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Abstract

Preference optimization methods typically be-
gin training with a well-trained SFT model
as a reference model. In RLHF and DPO, a
regularization term is used during the prefer-
ence optimization process to prevent the policy
model from deviating too far from the refer-
ence model’s distribution, thereby avoiding the
generation of anomalous responses. However,
if the reference model is not aligned with the
given data and requires significant deviation
from its current state, a regularization term may
actually hinder the model alignment. In this
study, we propose Modulated Intervention
Preference Optimization (MIPO) to address
this issue. MIPO modulates the degree of inter-
vention from the reference model based on how
well the given data is aligned with it. If the data
is well-aligned, the intervention is increased to
prevent the policy model from diverging sig-
nificantly from reference model. Conversely,
if the alignment is poor, the interference is re-
duced to facilitate more extensive training. We
compare MIPO and DPO using Mistral-7B and
Llama3-8B on Alpaca Eval 2.0 and MT-Bench,
showing that MIPO consistently outperforms
DPO across various evaluation scenarios

1 Introduction

As the performance of Large Language Models
(LLMs) trained with a large amount of data has
been attracting attention, methods (Chowdhery
et al., 2023; Touvron et al., 2023; Brown et al.,
2020) for training them have been actively studied.
The commonly used LLM training pipeline is to
pretrain LLM using a large amount of data, and
then use the instruction-tuning method (Wei et al.,
2021) to allow LLM to follow the human-provided
instruction.

However, it is difficult to train LLM to produce
the desired output (helpful, harmless) or to pre-
vent LLM from producing the output that LLM
should not produce (Bai et al., 2022a). Therefore,
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Figure 1: Alpacaeval 2.0 scores for MIPO and DPO
implementations on Mistral-7B-Base and Llama-8B-
Instruct. v0.1 is a model trained on different dataset.

LLM alignment methods employing human feed-
back have started to gain significant attention.

Among these methods, Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al.,
2017; Askell et al., 2021) received significant atten-
tion. Models trained with RLHF are well-aligned
with human feedback, demonstrating reliable per-
formance as a result (Korbak et al., 2023; Havrilla
et al., 2024; Dai et al., 2023). However, the RLHF
approach involves a complex training process, in-
cluding the training of a reward model, which has
posed significant challenges in the implementation
and training (Casper et al., 2023; Peng et al., 2023).

Direct Preference Optimization (DPO) (Rafailov
et al., 2024) is a method designed to overcome
these limitations. In DPO, the optimization prob-
lem of RLHF is modified to eliminate the reward
model and train only the policy model. This makes
it easier to train DPO compared to RLHF, and DPO
also effectively learned human preferences, demon-
strating strong performance.

In DPO and RLHF, the policy model is trained



to align with the instance while ensuring its distri-
bution does not move significantly away from the
reference model’s distribution to prevent it from
generating anomalous responses (ex. hallucina-
tions). Therefore, if the reference model is mod-
erately aligned with the given preference pair, it
could be possible to train a well-aligned policy
model for the given data without significantly di-
verging from the reference model’s distribution.
However, if the reference model is not aligned with
the given preference pair, it will be difficult for the
policy model to align with the data through minor
adjustments, without moving far from the reference
model’s distribution. Therefore, it is crucial to ad-
just the training objective based on how well the
reference model is aligned.

In this paper, we propose a preference optimiza-
tion algorithm, Modulated Intervention Prefer-
ence Optimization (MIPO), to address this issue.
As seen in Figure 2, MIPO utilizes the average
log likelihood to measure how well the reference
model is aligned with the given preference pair.
Through this value, the MIPO objective is config-
ured to modulate the intervention of the reference
model, allowing more extensive training on pairs
that are judged to be poorly aligned with the ref-
erence model. We use Alpaca Eval 2.0 and MT-
Bench to compare the performance of MIPO with
DPO and other preference optimization methods.
Across diverse experimental settings, MIPO con-
sistently achieves outstanding performance. To
summarize, MIPO has the following properties:

* Modulate the intervention of the Reference
Model: MIPO is a novel approach that modu-
lates the intervention of the reference model
for each instance. It determines the extent of
the reference model’s intervention based on
the degree of alignment. MIPO maintains per-
formance on pairs where the reference model
already well-aligned, while simultaneously
achieving substantial performance gains on
pairs where the reference model previously
underperformed (Section $4).

