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Abstract

Large language models (LLMs) operate in two
learning modes: fine-tuning (FT) and in-context
learning (ICL). We ask which mode exhibits
greater language proficiency, and whether their
inductive biases in pattern recognition differ.
We propose three desiderata for the compari-
son: (D1) a precise specification of the learn-
ing task, (D2) an equal resource allocation to
FT and ICL, and (D3) a comparable evalua-
tion metric to find the better mode. Several
prior studies attempted to compare FT and ICL
without satisfying all three desiderata, resulting
in mixed and inconclusive results. To satisfy
these desiderata, we propose a formal language
learning task, where syntactic pattern recog-
nition is the main focus. We also introduce
a discriminative test for language proficiency,
enabling direct comparison of FT and ICL.

Empirically, we find that (a) FT has greater lan-
guage proficiency than ICL on in-distribution
generalization, but both perform equally well
on out-of-distribution generalization. (b) Their
inductive bias, measured as the correlation of
string generation, is usually similar, but simi-
larity decreases with better language learning.
(c) Unlike FT, ICL performance differs sub-
stantially across models of varying sizes and
families, and becomes sensitive to tokens used
in the languages. Thus, our controlled setup
reveals subtle behavior of FT and ICL, which is
difficult to capture in natural language datasets.

1 Introduction

Large language models (LLMs) have two princi-
pal learning modes: fine-tuning (FT) (Kaplan et al.,
2020) and in-context learning (ICL) (Brown et al.,
2020), to learn a new language, e.g., adapting to
new domains. FT simulates a closed-book exam,
where LLMs learn by updating model parameters.
ICL simulates an open-book exam, where LL.Ms
learn from in-context examples without any param-
eter update. Both learning modes are applied in
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Figure 1: Fine-tuning (left) and in-context learning
(right) are two learning modes of an LLM. On formal
language learning, the task is to generate unseen strings
from the language through syntactic pattern recognition
(desideratum D1). Under an equal setting (D2), fine-
tuning updates parameters (§ — 6*) based on training
strings and generates a test string with a cross-entropy
loss. In-context learning takes a concatenated input
prompt, where training strings are the prefix to generate
the test string. A comparable evaluation metric is thus
needed, since both input prompts and parameters of the
models are different between learning modes (D3).

various natural language processing (NLP) tasks,
such as text summarization (Radford et al., 2019),
question-answering (Yang et al., 2018), etc. There-
fore, it is a natural question to ask which mode
is more language proficient or more effective in
learning a new language, i.e., which mode recog-
nizes patterns in the language better. A related ques-
tion is whether their inductive bias in learning is
similar or different, i.e., whether they have similar
(implicit or explicit) assumptions about recogniz-
ing patterns in the language (Mitchell, 1980). An-
swering such questions objectively has significant
implications for the future deployment of LLMs in
various tasks (Raiaan et al., 2024).

Our Contributions. What are the set of princi-
ples for comparing language proficiency of FT and
ICL? The question is relevant for any scientific
study to compare two related processes (see mo-
tivation in Figure 1). Our key contribution is the



introduction of three-fold desiderata, as explained
below, for comparing FT and ICL, and a controlled
experimental framework realizing these desiderata.
Several prior studies attempted to compare FT and
ICL without satisfying all three desiderata, result-
ing in mixed and inconclusive results. Specifically,
the closest to our work is Mosbach et al. (2023),
who partially satisfy desideratum D1 and D2, but
fail to satisfy D3 (details in Section 2).

D1. Specification of the Learning Task: Syntax-
focused Learning with Zero-prompting. We com-
pare FT and ICL on learning a probabilistic for-
mal language, which is a distribution of strings ac-
cepted by a probabilistic grammar (Manning, 2003;
Chater and Manning, 2006). The task is to generate
new strings from the language by learning syntactic
patterns from training strings (Section 3).

There are advantages of comparing FT and ICL
on formal languages: (a) they contain syntax only,
which is not ambiguous like semantics — the main
focus of prior studies (Mosbach et al., 2023). The
syntactic pattern recognition evaluates the native
auto-regressive next token generation ability of
LLMs. (b) Formal languages provide full con-
trol over the data distribution, and facilitate a pre-
cise differentiation between in-distribution and out-
of-distribution languages via language distance,
needed to evaluate generalization on in- and out-of-
distribution tasks. (c) They are synthetic in nature
and avoid data contamination (Xu et al., 2024). Sat-
isfying all these aspects is hard for publicly avail-
able natural language datasets.

A practical challenge is communicating the task
to the LLMs, since different LLMs may not under-
stand the prompt instruction similarly (Wu et al.,
2025). To avoid the subjectivity in designing
prompt instructions, we consider a zero-prompting
setup: the LLM only sees training strings, and we
evaluate how well a new string is generated by the
LLM, without any explicit instruction.

D2. Allocation of Equal Resources. A fair com-
parison requires allocating an equal resource to FT
and ICL. We provide the same training and test
data to both learning modes of the same LLM, con-
sistent with Mosbach et al. (2023). In addition,
FT and ICL have disjoint hyperparameters, such as
batch-size, learning rates, and fine-tuning epochs
in FT versus repetitions of examples, temperature
in inference in ICL. We propose to compare the
best performance of FT and ICL over respective hy-
perparameter settings, which is loosely performed
by Mosbach et al. (2023); Yin et al. (2024).

D3. Comparable Evaluation Metric. There are
two potential tests for language proficiency of
LLMs: generative and discriminative tests — the
latter is proposed by us. The generative test fo-
cuses on strings in the language and computes their
probability of generation. We argue that the gener-
ation probability is not comparable across learn-
ing modes and models. The discriminative test,
however, checks whether strings in the language
are generated with higher probability than strings
outside the language, i.e., whether a classification
is possible between in-language and out-language
strings based on their generation probability. We
claim that the classification score produced by the
discriminative test is comparable between FT and
ICL, unlike the generative test (Section 4).

Experimental Results. We experiment with 18
open-source LLMs from 6 model families and mul-
tiple formal languages, and reach the following
conclusions: (a) Different LLMs converge to opti-
mal FT performance, while their ICL ability varies
substantially. Model size becomes a factor for im-
proved performance in ICL but not in FT. (b) On
in-distribution generalization, where training and
test languages are the same, FT dominates ICL
except in some LL.Ms where ICL is close to FT.
On out-of-distribution generalization where train-
ing and test languages differ, both learning modes
perform equally, and generalizes to closer out-of-
distribution languages only. (c) The inductive bias,
measured by the correlation of output generation
probability of FT and ICL, is often similar but not
equal. Similarity in biases decreases when lan-
guage learning of either mode improves with higher
training data. (d) FT is robust across languages,
measured by changing underlying grammar rules
or tokens. However, ICL performance is largely
impacted by the actual tokens used in the language.
Finally, we explicate the issues of testing LLMs
with natural language datasets, such as data con-
tamination and ill-defined in-distribution and out-
of-distribution tasks, in Appendix D. Instead, we
reiterate the need for synthetic formal languages
for a rigorous scientific study on the capabilities of
LLMs. Along the way, we position the paper as a
stepping stone to motivate future research.

2 Motivation and Related Work

Here, we review related work and motivate why a
comprehensive study comparing FT and ICL in a
controlled setup is necessary.



Independent Studies on FT and ICL. Several
works independently investigate FT (Kaplan et al.,
2020; Zhang et al., 2024; Hu et al., 2024) and ICL
in LLMs (Shen et al., 2023; Reddy, 2023; Pan et al.,
2023; Chen et al., 2025), and relate learning perfor-
mance with model size, training data, etc. Our work
uses synthetic data and thus differs with most works
performed on NLP datasets, where pre-training can
affect FT and ICL performance.

Benchmarks. NLP datasets (Rajpurkar et al.,
2016; Kwiatkowski et al., 2019) provide high-level
descriptions of learning tasks, where in-distribution
and out-of-distribution tasks are less well-defined.
Even within in-distribution tasks, we argue that
there is no formal guarantee of coherence between
training and test examples — unlike a formal lan-
guage, where all examples belong to the same lan-
guage. Also, public datasets may result in data con-
tamination providing an unfair advantage to some
LLMs (Dominguez-Olmedo et al., 2024). We find
both issues on MNLI dataset (Williams et al., 2018),
as previously studied by Mosbach et al. (2023) on
comparing FT and ICL, where our result contra-
dicts their findings: On out-of-distribution tasks, FT
and ICL perform equally well on formal languages,
but FT is better than ICL on MNLI dataset (Ap-
pendix D). The contradiction highlights the need
for a well-defined learning task (desideratum D1).

