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Abstract

Preference optimization methods typically be-001
gin training with a well-trained SFT model002
as a reference model. In RLHF and DPO, a003
regularization term is used during the prefer-004
ence optimization process to prevent the policy005
model from deviating too far from the refer-006
ence model’s distribution, thereby avoiding the007
generation of anomalous responses. However,008
if the reference model is not aligned with the009
given data and requires significant deviation010
from its current state, a regularization term may011
actually hinder the model alignment. In this012
study, we propose Modulated Intervention013
Preference Optimization (MIPO) to address014
this issue. MIPO modulates the degree of inter-015
vention from the reference model based on how016
well the given data is aligned with it. If the data017
is well-aligned, the intervention is increased to018
prevent the policy model from diverging sig-019
nificantly from reference model. Conversely,020
if the alignment is poor, the interference is re-021
duced to facilitate more extensive training. We022
compare MIPO and DPO using Mistral-7B and023
Llama3-8B on Alpaca Eval 2.0 and MT-Bench,024
showing that MIPO consistently outperforms025
DPO across various evaluation scenarios026

1 Introduction027

As the performance of Large Language Models028

(LLMs) trained with a large amount of data has029

been attracting attention, methods (Chowdhery030

et al., 2023; Touvron et al., 2023; Brown et al.,031

2020) for training them have been actively studied.032

The commonly used LLM training pipeline is to033

pretrain LLM using a large amount of data, and034

then use the instruction-tuning method (Wei et al.,035

2021) to allow LLM to follow the human-provided036

instruction.037

However, it is difficult to train LLM to produce038

the desired output (helpful, harmless) or to pre-039

vent LLM from producing the output that LLM040

should not produce (Bai et al., 2022a). Therefore,041

Figure 1: Alpacaeval 2.0 scores for MIPO and DPO
implementations on Mistral-7B-Base and Llama-8B-
Instruct. v0.1 is a model trained on different dataset.

LLM alignment methods employing human feed- 042

back have started to gain significant attention. 043

Among these methods, Reinforcement Learning 044

from Human Feedback (RLHF) (Christiano et al., 045

2017; Askell et al., 2021) received significant atten- 046

tion. Models trained with RLHF are well-aligned 047

with human feedback, demonstrating reliable per- 048

formance as a result (Korbak et al., 2023; Havrilla 049

et al., 2024; Dai et al., 2023). However, the RLHF 050

approach involves a complex training process, in- 051

cluding the training of a reward model, which has 052

posed significant challenges in the implementation 053

and training (Casper et al., 2023; Peng et al., 2023). 054

Direct Preference Optimization (DPO) (Rafailov 055

et al., 2024) is a method designed to overcome 056

these limitations. In DPO, the optimization prob- 057

lem of RLHF is modified to eliminate the reward 058

model and train only the policy model. This makes 059

it easier to train DPO compared to RLHF, and DPO 060

also effectively learned human preferences, demon- 061

strating strong performance. 062

In DPO and RLHF, the policy model is trained 063
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to align with the instance while ensuring its distri-064

