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Abstract

Motivation: Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strat-
egies or medical devices (/In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimenta-
tions, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifi-
able models (e.g. reaction networks), parameter estimation is not enough to generate complete populations of
Virtual Patients (VPs), i.e. populations guaranteed to show the entire spectrum of model behaviours (phenotypes),
thus ensuring representativeness of the trial.

Results: We present methods and software based on global search driven by statistical model checking that, starting
from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and
medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the
whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to
user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guar-
anteeing representativeness while avoiding over-representation of behaviours. We proved the effectiveness of our
algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating
a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its repre-
sentativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital
of Lausanne. The datasets are respectively covered by our VPs within Average Normalized Mean Absolute Error of
15%, 20% and 35% (90% of the latter dataset is covered within 20% error).

Availability and implementation. Our open-source software is available at https://bitbucket.org/mclab/vipgenerator
Contact: tmancini@di.uniroma.it

Supplementary information: Supplementary data are available at Bioinformatics online.

of interest at different levels of scale, ranging from molecules (e.g.
Roy and Roy, 2010), molecular and gene networks (e.g. Le Novére,
2015), cells (e.g. Bichler et al., 2014), organs (e.g. Cox et al., 2009),
up to body compartments (e.g. Balazki ez al., 2018) and the whole
body (e.g. Hester et al., 2011).

1 Background

Model-based approaches to safety and efficacy assessment of drugs,
pharmacological treatments or medical devices (In Silico Clinical
Trials, ISCT) hold the promise to decrease time and cost for the
needed experimentations, reduce the need for animal and human
testing, and enable precision medicine, where personalized treat-

ments or devices optimized for each patient can be designed before 1.1 Motivation

being actually administered or implanted (Avicenna Project, 2016;
Pappalardo et al., 2019). To enable ISCT, quantitative mechanistic
models (Virtual Physiological Human, VPH, models) of the human
(patho-) physiology as well as of the relevant medicinal drugs are
being actively developed and validated. Such models define drug
concentration time courses and effects (PK/PD) and the physiology

One of the main enablers to perform an ISCT is the availability of a
finite population of virtual patients, i.e. computational models able
to predict (via simulation) relevant clinical measurements (those
needed to assess efficacy/safety of the therapy, i.e. drug, treatment
or device, under trial) from time courses of clinical actions (such as
drug administrations, see, e.g. EMA, 2019; FDA, 2018). For an
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ISCT to provide compelling evidence of the safety/efficacy of a ther-
apy and to support its design and revision, such population must be
complete, i.e. representative of the entire spectrum of behaviours
deemed of interest, from both physiology and drug PK/PD points of
view.

Virtual Patients (VPs) are typically derived by parameterizing
quantitative mechanistic VPH models, which in turn are defined by
encoding qualitative knowledge of the human physiology of inter-
est (e.g. from the literature or pathways databases like KEGG,
Kanehisa et al., 2017 or Reactome, Fabregat et al., 2018) as well as
PK/PD of pharmaceutical compounds (e.g. Lippert et al., 2019)
into mathematical systems such as, e.g. Ordinary Differential
Equations (ODEs) or difference equations (see, e.g. Bartocci and
Li6, 2016; Irurzun-Arana et al., 2017). Indeed, it is by means of
parameters (such as stoichiometric constants, rates or other
patient-specific quantities) that such models take into account
inter-subject variabilities, as different parameter assignments yield
different model trajectories, also in terms of reactions to drug
administrations.

1.2 State of the art in computing populations of VPs
Different approaches have been proposed to compute a population
of VPs for quantitative VPH models. Such approaches greatly differ
depending on whether the given model is identifiable or non-
identifiable.

For identifiable models, a complete population of VPs can be
computed by fitting the models against a set of in vivo measure-
ments deemed representative of the entire spectrum of behaviours of
interest. As an example, the PBPK simulator in Lippert et al. (2019)
provides a large set of VPs compliant with PBPK regulations from
EMA, FDA, EFSA or EPA. Also, in Kovatchev et al. (2009) a VPH
model is described, and a population of 300 VPs is provided for it,
representing 100 adults, 100 adolescents and 100 children. Such
VPs have been approved by FDA as a substitute for pre-clinical ani-
mal testing of new treatment strategies for Type 1 Diabetes
Mellitus. The above models enjoy a very important property: all
their parameters describe physiological characteristics, have known
ranges of values, and can be reliably estimated through in-vivo or in-
vitro measurements.