¢ Outstanding Benchmark Performance:
We conduct experiments using Llama3-8B-
Instruct (Al@Meta, 2024) and Mistral-7B-
Base (Jiang et al., 2023a) to verify the ef-
fectiveness of MIPO in various models. On
Alpaca Eval 2.0, our proposed method consis-
tently outperforms DPO. As we can see in Fig-
ure 1, in Llama3-8B-Instruct, it outperforms

DPO by approximately 9 points (+36.07%),
and in Mistral-7B-Base, it outperforms about
8 points (+54.24%). In most cases, MIPO
achieves the best performance not only com-
pared to DPO but also when compared to other
methods. On MT-Bench, MIPO also exhibits
the best performance among the compared
approaches (Section $6.1).

* Simple and Effective Training: The high-
performance model can be found in MIPO
by tuning only the hyper-parameter 5. More-
over, consistently outstanding performance
is achieved within a specific range of 3, in-
dependent of model architecture or dataset.
Thus, unlike other methods that require ex-
tensive tuning, this approach allows for easy
acquisition of a high-performance model with
minimal tuning effort (Section $6.2).

2 Related Works

After being pretrained on a large amount of data
(Chowdhery et al., 2023) and fine-tuned (Chung
et al., 2024; Ramamurthy et al., 2022), LLMs have
achieved notable performance across many tasks
(Touvron et al., 2023; Brown et al., 2020; Thop-
pilan et al., 2022). However, LLMs that could
generate responses that were even more helpful
and harmless were needed, leading to the develop-
ment of preference optimization methods (Chris-
tiano et al., 2017; Bai et al., 2022a,b) that fine-tune
LLMs more closely to human feedback.

RLHF (Askell et al., 2021; Ouyang et al., 2022)
is one such preference optimization method for
LLM alignment. In RLHF, preference data is used
to train a reward model, which is then utilized to
optimize the policy model by Proximal Policy Opti-
mization (Schulman et al., 2017). RLHF effectively
aligns models with human feedback, resulting in
good performance (Korbak et al., 2023; Havrilla
et al., 2024). However, there are challenges, such
as the difficulty of obtaining scored data, ensuring
stable training, and the necessity of training a re-
ward model (Casper et al., 2023; Peng et al., 2023;
Wang et al., 2024).

DPO is a preference optimization method that
solves optimization problem of RLHF in a more
easier and efficient manner. (Rafailov et al., 2024)
proposed DPO to eliminate the reward model in
RLHF and train only the policy model with prefer-
ence data. It is simple compared to RLHF, and the
training phase is more stable. So it has become one
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Figure 2: Optimization process of MIPO. In DPO, the objective utilizes a consistent regularization term (red
part in DPO objective) for the reference model across all instances (A, B, C in Figure), regardless of the degree of
alignment of each instance. However, in MIPO, the alignment of each instance with the reference model is first
assessed by using the difference in average log likelihood. Based on this value, K, the extent to which the reference
model will intervene in the learning process is determined and subsequently reflected in the MIPO objective.

of the widely used method for aligning language
models. However, DPO also has its drawbacks like
dependency on the reference model and issues with
length exploitation (Liu et al., 2024; Gorbatovski
et al., 2024; Xu et al., 2024). Therefore, new model
alignment methods such as KTO (Ethayarajh et al.,
2024), IPO (Azar et al., 2024) and ORPO (Hong
et al., 2024) continue to emerge.

However, most methods including DPO does
not take into account the differences in the degree
of alignment of the reference model between pref-
erence pairs. As mentioned earlier, if the refer-
ence model is already well-aligned, only minimal
training will be needed to achieve alignment. Con-
versely, if the reference model is completely mis-
aligned, extensive training will be required. How-
ever, DPO does not account for these differences
(Section $3.3).

To address this issue, we propose MIPQO, which
varies the learning weights among instances by
modulates the degree of intervention from the ref-
erence model (Section $4).