bution does not move significantly away from the065

reference model’s distribution to prevent it from066

generating anomalous responses (ex. hallucina-067

tions). Therefore, if the reference model is mod-068

erately aligned with the given preference pair, it069

could be possible to train a well-aligned policy070

model for the given data without significantly di-071

verging from the reference model’s distribution.072

However, if the reference model is not aligned with073

the given preference pair, it will be difficult for the074

policy model to align with the data through minor075

adjustments, without moving far from the reference076

model’s distribution. Therefore, it is crucial to ad-077

just the training objective based on how well the078

reference model is aligned.079

In this paper, we propose a preference optimiza-080

tion algorithm, Modulated Intervention Prefer-081

ence Optimization (MIPO), to address this issue.082

As seen in Figure 2, MIPO utilizes the average083

log likelihood to measure how well the reference084

model is aligned with the given preference pair.085

Through this value, the MIPO objective is config-086

ured to modulate the intervention of the reference087

model, allowing more extensive training on pairs088

that are judged to be poorly aligned with the ref-089

erence model. We use Alpaca Eval 2.0 and MT-090

Bench to compare the performance of MIPO with091

DPO and other preference optimization methods.092

Across diverse experimental settings, MIPO con-093

sistently achieves outstanding performance. To094

summarize, MIPO has the following properties:095

• Modulate the intervention of the Reference096

Model: MIPO is a novel approach that modu-097

lates the intervention of the reference model098

for each instance. It determines the extent of099

the reference model’s intervention based on100

the degree of alignment. MIPO maintains per-101

formance on pairs where the reference model102

already well-aligned, while simultaneously103

achieving substantial performance gains on104

pairs where the reference model previously105

underperformed (Section $4).106

• Outstanding Benchmark Performance:107

We conduct experiments using Llama3-8B-108

Instruct (AI@Meta, 2024) and Mistral-7B-109

Base (Jiang et al., 2023a) to verify the ef-110

fectiveness of MIPO in various models. On111

Alpaca Eval 2.0, our proposed method consis-112

tently outperforms DPO. As we can see in Fig-113

ure 1, in Llama3-8B-Instruct, it outperforms114

DPO by approximately 9 points (+36.07%), 115

and in Mistral-7B-Base, it outperforms about 116

8 points (+54.24%). In most cases, MIPO 117

achieves the best performance not only com- 118

pared to DPO but also when compared to other 119

methods. On MT-Bench, MIPO also exhibits 120

the best performance among the compared 121

approaches (Section $6.1). 122

• Simple and Effective Training: The high- 123

performance model can be found in MIPO 124

by tuning only the hyper-parameter β. More- 125

over, consistently outstanding performance 126

is achieved within a specific range of β, in- 127

dependent of model architecture or dataset. 128

Thus, unlike other methods that require ex- 129

tensive tuning, this approach allows for easy 130

acquisition of a high-performance model with 131

minimal tuning effort (Section $6.2). 132

2 Related Works 133

After being pretrained on a large amount of data 134

(Chowdhery et al., 2023) and fine-tuned (Chung 135

et al., 2024; Ramamurthy et al., 2022), LLMs have 136

achieved notable performance across many tasks 137

(Touvron et al., 2023; Brown et al., 2020; Thop- 138

pilan et al., 2022). However, LLMs that could 139

generate responses that were even more helpful 140

and harmless were needed, leading to the develop- 141

ment of preference optimization methods (Chris- 142

tiano et al., 2017; Bai et al., 2022a,b) that fine-tune 143

LLMs more closely to human feedback. 144

RLHF (Askell et al., 2021; Ouyang et al., 2022) 145

is one such preference optimization method for 146

LLM alignment. In RLHF, preference data is used 147

to train a reward model, which is then utilized to 148

optimize the policy model by Proximal Policy Opti- 149

mization (Schulman et al., 2017). RLHF effectively 150

aligns models with human feedback, resulting in 151

good performance (Korbak et al., 2023; Havrilla 152

et al., 2024). However, there are challenges, such 153

as the difficulty of obtaining scored data, ensuring 154

stable training, and the necessity of training a re- 155

ward model (Casper et al., 2023; Peng et al., 2023; 156

Wang et al., 2024). 157

DPO is a preference optimization method that 158

solves optimization problem of RLHF in a more 159

easier and efficient manner. (Rafailov et al., 2024) 160

proposed DPO to eliminate the reward model in 161

RLHF and train only the policy model with prefer- 162

ence data. It is simple compared to RLHF, and the 163

training phase is more stable. So it has become one 164
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Figure 2: Optimization process of MIPO. In DPO, the objective utilizes a consistent regularization term (red
part in DPO objective) for the reference model across all instances (A, B, C in Figure), regardless of the degree of
alignment of each instance. However, in MIPO, the alignment of each instance with the reference model is first
assessed by using the difference in average log likelihood. Based on this value, K, the extent to which the reference
model will intervene in the learning process is determined and subsequently reflected in the MIPO objective.

of the widely used method for aligning language165

models. However, DPO also has its drawbacks like166

dependency on the reference model and issues with167

length exploitation (Liu et al., 2024; Gorbatovski168

et al., 2024; Xu et al., 2024). Therefore, new model169

alignment methods such as KTO (Ethayarajh et al.,170

2024), IPO (Azar et al., 2024) and ORPO (Hong171

et al., 2024) continue to emerge.172

However, most methods including DPO does173

not take into account the differences in the degree174

of alignment of the reference model between pref-175

erence pairs. As mentioned earlier, if the refer-176

ence model is already well-aligned, only minimal177

training will be needed to achieve alignment. Con-178

versely, if the reference model is completely mis-179

aligned, extensive training will be required. How-180

ever, DPO does not account for these differences181

(Section $3.3).182

To address this issue, we propose MIPO, which183

varies the learning weights among instances by184

modulates the degree of intervention from the ref-185

erence model (Section $4).186

3 Background187

In this section, we will review the DPO in Section188

$3.2, and analyze the ineffective aspects of DPO in189

Section $3.3.190

3.1 Terminology191

D =
{
xi, yiw, y

i
l

}N

i=1
is for pairwise-preference192

dataset, where xi is prompt and yiw is chosen (pre-193

ferred) response and yil is rejected (dis-preferred) 194

response for that prompt. πref is reference model, 195

initial LLM that we start training from. πθ is policy 196

model, which is a model we train. 197

3.2 DPO 198

DPO employs the Bradley-Terry (BT) model 199

(Bradley and Terry, 1952) to represent the distri- 200

bution of human preference. BT model represents 201

human preference distribution for yw, yl by the 202

reward function as follows: 203

p(yw > yl|x) =
exp(r(x, yw))