The situation becomes more intricate for non-identifiable mod-
els, for which, to our knowledge, no approach is available to com-
pute complete populations of VPs. In fact, although for such models
parameter estimation can still be used (e.g. Allen et al., 2016; Rieger
et al., 2018; Schmiester et al., 2019; Teutonico et al., 2015; Wang
et al., 2020 and citations thereof) to find cases (counterexamples)
where the therapy under assessment is unsafe/ineffective, the result-
ing population of VPs is not guaranteed to be complete, no matter
how large or representative is the input dataset used for fitting. This
is because, due to model non-identifiability, there could be other
(possibly very different) parameter assignments (not selected
through fitting) still matching experimental data, but leading to dif-
ferent model behaviours under the new therapy.

In other words, model non-identifiability hinders the possibility
to have a comprehensive picture of the cases where the therapy suc-
ceeds or fails. As a result, although being based on solid scientific
principles (e.g. biochemical reactions), thereby satisfying one of the
qualification requirements for ISCT (e.g. EMA, 2019; FDA, 2018),
it is hard to use non-identifiable models to verify safety/efficacy of a
therapy. This is why identifiability is a key test in, e.g. FDA or EMA
PBPK guidelines.

In the literature, qualitative VPH models have also been consid-
ered, for example, logic-based models (e.g. Bloomingdale ez al.,
2018; Wang et al., 2012). Their aim is to predict sequences of
Boolean-valued (low versus high) expression levels rather than the
time course of the biological quantities of interest. In qualitative
models, non-identifiability can somewhat be overcome by modelling
lack of knowledge about reaction rates through an asynchronous
update schema for their Boolean-valued variables. Complete popula-
tions of VPs can then be generated by using finite state model check-
ing techniques to look for attractors (e.g. Khan et al., 2017; Razzaq
et al., 2018; Zheng et al., 2013; and citations thereof).

Unfortunately, this approach cannot be used for quantitative models
(like those defined through ODEs or difference equations, our main
focus here) defining real-valued (rather than Boolean-valued) con-
centrations of compounds, where, in general, the state space is
infinite.

We finally argue that the above problem stemming from non-
identifiability also arises in other areas. For example, models used in
machine learning (e.g. neural networks) are typically non-
identifiable, and it is well known that, notwithstanding how large is
the training dataset, it is possible to find (plausible) input data lead-
ing to wrong classifications (e.g. Eykholt ez al., 2018). Not surpris-
ingly, similarly to ISCT, this is the main obstacle in qualifying
machine learning-based approaches within safety-critical (i.e. high
impact regulatory purpose) applications such as autonomous driving
(e.g. Jenn et al., 2020).

The above considerations motivate the main goal of this article:
to develop methods and software that (possibly building on param-
eter estimation against iz vivo data) can compute a finite set of
physiologically meaningful, pairwise distinguishable VPs, which are
representative of the entire spectrum of behaviours defined by
the given (possibly non-identifiable) quantitative VPH model
(completeness).

1.3 Contributions

In this article, we present methods and software to compute popula-
tions of VPs for (possibly non-identifiable) quantitative VPH mod-
els. We focus on the typical case of models that, due to their
complexity, cannot be analysed symbolically, but need to be numer-
ically simulated (e.g. Hucka et al., 2003; Maggioli et al., 2020), and
show the effectiveness of our methods on a non-identifiable model
of the HPG axis defined in terms of 33 highly non-linear stiff ODEs.

Our populations satisfy three important properties: complete-
ness, pairwise distinguishability and stratifiedness.

Completeness means that our populations show all model behav-
iours deemed of interest (e.g. physiologically meaningful), even
when such a full set of behaviours is #unknown at model design time
(this is typical in large non-identifiable, over-parameterized VPH
models, see below). For example, the population we computed in
our case study comprises as many as 4 830 264 VPs.

Pairwise distinguishability means that no model behaviour (aka
phenotype) is over-represented in our population: any two VPs be-
have differently (according to some used-defined notions of behav-
ioural distinguishability) in at least one scenario (e.g. input pattern)
supported by the model. This avoids waste of computation during
an ISCT.

