formal languages, and reach the following 132

conclusions: (a) Different LLMs converge to opti- 133

mal FT performance, while their ICL ability varies 134

substantially. Model size becomes a factor for im- 135

proved performance in ICL but not in FT. (b) On 136

in-distribution generalization, where training and 137

test languages are the same, FT dominates ICL 138

except in some LLMs where ICL is close to FT. 139

On out-of-distribution generalization where train- 140

ing and test languages differ, both learning modes 141

perform equally, and generalizes to closer out-of- 142

distribution languages only. (c) The inductive bias, 143

measured by the correlation of output generation 144

probability of FT and ICL, is often similar but not 145

equal. Similarity in biases decreases when lan- 146

guage learning of either mode improves with higher 147

training data. (d) FT is robust across languages, 148

measured by changing underlying grammar rules 149

or tokens. However, ICL performance is largely 150

impacted by the actual tokens used in the language. 151

Finally, we explicate the issues of testing LLMs 152

with natural language datasets, such as data con- 153

tamination and ill-defined in-distribution and out- 154

of-distribution tasks, in Appendix D. Instead, we 155

reiterate the need for synthetic formal languages 156

for a rigorous scientific study on the capabilities of 157

LLMs. Along the way, we position the paper as a 158

stepping stone to motivate future research. 159

2 Motivation and Related Work 160

Here, we review related work and motivate why a 161

comprehensive study comparing FT and ICL in a 162

controlled setup is necessary. 163
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Independent Studies on FT and ICL. Several164

works independently investigate FT (Kaplan et al.,165

2020; Zhang et al., 2024; Hu et al., 2024) and ICL166

in LLMs (Shen et al., 2023; Reddy, 2023; Pan et al.,167

2023; Chen et al., 2025), and relate learning perfor-168

mance with model size, training data, etc. Our work169

uses synthetic data and thus differs with most works170

performed on NLP datasets, where pre-training can171

affect FT and ICL performance.172

Benchmarks. NLP datasets (Rajpurkar et al.,173

2016; Kwiatkowski et al., 2019) provide high-level174

descriptions of learning tasks, where in-distribution175

and out-of-distribution tasks are less well-defined.176

Even within in-distribution tasks, we argue that177

there is no formal guarantee of coherence between178

training and test examples – unlike a formal lan-179

guage, where all examples belong to the same lan-180

guage. Also, public datasets may result in data con-181

tamination providing an unfair advantage to some182

LLMs (Dominguez-Olmedo et al., 2024). We find183

both issues on MNLI dataset (Williams et al., 2018),184

as previously studied by Mosbach et al. (2023) on185

comparing FT and ICL, where our result contra-186

dicts their findings: On out-of-distribution tasks, FT187

and ICL perform equally well on formal languages,188

but FT is better than ICL on MNLI dataset (Ap-189

pendix D). The contradiction highlights the need190

for a well-defined learning task (desideratum D1).191

Comparison of FT and ICL. The comparison192

between FT and ICL has mixed conclusions, often193

due to violating desideratum D2. Several studies194

conclude that FT outperforms ICL (Brown et al.,195

2020; Mosbach et al., 2023; Liu et al., 2022b;196

Lester et al., 2021; Bhatia et al., 2023; Asai et al.,197

2024). However, the conclusions are based on us-198

ing different model sizes, unequal number of exam-199

ples, and high variance across runs. Other studies200

find ICL better than FT (Yin et al., 2024; Bertsch201

et al., 2024; Kaneko et al., 2025; Soudani et al.,202

2024; Awadalla et al., 2022), which usually exe-203

cute suboptimal FT (e.g., 1 epoch), giving ICL an204

advantage. To our knowledge, no prior work con-205

siders a comparable evaluation metric aligned with206

desideratum D3, which we introduce in Section 4.207

Furthermore, our comparison of the inductive bi-208

ases of FT and ICL represents a novel contribution.209

Formal Languages in LLM Research. Owing210

to their greater controllability, formal languages211

have been widely used to investigate the NLP ca-212

pabilities of LLMs (Jumelet and Zuidema, 2023),213

including their inductive biases in language learn-214

ing (Papadimitriou and Jurafsky, 2023; White and215

Cotterell, 2021; Hopkins, 2022). Leveraging for- 216

mal languages as a testbed, prior studies have com- 217

pared the representational capacity of LLMs with 218

various sequence-based models (Shi et al., 2022; 219

Chi et al., 2023; Bhattamishra et al., 2020; Merrill, 220

2023; Strobl et al., 2023a; Hahn, 2020), and ana- 221

lyzed the classes of formal languages that LLMs 222

can learn (Delétang et al., 2022; Hahn and Rofin, 223

2024; Cotterell et al., 2018; Mielke et al., 2019; 224

Borenstein et al., 2024). Notably, LLMs have been 225

shown to learn hierarchical and probabilistic for- 226

mal languages that mirror the recursive structure of 227

natural language (Allen-Zhu and Li, 2023; Murty 228

et al., 2022; Liu et al., 2022a). 229

To our knowledge, no prior work has employed 230

formal languages to compare the language profi- 231

ciency and inductive biases of different LLM learn- 232

ing modes – this forms the central contribution of 233

our work. Extend related work is in Appendix A. 234

3 Experimental Framework 235

In this section, we discuss our experimental frame- 236

work by introducing formal languages and how we 237

teach the language to the LLM in FT and ICL. 238

Formal Languages. Following Allen-Zhu and 239

Li (2023), we use probabilistic formal languages, 240

particularly the class generated by hierarchical 241

probabilistic context free grammars (HPCFGs), as 242

the objects of LLM learning (desideratum D1) - 243

HPCFGs have the recursive structure of natural lan- 244

guages. Formally, a probabilistic formal language 245

L is defined on a set of tokens or alphabet T, and 246

specifies a probability distribution PL over strings, 247

PL : T∗ → [0, 1], where T∗ is the set of all strings. 248

A string s is in-language w.r.t. L if PL(s) > 0, and 249

out-language if PL(s) = 0. T is a proper subset 250

of the vocabulary V of all tokens of the LLM. 251

Construction of Out-language Strings. We quan- 252

tify the degree of incorrectness of an out-language 253

string as a distance from the language under inves- 254

tigation, which we utilize in the discriminative test 255

in Section 4. We generate grammatically incorrect 256

strings in two ways: (a) Incorrect by edit: We edit 257

in-language strings to create out-language strings 258

(through the addition, deletion and replacement of 259

tokens at random positions), where edit distance is 260

the number of edits made to the in-language string. 261

(b) Incorrect by randomization: We sample random 262

strings over the language’s alphabet set, retaining 263

only the distribution of string lengths from the lan- 264

guage. On average, such random strings have a 265
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Figure 2: A string from language L1, generated by
a hierarchical grammar. The grammar contains non-
terminal A’s, alphabet (or terminals) T = {1, 2, . . . , 9},
and hierarchical production rules. For example, the rule
‘A16 → A15 A13’ indicates that non-terminal A16 is
expanded to A15 followed by A13, and so on, until
reaching alphabet T (formal definition in Appendix B).