exp(r(x, yw)) + exp(r(x, yl))
(1) 204

DPO’s reward function is reparameterized from 205

the RLHF’s objective as following equation. 206

r(x, y) = β log
πθ(y|x)
πref (y|x)

+ β logZ(x) (2) 207

From equations (1) and (2), we can formulate 208

preference distribution by using πref and πθ. Sub- 209

sequently, the DPO objective is derived as ex- 210

pressed in (3) 211

(3)

LDPO(πθ;πref )

= E(x,yw,yl) ∼D

[
− log σ(βlog

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)

]
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3.3 Ineffective Aspects of DPO212

DPO does not consider how well the preference213

pairs are aligned.214

Looking at the reward of DPO in Eq (2) with-215

out Z(x). It can be seen that the reward is the216

difference between the log likelihood of the pol-217

icy model and the log likelihood of the reference218

model. This implies that DPO allows for high re-219

wards to be obtained solely by increasing the log220

likelihood of a response, without considering the221

degree to which the reference model already per-222

forms well on that response. Consequently, the223

training process proceeds without taking into ac-224

count the extent to which the reference model is225

aligned with the give preference data.226

For example, consider pair1, preference data227

where the reference model already well-aligned,228

and pair2, where it does not. Ideally, model will229

require to train slightly on pair1 to maintain its cur-230

rent performance, while it will require substantial231

training for pair2 compared to pair1.232

Let’s assume that the policy model has been233

trained so that the log likelihood of the cho-234

sen response increases by α compared to the235

reference model, while the log likelihood of236

the rejected response remains unchanged in237

both pairs (log πθ(yw|x) − log πref (yw|x) =238

α, log πθ(yl|x) − log πref (yl|x) = 0). In DPO,239

both pairs would yield the same loss by Eq (3).240

This implies that the improvement in log likeli-241

hood for pair1 and pair2 holds equal significance242

in DPO.243

Consequently, DPO trains the model without dis-244

criminating between instances of strong and weak245

alignment with the reference model. This uniform246

approach can result in insufficient training for pairs247

where the reference model needs improvement and248

excessive training for pairs where preferences are249

already adequately captured. Therefore, this is-250

sue can negatively impact the performance of the251

trained model. Although we have only presented252

analysis for DPO above, most offline PO methods,253

including SimPO (Meng et al., 2024), do not take254

into account the varying alignment levels among255

instances.256

4 Methodology257

In this section, we explain why we use average log258

likelihood to determine how well reference model259

is aligned to data in Section $4.1. Then we intro-260

duce Modulated Intervention Preference Opti-261

mization (MIPO), an algorithm that adjusts the 262

degree of intervention from the reference model 263

based on the level of alignment in Section $4.2. 264

4.1 Measuring the Alignment Degree 265

To solve the problem of DPO mentioned above 266

Section $3.3, we first need to measure which pairs 267

are well-aligned to reference model and which pairs 268

are poorly aligned. 269

In the context of preference learning, being 270

"well-aligned" can be interpreted as the model be- 271

ing more likely to generate a chosen response yw 272

than a rejected response yl for a given input x. 273

However, using the difference in log likelihoods 274

between chosen and rejected responses to measure 275

alignment is not feasible, as log likelihood is highly 276

sensitivity to response length. If the lengths of the 277

chosen and rejected responses differ significantly, 278

the longer response’s log likelihood will be dispro- 279

portionately lower, regardless of individual token 280

probabilities. 281

Therefore, we decide to use of average log like- 282

lihood. It allows for a more fairer comparison of 283

generation probabilities between chosen and re- 284

jected responses, mitigating the impact of length 285

discrepancies. We have decided to use the differ- 286

ence in average log likelihood, K, as a metric to 287

assess the alignment of the reference model with a 288

given pair. 289

K =
log πref (yw|x)

|yw|
−

log πref (yl|x)
|yl|

(4) 290

We interpret a high K value as indicative of 291

strong alignment in the reference model, whereas a 292

low K value suggest insufficient alignment. Based 293

on this assumption, we propose our objective as 294

follows: 295

4.2 Deriving the MIPO Objective 296

LMIPO(πθ;πref ) = E(x,yw,yl) ∼D

− log σ(β (
log πθ(yw|x)

|yw|
− log πθ(yl|x)

|yl|
)︸ ︷︷ ︸

f(θ)