Stratifiedness means that our populations are organized in levels,
(strata), each one showing the entire spectrum of behaviours under
different distinguishability criteria. For example, in our case study,
we stratified our 4 830 264 VPs into 7 sub-populations, each one
comprising a number of VPs ranging from 2 million to just 1. Since
each sub-population alone is representative of the entire spectrum of
model behaviours (of course at different granularity), proper trade-
offs can be sought, when designing an ISCT, between the needed be-
havioural granularity and the budgeted computational effort.

Our any-time algorithm, based on global search guided by statis-
tical model checking, intelligently explores the (typically huge)
model parameter space, collects those parameter assignments show-
ing a physiologically meaningful behaviour (i.e. VPs), and organizes
them into strata, while guaranteeing a statistically sound form of
graceful degradation.

Note that, in many non-identifiable models (like our case-study
HPG axis model), most parameter assignments might not actually
represent VPs, as, upon simulation, their associated model trajecto-
ries show-up to be physiologically meaningless or, anyway, out of
interest. This is due to, e.g. over-parameterization, presence of
parameters whose values are not measurable through clinical assays
(e.g. reaction rates), presence of unknown (hence, not modelled)
interdependency constraints among parameters, and use of parame-
ters to define not-well-understood physiological mechanisms. To
find parameter assignments yielding physiologically meaningful
model behaviours and different phenotypes is thus computationally
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very hard, and naive exploration or sampling of the parameter space
could be hopeless.

In order to automatically recognize physiologically meaningful
model behaviours (and thus parameter assignments defining VPs),
our approach envisions the elicitation and formalization of back-
ground biological and medical knowledge (possibly also coming
from available data). Our approach is fully independent of how
such knowledge is formalized, as long as we can define a criterion
that, given a parameter assignment (a candidate VP), decides
whether the resulting model trajectory is physiologically meaningful
or not.

In our case study, we rely on background knowledge available in
terms of known assignments to the model parameters (computed via
parameter estimation against clinical data, hence defining reference
VPs), bounds for model parameters and biological species, and on
physiological meaningfulness criteria which ask for (loose) qualita-
tive similarity of the model behaviours under a candidate VP with
respect to those entailed by some reference VP. Such criteria are ap-
plicable to a wide class of models, e.g. those defining hormonal sig-
nalling networks.

2 Materials and methods

Below we define our framework (Section 2.1) and methodology
(Section 2.2) to generate complete stratified populations of pairwise
distinguishable VPs.

2.1 Formal framework

VPH models. We adopt a very general approach to define VPH
models and view them as parametric input-output dynamical sys-
tems. This general definition is standard in signals and systems (see,
e.g. Sontag, 1998), especially when, as in the case of physiological
models, the system internal state is not accessible, and only selected
outputs (system observables) can be measured.

Our definition (for a formal statement see Definition 1 in Section
SM1.1.1) accounts for both continuous- as well as discrete-time
models (e.g. those defined by means of ODEs and difference equa-
tions, respectively). Namely, model inputs are time functions u
defining the time course of exogenous inputs (e.g. drug administra-
tions). Our models are parametric, in that their observation func-
tion y(u, A), defining the values y(#;u, 1) of the system observables at
any time point #, depends on both the input time function u and the
values / for the system parameters, chosen within the model param-
eter space A.

For physical reasons, we require that our VPH models are strictly
causal, i.e. their observation function up to any time point depends
only on past inputs. Also, given the presence of parameters, we focus
on deterministic systems, in that parameters embody any initial con-
dition which the system output might depend on.

Virtual patients, phenotypes, populations. As anticipated in
Section 1, not all assignments to a VPH model parameters yield
behaviours of interest. Many might even yield physiologically
meaningless behaviours. Conversely, due to, e.g. system over-
parametrisation or non-identifiability, multiple parameter assign-
ments may yield (almost) indistinguishable behaviours (i.e. their
associated observation functions are very similar on all inputs). Such
indistinguishable VPs would increase the computational effort
needed to carry out an ISCT on the entire population, without bring-
ing any advantage in terms of representativeness of the trial.