3 Background

In this section, we will review the DPO in Section
$3.2, and analyze the ineffective aspects of DPO in
Section $3.3.

3.1 Terminology

A U .
D = {xz,yiv,ylz}izl is for pairwise-preference

dataset, where z* is prompt and 3%, is chosen (pre-

ferred) response and ylZ is rejected (dis-preferred)
response for that prompt. . is reference model,
initial LLM that we start training from. 7y is policy
model, which is a model we train.

3.2 DPO

DPO employs the Bradley-Terry (BT) model
(Bradley and Terry, 1952) to represent the distri-
bution of human preference. BT model represents
human preference distribution for y,,, y; by the
reward function as follows:

exp(r(z, yw))

exp(r(z, yuw)) + exp(r(z, yz)()l)
DPQO’s reward function is reparameterized from
the RLHF’s objective as following equation.
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From equations (1) and (2), we can formulate
preference distribution by using 7, and mg. Sub-
sequently, the DPO objective is derived as ex-
pressed in (3)
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3.3 Ineffective Aspects of DPO

DPO does not consider how well the preference
pairs are aligned.

Looking at the reward of DPO in Eq (2) with-
out Z(x). It can be seen that the reward is the
difference between the log likelihood of the pol-
icy model and the log likelihood of the reference
model. This implies that DPO allows for high re-
wards to be obtained solely by increasing the log
likelihood of a response, without considering the
degree to which the reference model already per-
forms well on that response. Consequently, the
training process proceeds without taking into ac-
count the extent to which the reference model is
aligned with the give preference data.

For example, consider pair;, preference data
where the reference model already well-aligned,
and pairy, where it does not. Ideally, model will
require to train slightly on pair; to maintain its cur-
rent performance, while it will require substantial
training for pairy compared to pair;.

Let’s assume that the policy model has been
trained so that the log likelihood of the cho-
sen response increases by « compared to the
reference model, while the log likelihood of
the rejected response remains unchanged in
both pairs (log 79 (yw|z) — log mref(yuwlz) =
a,logmg(y|x) — log mref(yi|z) = 0). In DPO,
both pairs would yield the same loss by Eq (3).
This implies that the improvement in log likeli-
hood for pair; and pairs holds equal significance
in DPO.

Consequently, DPO trains the model without dis-
criminating between instances of strong and weak
alignment with the reference model. This uniform
approach can result in insufficient training for pairs
where the reference model needs improvement and
excessive training for pairs where preferences are
already adequately captured. Therefore, this is-
sue can negatively impact the performance of the
trained model. Although we have only presented
analysis for DPO above, most offline PO methods,
including SimPO (Meng et al., 2024), do not take
into account the varying alignment levels among
instances.

4 Methodology

In this section, we explain why we use average log
likelihood to determine how well reference model
is aligned to data in Section $4.1. Then we intro-
duce Modulated Intervention Preference Opti-

mization (MIPO), an algorithm that adjusts the
degree of intervention from the reference model
based on the level of alignment in Section $4.2.

4.1 Measuring the Alignment Degree

To solve the problem of DPO mentioned above
Section $3.3, we first need to measure which pairs
are well-aligned to reference model and which pairs
are poorly aligned.

In the context of preference learning, being
"well-aligned" can be interpreted as the model be-
ing more likely to generate a chosen response ¥,
than a rejected response y; for a given input x.
However, using the difference in log likelihoods
between chosen and rejected responses to measure
alignment is not feasible, as log likelihood is highly
sensitivity to response length. If the lengths of the
chosen and rejected responses differ significantly,
the longer response’s log likelihood will be dispro-
portionately lower, regardless of individual token
probabilities.

Therefore, we decide to use of average log like-
lihood. It allows for a more fairer comparison of
generation probabilities between chosen and re-
jected responses, mitigating the impact of length
discrepancies. We have decided to use the differ-
ence in average log likelihood, K, as a metric to
assess the alignment of the reference model with a
given pair.
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We interpret a high K value as indicative of
strong alignment in the reference model, whereas a
low K value suggest insufficient alignment. Based
on this assumption, we propose our objective as
follows:

4.2 Deriving the MIPO Objective
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For the reasons mentioned above, the MIPO ob-
jective is designed to enhance the alignment of the



policy model by using average log likelihood, f(0).
Additionally, it is adjusted based on the degree of
alignment through ¢(K’), which acts as a modulator
for the degree of intervention from the reference
model.