− β log(1 + eK)︸ ︷︷ ︸
q(K)

)

(5)

297

For the reasons mentioned above, the MIPO ob- 298

jective is designed to enhance the alignment of the 299
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policy model by using average log likelihood, f(θ).300

Additionally, it is adjusted based on the degree of301

alignment through q(K), which acts as a modulator302

for the degree of intervention from the reference303

model.304

Let’s examine the MIPO objective in two cases:305

4.2.1 When reference model is well aligned for306

a given pair307

It means K is large enough. Then, q(K) converges308

to K and the objective of MIPO can be expressed309

as follows.310

L = − log σ(β(
log πθ(yw|x)

|yw|
− log πθ(yl|x)

|yl|
)

−β(
log πref (yw|x)

|yw|
−

log πref (yl|x)
|yl|

))

(6)

311

The objective is calculated based on the differ-312

ence between the policy model’s average log like-313

lihood difference, f(θ), and this values of refer-314

ence model, K. Therefore, as f(θ) diverges further315

from K, the loss decreases, preventing the policy316

model from significantly diverging from the refer-317

ence model.318

4.2.2 When reference model is poorly aligned319

for a given pair320

It means K is low. In this case, q(K) approaches321

to 0 and objective can be expressed as follows.322

L = − log σ(β(
log πθ(yw|x)

|yw|
− log πθ(yl|x)

|yl|
))

(7)
323

Since the MIPO objective does not include a324

term for the reference model, it only considers325

the f(θ) for alignment, focusing solely on increas-326

ing this value. When compared to the case where327

q(K) = K, it is clear that the MIPO loss signifi-328

cantly greater because f(θ) is less than f(θ)−K(∵329

K < 0). Consequently, the policy model can be330

trained while diverging further from the distribu-331

tion of the reference model.332

In summary, the MIPO assesses how well the333

reference model is aligned with the given instance334

through the metric K. This metric is then used335

to calculate q(K), which determines the extent to336

which the reference model’s influence on the pol-337

icy model’s learning. When K is high, it indicates338

strong alignment with the given data. In this case,339

q(K) takes on the value of K, thereby increasing 340

the intervention of the reference model. Conse- 341

quently, the policy model train without diverging 342

significantly from the reference model. Conversely, 343

if K is low, q(K) becomes zero, allowing the pol- 344

icy model to train without intervention from the 345

reference model. 346

More detailed explanations about objective are 347

provided in the Section $6.5 and gradient analysis 348

can be found in Appendix A. 349

5 Experimental Settings 350

5.1 Datasets 351

5.1.1 Binarized UltraFeedback 352

We train models with Binarized UltraFeedback 353

Dataset (Cui et al., 2023). It consists of 64K pref- 354

erence pairs from diverse resources. 355

5.1.2 Llama3 UltraFeedback 356

Because there is a possibility that Binarized Ul- 357

trafeedback data was used in the training phase 358

of Llama3-8B-instruct, (Meng et al., 2024) pro- 359

posed new dataset. The data1 is created base on 360

responses generated by Llama3-8B-Instruct by us- 361

ing the Binarized Ultrafeedback prompts. Among 362

these responses, the highest scoring response and 363

the lowest scoring response, which are scored by 364

reward model (Jiang et al., 2023b), are used to form 365

preference pairs. In this study, models trained using 366

this dataset is labeled with the v0.1 tag. 367

5.2 Evaluation 368

The trained models are evaluated on AlpacaEval2.0 369

and MT-Bench. 370

5.2.1 Alpaca Eval 2.0 371

Alpaca Eval 2.0 (Li et al., 2023; Dubois et al., 2024) 372

consists of 805 prompts. The responses generated 373

using these prompts are compared against those 374

produced by GPT-4-Turbo. Through this compari- 375

son, Alpaca Eval 2.0 quantify the model’s perfor- 376

mance by calculating the percentage of instances 377

where its response surpass those of GPT-4-Turbo, 378

expressed as a win rate (WR). AlpacaEval 2.0 also 379

provides length controlled win rate (LC) that con- 380

siders bias due to length. 381

5.2.2 MT-Bench 382

MT-Bench (Zheng et al., 2023) is a multi-turn 383

benchmark consisting of 80 distinct instructions 384

1https://huggingface.co/datasets/princeton-nlp/llama3-
ultrafeedback.
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Method
Mistral-7B-Base Llama3-8B-Instruct Llama3-8B-Instruct-v0.1