For generality, our forthcoming definitions rely on user-provided
Boolean function ¢ and equivalence relation ~. Boolean function ¢
defines the conditions to be met by any parameter A € A for the
associated model behaviours to be considered of interest, for ex-
ample physiologically meaningful (in which case, 4 has to be
regarded as a VP). Equivalence relation ~ on the set of VPs defines
when two VPs shall be considered having indistinguishable behav-
iour (i.e. showing the same phenotype): for any two VPs 1 and
A, A ~ J' means that the two VPs show the same phenotype.

With respect to given ¢ and ~ for a VPH model S, we define the
following concepts (for a formal statement see Definition 2 in

Section SM1.1.2): (a) the population A of VPs for S is the set of par-
ameter assignments /1 € A for which ¢(4) is true; (b) the phenotype
of VP Z is the equivalence class of 4 with respect to ~ (notation:
[4.); (c) the phenotype space A/ ~ of A is the quotient set of A
with respect to ~, i.e. the set of all-different phenotypes of VPs in A;
(d) an All- szferent Phenotype Populatzon (APP) of VP is any subset

of A such that no two VPs /. ./ exist in A" having the same
phenotype. Also, an APP A™ is sald a Complete APP (CAPP) if it
contains a representative of all phenotypes in the phenotype space of
A.

Clearly, the definition of both function ¢ and relation ~ depends
on the VPH model at hand, and has to be made starting from expert
knowledge. Also, in the typical case of models subject to external
inputs (e.g. drug administrations), both ¢ and ~ might need to be
defined on model behaviours under different input functions. This
allows the expert to define meaningfulness and phenotypes of candi-
date VPs also in terms of their reactions under different sequences of
drug administrations (where such reactions are dictated by the PK/
PD model equations).

Note that, when ~ is 1 (i.e. the equivalence relation defining a
distinct class per VP 4 € A), we have A/1 = A. Hence, the entire
population of VP (A) can always be regarded as a CAPP.

In Section 3, we give a widely applicable definition for ¢ and ~
based on qualitative similarity of the model evolutions associated to
different parameters.

2.2 Computing complete populations of VPs

Given a VPH model with parameter space A, a Boolean function ¢
and an equivalence relation ~ as in Section 2.1, our goal is to com-
pute a CAPP with respect to ¢ and ~.

In this article, we focus on cases where the definition of the VPH
model, function ¢ and the computation of the phenotype [/]_ of a
VP /. are too complex for set A~ to be computed analytically and/or
symbolically in closed form. For such complex scenarios, deciding
whether ¢(1) = true or not for any given 4 € A (hence, whether 1
represents a VP or not) and, in the affirmative case, computing its
phenotype [/]_ involves a numerical simulation of the VPH model
and the subsequent analysis of the resulting model trajectories under
different inputs. Also, knowing that ¢(1) = true for some A€ A
does not allow us to infer (without additional simulations) whether
() = true for other parameters ' € A, let alone their phenotypes.

In order to cope with such a general setting, we adopt a search-
based approach that explores the model parameter space A looking
for parameters 4 € A such that ¢(4) = true and belonging to all-
different equivalence classes of ~. This calls for VPH models whose
parameter space A is finite or can be finitised by the user, e.g. into a
bounded interval of N¥, k> 0. Such finitisation can often be per-
formed by exploiting knowledge about, e.g. physiological bounds to
the parameter values and model locality assumptions (i.e. minor
changes to the value of a parameter yield minor changes in the
resulting model behaviours).

Nevertheless, even when A is finite, an exhaustive exploration is
practically infeasible unless A is very small. Unfortunately, this is
not the case for complex VPH models: for example, the size of the
(finitised) parameter space of our case-study model is 107°, which
makes an exhaustive search clearly out of reach (let alone the fact
that computing ¢(Z) for each 1 takes seconds of simulation time).

To overcome these obstacles, our search (Section 2.2.1) is an
any-time algorithm relying on Statistical Model Checking (SMC)
and hypothesis testing to guarantee proper statistically sound grace-
ful degradation.

2.2.1 The algorithm

Our algorithm is an any-time procedure which builds on the SMC
and hypothesis testing methods initially presented in Grosu and
Smolka (2005) and extended in Tronci et al. (2014).