very high edit distance from the language. In both266

cases, we ensure non-membership of out-language267

strings via a grammar parser.268

Languages. We consider six languages, denoted269

by {Li}6i=1, based on a combination of two distinct270

HPCFGs, and three distinct alphabet sets (details271

in Section 5). For each language, we sample non-272

overlapping training (ntrain ∈ {1, 2, 4, . . . , 1024})273

and test strings (ntest = 1024), following the dis-274

tribution in a given language (desideratum D2).275

Figure 2 illustrates a representative string from L1.276

Additional details on formal languages, respective277

grammars, the sampling process, and length distri-278

butions of generated strings are in Appendix B.279

Teaching the Language to an LLM. To teach280

a language L to an LLM, we sample strings from281

L and feed them to the LLM via FT or ICL. FT is282

generally performed for a fixed number of epochs,283

denoted by m = 50, where in each epoch the LLM284

iterates over the strings while minimizing a loss285

function, such as cross-entropy loss. Formally, con-286

sider a dataset of n strings D ≜ {s(j)}nj=1 sam-287

pled from the language, D ∼ L. For a given288

string s and its token si at the i-th position, let289

PM (si|s[1,i−1]) be the probability that the LLM290

M assigns to the token si given the prefix tokens291

s[1,i−1]. The cross-entropy loss of the LLM on D292

is the per-token negative log probability at every293

token position of all strings in D, lossM (D) ≜294

− 1
n

∑
s∈D

1
|s|

∑|s|
i=1 logPM (si | s[1,i−1]).295

In ICL, we provide the same strings in D as in-296

context examples. Specifically, ICL takes a set of297

ordered examples ⟨s(1), · · · , s(n)⟩ as a prefix for a298

test string s. The ICL examples are concatenated299

using separators, e.g., semicolons, leading to a300

prompt s(1)[sep] · · · s(n)[sep]s. Similar to epochs301

in FT, we consider repeating examples in ICL a302

fixed number of times, m ∈ {1, 2, 4, 8, 16}. In303

both FT and ICL, we find and compare language304

proficiency at the optimal epoch or repetition m∗, 305

satisfying desideratum D2. 306

We study 18 open-source LLMs from 6 307

model families: Mistral (Jiang et al., 2023), 308

Llama (Touvron et al., 2023a,b; Dubey et al., 2024), 309

Qwen (Yang et al., 2024), Gemma (Team et al., 310

2024a,b), Pythia (Biderman et al., 2023), and 311

Opt (Zhang et al., 2022), ranging from 0.5B to 312

13B parameters. Each experiment is repeated three 313

times by randomly sampling training strings with 314

different seeds. Additional details on hyperparame- 315

ters are provided in Appendix B. 316

4 The Test for Language Proficiency 317

We teach a formal language to an LLM via FT or 318

ICL. A fundamental question that arises here is: 319

what does it mean for an LLM to be better or more 320

proficient in a language? Below, we discuss a gen- 321

erative test and a newly proposed discriminative 322

test – the latter compares the proficiency of differ- 323

ent modes directly and fairly (desideratum D3). 324

The Generative Test. While learning a language, 325

the generative test evaluates how well unseen test 326

strings from the language are generated by an LLM 327

– higher the generation performance, better the lan- 328

guage proficiency. This is a straightforward metric, 329

and is adopted widely in the literature (Kallini et al., 330

2024; Jumelet and Zuidema, 2023; Bhattamishra 331

et al., 2020; Wang, 2021; Akyürek et al., 2024). 332

Formally, consider two LLMs M and M ′ and 333

a target language L. M and M ′ can be two learn- 334

ing modes of the same LLM as well. Using the 335

generative test, M is more language proficient 336

in L than M ′, if M generates strings in L with 337

higher probability or lower loss than M ′, formally, 338

lossM (L) < lossM ′(L). 339

Issues with the Generative Test. Two reasons 340

hinder a direct comparison FT and ICL using a gen- 341

erative test. (i) Absolute probability (or loss, per- 342

plexity) is incomparable across LLMs: generation 343

probability is impacted by pre-training setup, vo- 344

cabulary, model parameters, random initialization, 345

etc. As a result, different LLMs optimally trained 346

on the same language do not guarantee language 347

generation with the same probability. (ii) FT and 348

ICL result in different input prompts and require 349

comparing the same LLM with different parame- 350

ters (Figure 1). The compounding factors make 351

comparison impossible – if FT and ICL generate 352

a string with different probability, we cannot de- 353

cide whether the difference is due to different input 354
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Correct

Incorrect (low edit distance)
Incorrect (high edit distance)

Figure 3: We visualize the set of all strings in a hier-
archy, where the inner green circle denotes grammati-
cally correct in-language strings, and the outer red circle
denotes grammatically incorrect out-language strings.
The generative test focuses on generation performance
within the green circle, while the discriminative test fo-
cuses on comparative generation performance between
green and red (specially at low edit distance) circles.

prompts or model parameters or both. To over-355

come these issues, we propose a discriminative test,356

which considers strings outside the language.357

The Discriminative Test. The key intuition be-358

hind the discriminative test is: if an LLM learned359

a language, it should generate strings in the lan-360

guage with higher probability than strings outside361

the language. Thus, the discriminative test attempts362

to classify in-language and out-language strings363

based on their generation probability, where the364

success of classification is an implication of lan-365

guage proficiency. As shown in Figure 3, the test366

can be stricter by picking close out-language strings367

(according to some distance metric like edit dis-368

tance) to in-language strings and checking if they369

can still be identified as out-language.370

Formally, let T(L) denote out-language strings,371

constructed by editing or transforming strings in372

L and ensuring that they are not in L. Consider373

a binary (linear) classifier, where input is the gen-374

eration probability of strings in L ∪ T(L) by an375

LLM, and the classification task is to determine376

their membership. Let aucM (L,T(L)) ∈ [0, 1]377

be the AUC (area under the receiver operating378

characteristic curve) of the classifier using model379

M ; the higher the value the better. Thus, LLM380

M is more language proficient in L than M ′, if381

aucM (L,T(L)) > aucM ′(L,T(L)).382

Claim 1. For a given language, the discriminative383

test is comparable between two learning modes of384

an LLM and across LLMs, unlike a generative test.385

To support our claim, the discriminative test asks386

the same LLM or learning mode (i.e., equal param-387

eters) to generate in-language and out-language388

strings, where all strings undergo the same prompt389

formatting. Thus, the derived classification score is390

comparable across learning modes and LLMs (we391
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(d) Discriminative Test, ICL

Figure 4: Language proficiency of Mistral-7B on lan-
guage L1, while varying the number of examples in
both learning modes.

defer details in Appendix F). 392

Demonstration of Language-Proficiency Test. 393

In Figure 4, we demonstrate the language profi- 394

ciency of an LLM w.r.t. generative test (loss) in 395

the top row and discriminative test (AUC) in the 396

bottom row, for both FT and ICL. 397

Observation 1. Generative test alone is mislead- 398

ing. In Figure 4a and 4b, with increasing exam- 399

ples, the loss decreases (or probability increases) 400

on in-language test strings, as well as strings that 401

are close but outside the language. Therefore, the 402

generative test alone is insufficient in determining 403

language proficiency on the target language. 404

Observation 2. Discriminative test score is 405

correlated with training size and distance of out- 406

language strings. In Figures 4c and 4d, the AUC 407

of the discriminator increases with examples, i.e., 408

the LLM becomes increasingly proficient in the 409

language, by not only generating strings from the 410

language with lower loss, but also discriminating 411

them from strings outside the language. Also, AUC 412

is correlated with the degree of incorrectness of 413

non-grammatical out-language strings; higher the 414

incorrectness, higher the AUC. Importantly, AUC 415

between FT and ICL is comparable under an equal 416

setting of examples and degree of incorrectness. 417

In the next section, we apply the discriminative 418

test to compare FT and ICL, and report the AUC 419

of discriminating in-language test strings from out- 420

language strings at edit distance 1, resulting in the 421

most difficult discriminative test. 422
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Figure 5: FT and ICL across different LLMs while learn-
ing language L1. Different LLMs demonstrate similar
FT performance, but their ICL ability varies.

5 Fine-tuning vs. In-context Learning423

We study the language proficiency of FT and ICL424

in LLMs on learning syntactic patterns from for-425

mal languages. Specifically, we aim to answer the426

following research questions to analyze the subtle427

differences between FT and ICL.1428

RQ1. When evaluating FT and ICL independently
on a given language, how language proficient are
different LLMs of varying sizes and families?
RQ2. Which learning mode is more language pro-
ficient when evaluated jointly on in-distribution
and out-of-distribution generalization?
RQ3. Do FT and ICL result in similar inductive
bias while learning a formal language?
RQ4. How robust FT and ICL performance are
to changes in languages?

429

Answer to RQ1: Different LLMs attain a similar430

and near optimal language proficiency under FT,431

but their ICL ability varies substantially. In432

Figure 5, we report the AUC of FT and ICL across433

LLMs and example sizes while learning language434

L1. In both modes, AUC increases with examples,435

indicating better learning.436

Fine-tuning. During FT, all models across fam-437

ilies and parameter sizes eventually converge to438

the optimal AUC (> 0.99) after sufficient train-439

ing examples, such as 512. Across example sizes440

{1, 16, 64, 256, 1024}, the average AUC of FT is441

almost similar across models: Llama-2 (0.93) >442

Qwen (0.92) > Mistral (0.91) > Opt (0.91) >443

Gemma (0.90) > Pythia (0.90) > Llama-3 (0.88),444

1Additional results including evaluation on NLP datasets,
utilization test of full ICL context by LLMs, and detailed
implications of research questions are in the Appendix C.