Let’s examine the MIPO objective in two cases:

4.2.1 When reference model is well aligned for
a given pair

It means K is large enough. Then, ¢(K') converges

to K and the objective of MIPO can be expressed

as follows.
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The objective is calculated based on the differ-
ence between the policy model’s average log like-
lihood difference, f(#), and this values of refer-
ence model, K. Therefore, as f(6) diverges further
from K, the loss decreases, preventing the policy
model from significantly diverging from the refer-
ence model.

4.2.2 When reference model is poorly aligned
for a given pair

It means K is low. In this case, q(K ) approaches

to 0 and objective can be expressed as follows.
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Since the MIPO objective does not include a
term for the reference model, it only considers
the f(0) for alignment, focusing solely on increas-
ing this value. When compared to the case where
q(K) = K, it is clear that the MIPO loss signifi-
cantly greater because f(0) is less than f(0)— K (.-
K < 0). Consequently, the policy model can be
trained while diverging further from the distribu-
tion of the reference model.

In summary, the MIPO assesses how well the
reference model is aligned with the given instance
through the metric K. This metric is then used
to calculate ¢(K'), which determines the extent to
which the reference model’s influence on the pol-
icy model’s learning. When K is high, it indicates
strong alignment with the given data. In this case,

q(K) takes on the value of K, thereby increasing
the intervention of the reference model. Conse-
quently, the policy model train without diverging
significantly from the reference model. Conversely,
if K is low, ¢(K') becomes zero, allowing the pol-
icy model to train without intervention from the
reference model.

More detailed explanations about objective are
provided in the Section $6.5 and gradient analysis
can be found in Appendix A.

5 Experimental Settings

5.1 Datasets

5.1.1 Binarized UltraFeedback

We train models with Binarized UltraFeedback
Dataset (Cui et al., 2023). It consists of 64K pref-
erence pairs from diverse resources.

5.1.2 Llama3 UltraFeedback

Because there is a possibility that Binarized Ul-
trafeedback data was used in the training phase
of Llama3-8B-instruct, (Meng et al., 2024) pro-
posed new dataset. The data' is created base on
responses generated by Llama3-8B-Instruct by us-
ing the Binarized Ultrafeedback prompts. Among
these responses, the highest scoring response and
the lowest scoring response, which are scored by
reward model (Jiang et al., 2023b), are used to form
preference pairs. In this study, models trained using
this dataset is labeled with the v0.1 tag.

5.2 Evaluation

The trained models are evaluated on AlpacaEval2.0
and MT-Bench.

5.2.1 Alpaca Eval 2.0

Alpaca Eval 2.0 (Li et al., 2023; Dubois et al., 2024)
consists of 805 prompts. The responses generated
using these prompts are compared against those
produced by GPT-4-Turbo. Through this compari-
son, Alpaca Eval 2.0 quantify the model’s perfor-
mance by calculating the percentage of instances
where its response surpass those of GPT-4-Turbo,
expressed as a win rate (WR). AlpacaEval 2.0 also
provides length controlled win rate (L.C) that con-
siders bias due to length.

5.2.2 MT-Bench
MT-Bench (Zheng et al., 2023) is a multi-turn
benchmark consisting of 80 distinct instructions

"https://huggingface.co/datasets/princeton-nlp/llama3-
ultrafeedback.