Alpaca Eval 2 MT-Bench Alpaca Eval 2 MT-Bench Alpaca Eval 2 MT-Bench

LC(%) WR(%) Avg. Score LC(%) WR(%) Avg. Score LC(%) WR(%) Avg. Score

ORPO 14.7* 12.2* - - - - 28.5* 27.4* -
KTO 13.1* 9.1* - - - - 33.1* 31.8* -

SimPO 21.4* 20.8* 7.05 - - - 44.7* 40.5* 7.72
DPO 15.1* 12.5* 7.01 25.1 21.2 7.95 40.3* 37.9* 7.79
MIPO 22.0 17.5 7.12 34.1 30.0 7.97 43.6 40.7 7.92

Table 1: AlpacalEval 2.0 and MT-Bench scores for preference optimization methods in Mistral-7B, Llama3-8B. The
v0.1 tag refers to a model trained using Llama3 Ultrafeedback data, and the others are all trained with Binarized
UltraFeedback. Results denoted with (*) are sourced from (Meng et al., 2024).

to evaluate model performance. Model generated385

responses from these prompts are scored by using386

GPT-4. The benchmark’s strength lies in its diverse387

category coverage, enabling comprehensive model388

assessment across multiple dimensions.389

5.3 Models and Baselines390

To compare across different model families, we use391

Mistral-7B-Base (Jiang et al., 2023a) and Llama3-392

8B-Instruct (AI@Meta, 2024) as base model for393

preference optimization. We compare MIPO with394

DPO and also with SimPO, which utilizes average395

log likelihood. Additionally, results are compared396

with offline preference optimization methods, such397

as ORPO and KTO.398

We implement MIPO, DPO and SimPO by us-399

ing TRL (von Werra et al., 2020) and the alignment400

book (Tunstall et al.). When the Alpaca Eval 2.0401

scores for models trained with DPO and SimPO402

are lower than those reported in the reference2, we403

adapts the reference values for a fair comparison.404

For MT-Bench evaluations, we utilize the check-405

points in reference to generate responses and eval-406

uate. Additionally, we reference results from it for407

ORPO and KTO.408

6 Result and Analysis409

6.1 Benchmark Results410

As shown in Table 1, MIPO consistently achieves411

higher scores compared to DPO and demonstrates412

outstanding performance relative to other methods413

in the most cases.414

Comparative analysis using Alpaca Eval 2.0 re-415

veals that MIPO consistently and significantly out-416

performs DPO across all experiments. Moreover,417

MIPO achieves performance levels comparable to418

2https://github.com/princeton-nlp/SimPO

Figure 3: Alpaca Eval 2.0 scores in Mistral and Llama3
based on β. The dotted line represents the performance
of DPO.

SimPO, which had previously demonstrated the 419

highest performance. 420

In MT-Bench, MIPO consistently exhibits en- 421

hanced performance relative to DPO and SimPO 422

across all experiments. 423

6.2 Performance Based on β 424

One of the advantages of MIPO is the ease of hyper- 425

parameter tuning. MIPO objective contains only 426

a single hyperparameter, β, allowing for optimal 427

model training by adjusting just this one. Figure 428

3 illustrates how the model’s performance varies 429

with different β in Mistral-7B and Llama-8B. As 430

depicted in Figure 3, MIPO maintains exception- 431

ally high performance across a similar beta range 432

([5, 50]), demonstrating robustness across various 433

models and datasets. The optimal model configura- 434

tion is consistently identified within this range. 435

In conclusion, MIPO demonstrates a significant 436

advantage: it consistently produces models that 437

substantially outperform DPO and approach op- 438

timal performance levels, achieved through the 439

tuning of a single hyperparameter, β, within a 440
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moderate range. This capability persists across441

diverse model architectures and datasets, under-442

scoring MIPO’s robustness and effectiveness.443

6.3 Comparison with SimPO444

As shown in Table 1, although MIPO and SimPO445

exhibit fluctuating performance, MIPO has a clear446

advantage over SimPO in terms of model stability447

and practical usability.448

LSimPO(πθ) = E(x,yw,yl) ∼D

β

(
log πθ(yw|x)

|yw|
− log πθ(yl|x)