Core algorithm. Given a VPH model S having finite (although
too large for an exhaustive exploration) parameter space A, plus
function ¢ and equivalence relation ~, our algorithm implements a
one-sided error procedure to compute a CAPP A~ for S with respect
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function slice_APPs(S, Aj, ¢, ~1, ..., ~r,6)
A~y AV~ 0Ny, N0
while not interrupted
A+ new sample from A; according to sampling policy;
foreach (€ [1, L] do
if p(X)=trueand [A]._, unknown in A7V thenadd Xto A1 Ny« 05614 1;
else Nj++;e; 1-61/N1;
output (~;, A7, g)):

if sampling policy to be revised then revise policy; Ny, . . ., 1 Np, + 0;
end

Fig. 1. A parallel branch of our any-time algorithm to compute stratified APP

to ~. The algorithm randomly samples the parameter space A
(according to a user-defined sampling policy), and iteratively adds
to the current A~ (initialised to (¥) those parameters A that represent
VPs (i.e. ¢() = true) and show a phenotype different than all those
already represented in A~

The algorithm can be interrupted at any time and provides a
form of graceful degradation: after each sample, the algorithm com-
putes an upper bound ¢ € (0,1] to the probability that further sam-
pling would produce VPs of unseen phenotypes (error margin). This
fact would prove that the current APP is not indeed a CAPP. When
the achieved value for ¢ reaches a sufficiently small (target) thresh-
old, the user can decide to stop the algorithm and get the APP com-
puted so far.

The computed value for ¢ is a function of the number of consecu-
tive failed attempts N that the algorithm is experiencing in discover-
ing VPs of new phenotypes. Clearly, being based on sampling, our
algorithm can commit an error in computing the error margin ¢ (i.e.
it could return a value lower than a true upper bound). However, by
exploiting statistical hypothesis testing methods, given any user-
requested value d € (0,1) (confidence ratio), our algorithm ensures
(see below and Theorem 1 in Section SM1.2.1) that the probability
of such an error is at most d.

Sampling policy. In order to be effective in discovering VPs of
new phenotypes, the employed sampling policy may embody proper
domain expert knowledge and structural knowledge about the VPH
model, for example: interdependency constraints among compo-
nents of the parameter values (very common in over-parameterized
models), or sensitivity information of model behaviours with respect
to parameter values. Also, the sampling policy can be refined and
improved during the search to embed new knowledge, e.g. about the
newly discovered VPs. In Section 3.4 we will outline a sampling pol-
icy for our case-study model (but widely applicable in general),
which exploits the above flexibility.

Parallel computation. Our algorithm takes advantage of a paral-
lel HPC infrastructure. The parameter space A is split upfront into k
slices Ay, ..., Ay, and k independent instances of our core algorithm
can be run in parallel, where instance i (i € [1,k]) draws samples
from A, to build population A; . When A; is computed for all slices,
a final population A_ is produced by taking the union of the pheno-
type spaces of all A; and by choosing one representative VP from
each equivalence class. To take load balancing into account, the
overall number of parallel processes can be much higher than the
number of slices (k). An orchestrator can then dynamically assign
such processes to the exploration of each slice, in order to keep the
values of ¢ balanced. This approach to parallelism and load balanc-
ing is very effective (see, e.g. Mancini et al., 2016) and avoids over-
head due to inter-process communication (as that experienced in,
e.g. Mancini et al., 2015).

Simultaneous computation of stratified APPs. Our algorithm
can work with multiple equivalence relations ~1,...,~p, defining
different behavioural indistinguishability (i.e. same phenotype) crite-
ria, e.g. at different levels of abstraction. When it makes sense to use
the same policy to sample the VPH model parameter space A for all
the ~; (I € [1,L]), then the L CAPPs can be computed simultaneous-
ly using the same sequence of random samples. In Section 3 we will
exploit this possibility to compute a hierarchy of stratified CAPPs
for our case-study VPH model.