ICL ability (AUC range) Model

Good (≥ 0.75) Qwen-2.5-7B, Mistral-7B, Qwen-2.5-1.5B,
Llama-2-13B, Qwen-2.5-0.5B, Llama-2-7B,
Mistral-12B

Moderate (≥ 0.6) Gemma-2-2B, Gemma-2-9B, Pythia-6.9B,
Opt-1.3B, Opt-6.7B, Pythia-1B, Llama-3.2-
3B, Opt-2.7B, Llama-3.2-1B

Poor (< 0.6) Llama-3.1-8B, Pythia-2.8B

Table 1: ICL ability of LLMs on language L1 with up
to 32 examples, based on discrimination AUC. In each
group, LLMs are sorted in descending ICL ability.

where the respective AUC is inside the parenthe- 445

sis. Only in few families (e.g., Opt), the largest 446

model achieves the highest AUC. In addition, a 447

more proficient family often achieves its best lan- 448

guage proficiency in an earlier epoch. For example, 449

the median epoch is 7.5 for Llama-2, 12 for Opt, 450

and 37 for Llama-3. Therefore, different LLMs, re- 451

gardless of sizes and families, may achieve similar 452

language proficiency under FT on a tailored task 453

like formal language learning. 454

In-context Learning. In ICL, the AUC varies 455

substantially within a model family and across 456

model families. First we observe that different 457

LLMs have variable context length, restricting 458

them to process different number of ICL examples. 459

To compare all models fairly, we limit our analysis 460

to 32 ICL examples, which all models can fit in 461

their context. We find the following order of ICL 462

ability of LLM families: Qwen (0.78) > Mistral 463

(0.78) > Llama-2 (0.77) > Gemma (0.69) > Opt 464

(0.64) > Pythia (0.61) > Llama-3 (0.59). Due to 465

variable performance, we propose a ranking of ICL 466

ability of LLMs in Table 1. Importantly, within a 467

family, ICL ability does not always correlate with 468

model size (Mistral 7B > Mistral-12B) or model 469

versions (Llama-2-7B > Llama-3.1-8B). Only in 470

some families such as Qwen, Pythia, and Llama- 471

2, the largest model is better in ICL. Unlike FT, 472

repeating ICL examples more than once worsens 473

ICL performance: repeating examples takes up con- 474

text space, and it is thus better to sample examples 475

from the language distribution without repetition. 476

To conclude, ICL ability is more variable across 477

LLMs, compared to FT. 478

Answer to RQ2: On in-distribution language 479

generalization, FT dominates ICL in most LLMs; 480

only in a subset of LLMs, ICL is close to FT. On 481

out-of-distribution generalization, both FT and 482

ICL perform similarly, and generalize well to 483

nearby languages only. In Figure 6, we compare 484
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Figure 6: In-distribution generalization of FT vs. ICL on
L1 in comparable ≈ 7B parameter size LLMs. FT usu-
ally dominates ICL , except in Qwen-2.5-7B, Mistral-
7B and Llama-2-7B, where ICL is close to FT.
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Figure 7: Out-of-distribution generalization of FT and
ICL on increasing distant languages, where both modes
perform almost equally. L1 as the base learned language,
and generalization is performed on L

(ℓ)
1 , by changing ℓ

rules in the grammar of L1. L(ℓ)
1 contains all changed

rules in L
(ℓ−1)
1 . Therefore, dist(L1, L

(ℓ−1)
1 ) ≤

dist(L1, L
(ℓ)
1 ), where 2 ≤ ℓ ≤ 5 (see Eq. (1)).

FT and ICL of an LLM on in-distribution language485

generalization. In most LLMs, FT dominates ICL,486

and the performance difference is profound when487

considering more examples. However, in a subset488
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Figure 8: Inductive bias of ICL and FT, computed as the
Pearson correlation of generation loss of FT and ICL on
identical test strings. Correlation, despite being positive,
tends to decrease with higher examples (larger markers).

of models, such as Mistral-7B, Qwen-2.5-7B, and 489

Llama-2-7B, ICL is close to FT – these are usually 490

models with good ICL ability in Table 1. Therefore, 491

FT is more language proficient than ICL on in- 492

distribution language generalization. 493

In Figure 7, we compare FT and ICL of an 494

LLM on out-of-distribution language generaliza- 495

tion, where the LLM first learns the language L1 496

in FT or ICL, and then we evaluate on five other 497

languages {L(1)
1 , . . . , L

(5)
1 } of increasing distances 498

from L1. We emphasize that formal languages offer 499

a systematic distance computation between two lan- 500

guages (i.e., out-of-distribution tasks), unlike any 501

natural language (Appendix D). Surprisingly, both 502

modes perform similarly on out-of-distribution lan- 503

guages, and only perform well on the near distant 504

language L
(1)
1 . Therefore, the superiority of FT 505

over ICL on in-distribution generalization is not 506

transferable to out-of-distribution generalization. 507

Answer to RQ3: The inductive bias of FT and 508

ICL is often similar, but not equal. Similarity 509

decreases with training examples. To compare 510

inductive bias of FT and ICL in recognizing syntac- 511

tic patterns in formal languages, we do not focus 512

on how each mode operates internally, but focus 513

on their output correlation in generating the same 514

set of strings. Thus, if correlation is high, inductive 515

bias is similar. In Figure 8, we report the Pear- 516

son correlation of generation loss of FT and ICL, 517

where correlation is often positive (< 0.8). More 518

importantly, correlation generally decreases with 519

more training examples, which allows each mode 520

to learn the language better. To summarize, the 521
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Figure 9: Robustness of language proficiency of FT and
ICL in Qwen-2.5-7B while varying languages in two
ways: changing the grammar rules (rows) and changing
the alphabet tokens (columns). The underlying grammar
for a language is inside the parenthesis. Compared to
FT, ICL is sensitive to the tokens used in the language.