Comparison of FT and ICL. The comparison
between FT and ICL has mixed conclusions, often
due to violating desideratum D2. Several studies
conclude that FT outperforms ICL (Brown et al.,
2020; Mosbach et al., 2023; Liu et al., 2022b;
Lester et al., 2021; Bhatia et al., 2023; Asai et al.,
2024). However, the conclusions are based on us-
ing different model sizes, unequal number of exam-
ples, and high variance across runs. Other studies
find ICL better than FT (Yin et al., 2024; Bertsch
et al., 2024; Kaneko et al., 2025; Soudani et al.,
2024; Awadalla et al., 2022), which usually exe-
cute suboptimal FT (e.g., 1 epoch), giving ICL an
advantage. To our knowledge, no prior work con-
siders a comparable evaluation metric aligned with
desideratum D3, which we introduce in Section 4.
Furthermore, our comparison of the inductive bi-
ases of FT and ICL represents a novel contribution.

Formal Languages in LLM Research. Owing
to their greater controllability, formal languages
have been widely used to investigate the NLP ca-
pabilities of LLMs (Jumelet and Zuidema, 2023),
including their inductive biases in language learn-
ing (Papadimitriou and Jurafsky, 2023; White and

Cotterell, 2021; Hopkins, 2022). Leveraging for-
mal languages as a testbed, prior studies have com-
pared the representational capacity of LLMs with
various sequence-based models (Shi et al., 2022;
Chi et al., 2023; Bhattamishra et al., 2020; Merrill,
2023; Strobl et al., 2023a; Hahn, 2020), and ana-
lyzed the classes of formal languages that LLMs
can learn (Delétang et al., 2022; Hahn and Rofin,
2024; Cotterell et al., 2018; Mielke et al., 2019;
Borenstein et al., 2024). Notably, LLMs have been
shown to learn hierarchical and probabilistic for-
mal languages that mirror the recursive structure of
natural language (Allen-Zhu and Li, 2023; Murty
et al., 2022; Liu et al., 2022a).

To our knowledge, no prior work has employed
formal languages to compare the language profi-
ciency and inductive biases of different LLM learn-
ing modes — this forms the central contribution of
our work. Extend related work is in Appendix A.

3 Experimental Framework

In this section, we discuss our experimental frame-
work by introducing formal languages and how we
teach the language to the LLM in FT and ICL.
Formal Languages. Following Allen-Zhu and
Li (2023), we use probabilistic formal languages,
particularly the class generated by hierarchical
probabilistic context free grammars (HPCFGs), as
the objects of LLM learning (desideratum D1) -
HPCFGs have the recursive structure of natural lan-
guages. Formally, a probabilistic formal language
L is defined on a set of tokens or alphabet T, and
specifies a probability distribution Py, over strings,
P, : T* — [0, 1], where T* is the set of all strings.
A string s is in-language w.r.t. L if Pr(s) > 0, and
out-language if Pr,(s) = 0. T is a proper subset
of the vocabulary V of all tokens of the LLM.
Construction of Out-language Strings. We quan-
tify the degree of incorrectness of an out-language
string as a distance from the language under inves-
tigation, which we utilize in the discriminative test
in Section 4. We generate grammatically incorrect
strings in two ways: (a) Incorrect by edit: We edit
in-language strings to create out-language strings
(through the addition, deletion and replacement of
tokens at random positions), where edit distance is
the number of edits made to the in-language string.
(b) Incorrect by randomization: We sample random
strings over the language’s alphabet set, retaining
only the distribution of string lengths from the lan-
guage. On average, such random strings have a
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Figure 2: A string from language L;, generated by
a hierarchical grammar. The grammar contains non-
terminal A’s, alphabet (or terminals) T = {1,2,...,9},
and hierarchical production rules. For example, the rule
‘A16 — A15 A13’ indicates that non-terminal A16 is
expanded to A15 followed by A13, and so on, until
reaching alphabet T (formal definition in Appendix B).

very high edit distance from the language. In both
cases, we ensure non-membership of out-language
strings via a grammar parser.

Languages. We consider six languages, denoted
by {L;}$_,, based on a combination of two distinct
HPCFGs, and three distinct alphabet sets (details
in Section 5). For each language, we sample non-
overlapping training (nin € {1,2,4,...,1024})
and test strings (nes = 1024), following the dis-
tribution in a given language (desideratum D2).
Figure 2 illustrates a representative string from L.
Additional details on formal languages, respective
grammars, the sampling process, and length distri-
butions of generated strings are in Appendix B.

Teaching the Language to an LLM. To teach
a language L to an LLM, we sample strings from
L and feed them to the LLM via FT or ICL. FT is
generally performed for a fixed number of epochs,
denoted by m = 50, where in each epoch the LLM
iterates over the strings while minimizing a loss
function, such as cross-entropy loss. Formally, con-
sider a dataset of n strings D 2= {s(j)}?:1 sam-
pled from the language, D ~ L. For a given
string s and its token s; at the -th position, let
Pyr(silsq1,i—17) be the probability that the LLM
M assigns to the token s; given the prefix tokens
S[1,i—1]- The cross-entropy loss of the LLM on D
is the per-token negative log probability at every
token position of all strings in D, lossy (D) £
—L 5 ep L log Pas(si | sppioy)-

In ICL, we provide the same strings in D as in-
context examples. Specifically, ICL takes a set of
ordered examples <3(1), S s(”)) as a prefix for a
test string s. The ICL examples are concatenated
using separators, e.g., semicolons, leading to a
prompt s(1[sep] - - - s [sep]s. Similar to epochs
in FT, we consider repeating examples in ICL a
fixed number of times, m € {1,2,4,8,16}. In
both FT and ICL, we find and compare language

proficiency at the optimal epoch or repetition m*,
satisfying desideratum D2.

We study 18 open-source LLMs from 6
model families: Mistral (Jiang et al., 2023),
Llama (Touvron et al., 2023a,b; Dubey et al., 2024),
Qwen (Yang et al., 2024), Gemma (Team et al.,
2024a,b), Pythia (Biderman et al., 2023), and
Opt (Zhang et al., 2022), ranging from 0.5B to
13B parameters. Each experiment is repeated three
times by randomly sampling training strings with
different seeds. Additional details on hyperparame-
ters are provided in Appendix B.

4 The Test for Language Proficiency

We teach a formal language to an LLM via FT or
ICL. A fundamental question that arises here is:
what does it mean for an LLM to be better or more
proficient in a language? Below, we discuss a gen-
erative test and a newly proposed discriminative
test — the latter compares the proficiency of differ-
ent modes directly and fairly (desideratum D3).

The Generative Test. While learning a language,
the generative test evaluates how well unseen test
strings from the language are generated by an LLM
— higher the generation performance, better the lan-
guage proficiency. This is a straightforward metric,
and is adopted widely in the literature (Kallini et al.,
2024; Jumelet and Zuidema, 2023; Bhattamishra
et al., 2020; Wang, 2021; Akyiirek et al., 2024).

Formally, consider two LLMs M and M’ and
a target language L. M and M’ can be two learn-
ing modes of the same LLM as well. Using the
generative test, M is more language proficient
in L than M’, if M generates strings in L with
higher probability or lower loss than M’, formally,
lossy (L) < lossyp(L).

Issues with the Generative Test. Two reasons
hinder a direct comparison FT and ICL using a gen-
erative test. (i) Absolute probability (or loss, per-
plexity) is incomparable across LLMs: generation
probability is impacted by pre-training setup, vo-
cabulary, model parameters, random initialization,
etc. As a result, different LLMs optimally trained
on the same language do not guarantee language
generation with the same probability. (ii) FT and
ICL result in different input prompts and require
comparing the same LLM with different parame-
ters (Figure 1). The compounding factors make
comparison impossible — if FT and ICL generate
a string with different probability, we cannot de-
cide whether the difference is due to different input



Correct

Incorrect (low edit distance)

Incorrect (high edit distance)

Figure 3: We visualize the set of all strings in a hier-
archy, where the inner circle denotes grammati-
cally correct in-language strings, and the outer red circle
denotes grammatically incorrect out-language strings.
The generative test focuses on generation performance
within the green circle, while the discriminative test fo-
cuses on comparative generation performance between
green and red (specially at low edit distance) circles.

prompts or model parameters or both. To over-
come these issues, we propose a discriminative test,
which considers strings outside the language.