|yl|
− γ

) (8)449

As can be seen from the SimPO objective Eq450

8, SimPO employs a fixed hyperparameter, γ, for451

every instance during training. As noted in (Meng452

et al., 2024), the model’s performance is sensitive453

to the value of γ, necessitating meticulous hyper-454

parameter tuning for both β and γ to obtain an455

optimal model. However, in MIPO, without intro-456

ducing any new hyperparameters, a regularization457

term q(K) is applied based on alignment degree458

of each instance, enabling more refined loss ad-459

justments. In addition, as demonstrated in Section460

6.2, MIPO achieves stable and consistently high461

performance with respect to hyperparameter vari-462

ations. For these reasons, in practical scenarios463

where one seeks efficient training of LLMs and464

aims to achieve optimal results with minimal effort,465

MIPO is a considerably superior choice compared466

to SimPO, which is highly sensitive to hyperparam-467

eter tuning.468

6.4 Analysis about Average Log Likelihood469

Figure 4, represents the average log likelihood dif-470

ference between chosen and rejected responses for471

the model on the evaluation dataset, showing how472

this difference changes after training. It specifically473

highlights how the values for instances in the top474

20% and bottom 20% of average log likelihood475

differences in reference model have evolved.476

At this point, the top 20% are instances with a477

large average log likelihood difference in reference478

model, indicating they are already well-aligned479

data, while the bottom 20% are poorly aligned and480

require more training. The results for the overall481

distribution can be found in Appendix C.482

In the bottom 20%, the average log likelihood483

difference for DPO actually decrease, whereas for484

MIPO, the average log likelihood clearly increase.485

Figure 4: The difference in average log likelihood
changes after training for both MIPO and DPO, as ap-
plied to Mistral-7B-Base and Llama3-8B-Instruct.

Figure 5: MIPO loss in early stages of training

Conversely, in the top 20%, the average log like- 486

lihood for DPO increase significantly, while for 487

MIPO, it only increase slightly. This pattern is 488

observed in both the Llama3-8B and Mistral-7B. 489

This indicates that in DPO, the data that is al- 490

ready well-aligned continued to be better aligned 491

through further training, while the data that is not 492

well-aligned do not see significant improvement. 493

However, in MIPO, the training is operated to main- 494

tain performance on well-aligned data while signif- 495

icantly improving the alignment of poorly aligned 496

data. MIPO achieves the intended outcome de- 497

scribed in Section $4.2, thereby effectively enhanc- 498

ing model alignment. 499

6.5 Analysis about MIPO objective function 500

As seen in Eq (5), the MIPO objective can be ex- 501

pressed as the difference between the average log 502

likelihood of the chosen response and rejected re- 503

sponse in policy model and minus q(K) consists 504

of values calculated from the reference model. 505

Let’s examine how the MIPO objective behaves 506

during the training process in two scenarios. 507
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Figure 6: MIPO loss in high K and low K

6.5.1 Early Stage in Training508

In the early stage of training, there is minimal dif-509

ference between the reference model and the policy510

model. Therefore, the average log likelihood differ-511

ence of the policy model does not significantly di-512

verge from that of the reference model (πref ≈ πθ).513

Consequently, the MIPO loss can be written as514

− log
(
1 + e−β(K−ln(1+eK))