inductive bias of FT and ICL is often similar, but522

similarity decreases when each mode learns the523

language better with more training examples.524

Answer to RQ4: FT is more robust to changes in525

languages than ICL. In Figure 9, we study the526

robustness of FT and ICL on different languages,527

by changing the underlying grammar rules: Gα528

and Gβ , and the alphabet: numerical, Latin, and529

under-trained tokens. FT is better than ICL in all530

languages, consistent with results in in-distribution531

generalization (Figure 6). Importantly, tokens used532

in the language introduce variability in results533

despite having the same grammar rules (across534

columns), and the variability is more pronounced535

in ICL than FT. For example, when considering536

under-trained tokens i.e., tokens barely seen in537

pre-training (Land and Bartolo, 2024), ICL per-538

formance is the worst. Therefore, for a robust per-539

formance, FT is preferred over ICL.540

In Appendix D, we extend FT vs. ICL compar-541

ison beyond formal languages to natural lan-542

guages, as studied by Mosbach et al. (2023), where543

our result complies with in-distribution generaliza-544

tion, but not with out-of-distribution generalization.545

To this end, we identify issues such as data con-546

tamination and a poor differentiation between in-547

distribution and out-of-distribution tasks, factors548

that we carefully avoid in formal languages.549

Key Implications. We reach following implica-550

tions from our study (details in Appendix G):551

• FT is better than ICL if the test and training lan- 552

guages are the same. ICL is however preferred 553

on out-of-distribution languages, where general 554

language understanding of the model is retained 555

as parameters are not updated. 556

• FT and ICL are likely to recognize patterns simi- 557

larly as long as the target language is learned less 558

or few examples are given. With more examples, 559

the inductive bias of FT and ICL usually differs. 560

• Within a family, higher model size can lead to 561

better ICL, but not necessarily better FT. Among 562

model families, Qwen, Mistral, Llama-2, etc. are 563

better in both modes. 564

• Unlike FT, ICL is token-sensitive. Since mod- 565

els in the same family may have different pre- 566

training recipes impacting the same tokens dif- 567

ferently, we may expect variability in ICL within 568

a family (Mistral-7B > Mistral-12B, Llama-2- 569

7B > Llama-3.1-8B). But, if the target language 570

contains less common tokens, FT is preferred. 571

• The discriminative test is applicable beyond for- 572

mal languages, where grammatical errors w.r.t. a 573

learned language are identified. If LLM M gen- 574

erates a language L with lower probability than 575

LLM M ′, but the AUC of discrimination by M is 576

higher than M ′, then M is more proficient in L, 577

challenging conventional wisdom. Here, M ′ is 578

less proficient as it generates both L and nearby 579

out-of-language T(L) with similar probability. 580

6 Conclusion 581

We study language proficiency and inductive bias 582

of FT and ICL – two principal learning modes in 583

LLMs. We propose three desiderata for a fair 584

comparison, which prior studies overlook. Sub- 585

sequently, we consider the task of learning formal 586

languages, and propose a comparable discrimina- 587

tive test for language proficiency. 588

Our controlled experimental framework leads 589

to important findings: FT is better than ICL on 590

in-distribution generalization, but both perform 591

equally on out-of-distribution generalization. Their 592

inductive bias is similar, but similarity decreases 593

as both modes learn the language better with more 594

training examples. Unlike FT, ICL performance 595

is more sensitive to tokens in the language, even 596

with the same underlying grammar rules. Many 597

of our results on synthetic formal languages are 598

hard to obtain in ill-constructed natural language 599

datasets. Therefore, we emphasize the need for a 600

formal language benchmark for studying LLMs. 601
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Limitations602

Our objective in the paper is to systematically com-603

pare the language proficiency and inductive bias604

of fine-tuning (FT) and in-context learning (ICL)605

– two principle learning modes in which an LLM606

adapts to a new domain. To achieve this objec-607

tive, we choose the task of learning syntactic pat-608

terns in a formal language, which has several ad-609

vantages. Furthermore, we propose a discrimina-610

tive test for evaluating the language proficiency of611

LLMs. While our research approach is to be careful612

about all choices we make, we also highlight fol-613

lowing limitations of the current work that demand614

further study.615

Formal languages are limited to context-free616

languages. The paper initially focuses on context-617

free languages, which mimic the recursive structure618

of natural languages. However, we highlight the619

need for further study to confirm our findings in620

other classes of formal languages, such as regular621

and context-sensitive languages.622

The study is limited to ≤ 13B parameter size623

models. Our goal is to apply FT and ICL of LLMs624

of an equal parameter size. Since FT is more com-625

pute intensive, we limit our experiments to a max-626

imum of 13B parameter size models. Moreover,627

we do not perform an extensive hyperparameter628

search in FT, such as batch size, learning rate, etc.629

Rather, we find the optimal epoch for each FT run630

and compare it with the optimal repetition of exam-631

ples in ICL. Furthermore, we restrict experiments632

to full fine-tuning, while acknowledging that sev-633

eral parameter-efficient fine-tuning methods exist634

and may result in a different conclusion.635

Larger models (> 13B) may have better in-636

context learning performance. Does it invali-637

date our results? Since ICL is inferior to FT on638

in-distribution performance, a natural question is639

whether considering larger models would further640

improve ICL. While we expect ICL to improve641

with size, so does FT, keeping our initial findings642

consistent.643

We find variable ICL performance across644

LLMs. How can we explain this? To explain645

the variability of ICL performance, we conduct646

two studies: (a) determine if existing LLMs utilize647

their full ICL context (see Appendix E), and (b)648

identify the sensitivity of ICL on tokens used in our649

experiments (see RQ4 in Section 5). The former650

result shows that a subset of LLMs reach their ICL651

limit and can not further improve from additional652

examples, while the rest cannot reach their ICL 653

limit. The latter result shows that the tokens used 654

for experimentation have a large impact on ICL per- 655

formance, and the same set of tokens are possible 656

to be pre-trained with different extent across LLMs. 657

While these results are important, we highlight the 658

need to study model-specific ICL performance as a 659

future work to find a more informed explanation. 660

Ethics Statement 661

This research investigates how different learning 662

modes of large language models (LLMs), namely 663

fine-tuning (FT) and in-context learning (ICL), 664

compare in their language proficiency and induc- 665

tive bias. Our experiments involve controlled and 666

synthetically generated formal languages with no 667

human subject involvement or use of private data. 668

As such, the research study does not present im- 669

mediate ethical risks from the data collection or 670

model training processes. The scientific results of 671

this study have profound implications in choosing 672

the right mode of learning for LLMs in real-world 673

applications. 674
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A Extended Related Work1037