The Discriminative Test. The key intuition be-
hind the discriminative test is: if an LLM learned
a language, it should generate strings in the lan-
guage with higher probability than strings outside
the language. Thus, the discriminative test attempts
to classify in-language and out-language strings
based on their generation probability, where the
success of classification is an implication of lan-
guage proficiency. As shown in Figure 3, the test
can be stricter by picking close out-language strings
(according to some distance metric like edit dis-
tance) to in-language strings and checking if they
can still be identified as out-language.

Formally, let T(L) denote out-language strings,
constructed by editing or transforming strings in
L and ensuring that they are not in L. Consider
a binary (linear) classifier, where input is the gen-
eration probability of strings in L U T(L) by an
LLM, and the classification task is to determine
their membership. Let aucy (L, T(L)) € [0,1]
be the AUC (area under the receiver operating
characteristic curve) of the classifier using model
M the higher the value the better. Thus, LLM
M is more language proficient in L than M’, if
aucys(L, T(L)) > aucyy (L, T(L)).

Claim 1. For a given language, the discriminative
test is comparable between two learning modes of
an LLM and across LLMs, unlike a generative test.

To support our claim, the discriminative test asks
the same LLM or learning mode (i.e., equal param-
eters) to generate in-language and out-language
strings, where all strings undergo the same prompt
formatting. Thus, the derived classification score is
comparable across learning modes and LLMs (we
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Figure 4: Language proficiency of Mistral-7B on lan-
guage L, while varying the number of examples in
both learning modes.

defer details in Appendix F).

Demonstration of Language-Proficiency Test.
In Figure 4, we demonstrate the language profi-
ciency of an LLM w.r.t. generative test (loss) in
the top row and discriminative test (AUC) in the
bottom row, for both FT and ICL.

Observation 1. Generative test alone is mislead-
ing. In Figure 4a and 4b, with increasing exam-
ples, the loss decreases (or probability increases)
on in-language test strings, as well as strings that
are close but outside the language. Therefore, the
generative test alone is insufficient in determining
language proficiency on the target language.

Observation 2. Discriminative test score is
correlated with training size and distance of out-
language strings. In Figures 4c and 4d, the AUC
of the discriminator increases with examples, i.e.,
the LLM becomes increasingly proficient in the
language, by not only generating strings from the
language with lower loss, but also discriminating
them from strings outside the language. Also, AUC
is correlated with the degree of incorrectness of
non-grammatical out-language strings; higher the
incorrectness, higher the AUC. Importantly, AUC
between FT and ICL is comparable under an equal
setting of examples and degree of incorrectness.

In the next section, we apply the discriminative
test to compare FT and ICL, and report the AUC
of discriminating in-language test strings from out-
language strings at edit distance 1, resulting in the
most difficult discriminative test.
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Figure 5: FT and ICL across different LLMs while learn-
ing language L;. Different LLMs demonstrate similar
FT performance, but their ICL ability varies.

5 Fine-tuning vs. In-context Learning

We study the language proficiency of FT and ICL
in LLMs on learning syntactic patterns from for-
mal languages. Specifically, we aim to answer the
following research questions to analyze the subtle
differences between FT and ICL.!

RQ1. When evaluating FT and ICL independently
on a given language, how language proficient are
different LL.Ms of varying sizes and families?
RQ2. Which learning mode is more language pro-
ficient when evaluated jointly on in-distribution
and out-of-distribution generalization?

RQ3. Do FT and ICL result in similar inductive
bias while learning a formal language?

RQ4. How robust FT and ICL performance are
to changes in languages?

Answer to RQ1: Different LL.Ms attain a similar
and near optimal language proficiency under FT,
but their ICL ability varies substantially. In
Figure 5, we report the AUC of FT and ICL across
LLMs and example sizes while learning language
L. In both modes, AUC increases with examples,
indicating better learning.

Fine-tuning. During FT, all models across fam-
ilies and parameter sizes eventually converge to
the optimal AUC (> 0.99) after sufficient train-
ing examples, such as 512. Across example sizes
{1,16, 64,256, 1024}, the average AUC of FT is
almost similar across models: Llama-2 (0.93) >
Qwen (0.92) > Mistral (0.91) > Opt (0.91) >
Gemma (0.90) > Pythia (0.90) > Llama-3 (0.88),

! Additional results including evaluation on NLP datasets,
utilization test of full ICL context by LLMs, and detailed
implications of research questions are in the Appendix C.

ICL ability (AUC range) Model

Good (> 0.75) Qwen-2.5-7B, Mistral-7B, Qwen-2.5-1.5B,
Llama-2-13B, Qwen-2.5-0.5B, Llama-2-7B,
Mistral-12B

Gemma-2-2B, Gemma-2-9B, Pythia-6.9B,
Opt-1.3B, Opt-6.7B, Pythia-1B, Llama-3.2-
3B, Opt-2.7B, Llama-3.2-1B

Llama-3.1-8B, Pythia-2.8B

Moderate (> 0.6)

Poor (< 0.6)

Table 1: ICL ability of LLMs on language 1 with up
to 32 examples, based on discrimination AUC. In each
group, LLMs are sorted in descending ICL ability.

where the respective AUC is inside the parenthe-
sis. Only in few families (e.g., Opt), the largest
model achieves the highest AUC. In addition, a
more proficient family often achieves its best lan-
guage proficiency in an earlier epoch. For example,
the median epoch is 7.5 for Llama-2, 12 for Opt,
and 37 for Llama-3. Therefore, different LLMs, re-
gardless of sizes and families, may achieve similar
language proficiency under FT on a tailored task
like formal language learning.

In-context Learning. In ICL, the AUC varies
substantially within a model family and across
model families. First we observe that different
LLMs have variable context length, restricting
them to process different number of ICL examples.
To compare all models fairly, we limit our analysis
to 32 ICL examples, which all models can fit in
their context. We find the following order of ICL
ability of LLM families: Qwen (0.78) > Mistral
(0.78) > Llama-2 (0.77) > Gemma (0.69) > Opt
(0.64) > Pythia (0.61) > Llama-3 (0.59). Due to
variable performance, we propose a ranking of ICL
ability of LLMs in Table 1. Importantly, within a
family, ICL ability does not always correlate with
model size (Mistral 7B > Mistral-12B) or model
versions (Llama-2-7B > Llama-3.1-8B). Only in
some families such as Qwen, Pythia, and Llama-
2, the largest model is better in ICL. Unlike FT,
repeating ICL examples more than once worsens
ICL performance: repeating examples takes up con-
text space, and it is thus better to sample examples
from the language distribution without repetition.
To conclude, ICL ability is more variable across
LLMs, compared to FT.

Answer to RQ2: On in-distribution language
generalization, FT dominates ICL in most LLMs;
only in a subset of LLMs, ICL is close to FT. On
out-of-distribution generalization, both FT and
ICL perform similarly, and generalize well to
nearby languages only. In Figure 6, we compare
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L, in comparable ~ 7B parameter size LLMs. FT usu-
ally dominates ICL , except in Qwen-2.5-7B, Mistral-
7B and Llama-2-7B, where ICL is close to FT.
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Figure 7: Out-of-distribution generalization of FT and
ICL on increasing distant languages, where both modes
perform almost equally. L, as the base learned language,

and generalization is performed on L(e), by changing ¢

rules in the grammar of L. Lﬁ“ contains all changed
rules in Lgé_l). Therefore, dist(Ly, L§£—1)) <

dist(Ly, L(le)), where 2 < ¢ < 5 (see Eq. (1)).

FT and ICL of an LLM on in-distribution language
generalization. In most LLMs, FT dominates ICL,
and the performance difference is profound when
considering more examples. However, in a subset
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Figure 8: Inductive bias of ICL and FT, computed as the
Pearson correlation of generation loss of FT and ICL on
identical test strings. Correlation, despite being positive,
tends to decrease with higher examples (larger markers).

of models, such as Mistral-7B, Qwen-2.5-7B, and
Llama-2-7B, ICL is close to FT — these are usually
models with good ICL ability in Table 1. Therefore,
FT is more language proficient than ICL on in-
distribution language generalization.