Mistral-7B-Base

Llama3-8B-Instruct

Llama3-8B-Instruct-v0.1

Method Alpaca Eval 2 MT-Bench Alpaca Eval 2 MT-Bench Alpaca Eval 2 MT-Bench
LC(%) WR(%) Avg.Score LC(%) WR(%) Avg.Score LC(%) WR(%) Avg. Score
ORPO 14.7* 12.2% - - - - 28.5% 27.4% -
KTO 13.1% 9.1% - - - - 33.1% 31.8% -
SimPO  21.4%* 20.8* 7.05 - - - 44.7% 40.5% 7.72
DPO 15.1% 12.5% 7.01 25.1 21.2 7.95 40.3* 37.9% 7.79
MIPO 22.0 17.5 7.12 34.1 30.0 7.97 43.6 40.7 7.92

Table 1: AlpacalEval 2.0 and MT-Bench scores for preference optimization methods in Mistral-7B, Llama3-8B. The
v0.1 tag refers to a model trained using Llama3 Ultrafeedback data, and the others are all trained with Binarized
UltraFeedback. Results denoted with (*) are sourced from (Meng et al., 2024).

to evaluate model performance. Model generated
responses from these prompts are scored by using
GPT-4. The benchmark’s strength lies in its diverse
category coverage, enabling comprehensive model
assessment across multiple dimensions.

5.3 Models and Baselines

To compare across different model families, we use
Mistral-7B-Base (Jiang et al., 2023a) and Llama3-
8B-Instruct (Al@Meta, 2024) as base model for
preference optimization. We compare MIPO with
DPO and also with SimPO, which utilizes average
log likelihood. Additionally, results are compared
with offline preference optimization methods, such
as ORPO and KTO.

We implement MIPO, DPO and SimPO by us-
ing TRL (von Werra et al., 2020) and the alignment
book (Tunstall et al.). When the Alpaca Eval 2.0
scores for models trained with DPO and SimPO
are lower than those reported in the reference?, we
adapts the reference values for a fair comparison.
For MT-Bench evaluations, we utilize the check-
points in reference to generate responses and eval-
uate. Additionally, we reference results from it for
ORPO and KTO.

6 Result and Analysis

6.1 Benchmark Results

As shown in Table 1, MIPO consistently achieves
higher scores compared to DPO and demonstrates
outstanding performance relative to other methods
in the most cases.

Comparative analysis using Alpaca Eval 2.0 re-
veals that MIPO consistently and significantly out-
performs DPO across all experiments. Moreover,
MIPO achieves performance levels comparable to
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Figure 3: Alpaca Eval 2.0 scores in Mistral and Llama3
based on . The dotted line represents the performance
of DPO.

SimPO, which had previously demonstrated the
highest performance.

In MT-Bench, MIPO consistently exhibits en-
hanced performance relative to DPO and SimPO
across all experiments.

6.2 Performance Based on 5

One of the advantages of MIPO is the ease of hyper-
parameter tuning. MIPO objective contains only
a single hyperparameter, 3, allowing for optimal
model training by adjusting just this one. Figure
3 illustrates how the model’s performance varies
with different 5 in Mistral-7B and Llama-8B. As
depicted in Figure 3, MIPO maintains exception-
ally high performance across a similar beta range
([5, 50]), demonstrating robustness across various
models and datasets. The optimal model configura-
tion is consistently identified within this range.

In conclusion, MIPO demonstrates a significant
advantage: it consistently produces models that
substantially outperform DPO and approach op-
timal performance levels, achieved through the
tuning of a single hyperparameter, 3, within a



moderate range. This capability persists across
diverse model architectures and datasets, under-
scoring MIPO’s robustness and effectiveness.

6.3 Comparison with SimPO

As shown in Table 1, although MIPO and SimPO
exhibit fluctuating performance, MIPO has a clear
advantage over SimPO in terms of model stability
and practical usability.

Lsimpo(mg) = E(w,yw,yl) ~D
5 <log7r9(yw|x) _ log mp(yi]z)
Y| 1]
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As can be seen from the SimPO objective Eq
8, SimPO employs a fixed hyperparameter, -, for
every instance during training. As noted in (Meng
et al., 2024), the model’s performance is sensitive
to the value of v, necessitating meticulous hyper-
parameter tuning for both 5 and ~ to obtain an
optimal model. However, in MIPO, without intro-
ducing any new hyperparameters, a regularization
term ¢(K) is applied based on alignment degree
of each instance, enabling more refined loss ad-
justments. In addition, as demonstrated in Section
6.2, MIPO achieves stable and consistently high
performance with respect to hyperparameter vari-
ations. For these reasons, in practical scenarios
where one seeks efficient training of LLMs and
aims to achieve optimal results with minimal effort,
MIPO is a considerably superior choice compared
to SimPO, which is highly sensitive to hyperparam-
eter tuning.