)
. However, DPO515

loss for all instance initially − log σ(0). This can516

be observed in Figure 5.517

6.5.2 Loss Reflection During Training518

Next, let’s examine how the loss for two pairs,519

pair1 which has high K value and pair2 which520

has low K value, behave during training. Suppose521

that the average log likelihood difference of the pol-522

icy model, f(θ), increases by α > 0 compared to523

the reference model for both pairs (f(θ) = K+α).524

In Figure 6, the red section represents pair1.525

Since pair1 has a high K, the MIPO objective is526

expressed as − log σ(f(θ)−K) (the red line in the527

figure). Therefore, the MIPO loss is − log σ(α),528

as we can be seen in the graph. Next, pair2 is529

represented by the green section. Since K is low,530

the MIPO objective is expressed as − log σ(f(θ))531

(the green line in the figure). Therefore, the MIPO532

loss is − log σ(K + α), which is larger than the533

loss for pair1. Thus, even with the same amount534

of increase, pair2 has a larger loss, indicating that535

training is accelerated for pairs with lower K.536

Additionally, the figure’s dotted line facilitates a537

comparative analysis between the scenarios where538

the q(K) is simply K. In dotted line, even if K is539

low, the loss is calculated based on the K. Thus,540

when the same increase occurs, the loss is calcu-541

lated equally for both pair1 and pair2, causing the542

model to train with the same weight for both pairs.543

As a result, the MIPO objective results in a rel-544

atively large loss when K is low. Thus, more ex-545

tensive training can occur on poorly aligned data. 546

Conversely, in the case of well-aligned data, the in- 547

tervention from the reference model is substantial, 548

causing the objective to be calculated based on the 549

values of the reference model. This prevents the 550

policy model from diverging significantly from the 551

reference model. 552

7 Conclusion 553

In this paper, we proposed Modulated Interven- 554

tion Preference Optimization (MIPO). MIPO ad- 555

justs the objective based on the degree of alignment 556

of the reference model on the given instances. For 557

pairs that require more learning, MIPO reduces 558

the intervention of the reference model, allowing 559

the policy model to diverge from it and find bet- 560

ter weights. Conversely, for pairs that are better 561

aligned, the intervention of the reference model is 562

maintained, ensuring that the policy model does 563

not significantly diverge from the reference model. 564

Through experiments, we found that models 565

trained using MIPO demonstrated significantly im- 566

proved performance compared to those trained us- 567

ing DPO. Moreover, we observed a notable in- 568

crease in the average log likelihood difference for 569

instances with initially small differences from the 570

reference model, aligning with our expectations 571

compared to DPO. 572

Limitations 573

Average log likelihood is not an absolute mea- 574

sure of the degree of alignment 575

The degree of preference between the chosen and 576

rejected responses can vary for each preference pair. 577

In some cases, the chosen and rejected responses 578

might be decided by a very subtle difference, while 579

in others, the difference could be significant. If a 580

given preference pair has only a slight difference, 581

the model may be well-aligned, but the average 582

log probability difference (K) is unlikely to be 583

large. Therefore, it is difficult to accurately assert 584

that a large K indicates superiority on a particular 585

preference pair. The K alone does not provide an 586

absolute measure of performance across different 587

preference pairs. 588

Although MIPO does not account for the dif- 589

ficulty differences between preference pairs, it 590

is likely that pairs where the model was poorly 591

aligned improved more, as higher average log like- 592

lihoods typically indicate better performance for 593

each pair. 594
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Ethical Considerations595

We trained our model using publicly available data,596

and we have provided citations for all figures ref-597

erenced from other studies. We received some598

help with the grammar and translation of the text599

through a AI Writing assistant.600
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Appendices 787

A Gradient Analysis 788

Gradients of MIPO 789

(9)∇LMIPO(πθ) = −βE(x,yw,yl) ∼Dm(θ) ·
[
∇ log πθ(yw|x)

|yw|
− ∇ log πθ(yl|x)

|yl|

]
where 790

(10)m(θ) = σ

(
−β

log πθ(yw|x)
|yw|

+ β
log πθ(yl|x)

|yl|
+ β log(1 + eK)

)
The value of m(θ) represents the gradient weight in MIPO. When K is high, m(θ) becomes 791

σ
(
−β log πθ(yw|x)

|yw| + β log πθ(yl|x)
|yl| + βK

)
. Therefore, the gradient weight m(θ) decreases as the policy 792

model moves further away from the reference model. 793

In the opposite case, when K is low (K < 0), m(θ) approaches σ
(
−β log πθ(yw|x)

|yw| + β log πθ(yl|x)
|yl|

)
. 794

Similarly to our analysis of MIPO objective, when K is large, the gradient is heavily influenced by 795

the reference model. Conversely, when K is small, the gradient experiences less interference from the 796

reference model and thus attains larger values. Consequently, in cases where K is small, the gradient 797

weights increase, leading to more extensive training on instances that are poorly aligned with the reference 798

model. 799

B Implementation Details 800

We trained models using 8 A100 80GB GPUs. We experimented with a range of hyperparameters 801

for MIPO across various intervals. For other existing methods like SimPO and DPO, we use well- 802

established hyperparameters where available, and search within the given range when a range was 803

provided. Commonly, We use a cosine learning rate schedule with a 10% warmup, and training was 804

conducted with a maximum of one epoch. The hyperparameter range was set according to ranges 805

commonly used in previous studies, such as learning rate and max length, and the experiments were 806

conducted accordingly. Further details can be found in Table 2. 807

MIPO
Mistral-7B-Base Llama-8B-Instruct

learning rate [1e-6, 1e-7] [1e-6, 1e-7] (1e-6)
β [2, 50] (25) [2, 50] (25)

max_length 1024 2048
batch size 128 128

Table 2: This table displays the range of the hyperparameter search. The values in parentheses() indicate the
hyperparameters used in the best-performing model in Alpaca Eval 2.0.