In Figure 7, we compare FT and ICL of an
LLM on out-of-distribution language generaliza-
tion, where the LLM first learns the language L
in FT or ICL, and then we evaluate on five other
languages {Lgl)7 . ,Lf’)} of increasing distances
from L;. We emphasize that formal languages offer
a systematic distance computation between two lan-
guages (i.e., out-of-distribution tasks), unlike any
natural language (Appendix D). Surprisingly, both
modes perform similarly on out-of-distribution lan-
guages, and only perform well on the near distant
language Lgl). Therefore, the superiority of FT
over ICL on in-distribution generalization is not
transferable to out-of-distribution generalization.

Answer to RQ3: The inductive bias of FT and
ICL is often similar, but not equal. Similarity
decreases with training examples. To compare
inductive bias of FT and ICL in recognizing syntac-
tic patterns in formal languages, we do not focus
on how each mode operates internally, but focus
on their output correlation in generating the same
set of strings. Thus, if correlation is high, inductive
bias is similar. In Figure 8, we report the Pear-
son correlation of generation loss of FT and ICL,
where correlation is often positive (< 0.8). More
importantly, correlation generally decreases with
more training examples, which allows each mode
to learn the language better. To summarize, the
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Figure 9: Robustness of language proficiency of FT and
ICL in Qwen-2.5-7B while varying languages in two
ways: changing the grammar rules (rows) and changing
the alphabet tokens (columns). The underlying grammar
for a language is inside the parenthesis. Compared to
FT, ICL is sensitive to the tokens used in the language.

inductive bias of FT and ICL is often similar, but
similarity decreases when each mode learns the
language better with more training examples.

Answer to RQ4: FT is more robust to changes in
languages than ICL. In Figure 9, we study the
robustness of FT and ICL on different languages,
by changing the underlying grammar rules: G,
and G, and the alphabet: numerical, Latin, and
under-trained tokens. FT is better than ICL in all
languages, consistent with results in in-distribution
generalization (Figure 6). Importantly, tokens used
in the language introduce variability in results
despite having the same grammar rules (across
columns), and the variability is more pronounced
in ICL than FT. For example, when considering
under-trained tokens i.e., tokens barely seen in
pre-training (Land and Bartolo, 2024), ICL per-
formance is the worst. Therefore, for a robust per-
formance, FT is preferred over ICL.

In Appendix D, we extend FT vs. ICL compar-
ison beyond formal languages to natural lan-
guages, as studied by Mosbach et al. (2023), where
our result complies with in-distribution generaliza-
tion, but not with out-of-distribution generalization.
To this end, we identify issues such as data con-
tamination and a poor differentiation between in-
distribution and out-of-distribution tasks, factors
that we carefully avoid in formal languages.

Key Implications. We reach following implica-
tions from our study (details in Appendix G):

* FT is better than ICL if the test and training lan-
guages are the same. ICL is however preferred
on out-of-distribution languages, where general
language understanding of the model is retained
as parameters are not updated.

* FT and ICL are likely to recognize patterns simi-
larly as long as the target language is learned less
or few examples are given. With more examples,
the inductive bias of FT and ICL usually differs.

* Within a family, higher model size can lead to
better ICL, but not necessarily better FT. Among
model families, Qwen, Mistral, Llama-2, etc. are
better in both modes.

e Unlike FT, ICL is token-sensitive. Since mod-
els in the same family may have different pre-
training recipes impacting the same tokens dif-
ferently, we may expect variability in ICL within
a family (Mistral-7B > Mistral-12B, Llama-2-
7B > Llama-3.1-8B). But, if the target language
contains less common tokens, FT is preferred.

* The discriminative test is applicable beyond for-
mal languages, where grammatical errors w.r.t. a
learned language are identified. If LLM M gen-
erates a language L with lower probability than
LLM M, but the AUC of discrimination by M is
higher than M’, then M is more proficient in L,
challenging conventional wisdom. Here, M’ is
less proficient as it generates both L and nearby
out-of-language T (L) with similar probability.

6 Conclusion

We study language proficiency and inductive bias
of FT and ICL — two principal learning modes in
LLMs. We propose three desiderata for a fair
comparison, which prior studies overlook. Sub-
sequently, we consider the task of learning formal
languages, and propose a comparable discrimina-
tive test for language proficiency.

Our controlled experimental framework leads
to important findings: FT is better than ICL on
in-distribution generalization, but both perform
equally on out-of-distribution generalization. Their
inductive bias is similar, but similarity decreases
as both modes learn the language better with more
training examples. Unlike FT, ICL performance
is more sensitive to tokens in the language, even
with the same underlying grammar rules. Many
of our results on synthetic formal languages are
hard to obtain in ill-constructed natural language
datasets. Therefore, we emphasize the need for a
formal language benchmark for studying LLMs.



Limitations

Our objective in the paper is to systematically com-
pare the language proficiency and inductive bias
of fine-tuning (FT) and in-context learning (ICL)
— two principle learning modes in which an LLM
adapts to a new domain. To achieve this objec-
tive, we choose the task of learning syntactic pat-
terns in a formal language, which has several ad-
vantages. Furthermore, we propose a discrimina-
tive test for evaluating the language proficiency of
LLMs. While our research approach is to be careful
about all choices we make, we also highlight fol-
lowing limitations of the current work that demand
further study.

Formal languages are limited to context-free
languages. The paper initially focuses on context-
free languages, which mimic the recursive structure
of natural languages. However, we highlight the
need for further study to confirm our findings in
other classes of formal languages, such as regular
and context-sensitive languages.

The study is limited to < 13B parameter size
models. Our goal is to apply FT and ICL of LLMs
of an equal parameter size. Since FT is more com-
pute intensive, we limit our experiments to a max-
imum of 13B parameter size models. Moreover,
we do not perform an extensive hyperparameter
search in FT, such as batch size, learning rate, etc.
Rather, we find the optimal epoch for each FT run
and compare it with the optimal repetition of exam-
ples in ICL. Furthermore, we restrict experiments
to full fine-tuning, while acknowledging that sev-
eral parameter-efficient fine-tuning methods exist
and may result in a different conclusion.

Larger models (> 13B) may have better in-
context learning performance. Does it invali-
date our results? Since ICL is inferior to FT on
in-distribution performance, a natural question is
whether considering larger models would further
improve ICL. While we expect ICL to improve
with size, so does FT, keeping our initial findings
consistent.

We find variable ICL performance across
LLMs. How can we explain this? To explain
the variability of ICL performance, we conduct
two studies: (a) determine if existing LLMs utilize
their full ICL context (see Appendix E), and (b)
identify the sensitivity of ICL on tokens used in our
experiments (see RQ4 in Section 5). The former
result shows that a subset of LLMs reach their ICL
limit and can not further improve from additional

examples, while the rest cannot reach their ICL
limit. The latter result shows that the tokens used
for experimentation have a large impact on ICL per-
formance, and the same set of tokens are possible
to be pre-trained with different extent across LLMs.
While these results are important, we highlight the
need to study model-specific ICL performance as a
future work to find a more informed explanation.

Ethics Statement

This research investigates how different learning
modes of large language models (LLMs), namely
fine-tuning (FT) and in-context learning (ICL),
compare in their language proficiency and induc-
tive bias. Our experiments involve controlled and
synthetically generated formal languages with no
human subject involvement or use of private data.
As such, the research study does not present im-
mediate ethical risks from the data collection or
model training processes. The scientific results of
this study have profound implications in choosing
the right mode of learning for LLMs in real-world
applications.
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A Extended Related Work

A.1 Learning Modes in LLM: Fine-tuning
and In-context Learning

We discuss existing studies that independently in-
vestigate fine-tuning and in-context learning, fol-
lowed by their direct comparison.

Fine-tuning: A number of works (Kaplan et al.,
2020; Zhang et al., 2024; Hu et al., 2024; Srinivasan
etal., 2024; Oliver and Wang, 2024; Hu et al., 2022)
study the effects of fine-tuning or its variants with
respect to model scaling, where larger fine-tuned
models with less amount of data are better in perfor-
mance than smaller models with the same amount
of data, leading to compute-efficient training. Our
experiments on synthetic formal languages do not
demonstrate such a pattern, possibly because we
are allowing all models of different sizes to reach
their optimal fine-tuning performance, where there
is no tangible benefit of being a large model.