6.4 Analysis about Average Log Likelihood

Figure 4, represents the average log likelihood dif-
ference between chosen and rejected responses for
the model on the evaluation dataset, showing how
this difference changes after training. It specifically
highlights how the values for instances in the top
20% and bottom 20% of average log likelihood
differences in reference model have evolved.

At this point, the top 20% are instances with a
large average log likelihood difference in reference
model, indicating they are already well-aligned
data, while the bottom 20% are poorly aligned and
require more training. The results for the overall
distribution can be found in Appendix C.

In the bottom 20%, the average log likelihood
difference for DPO actually decrease, whereas for
MIPO, the average log likelihood clearly increase.
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Figure 4: The difference in average log likelihood
changes after training for both MIPO and DPO, as ap-

plied to Mistral-7B-Base and Llama3-8B-Instruct.
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Figure 5: MIPO loss in early stages of training

Conversely, in the top 20%, the average log like-
lihood for DPO increase significantly, while for
MIPO, it only increase slightly. This pattern is
observed in both the Llama3-8B and Mistral-7B.

This indicates that in DPO, the data that is al-
ready well-aligned continued to be better aligned
through further training, while the data that is not
well-aligned do not see significant improvement.
However, in MIPO, the training is operated to main-
tain performance on well-aligned data while signif-
icantly improving the alignment of poorly aligned
data. MIPO achieves the intended outcome de-
scribed in Section $4.2, thereby effectively enhanc-
ing model alignment.

6.5 Analysis about MIPO objective function

As seen in Eq (5), the MIPO objective can be ex-
pressed as the difference between the average log
likelihood of the chosen response and rejected re-
sponse in policy model and minus ¢(K) consists
of values calculated from the reference model.
Let’s examine how the MIPO objective behaves
during the training process in two scenarios.
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Figure 6: MIPO loss in high K and low K

6.5.1 Early Stage in Training

In the early stage of training, there is minimal dif-
ference between the reference model and the policy
model. Therefore, the average log likelihood differ-
ence of the policy model does not significantly di-
verge from that of the reference model (7, ~ y).
Consequently, the MIPO loss can be written as

—log (1 + e_ﬁ(K_ln(HeK))). However, DPO

loss for all instance initially —log ¢ (0). This can
be observed in Figure 5.

6.5.2 Loss Reflection During Training

Next, let’s examine how the loss for two pairs,
pairy which has high K value and pairy which
has low K value, behave during training. Suppose
that the average log likelihood difference of the pol-
icy model, f(0), increases by & > 0 compared to
the reference model for both pairs (f(0) = K + «).
In Figure 6, the red section represents pairi.
Since pair; has a high K, the MIPO objective is
expressed as — log o(f(0) — K) (the red line in the
figure). Therefore, the MIPO loss is — log o (),
as we can be seen in the graph. Next, pairs is
represented by the green section. Since K is low,
the MIPO objective is expressed as — log o(f(0))
(the green line in the figure). Therefore, the MIPO
loss is —log o (K + «), which is larger than the
loss for pair;. Thus, even with the same amount
of increase, pairs has a larger loss, indicating that
training is accelerated for pairs with lower K.
Additionally, the figure’s dotted line facilitates a
comparative analysis between the scenarios where
the ¢(K) is simply K. In dotted line, even if K is
low, the loss is calculated based on the K. Thus,
when the same increase occurs, the loss is calcu-
lated equally for both pair; and pairy, causing the
model to train with the same weight for both pairs.
As a result, the MIPO objective results in a rel-
atively large loss when K is low. Thus, more ex-

tensive training can occur on poorly aligned data.
Conversely, in the case of well-aligned data, the in-
tervention from the reference model is substantial,
causing the objective to be calculated based on the
values of the reference model. This prevents the
policy model from diverging significantly from the
reference model.