A.1 Learning Modes in LLM: Fine-tuning1038

and In-context Learning1039

We discuss existing studies that independently in-1040

vestigate fine-tuning and in-context learning, fol-1041

lowed by their direct comparison.1042

Fine-tuning: A number of works (Kaplan et al.,1043

2020; Zhang et al., 2024; Hu et al., 2024; Srinivasan1044

et al., 2024; Oliver and Wang, 2024; Hu et al., 2022)1045

study the effects of fine-tuning or its variants with1046

respect to model scaling, where larger fine-tuned1047

models with less amount of data are better in perfor-1048

mance than smaller models with the same amount1049

of data, leading to compute-efficient training. Our1050

experiments on synthetic formal languages do not1051

demonstrate such a pattern, possibly because we1052

are allowing all models of different sizes to reach1053

their optimal fine-tuning performance, where there1054

is no tangible benefit of being a large model.1055

In-context learning: Given a set of examples as1056

demonstrations, ICL allows LLMs to extract pat-1057

terns without updating model parameters. Several1058

studies attempt to explain how learning is achieved1059

in ICL, by comparing it to gradient descent (Shen1060

et al., 2023), in-weights learning (Reddy, 2023),1061

and in a controlled setting of learning simple and1062

complex boolean functions (Bhattamishra et al.,1063

2020). Recently, Pan et al. (2023); Lin and Lee1064

(2024) explore the dual characteristics of ICL: (i)1065

task learning, where the test examples are unseen1066

during pre-training and (ii) task recognition/re-1067

trieval, where test examples are seen during the1068

pre-training, and LLMs are asked to retrieve them1069

using a different prompt. In a separate line, Wei1070

et al. (2023) study the relationship between ICL1071

and model scale, where overriding semantic priors1072

like flipping labels improves in performance with1073

larger models. In-contrast, Chen et al. (2025) ob-1074

serve that ICL ability does not linearly correlate1075

with model size. Our study finds that in the ma-1076

jority of model families, model size improves ICL,1077

while in few families, a medium sized model is1078

better in ICL.1079

Fine-tuning versus In-context learning. Sev-1080

eral works study a comparison between FT and1081

ICL, where results are inconclusive. Brown et al.1082

(2020); Mosbach et al. (2023); Liu et al. (2022b);1083

Lester et al. (2021); Bhatia et al. (2023); Asai et al.1084

(2024) share the consensus that FT is better than1085

ICL. However, this observation is made under un-1086

equal conditions, violating desideratum D2: (a)1087

using incomparable models (Liu et al., 2022b), (b) 1088

unequal number of examples (Brown et al., 2020; 1089

Liu et al., 2022b), and (c) observing high variance 1090

across different choices of examples (Asai et al., 1091

2024). 1092

Another group of works led by Yin et al. (2024); 1093

Bertsch et al. (2024); Kaneko et al. (2025); Soudani 1094

et al. (2024); Awadalla et al. (2022) find that ICL 1095

is better than FT. To our best knowledge, none 1096

of these works fine-tune the models to their opti- 1097

mal point, e.g., in a naive way, Yin et al. (2024) 1098

fine-tune for 1 epoch, and Awadalla et al. (2022) 1099

fine-tune for 10 epochs. The inconsistencies in ex- 1100

perimental designs motivate us to agree on desider- 1101

atum D2, where different modes of learning are 1102

given a fair comparison under an equal allocation 1103

of resources. 1104

A.2 Formal Languages and LLMs 1105

Many prior works have studied formal languages 1106

in the context of LLMs. There are two broader 1107

questions that most studies have asked, which differ 1108

from our goal of comparing FT and ICL. 1109

What is the relative representation capability 1110

of LLMs compared to other sequences models, or 1111

more specifically, what classes of languages are 1112

learnable by an LLM? LLMs with a Transformer ar- 1113

chitecture may have a different representation capa- 1114

bility than other neural language models (LMs) like 1115

LSTMs and RNNs. We refer to a recent survey dis- 1116

cussing the expressiveness of LLMs as a language 1117

recognizer (Strobl et al., 2023b). Towards compar- 1118

ing representation capability, Shi et al. (2022) find 1119

that both LSTM and Transformer network can sim- 1120

ulate CFL with bounded recursion having a similar 1121

representation power. However, LSTM has a disad- 1122

vantage that it fails to decompose the latent repre- 1123

sentation space unlike a transformer. (Bhattamishra 1124

et al., 2020) observe a clear contrast between the 1125

performance of Transformers and LSTMs on regu- 1126

lar languages. They find that in comparison with 1127

LSTMs, Transformers achieve limited performance 1128

on languages involving periodicity, modular count- 1129

ing, and even simpler star-free variants of Dyck-1 1130

languages. Delétang et al. (2022) explore how neu- 1131

ral network models used for program induction 1132

relate to the idealized computational models de- 1133

fined by the Chomsky hierarchy (Chomsky, 1956). 1134

They find that neural language models are hard to 1135

place on the standard Chomsky hierarchy. Several 1136

works criticize their setup, since they consider a 1137

language transduction task (mapping one language 1138
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to another), which is different from the language1139

recognition task (Icard, 2020). (Borenstein et al.,1140

2024) consider learning strings from deterministic1141

and probabilistic finite state automata. They em-1142

pirically test the learnability as function of various1143

complexity parameters of the language and the hid-1144

den state size of the Transformer and RNN. In a1145

different line of work, (Akyürek et al., 2024) evalu-1146

ate neural LM’s abilities to learn regular languages1147

in ICL. Rather than learning one particular distribu-1148

tion from the training dataset, they infer the gener-1149

ating mechanism using ICL. Similar to (Delétang1150

et al., 2022), they find that RNNs are better suited1151

to modeling formal languages than Transformers.1152

Kallini et al. (2024) construct a continuum of lan-1153

guages that differ in their hardness to learn and1154

show that GPT-2, a variant of LLM, has difficulty1155

in learning the carefully constructed impossible1156

languages, compared to English.1157

While most of the works in this line capture the1158

expressiveness of LLMs and its differing repre-1159

sentation ability with other sequence models, one1160

fundamental criticism we find is the evaluation met-1161

rics they consider. As elaborated in Section 4, they1162

are focusing on testing how well an LLM learn the1163

grammar rules or automata state, without utilizing1164

the natural generation capability of the LLMs in1165

generating strings from inside and outside the lan-1166

guage. In contrast to their evaluation criteria, ours1167

is more tailored towards how LLMs operate and1168

become proficient in a language.1169

Does an LLM learn from a given distribution, if1170

so how? Several studies utilize the controlled data1171

generation of formal languages to study different1172

NLP aspects of the LLM. Formal languages, partic-1173

ularly the one derived from context free grammars,1174

can imitate the rich recursive structure of natural1175

languages. Therefore, many studies focus on teach-1176

ing the LLM strings from a formal language and1177

explain how LLMs might learn them (Allen-Zhu1178

and Li, 2023; Murty et al., 2022; Liu et al., 2022a).1179

In another line, Jumelet and Zuidema (2023) study1180

if causal and masked LLMs capture the true under-1181

lying patterns if trained on a true distribution. They1182

find that causal LLMs approximate the theoreti-1183

cally optimal perplexity of the PCFG more closely1184

than masked LLMs. Along that direction, several1185

studies consider the known distribution to analyze1186

the impact of topological features of a language1187

(Cotterell et al., 2018; Mielke et al., 2019; Ravfo-1188

gel et al., 2019; Mielke et al., 2019; Papadimitriou1189

and Jurafsky, 2023; White and Cotterell, 2021).1190

Several studies propose to augment additional com- 1191

ponent to LLMs to enable them learning certain 1192

class of languages with ease. For example, Chi et al. 1193

(2023) propose to add working memory, such as 1194

weight sharing, adaptive-Depth, and sliding-dilated 1195

attention to GPT model to enable it to learn parity 1196

function, which hard for an LLM to learn (Hahn 1197

and Rofin, 2024). 1198

In contrast to this line of work, our focus is to 1199

apply formal languages to study different modes of 1200

learning in LLMs: FT and ICL, which, to our best 1201

knowledge, is novel. 1202

B Extended Experimental Setup 1203

All experiments are conducted in compute clusters 1204

with Python as the programming language (version 1205

3.10), where we use 8x Nvidia H100 94GB NVL 1206

GPUs and 2x AMD EPYC 9554 CPU @ 3.1 GHz, 1207

2x64 cores, and 24x 96GB RAM. FT is performed 1208

with a batch size of 8 and a linear learning rate 1209

scheduler with a warm-up ratio of 0.05. We fix 1210

the learning rate for Qwen, Gemma, and Llama-3 1211

families as 5 × 10−5, Mistral, Opt, and Llama-2 1212

families as 5× 10−6, and Pythia family as 10−5. 1213

Below, we provide details of the formal lan- 1214

guages used in our experiments, along with their 1215

formal definitions. Intuitively, we carefully design 1216

languages to show the robustness of our results by 1217

changing the grammar rules and token types of the 1218

language. 1219

Formal Languages and Grammars. Through- 1220

out our experiments, we provide the LLM strings 1221

sampled from a probabilistic formal language. Un- 1222

derneath, a probabilistic formal language is rep- 1223

resented by a probabilistic formal grammars, or 1224

simply grammars (Collins, 2013). Specifically, a 1225

grammar consists of two sets of symbols called 1226

the non-terminals and terminals, a set of rules to 1227

rewrite strings over these symbols that contain at 1228

least one nonterminal – also called the production 1229

rules, and a probability distribution over the produc- 1230

tion rules. Formally, a probabilistic formal gram- 1231

mar, is defined as a quintuple. 1232

G ≜ (N,T,R, S,P) 1233

where N is the set of non-terminals, T is the set 1234

of terminals (equivalently, tokens), R is the set of 1235

production rules, S ∈ N is the start non-terminal, 1236

and P is the set of probabilities on production rules. 1237

Formal languages are divided into well-known 1238

classes based on the complexity of the language 1239

14



S → A16 [1]

A16 → A15 A13 [0.50]

A16 → A13 A15 A14 [0.50]

A13 → A11 A12 [0.50]

A13 → A12 A11 [0.50]

A14 → A11 A10 A12 [0.50]

A14 → A10 A11 A12 [0.50]

A15 → A12 A11 A10 [0.50]

A15 → A11 A12 A10 [0.50]

A10 → A7 A9 A8 [0.50]

A10 → A9 A8 A7 [0.50]

A11 → A8 A7 A9 [0.50]

A11 → A7 A8 A9 [0.50]

A12 → A8 A9 A7 [0.50]

A12 → A9 A7 A8 [0.50]

A7 → 3 1 [0.50]

A7 → 1 2 3 [0.50]

A8 → 6 5 [0.50]

A8 → 6 4 5 [0.50]

A9 → 9 8 7 [0.50]

A9 → 8 7 [0.50]

S → A16 [1]

A16 → A15 A13 [0.50]

A16 → A13 A15 A14 [0.50]

A13 → A11 A12 [0.50]

A13 → A12 A11 [0.50]

A14 → A11 A10 A12 [0.50]

A14 → A10 A11 A12 [0.50]

A15 → A12 A11 A10 [0.50]

A15 → A11 A12 A10 [0.50]

A10 → A7 A9 A8 [0.50]

A10 → A9 A8 A7 [0.50]

A11 → A8 A7 A9 [0.50]

A11 → A7 A8 A9 [0.50]

A12 → A8 A9 A7 [0.50]

A12 → A9 A7 A8 [0.50]

A7 → c a [0.50]

A7 → a b c [0.50]

A8 → f e [0.50]

A8 → f d e [0.50]

A9 → i h g [0.50]

A9 → h g [0.50]

Figure 10: Production rules of GNumerical
α (left) and GLatin

α (right).