In-context learning: Given a set of examples as
demonstrations, ICL allows LLMs to extract pat-
terns without updating model parameters. Several
studies attempt to explain how learning is achieved
in ICL, by comparing it to gradient descent (Shen
et al., 2023), in-weights learning (Reddy, 2023),
and in a controlled setting of learning simple and
complex boolean functions (Bhattamishra et al.,
2020). Recently, Pan et al. (2023); Lin and Lee
(2024) explore the dual characteristics of ICL: (i)
task learning, where the test examples are unseen
during pre-training and (ii) task recognition/re-
trieval, where test examples are seen during the
pre-training, and LLMs are asked to retrieve them
using a different prompt. In a separate line, Wei
et al. (2023) study the relationship between ICL
and model scale, where overriding semantic priors
like flipping labels improves in performance with
larger models. In-contrast, Chen et al. (2025) ob-
serve that ICL ability does not linearly correlate
with model size. Our study finds that in the ma-
jority of model families, model size improves ICL,
while in few families, a medium sized model is
better in ICL.

Fine-tuning versus In-context learning. Sev-
eral works study a comparison between FT and
ICL, where results are inconclusive. Brown et al.
(2020); Mosbach et al. (2023); Liu et al. (2022b);
Lester et al. (2021); Bhatia et al. (2023); Asai et al.
(2024) share the consensus that FT is better than
ICL. However, this observation is made under un-
equal conditions, violating desideratum D2: (a)
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using incomparable models (Liu et al., 2022b), (b)
unequal number of examples (Brown et al., 2020;
Liu et al., 2022b), and (c) observing high variance
across different choices of examples (Asai et al.,
2024).

Another group of works led by Yin et al. (2024);
Bertsch et al. (2024); Kaneko et al. (2025); Soudani
et al. (2024); Awadalla et al. (2022) find that ICL
is better than FT. To our best knowledge, none
of these works fine-tune the models to their opti-
mal point, e.g., in a naive way, Yin et al. (2024)
fine-tune for 1 epoch, and Awadalla et al. (2022)
fine-tune for 10 epochs. The inconsistencies in ex-
perimental designs motivate us to agree on desider-
atum D2, where different modes of learning are
given a fair comparison under an equal allocation
of resources.

A.2 Formal Languages and LLMs

Many prior works have studied formal languages
in the context of LLMs. There are two broader
questions that most studies have asked, which differ
from our goal of comparing FT and ICL.

What is the relative representation capability
of LLMs compared to other sequences models, or
more specifically, what classes of languages are
learnable by an LLM ? LLMs with a Transformer ar-
chitecture may have a different representation capa-
bility than other neural language models (LMs) like
LSTMs and RNNs. We refer to a recent survey dis-
cussing the expressiveness of LLMs as a language
recognizer (Strobl et al., 2023b). Towards compar-
ing representation capability, Shi et al. (2022) find
that both LSTM and Transformer network can sim-
ulate CFL with bounded recursion having a similar
representation power. However, LSTM has a disad-
vantage that it fails to decompose the latent repre-
sentation space unlike a transformer. (Bhattamishra
et al., 2020) observe a clear contrast between the
performance of Transformers and LSTMs on regu-
lar languages. They find that in comparison with
LSTMs, Transformers achieve limited performance
on languages involving periodicity, modular count-
ing, and even simpler star-free variants of Dyck-1
languages. Delétang et al. (2022) explore how neu-
ral network models used for program induction
relate to the idealized computational models de-
fined by the Chomsky hierarchy (Chomsky, 1956).
They find that neural language models are hard to
place on the standard Chomsky hierarchy. Several
works criticize their setup, since they consider a
language transduction task (mapping one language



to another), which is different from the language
recognition task (Icard, 2020). (Borenstein et al.,
2024) consider learning strings from deterministic
and probabilistic finite state automata. They em-
pirically test the learnability as function of various
complexity parameters of the language and the hid-
den state size of the Transformer and RNN. In a
different line of work, (Akyiirek et al., 2024) evalu-
ate neural LM’s abilities to learn regular languages
in ICL. Rather than learning one particular distribu-
tion from the training dataset, they infer the gener-
ating mechanism using ICL. Similar to (Delétang
et al., 2022), they find that RNNs are better suited
to modeling formal languages than Transformers.
Kallini et al. (2024) construct a continuum of lan-
guages that differ in their hardness to learn and
show that GPT-2, a variant of LLM, has difficulty
in learning the carefully constructed impossible
languages, compared to English.

While most of the works in this line capture the
expressiveness of LLMs and its differing repre-
sentation ability with other sequence models, one
fundamental criticism we find is the evaluation met-
rics they consider. As elaborated in Section 4, they
are focusing on testing how well an LLM learn the
grammar rules or automata state, without utilizing
the natural generation capability of the LLMs in
generating strings from inside and outside the lan-
guage. In contrast to their evaluation criteria, ours
is more tailored towards how LLMs operate and
become proficient in a language.

Does an LLM learn from a given distribution, if
so how? Several studies utilize the controlled data
generation of formal languages to study different
NLP aspects of the LLM. Formal languages, partic-
ularly the one derived from context free grammars,
can imitate the rich recursive structure of natural
languages. Therefore, many studies focus on teach-
ing the LLM strings from a formal language and
explain how LLMs might learn them (Allen-Zhu
and Li, 2023; Murty et al., 2022; Liu et al., 2022a).
In another line, Jumelet and Zuidema (2023) study
if causal and masked LLMs capture the true under-
lying patterns if trained on a true distribution. They
find that causal LLMs approximate the theoreti-
cally optimal perplexity of the PCFG more closely
than masked LLLMs. Along that direction, several
studies consider the known distribution to analyze
the impact of topological features of a language
(Cotterell et al., 2018; Mielke et al., 2019; Ravfo-
gel et al., 2019; Mielke et al., 2019; Papadimitriou
and Jurafsky, 2023; White and Cotterell, 2021).
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Several studies propose to augment additional com-
ponent to LLMs to enable them learning certain
class of languages with ease. For example, Chi et al.
(2023) propose to add working memory, such as
weight sharing, adaptive-Depth, and sliding-dilated
attention to GPT model to enable it to learn parity
function, which hard for an LLM to learn (Hahn
and Rofin, 2024).

In contrast to this line of work, our focus is to
apply formal languages to study different modes of
learning in LLMs: FT and ICL, which, to our best
knowledge, is novel.

B Extended Experimental Setup

All experiments are conducted in compute clusters
with Python as the programming language (version
3.10), where we use 8x Nvidia H100 94GB NVL
GPUs and 2x AMD EPYC 9554 CPU @ 3.1 GHz,
2x64 cores, and 24x 96GB RAM. FT is performed
with a batch size of 8 and a linear learning rate
scheduler with a warm-up ratio of 0.05. We fix
the learning rate for Qwen, Gemma, and Llama-3
families as 5 x 1075, Mistral, Opt, and Llama-2
families as 5 x 1079, and Pythia family as 10~°.

Below, we provide details of the formal lan-
guages used in our experiments, along with their
formal definitions. Intuitively, we carefully design
languages to show the robustness of our results by
changing the grammar rules and token types of the
language.

Formal Languages and Grammars. Through-
out our experiments, we provide the LLM strings
sampled from a probabilistic formal language. Un-
derneath, a probabilistic formal language is rep-
resented by a probabilistic formal grammars, or
simply grammars (Collins, 2013). Specifically, a
grammar consists of two sets of symbols called
the non-terminals and terminals, a set of rules to
rewrite strings over these symbols that contain at
least one nonterminal — also called the production
rules, and a probability distribution over the produc-
tion rules. Formally, a probabilistic formal gram-
mar, is defined as a quintuple.