C Average Log Likelihood Analysis 808

In figure 7, we can observe how difference of average log likelihoods change after training when the entire 809

dataset is divided into five parts. In MIPO, the value increased slightly for data with large K but increased 810

significantly more than DPO for data with small K. Consequently, MIPO effectively enhances learning 811

for instances that require more training, while preventing overtraining in instances that require less. 812

D Instance-Level Analysis of Alignment Improvement 813

We analyzed the instance from the Ultrafeedback dataset that was poorly aligned in the Llama3-8B-instruct 814

model. For example where the difference in average log likelihood (denoted as K) between the chosen 815

11



(a) Mistral-7B-Base (b) Llama3-8B-Instruct

Figure 7: Difference in average log likelihood changes after training in every 20% quantiles.

and rejected responses was low, we observed the changes in the model’s response and the corresponding816

average log likelihood after training.817

As shown in Figure 8, before training, the response generated by Llama-3-Instruct did not follow818

the instructions properly. The average log likelihood difference was −4.82, indicating that the rejected819

response had a higher average log likelihood than the chosen response, thereby reflecting poor alignment.820

Figure 9 illustrates the changes in responses after training with DPO and MIPO. In the case of MIPO,821

the generated response was similar to the original chosen responses, whereas the response produced by822

DPO still deviated significantly from the chosen one. Numerically, for MIPO, the average log likelihood823

difference improved from −4.82 to −0.01. In contrast, for DPO, it deteriorated further to −13.28. These824

results suggest that MIPO effectively enhanced the alignment of previously badly aligned instances, while825

DPO, which does not assign additional weight to such instances, yielded inferior outcomes.826
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“””input prompt”””

Q: Given the prompt and a response, classify the them to "yes" if response is "yes, and" 
type. Otherwise classify it as "no". "Yes, and" is a rule-of-thumb in improvisational comedy 
that suggests that a participant in a dialogue should accept what another participant has 
stated ("Yes") and then expand on that line of thought or context ("and..."). 1 In short, a 
"Yes, and" is a dialogue exchange in which a speaker responds by adding new information 
on top of the information/setting that was constructed by another speaker. Note that a 
"Yes, and" does not require someone explicitly saying 'yes, and...' as part of a dialogue 
exchange, although it could be the case if it agrees with the description above. There are 
many ways in which a response could implicitly/explicitly agree to the prompt without 
specifically saying 'yes, and...'. 
Prompt: What should we name this beautiful child? 
Response: I feel as if he should have the name of an exalted status that everyone will bow 
down and respect him in the future.
A:

“””rejected response”””

Oh, I see! Based on your response, I would classify this as a "no" because it doesn't follow the 
"yes, and" rule of improvisational comedy. Instead of adding new information or expounding 
on the previous statement, the response suggests a fixed and specific idea for the child's 
name without considering other possibilities or perspectives. Let's try to come up with some 
other name suggestions together!

Log Likelihood Analysis

Average Log Likelihood Difference 𝑲 in Llama3-8B-Instruct : -4.82

“””Llama-3-8B-Instruct response”””

I would classify this response as "yes". The response agrees with the idea of giving the child a 
name that commands respect and admiration, and then expands on that idea by specifying 
the type of name that would achieve that goal.

“””chosen response”””

No

Figure 8: Poorly Aligned Example Before Preference Optimization
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“””input prompt”””

Q: Given the prompt and a response, classify the them to "yes" if response is "yes, and" 
type. Otherwise classify it as "no". "Yes, and" is a rule-of-thumb in improvisational 
comedy that suggests that a participant in a dialogue should accept what another 
participant has stated ("Yes") and then expand on that line of thought or context 
("and..."). 1 In short, a "Yes, and" is a dialogue exchange in which a speaker responds by 
adding new information on top of the information/setting that was constructed by 
another speaker. Note that a "Yes, and" does not require someone explicitly saying 'yes, 
and...' as part of a dialogue exchange, although it could be the case if it agrees with the 
description above. There are many ways in which a response could implicitly/explicitly 
agree to the prompt without specifically saying 'yes, and...'. 
Prompt: What should we name this beautiful child? 
Response: I feel as if he should have the name of an exalted status that everyone will 
bow down and respect him in the future.
A:

“””MIPO response”””
no

“””DPO response”””
Yes
The response accepts the idea of giving the child a name that commands respect and adds 
to the idea by specifying the type of name that would achieve this goal, which is an 
example of a "Yes, and" response."

Log Likelihood Analysis

Average Log Likelihood Difference in Llama3-8B-Instruct : -4.82
Average Log Likelihood Difference in Llama3-8B-Instruct-MIPO : -0.01 (+ 4.81)
Average Log Likelihood Difference in Llama3-8B-Instruct-DPO : -13.28 (- 8.46)

Figure 9: Poorly Aligned Example After Preference Optimization
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