membership problem, i.e., the complexity of the1240

grammars needed to generate them (Chomsky,1241

1956). In this paper, we use one class of gram-1242

mars, namely, hierarchical probabilistic context-1243

free grammars (HPCFGs) (Allen-Zhu and Li,1244

2023). Specifically, our experiments are based on1245

teaching LLMs languages represented by HPCFGs.1246

We use HPCFGs because they are simple syntac-1247

tically and can represent languages that are struc-1248

turally similar to natural languages (Allen-Zhu and1249

Li, 2023; Shi et al., 2022).1250

Description of Grammars and Identified Lan-1251

guages. In our experiments, we consider two1252

generic structure for the considered grammars, one1253

adapted from (Allen-Zhu and Li, 2023), namely1254

Gα, and another is proposed by us, namely Gβ .1255

We propose variant of these grammars by consider-1256

ing different alphabet sets.1257

In Figure 10, in the first generic structure Gα,1258

each grammar has N = {S,A7, A8, . . . , A16}1259

and T = {1, 2, 3, . . . , 9}. The grammar has four 1260

levels of hierarchy: the non-terminals from top 1261

to bottom levels are {A16}, {A13, A14, A15}, 1262

{A10, A11, A12}, and {A7, A8, A9}, followed by 1263

terminals {1, 2, 3, . . . , 9}. Since the terminals are 1264

derived from numerical characters, we call this 1265

grammar GNumerical
α ; and if the terminals are de- 1266

rived from Latin characters, we call this grammar 1267

GLatin
α , respectively. Each non-terminal (except the 1268

start non-terminal) has two expansion rules, con- 1269

sisting of non-terminals from the immediate lower 1270

level. Further, the expansion rules are probabilis- 1271

tic, where the sum of probabilities of all expansion 1272

rules from a given non-terminal is 1. 1273

In Figure 11, the second generic structure Gβ 1274

is inspired by bridging two HPCFGs together, 1275

and simulating a long range dependencies within 1276

the generated strings. Specifically, the two sub- 1277

grammars at B4 and sub-grammar at E4 are con- 1278

nected by non-terminal C1i; and E4 ends with 1279

T1j . Long range dependencies are communicated 1280
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S → S5 [1]

S5 → B4 C11 E4 T11 [0.25]

S5 → B4 C12 E4 T12 [0.25]

S5 → B4 C13 E4 T13 [0.25]

S5 → B4 C14 E4 T14 [0.25]

B4 → B3 [0.3333]

B4 → B3 B3 B3 [0.3333]

B4 → B3 B3 [0.3333]

B3 → B2 [0.3333]

B3 → B2 [0.3333]

B3 → B2 B2 [0.3333]

B2 → B1 [0.3333]

B2 → B1 [0.3333]

B2 → B1 B1 B1 [0.3333]

B1 → 2 9 3 [0.3333]

B1 → 9 6 1 [0.3333]

B1 → 1 8 6 2 [0.3333]

E4 → E3 [0.3333]

E4 → E3 E3 [0.3333]

E4 → E3 E3 E3 [0.3333]

E3 → E2 [0.3333]

E3 → E2 E2 [0.3333]

E3 → E2 [0.3333]

E2 → E1 E1 [0.3333]

E2 → E1 [0.3333]

E2 → E1 E1 E1 [0.3333]

E1 → 5 6 [0.3333]

E1 → 1 8 6 6 [0.3333]

E1 → 1 5 1 5 5 9 [0.3333]

T11 → 1 [1]

T12 → 2 [1]

T13 → 3 [1]

T14 → 4 [1]

C11 → 5 [1]

C12 → 6 [1]

C13 → 7 [1]

C14 → 8 [1]

C15 → 9 [1]

S → S5 [1]

S5 → B4 C11 E4 T11 [0.25]

S5 → B4 C12 E4 T12 [0.25]

S5 → B4 C13 E4 T13 [0.25]

S5 → B4 C14 E4 T14 [0.25]

B4 → B3 [0.3333]

B4 → B3 B3 B3 [0.3333]

B4 → B3 B3 [0.3333]

B3 → B2 [0.3333]

B3 → B2 [0.3333]

B3 → B2 B2 [0.3333]

B2 → B1 [0.3333]

B2 → B1 [0.3333]

B2 → B1 B1 B1 [0.3333]

B1 → b i c [0.3333]

B1 → i f a [0.3333]

B1 → a h f b [0.3333]

E4 → E3 [0.3333]

E4 → E3 E3 [0.3333]

E4 → E3 E3 E3 [0.3333]

E3 → E2 [0.3333]

E3 → E2 E2 [0.3333]

E3 → E2 [0.3333]

E2 → E1 E1 [0.3333]

E2 → E1 [0.3333]

E2 → E1 E1 E1 [0.3333]

E1 → e f [0.3333]

E1 → a h f f [0.3333]

E1 → a e a e e i [0.3333]

T11 → a [1]

T12 → b [1]

T13 → c [1]

T14 → d [1]

C11 → e [1]

C12 → f [1]

C13 → g [1]

C14 → h [1]

C15 → i [1]

Figure 11: Production rules of GNumerical
α (left) and GLatin

α (right).
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Table 2: Notations of grammars and identified lan-
guages.

Grammar Identified Language

GNumerical
α L1

GLatin
α L2

GUnder-trained-tokens
α L3

GNumerical
β L4

GLatin
β L5

GUnder-trained-tokens
β L6

40 50 60

0

0.05

0.1

0.15

0.2

Length in Tokens

P
r
o
b
a
b
il
it

y

(a) L1 (also L2, L3)

20 40 60 80

0

0.01

0.02

Length in Tokens

P
r
o
b
a
b
il
it

y

(b) L4 (also L5, L6)

Figure 12: Length distribution of considered proba-
bilistic languages, based on 10000 sampled strings per
language.

through C1i and T1j , by enforcing i = j at each1281

expansion of S5.1282

Table 2 shows the mapping of notations between1283

grammars and identified languages. Figure 12 de-1284

notes the length distribution of generated strings1285

from different languages. Figure 13 demonstrates1286

how hierarchical non-terminals are applied in dif-1287

ferent positions in the representative strings.1288

Sampling Strings from a Formal Language.1289

Given a language L generated by a HPCFG, we1290

first need to obtain training samples, i.e., set of1291

i.i.d. samples of strings in-language L. To sample1292

a string from the language, we start from a special1293

string in the grammar containing a single, distin-1294

guished nonterminal called the "start" or "root"1295

symbol, and apply the production rules to rewrite1296

the string repeatedly. If several rules can be used1297

to rewrite the string at any stage, we sample one1298

such rule from the probability distribution over the1299

rules and apply it. We stop when we obtain a string1300

containing terminals only. This string is a sample1301

drawn from the language. We can repeat this pro-1302

cess to draw any number of i.i.d. samples from the1303

language.1304
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(b) Language L2 (Grammar GLatin
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(c) Language L4 (Grammar GNumerical
β )
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(d) Language L5 (Grammar GLatin
β )

Figure 13: Representative strings from different languages, annotated with non-terminals applied in different
positions by the respective hierarchical grammar.
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Distance Between Languages. In probabilistic1305

languages, a well-known approach to compute lan-1306

guage distance is to compare the distribution of1307

strings generated by both languages (de la Higuera1308

et al., 2014). In our implementation, we choose a1309

simplified distance metric based on L2-norm.1310

distL2(L1, L2) =
√

Σs∈T∗(PL1(s)− PL2(s))
2

(1)1311

While distance metrics have their nuances, our1312

goal is to systematically modify the original lan-1313

guage, more specifically the underlying grammar,1314

such that we can intuitively interpret language dis-1315

tance, irrespective of the distance metric used.1316

For simulating out-of-distribution generalization1317

of learning modes, we modify the base gram-1318

mar GNumerical
α or G as a short notation, in the1319

following way: We construct the five grammars1320

{G(1), . . . , G(5)}, by perturbing ℓ production rules1321

of G, such that G(ℓ) contains all perturbed pro-1322

duction rules in G(ℓ−1). The order in which rule-1323

perturbation is applied is the following:1324

A7(1) → 1 3 2 [0.50]1325

A8(2) → 5 6 [0.50]1326

A9(3) → 8 7 9 [0.50]1327

A7(4) → 3 1 [0.50]1328

A9(5) → 8 7 [0.50]1329

1330

Intuitively, G(1) contains perturbed rule {A7(1)},1331

G(2) contains perturbed rule {A7(1), A8(2)}, and1332

so on. Finally, each grammar G(ℓ) identifies a lan-1333

guage L(ℓ) in Figure 7.1334
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C Additional Experimental Results1335