G2 (N, T,R,S,P)

where N is the set of non-terminals, T is the set
of terminals (equivalently, tokens), R is the set of
production rules, S € N is the start non-terminal,
and P is the set of probabilities on production rules.
Formal languages are divided into well-known
classes based on the complexity of the language



S — A16 [1]

A16 — A15 A13[0.50]

A16 — A13 A15 A14 [0.50]

A13 — A11 A12 [0.50]

A13 — A12 A11 [0.50]
[
[
[

Al14 — A11 A10 A12 [0.50]
Al4 — A10 A11 A12 [0.50]
A15 — A12 A11 A10 [0.50]

]

A15 — A11 A12 A10 [0.50
A10 = AT A9 A8 [0.50]
A10 = A9 A8 AT [0.50]
A1l — A8 AT A9 [0.50]
A1l — AT A8 A9 [0.50]
A12 — A8 A9 AT [0.50]
A12 — A9 AT A8 [0.50]
A7 = 31 [0.50]

AT =12 3[0.50]

A8 = 65 [0.50]

A8 — 64 5 [0.50]

A9 — 98 7[0.50]

A9 — 87 [0.50]

S — A16 [1]

A16 — A15 A13 [0.50]

A16 — A13 A15 A14[0.50]

A13 — A11 A12 [0.50]

A13 — A12 A11 [0.50]
[
[
[

Al4 — A11 A10 A12 [0.50]
Al4 — A10 A11 A12 [0.50]
A15 — A12 A11 A10 [0.50]

]

Al5 — A1l A12 A10 [0.50
A10 — AT A9 A8 [0.50]
A10 — A9 A8 AT [0.50]
A1l = A8 AT A9 [0.50]
A1l = AT A8 A9 [0.50]
A12 = A8 A9 AT [0.50]
A12 = A9 AT A8 [0.50]
AT — ¢ a ]0.50]

AT — a b ¢ ]0.50]

A8 =5 f ¢ [0.50]

A8 = f d e [0.50]

A9 — i h g [0.50]

A9 — h g [0.50]

Figure 10: Production rules of GNumerical (Jeft) and GLA" (right).

membership problem, i.e., the complexity of the
grammars needed to generate them (Chomsky,
1956). In this paper, we use one class of gram-
mars, namely, hierarchical probabilistic context-
free grammars (HPCFGs) (Allen-Zhu and Li,
2023). Specifically, our experiments are based on
teaching LLMs languages represented by HPCFGs.
We use HPCFGs because they are simple syntac-
tically and can represent languages that are struc-
turally similar to natural languages (Allen-Zhu and
Li, 2023; Shi et al., 2022).

Description of Grammars and Identified Lan-
guages. In our experiments, we consider two
generic structure for the considered grammars, one
adapted from (Allen-Zhu and Li, 2023), namely
G, and another is proposed by us, namely Gg.
We propose variant of these grammars by consider-
ing different alphabet sets.

In Figure 10, in the first generic structure G,
each grammar has N = {S, A7, A8,..., A16}
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and T = {1,2,3,...,9}. The grammar has four
levels of hierarchy: the non-terminals from top
to bottom levels are {A16}, {A13, A14, A15},
{A10, A11, A12}, and { A7, A8, A9}, followed by
terminals {1,2,3,...,9}. Since the terminals are
derived from numerical characters, we call this
grammar GNU™erical; and if the terminals are de-
rived from Latin characters, we call this grammar
GLain respectively. Each non-terminal (except the
start non-terminal) has two expansion rules, con-
sisting of non-terminals from the immediate lower
level. Further, the expansion rules are probabilis-
tic, where the sum of probabilities of all expansion
rules from a given non-terminal is 1.

In Figure 11, the second generic structure G
is inspired by bridging two HPCFGs together,
and simulating a long range dependencies within
the generated strings. Specifically, the two sub-
grammars at B4 and sub-grammar at £/4 are con-
nected by non-terminal C'1;; and E4 ends with
T'1;. Long range dependencies are communicated



S — S5 [1]

S5 — B4 C1y B4 T1; [0.25]
S5 — B4 Cly E4 T, [0.25]
S5 — B4 Clz F4 T13[0.25]
S5 — B4 C1y F4 T14[0.25]
B4 — B3[0.3333)]

B4 — B3 B3 B3 [0.3333]
B4 — B3 B3[0.3333]

B3 — B2 [0.3333]

B3 — B2 [0.3333]

B3 — B2 B2 [0.3333]

B2 — B1 [0.3333]

B2 — B1 [0.3333]

B2 — B1 B1 B1 [0.3333]
B1 — 29 3[0.3333]

Bl — 961 [0.3333]

Bl — 186 2[0.3333]

E4 — E3[0.3333)]

E4 — E3 E3[0.3333]

E4 — E3 E3 E3[0.3333]
E3 — E2[0.3333)]

E3 — E2 F2 [0.3333]

E3 — E2[0.3333]

E2 — E1 E1[0.3333]

E2 — F1[0.3333]

E2 — F1 E1 E1[0.3333]
E1— 56 [0.3333]
E1—1866[0.3333]
E1—1515590.3333]

S — S5 [1]

S5 — BA C1y B4 T1; [0.25]
S5 — B4 C1, B4 T1, [0.25]
S5 — B4 C13 E4 T1;5 [0.25]
S5 — B4 C1, E4 T14 [0.25]
B4 — B3 [0.3333]

B4 — B3 B3 B3 [0.3333]
B4 - B3 B3 [0.3333]

B3 - B2[0.3333]

B3 - B2[0.3333]

B3 — B2 B2 [0.3333]

B2 - B1[0.3333]

B2 - B1[0.3333]

B2 — B1 B1 B1 [0.3333]
Bl = bic[0.3333]

Bl =i f a[0.3333]

Bl = ah fb[0.3333]

E4 - E3[0.3333]

E4 - E3 E3[0.3333]

E4 = E3 E3 E3[0.3333]
E3 — E2[0.3333]

E3 - E2 £2[0.3333]

E3 - E2[0.3333]

E2 - E1 E1[0.3333]

B2 - E11[0.3333]

E2 — FE1 E1 E1[0.3333]
El = e f0.3333]
El—ah f f[0.3333]
El—aeaeeil0.3333]

Figure 11: Production rules of GNmerical (left) and G50 (right).



Table 2: Notations of grammars and identified lan-
guages.

Grammar Identified Language
Gg umerical L
GIO:atin L2
ngder—trained—tokens L3
Gl/}l umerical L4
GLatin L5

ngder—trained—tokens L6

LA

60 20 40

0.2-
0.15-

1

5-
0-

Probability
o
Probability

0.

°

‘ .d”
0

Length in Tokens Length in Tokens

(a) Ly (also Lo, L3) (b) L4 (also Ls, Le)

.|III||m,..._

60 80

40 5

Figure 12: Length distribution of considered proba-
bilistic languages, based on 10000 sampled strings per
language.

through C'1; and T'1;, by enforcing 7 = j at each
expansion of S5.

Table 2 shows the mapping of notations between
grammars and identified languages. Figure 12 de-
notes the length distribution of generated strings
from different languages. Figure 13 demonstrates
how hierarchical non-terminals are applied in dif-
ferent positions in the representative strings.

Sampling Strings from a Formal Language.
Given a language L generated by a HPCFG, we
first need to obtain fraining samples, i.e., set of
i.i.d. samples of strings in-language L. To sample
a string from the language, we start from a special
string in the grammar containing a single, distin-
guished nonterminal called the "start" or "root"
symbol, and apply the production rules to rewrite
the string repeatedly. If several rules can be used
to rewrite the string at any stage, we sample one
such rule from the probability distribution over the
rules and apply it. We stop when we obtain a string
containing terminals only. This string is a sample
drawn from the language. We can repeat this pro-
cess to draw any number of i.i.d. samples from the
language.
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8712365645123876587123653187987645313187656451239878712365

A9 5 A7 A8 ; AB . ; AT A9 ;A8 ; A9 ; AT . ; AB ; A7 ; A9 ; A9 . ; A8 A7 ; A7 ; A9 ; AB ; AB . ; AT A9 . i A9 AT A8 ;
A2 ALl AL2 ALl A0 A10 ALl A2

A13 AL5 Al4

A16

(a) Language L1 (Grammar G§"™"")

® 0 0 0000000000000 0000000000 00000000000 0NORNONONNOLOLNONOLNPOLNONONPOLNOSNONPORLNPOSNDOSDOSOPONDS
hgabcfefdeabchgfehgabcfecahgihgfdecacahgfefdeabcihghgabcfe

A9 ; AT . ; AB ; AB . ; A7 A9 ; AB ; A9 ; A7 A8 ; A7 ; A9 ; A9 A8 A7 ; A7 ; A9 ; A8 ; AB A7 A9 A9 5 A7 A8
A12 ALl AL2 ALl A0 A10 ; ALl A2