7 Conclusion

In this paper, we proposed Modulated Interven-
tion Preference Optimization (MIPQO). MIPO ad-
justs the objective based on the degree of alignment
of the reference model on the given instances. For
pairs that require more learning, MIPO reduces
the intervention of the reference model, allowing
the policy model to diverge from it and find bet-
ter weights. Conversely, for pairs that are better
aligned, the intervention of the reference model is
maintained, ensuring that the policy model does
not significantly diverge from the reference model.

Through experiments, we found that models
trained using MIPO demonstrated significantly im-
proved performance compared to those trained us-
ing DPO. Moreover, we observed a notable in-
crease in the average log likelihood difference for
instances with initially small differences from the
reference model, aligning with our expectations
compared to DPO.

Limitations

Average log likelihood is not an absolute mea-
sure of the degree of alignment

The degree of preference between the chosen and
rejected responses can vary for each preference pair.
In some cases, the chosen and rejected responses
might be decided by a very subtle difference, while
in others, the difference could be significant. If a
given preference pair has only a slight difference,
the model may be well-aligned, but the average
log probability difference (K) is unlikely to be
large. Therefore, it is difficult to accurately assert
that a large K indicates superiority on a particular
preference pair. The K alone does not provide an
absolute measure of performance across different
preference pairs.

Although MIPO does not account for the dif-
ficulty differences between preference pairs, it
is likely that pairs where the model was poorly
aligned improved more, as higher average log like-
lihoods typically indicate better performance for
each pair.



Ethical Considerations

We trained our model using publicly available data,
and we have provided citations for all figures ref-
erenced from other studies. We received some
help with the grammar and translation of the text
through a AI Writing assistant.
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Appendices
A Gradient Analysis

Gradients of MIPO
VLat170(78) = ~8E(a. g ~pml6) - | ETI) _ 108 TZETW)] ®
where
m(f) =o (510g ngwm T poe TZSW) + Blog(1+ eK)) (10)

The value of m(f) represents the gradient weight in MIPO. When K is high, m(f) becomes

o (— B log ijiy‘w\r) + 4 log ﬁ;giﬂm + 8K ) Therefore, the gradient weight m () decreases as the policy

model moves further away from the reference model.

In the opposite case, when K is low (K < 0), m(6) approaches o (—Blog molwlz) | glog Tyl(f”x) )

[Yw
Similarly to our analysis of MIPO objective, when K is large, the gradient is heavily influenced by

the reference model. Conversely, when K is small, the gradient experiences less interference from the
reference model and thus attains larger values. Consequently, in cases where K is small, the gradient
weights increase, leading to more extensive training on instances that are poorly aligned with the reference
model.

B Implementation Details

We trained models using 8 A100 80GB GPUs. We experimented with a range of hyperparameters
for MIPO across various intervals. For other existing methods like SimPO and DPO, we use well-
established hyperparameters where available, and search within the given range when a range was
provided. Commonly, We use a cosine learning rate schedule with a 10% warmup, and training was
conducted with a maximum of one epoch. The hyperparameter range was set according to ranges
commonly used in previous studies, such as learning rate and max length, and the experiments were
conducted accordingly. Further details can be found in Table 2.

MIPO
Mistral-7B-Base  Llama-8B-Instruct

learning rate [1e-6, 1e-7] [1e-6, 1e-7] (1e-6)
15} [2, 50] (25) [2, 50] (25)
max_length 1024 2048
batch size 128 128

Table 2: This table displays the range of the hyperparameter search. The values in parentheses() indicate the
hyperparameters used in the best-performing model in Alpaca Eval 2.0.

C Average Log Likelihood Analysis

In figure 7, we can observe how difference of average log likelihoods change after training when the entire
dataset is divided into five parts. In MIPO, the value increased slightly for data with large K but increased
significantly more than DPO for data with small K. Consequently, MIPO effectively enhances learning
for instances that require more training, while preventing overtraining in instances that require less.

D Instance-Level Analysis of Alignment Improvement

We analyzed the instance from the Ultrafeedback dataset that was poorly aligned in the Llama3-8B-instruct
model. For example where the difference in average log likelihood (denoted as K) between the chosen
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Figure 7: Difference in average log likelihood changes after training in every 20% quantiles.

and rejected responses was low, we observed the changes in the model’s response and the corresponding
average log likelihood after training.