In the following, we outline additional experimen-1336

tal results.1337

• Independent evaluation of FT and ICL on1338

different languages across datasets in Fig-1339

ure 14, 15.1340

• Intra-family FT and ICL performance in Fig-1341

ure 16, 17.1342

• Robustness of FT and ICL of individual mod-1343

els across languages in Figure 18, 19 20, 21.1344

• Inductive bias of LLMs across languages in1345

Figure 22, 23, 24, 25.1346

• Out-of-distribution generalization on lan-1347

guages of different distances in Figure 26.1348

• FT vs. ICL on natural language datasets in1349

Appendix D.1350

• Evaluating whether LLMs utilize their full1351

ICL contexts in Appendix E.1352

• Generative vs. discriminative tests for deter-1353

mining language proficiency in Appendix F.1354

• Detailed implications of the study in Ap-1355

pendix G.1356
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Figure 14: Optimal fine-tuning performance in all models across different languages.
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Figure 15: In-context learning performance of all models across different languages
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Figure 16: Intra-family FT performance.
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Figure 17: Intra-family ICL performance.
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Figure 18: Qwen-2.5-7B: comparison between fine-tuning and in-context learning across different languages
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Figure 19: Mistral-7B: comparison between fine-tuning and in-context learning across different languages
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Figure 20: Llama-2-7B: comparison between fine-tuning and in-context learning across different languages.
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Figure 21: Llama-3.1-8B: comparison between fine-tuning and in-context learning across different languages
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Figure 22: Inductive bias of ICL and FT on language L1, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples
(larger markers).
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Figure 23: Inductive bias of ICL and FT on language L2, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples
(larger markers).

27



−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(a) Qwen-2.5-0.5B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(b) Qwen-2.5-1.5B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(c) Qwen-2.5-7B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(d) Mistral-7B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(e) Mistral-12B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(f) Llama-2-7B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(g) Llama-2-13B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(h) Llama-3.2-1B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(i) Llama-3.2-3B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(j) Llama-3.1-8B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(k) Gemma-2-2B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(l) Gemma-2-9B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(m) Pythia-1B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(n) Pythia-2.8B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(o) Pythia-6.9B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(p) Opt-1.3B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(q) Opt-2.7B

−1 −0.5 0 0.5 1

0

0.5

1

Correlation

p
-v
a
lu
e

(r) Opt-6.7B

Figure 24: Inductive bias of ICL and FT on language L4, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples
(larger markers).
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Figure 25: Inductive bias of ICL and FT on language L5, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples
(larger markers).
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Figure 26: Out-of-distribution generalization to lan-
guages of increasing distance using FT and ICL. The
first and second column denote generative loss, while
the third and fourth column denote discriminative per-
formance. We consider L1 as the base language. We
create languages of higher distance, denoted by L

(ℓ)
1 ,

by changing ℓ production rules in the grammar of
L1. L(ℓ)

1 contains all changed rules in L
(ℓ−1)
1 . Hence,

dist(L1, L
(1)
1 ) ≤ · · · ≤ dist(L1, L

(5)
1 ) (see Eq. (1))
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D Fine-tuning vs. In-context Learning on1357

Natural Language Datasets1358

We conduct a comparison of FT and ICL on a nat-1359

ural language dataset to observe whether our find-1360

ings on formal languages generalize to natural lan-1361

guage datasets. We consider a natural language1362

inference task on MNLI dataset (Williams et al.,1363

2018), as studied in the related work by Mosbach1364

et al. (2023). The learning objective is to generate1365

the sentiment label given premise and hypothesis1366

(see Table 3).1367

Issues of Data Contamination. In Figure 27, FT1368

surpasses ICL on the MNLI dataset with increasing1369

examples, which is consistent with our findings on1370

formal languages in Figure 6. However, Qwen-2.5-1371

7B model performs much better than other models1372

in both learning modes, suggesting the possibility1373

of data contamination. For evidence, MNLI dataset1374

is proposed in 2018, which is earlier than the re-1375

lease of Qwen-2.5-7B model in 2024. Therefore,1376

it is difficult to fairly compare different models or1377

their learning modes on publicly available datasets,1378

if a subset of models are possibly trained on the test-1379

ing dataset (Dominguez-Olmedo et al., 2024). This1380

further strengthens our case that synthetic formal1381

languages should be adopted widely to critically1382

evaluate the performance of LLMs, where the risk1383

of data contamination is minimum.1384

Difficulty in Identifying In-distribution vs. Out-1385

of-distribution Tasks. In Figure 28, we demon-1386

strate in-distribution and out-of-distribution per-1387

formance side-by-side on the MNLI dataset for1388

both learning modes. The differentiation of tasks1389

is determined by the genre of (premise, hypothesis)1390

pairs. If the genre of the testing pair matches with1391

training pairs, then the task is in-distribution. Oth-1392

erwise, the task is out-of-distribution. However, we1393

do not observe any difference in the comparison of1394

FT vs. ICL based on tasks – FT is better than ICL in1395

both tasks. This is a contradiction with our findings1396

in formal languages in Figure 7, where the distance1397

between tasks is well-defined, and both FT and1398

ICL perform equally well in the out-of-distribution1399

task. This experiment highlights the ambiguity1400

of specifying learning tasks in natural language1401

datasets, the core theme in desideratum D1 in Sec-1402

tion 1. Therefore, for an objective comparison, it1403

is important to carefully define in-distribution and1404

out-of-distribution tasks, which is easier in formal1405

languages than natural languages.1406
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Table 3: Construction of in-language and out-language strings for the MNLI dataset (Williams et al., 2018),
where the out-language string differ with in-language string only in the sentiment label. The discriminative test is
successful, if the generation probability of the correct label in the in-language string is higher than the incorrect
label in the out-language string. Prompt instruction is shown in the below table.

In-language string Out-language string (edit at label)

Premise: One of our number will carry out your
instructions minutely.
Hyopthesis: A member of my team will execute
your orders with immense precision.
Label: entailment

Premise: One of our number will carry out your
instructions minutely.
Hyopthesis: A member of my team will execute
your orders with immense precision.
Label: neutral

Premise: Fun for adults and children.
Hyopthesis: Fun for only children.
Label: contradiction

Premise: Fun for adults and children.
Hyopthesis: Fun for only children.
Label: entailment

Prompt Instruction (beginning of the prompt)

Provide a classification label for the pair, indicating the relationship between the premise and
hypothesis:
- entailment : The hypothesis logically follows from the premise.
- neutral : The hypothesis is neither entailed nor contradicted by the premise.
- contradiction : The hypothesis contradicts the premise.
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Figure 27: In-distribution generalization of FT and ICL on MNLI dataset, where the learning task is to perform
natural language inference by generating the sentiment label {entailment, neutral, contradiction} given premise and
hypothesis. On a high level, FT is better than ICL with more examples, consistent with results on formal languages.
In a detailed analysis, we observe that different LLMs perform differently given the same problem, indicating the
possibility of data contamination in some well performed LLMs, such as Qwen-2.5-7B.
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Figure 28: MNLI dataset: In-distribution (inference within the same genre, Column 1 and 3) vs. out-of-distribution
(inference across genres, Column 2 and 4) generalization performance0 of FT and ICL, where there is no substantial
difference across tasks. This is a fundamental problem in natural language datasets, where the identification of
tasks can be ambiguous, and LLMs may not distinguish them. Overall, FT is better than ICL, which contradicts our
results on formal languages where FT is only better in in-distribution generalization, but both learning modes are
equally performing in out-of-distribution generalization.
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E Testing the Limit of In-context1407