A13 ; A15 ; Al4

Al6

(b) Language Lo (Grammar G5*™")

e o o o o ® & o & o o & o 0 & 0 o 0o o 0o o 0 o 0 0o 0o o L] e o o o
186 229396196 118%622939617151H5S:5 151559 3
Bl Bl Bl B1 Bl Bl Bl Cl; E1 E1l T1.
B2 B2 B2 E2
B3 B3 E3
B4 E4
S5
Ni ical

(c) Language L4 (Grammar G'5"""")
e & o o o & o o o o o o o e o e o o o o o o o e o o o o o o o
a h fbbici fai f a b b i ci f agaweawewei aeaee.ioc
Bl Bl Bl B1 Bl Bl Bl Cl; E1 E1l TL.
B2 B2 B2 E2
B3 B3 E3
B4 E4

(d) Language L5 (Grammar G5"™)

Figure 13: Representative strings from different languages, annotated with non-terminals applied in different
positions by the respective hierarchical grammar.
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Distance Between Languages. In probabilistic
languages, a well-known approach to compute lan-
guage distance is to compare the distribution of
strings generated by both languages (de la Higuera
et al., 2014). In our implementation, we choose a
simplified distance metric based on Ly-norm.

aistr, (L1, L) = \/Suer (P, (s) — Pry(s))?
(1

While distance metrics have their nuances, our
goal is to systematically modify the original lan-
guage, more specifically the underlying grammar,
such that we can intuitively interpret language dis-
tance, irrespective of the distance metric used.

For simulating out-of-distribution generalization
of learning modes, we modify the base gram-
mar GYumerical or G as a short notation, in the
following way: We construct the five grammars
{GW), ..., GO}, by perturbing ¢ production rules
of G, such that G) contains all perturbed pro-
duction rules in GY~Y. The order in which rule-
perturbation is applied is the following:

AT 1.3 27[0.50]
A8 56 [0.50]
A9B) 879 (0.50]
AT 31 [0.50]
A9®) 5 87 [0.50]

Intuitively, G!) contains perturbed rule { A7(1)},
G contains perturbed rule {A7(1), A8(2)}, and
so on. Finally, each grammar G () identifies a lan-
guage L® in Figure 7.
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C Additional Experimental Results

In the following, we outline additional experimen-
tal results.

* Independent evaluation of FT and ICL on
different languages across datasets in Fig-
ure 14, 15.

* Intra-family FT and ICL performance in Fig-
ure 16, 17.

* Robustness of FT and ICL of individual mod-
els across languages in Figure 18, 19 20, 21.

* Inductive bias of LLMs across languages in
Figure 22, 23, 24, 25.

* Out-of-distribution generalization on lan-
guages of different distances in Figure 26.

e FT vs. ICL on natural language datasets in
Appendix D.

* Evaluating whether LLMs utilize their full
ICL contexts in Appendix E.

¢ Generative vs. discriminative tests for deter-
mining language proficiency in Appendix F.

* Detailed implications of the study in Ap-
pendix G.
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Figure 16: Intra-family FT performance.
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Figure 17: Intra-family ICL performance.
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Figure 22: Inductive bias of ICL and FT on language L, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples

(larger markers).
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Figure 23: Inductive bias of ICL and FT on language Lo, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples

(larger markers).
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Figure 24: Inductive bias of ICL and FT on language L4, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples

(larger markers).
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Figure 25: Inductive bias of ICL and FT on language L5, computed as the Pearson correlation of generation loss of
FT and ICL on identical test strings. Correlation, despite being positive, tends to decrease with higher examples

(larger markers).
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Figure 26: Out-of-distribution generalization to lan-
guages of increasing distance using FT and ICL. The
first and second column denote generative loss, while
the third and fourth column denote discriminative per-
formance. We consider L, as the base language. We
create languages of higher distance, denoted by ng),
by changing ¢ production rules in the grammar of
L. Lge) contains all changed rules in Lge_l). Hence,

dist(Ly, L{Y) < -+ < dist(Ly, L) (see Eq. (1))
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D Fine-tuning vs. In-context Learning on
Natural Language Datasets

We conduct a comparison of FT and ICL on a nat-
ural language dataset to observe whether our find-
ings on formal languages generalize to natural lan-
guage datasets. We consider a natural language
inference task on MNLI dataset (Williams et al.,
2018), as studied in the related work by Mosbach
et al. (2023). The learning objective is to generate
the sentiment label given premise and hypothesis
(see Table 3).

Issues of Data Contamination. In Figure 27, FT
surpasses ICL on the MNLI dataset with increasing
examples, which is consistent with our findings on
formal languages in Figure 6. However, Qwen-2.5-
7B model performs much better than other models
in both learning modes, suggesting the possibility
of data contamination. For evidence, MNLI dataset
is proposed in 2018, which is earlier than the re-
lease of Qwen-2.5-7B model in 2024. Therefore,
it is difficult to fairly compare different models or
their learning modes on publicly available datasets,
if a subset of models are possibly trained on the test-
ing dataset (Dominguez-Olmedo et al., 2024). This
further strengthens our case that synthetic formal
languages should be adopted widely to critically
evaluate the performance of LLMs, where the risk
of data contamination is minimum.

Difficulty in Identifying In-distribution vs. Out-
of-distribution Tasks. In Figure 28, we demon-
strate in-distribution and out-of-distribution per-
formance side-by-side on the MNLI dataset for
both learning modes. The differentiation of tasks
is determined by the genre of (premise, hypothesis)
pairs. If the genre of the testing pair matches with
training pairs, then the task is in-distribution. Oth-
erwise, the task is out-of-distribution. However, we
do not observe any difference in the comparison of
FT vs. ICL based on tasks — FT is better than ICL in
both tasks. This is a contradiction with our findings
in formal languages in Figure 7, where the distance
between tasks is well-defined, and both FT and
ICL perform equally well in the out-of-distribution
task. This experiment highlights the ambiguity
of specifying learning tasks in natural language
datasets, the core theme in desideratum D1 in Sec-
tion 1. Therefore, for an objective comparison, it
is important to carefully define in-distribution and
out-of-distribution tasks, which is easier in formal
languages than natural languages.
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Table 3: Construction of in-language and out-language strings for the MNLI dataset (Williams et al., 2018),
where the out-language string differ with in-language string only in the sentiment label. The discriminative test is
successful, if the generation probability of the correct label in the in-language string is higher than the incorrect
label in the out-language string. Prompt instruction is shown in the below table.

In-language string Out-language string (edit at label)

Premise: One of our number will carry out your Premise: One of our number will carry out your
instructions minutely. instructions minutely.

Hyopthesis: A member of my team will execute Hyopthesis: A member of my team will execute
your orders with immense precision. your orders with immense precision.

Label: entailment Label: neutral

Premise: Fun for adults and children. Premise: Fun for adults and children.
Hyopthesis: Fun for only children. Hyopthesis: Fun for only children.

Label: contradiction Label: entailment

Prompt Instruction (beginning of the prompt)

Provide a classification label for the pair, indicating the relationship between the premise and
hypothesis:

- entailment : The hypothesis logically follows from the premise.

- neutral : The hypothesis is neither entailed nor contradicted by the premise.

- contradiction : The hypothesis contradicts the premise.
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Figure 27: In-distribution generalization of FT and ICL on MNLI dataset, where the learning task is to perform
natural language inference by generating the sentiment label {entailment, neutral, contradiction} given premise and
hypothesis. On a high level, FT is better than ICL with more examples, consistent with results on formal languages.
In a detailed analysis, we observe that different LLMs perform differently given the same problem, indicating the
possibility of data contamination in some well performed LLMs, such as Qwen-2.5-7B.
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Figure 28: MNLI dataset: In-distribution (inference within the same genre, Column 1 and 3) vs. out-of-distribution
(inference across genres, Column 2 and 4) generalization performance( of FT and ICL, where there is no substantial
difference across tasks. This is a fundamental problem in natural language datasets, where the identification of
tasks can be ambiguous, and LLMs may not distinguish them. Overall, FT is better than ICL, which contradicts our
results on formal languages where FT is only better in in-distribution generalization, but both learning modes are
equally performing in out-of-distribution generalization.

33



E Testing the Limit of In-context
Learning

To find the limit of ICL ability of an LLM, we rely
on the convergence of training and test loss in ICL
as examples are added. Intuitively, training loss
provides a practical lower bound of test loss in ICL
—an LLM can no longer improve in ICL when both
losses converge. To obtain training loss, we first
provide ICL examples from the training set and
later compute the loss of generating each training
example already present in the context.