As shown in Figure 8, before training, the response generated by Llama-3-Instruct did not follow
the instructions properly. The average log likelihood difference was —4.82, indicating that the rejected
response had a higher average log likelihood than the chosen response, thereby reflecting poor alignment.

Figure 9 illustrates the changes in responses after training with DPO and MIPO. In the case of MIPO,
the generated response was similar to the original chosen responses, whereas the response produced by
DPO still deviated significantly from the chosen one. Numerically, for MIPO, the average log likelihood
difference improved from —4.82 to —0.01. In contrast, for DPO, it deteriorated further to —13.28. These
results suggest that MIPO effectively enhanced the alignment of previously badly aligned instances, while
DPO, which does not assign additional weight to such instances, yielded inferior outcomes.
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[ll"”input prompt""" \

Q: Given the prompt and a response, classify the them to "yes" if response is "yes, and"
type. Otherwise classify it as "no". "Yes, and" is a rule-of-thumb in improvisational comedy
that suggests that a participant in a dialogue should accept what another participant has
stated ("Yes") and then expand on that line of thought or context ("and..."). 1 In short, a
"Yes, and" is a dialogue exchange in which a speaker responds by adding new information
on top of the information/setting that was constructed by another speaker. Note that a
"Yes, and" does not require someone explicitly saying 'yes, and..." as part of a dialogue
exchange, although it could be the case if it agrees with the description above. There are
many ways in which a response could implicitly/explicitly agree to the prompt without
specifically saying 'yes, and...".

Prompt: What should we name this beautiful child?

Response: | feel as if he should have the name of an exalted status that everyone will bow
down and respect him in the future.

A:

ann nnn»

chosen response

No

nnn»

“"rejected response

Oh, | see! Based on your response, | would classify this as a "no" because it doesn't follow the
"yes, and" rule of improvisational comedy. Instead of adding new information or expounding
on the previous statement, the response suggests a fixed and specific idea for the child's
name without considering other possibilities or perspectives. Let's try to come up with some
other name suggestions together!

nnn»

“””1 lama-3-8B-Instruct response

| would classify this response as "yes". The response agrees with the idea of giving the child a
name that commands respect and admiration, and then expands on that idea by specifying
the type of name that would achieve that goal.

Log Likelihood Analysis

Average Log Likelihood Difference (K) in Llama3-8B-Instruct : -4.82

o )

Figure 8: Poorly Aligned Example Before Preference Optimization
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input prompt””” \

Q: Given the prompt and a response, classify the them to "yes" if response is "yes, and"
type. Otherwise classify it as "no". "Yes, and" is a rule-of-thumb in improvisational
comedy that suggests that a participant in a dialogue should accept what another
participant has stated ("Yes") and then expand on that line of thought or context
("and..."). 1 In short, a "Yes, and" is a dialogue exchange in which a speaker responds by
adding new information on top of the information/setting that was constructed by
another speaker. Note that a "Yes, and" does not require someone explicitly saying 'yes,
and..."' as part of a dialogue exchange, although it could be the case if it agrees with the
description above. There are many ways in which a response could implicitly/explicitly
agree to the prompt without specifically saying 'yes, and...".

Prompt: What should we name this beautiful child?

Response: | feel as if he should have the name of an exalted status that everyone will
bow down and respect him in the future.

A:

nnn

“""MIPO response
no

nnn

“””DPO response
Yes

The response accepts the idea of giving the child a name that commands respect and adds
to the idea by specifying the type of name that would achieve this goal, which is an
example of a "Yes, and" response."

Log Likelihood Analysis

Average Log Likelihood Difference in Llama3-8B-Instruct : -4.82
Average Log Likelihood Difference in Llama3-8B-Instruct-MIPO : -0.01 (+ 4.81)
Average Log Likelihood Difference in Llama3-8B-Instruct-DPO : -13.28 (- 8.46)

/

Figure 9: Poorly Aligned Example After Preference Optimization
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