Learning1408

To find the limit of ICL ability of an LLM, we rely1409

on the convergence of training and test loss in ICL1410

as examples are added. Intuitively, training loss1411

provides a practical lower bound of test loss in ICL1412

– an LLM can no longer improve in ICL when both1413

losses converge. To obtain training loss, we first1414

provide ICL examples from the training set and1415

later compute the loss of generating each training1416

example already present in the context.1417

Empirically in all languages, test loss converges1418

to train loss, i.e., ICL limit is reached in the ma-1419

jority of LLMs, except in Llama-2 and Opt family.1420

These two families have limited context (4K and1421

2K tokens, respectively), and there is a gap between1422

losses while exhausting their context length. More-1423

over, long context LLMs, such as Qwen-2.5-7B1424

and Llama-3.1-8B with 128K context length, can-1425

not further improve from additional examples as1426

both losses converge and later increase near to the1427

limit (see Figure 29). Therefore, formal language1428

learning enables us to categorize LLMs into two:1429

(a) LLMs that cannot reach the ICL limit, and (b)1430

LLMs that reach their ICL limit and do not improve1431

with additional examples..1432
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Figure 29: Testing the limit of utilizing ICL context (1536 examples ≈ 77K tokens) on language L1. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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Figure 30: Testing the limit of utilizing ICL context (1536 examples ≈ 77K tokens) on language L2. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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Figure 31: Testing the limit of utilizing ICL context (1536 examples ≈ 77K tokens) on language L4. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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Figure 32: Testing the limit of utilizing ICL context (1536 examples ≈ 77K tokens) on language L5. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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F Discriminative Test1433

Claim 1. For a given language, the discriminative1434

test is comparable between two learning modes of1435

an LLM and across LLMs, unlike a generative test.1436

We elaborate on the arguments of why the dis-1437

criminative test is comparable between two learn-1438

ing modes of an LLM and across LLMs, but not1439

the generative test. Concisely, the generative prob-1440

ability used in the generative test is not comparable1441

across LLMs, but a classification score based on1442

the differentiating generative probabilities on two1443

different sets of strings is comparable across LLMs1444

– the latter is the discriminative test.1445

The discriminative test computes a classification1446

score in [0, 1] to determine how well strings in a1447

language are discriminated from strings outside the1448

language, based on generation probability given1449

by the learning mode or the LLM. While comput-1450

ing generation probability, all in-language and out-1451

language strings undergo the same input formatting,1452

and are generated under the same parameters and1453

hyperparameters of the LLM or learning mode. For1454

example, the same concatenated prefix is applied1455

to all strings in ICL versus null prefix in FT (see1456

Figure 1). Finally, a learning mode or an LLM is1457

more language proficient if the classification score1458

is higher.1459

Since the learning performance is measured as1460

a classification problem, the discriminative test is1461

comparable, as long as the same set of in-language1462

and out-language strings is used, and the same clas-1463

sification setup is applied.1464
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Figure 33: Qwen-2.5-7B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L4.
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Figure 34: Mistral-7B: Language proficiency according to generative (first row) and discriminate (second row) tests.
First two columns are for language L1, and the last two columns are for language L4.

40



0 1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

0

1

2

3

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

Correct Test

No. Examples

L
o
s
s

(a) FT, Language L1,
Generative performance

0 1 2 4 8 16 32 64

0

1

2

3

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

Correct Test

No. Examples

L
o
s
s

(b) ICL, Language L1,
Generative performance

0 1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

0

1

2

3

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

Correct Test

No. Examples

L
o
s
s

(c) FT, Language L4,
Generative performance

0 1 2 4 8 16 32 64

0

1

2

3

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

Correct Test

No. Examples

L
o
s
s

(d) ICL, Language L4,
Generative performance

0 1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

0.6

0.7

0.8

0.9

1

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

No. Examples

A
U

C

(e) FT, Language L1,
Discriminative performance

0 1 2 4 8 16 32 64

0.6

0.7

0.8

0.9

1

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

No. Examples

A
U

C

(f) ICL, Language L1,
Discriminative performance

0 1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

0.6

0.8

1

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

No. Examples

A
U

C

(g) FT, Language L4,
Discriminative performance

0 1 2 4 8 16 32 64

0.6

0.8

1

Incorrect Random Incorrect by 3 Edit

Incorrect by 2 Edit Incorrect by 1 Edit

No. Examples

A
U

C

(h) ICL, Language L4,
Discriminative performance

Figure 35: Llama-2-7B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L4.
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Figure 36: Llama-3.1-8B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L4.
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Figure 37: Gemma-2-9B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L4.
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Figure 38: Pythia-6.9B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L4.
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Figure 39: Opt-6.7B: Language proficiency according to generative (first row) and discriminate (second row) tests.
First two columns are for language L1, and the last two columns are for language L4.
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G Implications of the Study1465

We elaborate on the implications of our findings of1466

four research questions in Section 5. We provide1467

our hypothesis for each finding, which may inspire1468

future research.1469

• In RQ1, when learning a language, FT perfor-1470

mance converges across LLMs but ICL per-1471

formance is variable. Our hypothesis is that1472

FT is a direct form of learning, where param-1473

eters are explicitly updated. Since all LLMs1474

are fine-tuned optimally, and the considered1475

language is simple and has a hierarchical re-1476

cursive structure, FT performance converges1477

across LLMs.1478

ICL, however, is an indirect form of learning,1479

where the model learns patterns from the con-1480

text without any parameter update. Hence,1481

ICL performance can be biased by model-1482

specific pre-training, which may differ across1483

LLMs of different sizes and families. As such,1484

ICL performance is variable across LLMs. A1485

more subtle analysis is given below in RQ4.1486

• In RQ2, FT is superior to ICL when train-1487

ing and test languages are the same, i.e., in-1488

distribution generalization, but both modes1489

perform equally and only generalize to closer1490

out-languages in out-of-distribution general-1491

ization. Therefore, if the test language is dif-1492

ferent, FT is no longer the better mode, and1493

explicit parameter update in FT does not help.1494

In this case, ICL is a better choice, since the1495

general language understanding of the origi-1496

nal model is retained in ICL, compared to FT1497

where the model is explicitly – in the case of1498

out-of-language generalization, unnecessarily1499

– updated.1500

• In RQ3, the inductive bias of FT and ICL are1501

similar, but similarity decreases with more1502

training examples. The similarity of induc-1503

tive bias is computed as the Pearson correla-1504

tion of generation loss (or probability) of FT1505

and ICL on identical test strings. Informally,1506

when more examples are provided, the learn-1507

ing mode becomes confident in generating the1508

language, specifically the individual strings1509

from the language. As such, the variance of1510

per-string loss is expected to decrease for a1511

set of strings. We argue that when the range1512

of loss is reduced, FT and ICL differ more1513

on the loss of individual strings, and hence 1514

correlation decreases. 1515

• In RQ4, ICL is less robust than FT across lan- 1516

guages. This is perhaps explained by the hy- 1517

pothesis in RQ1, where FT explicitly updates 1518

parameters, while ICL does not. Moreover, 1519

the sensitivity of ICL performance on actual 1520

tokens used in the language suggests a de- 1521

pendency of ICL performance on pre-training, 1522

where the same token sets can be trained dif- 1523

ferently across different LLMs. 1524

• We emphasize the adoption of the discrimina- 1525

tive test for evaluating language proficiency 1526

in LLMs, across formal and natural languages. 1527

The discriminative test ensures that genera- 1528

tion of in-language strings is better and even 1529

separable from the generation of out-language 1530

strings, which is a stronger condition than the 1531

generative test. 1532

For future work on the adoption of the discrim- 1533

inative test, one needs to systematically gen- 1534

erate strings outside the language, which we 1535

have shown for formal language in Section 3, 1536

and an instance of natural language, such as 1537

sentiment classification, in Appendix D. Since 1538

natural language is less well-defined than for- 1539

mal language, the boundary of in-language 1540

and out-language strings may be superficial in 1541

natural language, demanding a careful study. 1542

44


	Introduction
	Motivation and Related Work
	Experimental Framework
	The Test for Language Proficiency
	Fine-tuning vs. In-context Learning
	Conclusion
	Extended Related Work 
	Learning Modes in LLM: Fine-tuning and In-context Learning
	Formal Languages and LLMs

	Extended Experimental Setup
	Additional Experimental Results
	Fine-tuning vs. In-context Learning on Natural Language Datasets
	Testing the Limit of In-context Learning
	Discriminative Test
	Implications of the Study