Empirically in all languages, test loss converges
to train loss, i.e., ICL limit is reached in the ma-
jority of LL.Ms, except in Llama-2 and Opt family.
These two families have limited context (4K and
2K tokens, respectively), and there is a gap between
losses while exhausting their context length. More-
over, long context LLMs, such as Qwen-2.5-7B
and Llama-3.1-8B with 128K context length, can-
not further improve from additional examples as
both losses converge and later increase near to the
limit (see Figure 29). Therefore, formal language
learning enables us to categorize LLMs into two:
(a) LLMs that cannot reach the ICL limit, and (b)
LLMs that reach their ICL limit and do not improve
with additional examples..
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Figure 29: Testing the limit of utilizing ICL context (1536 examples ~ 77K tokens) on language L;. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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Figure 30: Testing the limit of utilizing ICL context (1536 examples ~ 77K tokens) on language Ls. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.



— Test — Train

—— Test —— Train —— Test — Train
1.5- 15 1.5-
@ 1- g 1- o o1-
S = S
0.5- 0.5- 0.5-
o o W
H N B O WO = N WU N BN U - O H N B O WO = N WO
o N B N U = o o NN o N BN U =
W o N » 0 o N
No. Examples No. Examples No. Examples
(a) Qwen-2.5-0.5B (b) Qwen-2.5-1.5B (c) Qwen-2.5-7B
—— Test —— Train —— Test —— Train —— Test — Train —— Test — Train
31 151 15- 15-
w 1- \/ nw 1-
n ] %] 1- ) 1-
(e} [e} %) %)
= 05- ~ o5l S S
=T | || S O 0.5- 0.5-
04 U U U U U U U U U U U U U U U U U U \_// \’/
= N B 00O WO =N H N B 00 WO =N U U U U U U U T U U U U U U
o N H R a L 1 2 4 8 16 32 64 1 2 4 8 16 32 64
No. Examples No. Examples No. Examples No. Examples
(d) Mistral-7B (e) Mistral-12B (f) Llama-2-7B (g) Llama-2-13B
— Test — Train — Test — Train —— Test — Train
20-
10-
8- & 15-
8 o g% 2
<] o o 10-
o} a 4- o}
4-
2- 2- 57
0- | i | i i i i 0- i i | i i i i i i i i i i i i
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
No. Examples No. Examples No. Examples
(h) Llama-3.2-1B (i) Llama-3.2-3B (j) Llama-3.1-8B
—— Test — Train —— Test — Train
2.5-
2- 2-
% 1.5- @
o o
] = 1-
o V /
0.5- 0.
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
No. Examples No. Examples
(k) Gemma-2-2B (1) Gemma-2-9B
—— Test —— Train —— Test — Train —— Test — Train
14-
4-
8- 12-
@ \ 3 10- 9 3
o 6- o (=}
- | — 2-
8-
al 6l 1 —
12 4 8 16 3 12 4 8 16 3 1 2 4 8 15 32
No. Examples No. Examples No. Examples
(m) Pythia-1B (n) Pythia-2.8B (o) Pythia-6.9B
—— Test — Train —— Test — Train —— Test — Train
3- 4-
4-
3-
g3 g2 4
S S S
7 \,,,—/ p “ p
1-
1- 1-
12 4 8 16 3 1 2 4 8 16 3 12 4 8 16
No. Examples No. Examples No. Examples
(p) Opt-1.3B (q) Opt-2.7B (r) Opt-6.7B

Figure 31: Testing the limit of utilizing ICL context (1536 examples ~ 77K tokens) on language L. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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Figure 32: Testing the limit of utilizing ICL context (1536 examples ~ 77K tokens) on language Ls. Training loss
provides a lower bound of test loss in ICL. Long context LLMs cannot further improve from additional examples.
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F Discriminative Test

Claim 1. For a given language, the discriminative
test is comparable between two learning modes of
an LLM and across LLMs, unlike a generative test.

We elaborate on the arguments of why the dis-
criminative test is comparable between two learn-
ing modes of an LLLM and across LLMs, but not
the generative test. Concisely, the generative prob-
ability used in the generative test is not comparable
across LL.Ms, but a classification score based on
the differentiating generative probabilities on two
different sets of strings is comparable across LLMs
— the latter is the discriminative test.

The discriminative test computes a classification
score in [0, 1] to determine how well strings in a
language are discriminated from strings outside the
language, based on generation probability given
by the learning mode or the LLM. While comput-
ing generation probability, all in-language and out-
language strings undergo the same input formatting,
and are generated under the same parameters and
hyperparameters of the LLM or learning mode. For
example, the same concatenated prefix is applied
to all strings in ICL versus null prefix in FT (see
Figure 1). Finally, a learning mode or an LLM is
more language proficient if the classification score
is higher.

Since the learning performance is measured as
a classification problem, the discriminative test is
comparable, as long as the same set of in-language
and out-language strings is used, and the same clas-
sification setup is applied.
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Figure 33: Qwen-2.5-7B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L.
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Figure 34: Mistral-7B: Language proficiency according to generative (first row) and discriminate (second row) tests.
First two columns are for language L1, and the last two columns are for language L.
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Figure 35: Llama-2-7B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L.
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Figure 36: Llama-3.1-8B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L.
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Figure 37: Gemma-2-9B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L,
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Figure 38: Pythia-6.9B: Language proficiency according to generative (first row) and discriminate (second row)
tests. First two columns are for language L1, and the last two columns are for language L,
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Figure 39: Opt-6.7B: Language proficiency according to generative (first row) and discriminate (second row) tests.
First two columns are for language L1, and the last two columns are for language L.
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Implications of the Study

We elaborate on the implications of our findings of
four research questions in Section 5. We provide
our hypothesis for each finding, which may inspire
future research.

In RQ1, when learning a language, FT perfor-
mance converges across LLMs but ICL per-
formance is variable. Our hypothesis is that
FT is a direct form of learning, where param-
eters are explicitly updated. Since all LLMs
are fine-tuned optimally, and the considered
language is simple and has a hierarchical re-
cursive structure, FT performance converges
across LLMs.

ICL, however, is an indirect form of learning,
where the model learns patterns from the con-
text without any parameter update. Hence,
ICL performance can be biased by model-
specific pre-training, which may differ across
LLMs of different sizes and families. As such,
ICL performance is variable across LLMs. A
more subtle analysis is given below in RQ4.

In RQ2, FT is superior to ICL when train-
ing and test languages are the same, i.e., in-
distribution generalization, but both modes
perform equally and only generalize to closer
out-languages in out-of-distribution general-
ization. Therefore, if the test language is dif-
ferent, FT is no longer the better mode, and
explicit parameter update in FT does not help.
In this case, ICL is a better choice, since the
general language understanding of the origi-
nal model is retained in ICL, compared to FT
where the model is explicitly — in the case of
out-of-language generalization, unnecessarily
— updated.

In RQ3, the inductive bias of FT and ICL are
similar, but similarity decreases with more
training examples. The similarity of induc-
tive bias is computed as the Pearson correla-
tion of generation loss (or probability) of FT
and ICL on identical test strings. Informally,
when more examples are provided, the learn-
ing mode becomes confident in generating the
language, specifically the individual strings
from the language. As such, the variance of
per-string loss is expected to decrease for a
set of strings. We argue that when the range
of loss is reduced, FT and ICL differ more
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on the loss of individual strings, and hence
correlation decreases.

* In RQ4, ICL is less robust than FT across lan-
guages. This is perhaps explained by the hy-
pothesis in RQ1, where FT explicitly updates
parameters, while ICL does not. Moreover,
the sensitivity of ICL performance on actual
tokens used in the language suggests a de-
pendency of ICL performance on pre-training,
where the same token sets can be trained dif-
ferently across different LLMs.

* We emphasize the adoption of the discrimina-
tive test for evaluating language proficiency
in LLMs, across formal and natural languages.
The discriminative test ensures that genera-
tion of in-language strings is better and even
separable from the generation of out-language
strings, which is a stronger condition than the
generative test.

For future work on the adoption of the discrim-
inative test, one needs to systematically gen-
erate strings outside the language, which we
have shown for formal language in Section 3,
and an instance of natural language, such as
sentiment classification, in Appendix D. Since
natural language is less well-defined than for-
mal language, the boundary of in-language
and out-language strings may be superficial in
natural language, demanding a careful study.
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