Complete algorithm and main result. Let Ay, ..., A, be a parti-
tioning of the finite (or finitised) parameter space A of our VPH
model S into k > 0 slices. Our overall algorithm runs in parallel &

instances of the algorithm in Figure 1, where instance i € [1, k] runs
on slice A; of A and computes L > 0 APPs, one for each given
equivalence relation ~; (I € [1, L]) on the population of VPs entailed
by the given function ¢. During computation, each parallel branch
(Fig. 1) outputs a stream of tuples of the form (~;, A; ", &) (one after
each sample and for each equivalence relation ~;). Each such tuple
states that (for a formal statement see Theorem 1 in Section
SM1.2.1), with statistical confidence (1 —d), the probability that
further sampling within A; will disprove that A} is a CAPP of A;
with respect to ~; is < ¢. The algorithm in Figure 1 includes a peri-
odic revision of the sampling policy in order to exploit the new
acquired knowledge (of course at the price of resetting all counters
Ny, le [1,L]).

3 Computing complete stratified populations for
a VPH model of the HPG axis

In this section, we show how we instantiated the general method-
ology described in Section 2 to a complex state-of-the-art VPH
model of the HPG axis (called GynCycle) in order to compute a
stratified set of CAPPs. We argue that our approach is based on gen-
eral concepts applicable to a wide class of VPH models, e.g. those
defining hormonal signalling networks.

3.1 The GynCycle model

GynCycle Roblitz et al. (2013) is a VPH model of the human female
HPG axis with a special focus on the interactions and feedback
mechanisms at different stages of the menstrual cycle. The model
(see Section SM2.1 for more details) defines, by means of parametric
highly non-linear ODEs, the dynamics of 33 biological species
(mostly hormones) having a role in the menstrual cycle (e.g. GnRH,
FSH, LH, E2, P4 among the others) and the PK/PD of two pharma-
ceutical compounds. In particular, model inputs encode administra-
tions of GnRH analogues that alter the menstrual cycle.

We formalized our GynCycle model as a dynamical system S
(Section 2.1) as follows.

Time span. Due to the model complexity, GynCycle evolutions
need to be computed by numerical simulation. This results in both
input and observation functions being bounded-horizon sequences
of samples evenly spaced in time. To obtain robust results, we com-
puted physiological meaningfulness metrics (Section 3.2) and pheno-
types (Section 3.3) across 120 days (i.e. roughly 4 menstrual cycles),
after ignoring the first 3 cycles (to get rid of any #ransient model
behaviours, with this value being established by preliminary experi-
ments). The time quantum between samples was set to 14.4 min (i.e.
100 samples per day) to account for the physiological time scales of
the modelled signalling pathways. Hence, input and observation
functions are encoded as sequences of » = 12000 samples, one every
14.4 min.

Parameter space. The model counts 76 real-valued patient-spe-
cific parameters (e.g. hormone decay rates, reaction rates, stimula-
tory and inhibitory effects) with known bounds (Réblitz et al.
2013). By preliminary experiments we assessed that a change of par-
ameter values of <10% yields very small changes in the resulting
model trajectories (model locality). Hence, by discretising the inter-
val for each parameter into 10 values, we produced a finitised par-
ameter space A of size 107°. Although finite, this size is still too
large to be explored exhaustively. However, thanks to our informed
sampling policy (Section 3.4), we were able to compute large APPs
proved complete with a high statistical confidence (95%) and a
small error margin (as low as 5 x 1075).

Model inputs. Model inputs define doses for each of the two sup-
ported pharmaceutical compounds. Thus, an input time function
defines a time sequence of doses administered for each of the two
compounds.

Model outputs. Model outputs are non-negative real values for
the #n € N, model observables. In Section 3.5 we experiment with
n =4 observables, namely: LH, FSH, E2, P4, which are the hor-
mones typically measured in a clinical setting, and for which we
have retrospective data (Section 3.5.3).
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Table 1. Stratified GynCycle APPs

id 1] APP size Error margin (g) max NED

min avg max

7 16200 1 5%x107° 5%107° 5%x1073 163.23%
6 8100 104 5%107° 5x107° 5x107° 144.36%
5 4050 3862 5%x107° 5%107° 5%x107° 106.74%
4 2700 43941 5%x107° 6.75 x 1073 4.51x 107! 84.70%
3 1800 251239 5.09 x 107* 2.36 x 1072 1 59.09%
2 900 2136710 3.25%x 1073 8.33 x 1072 1 48.07%
1 - 4830264 9.87 x 1073 1.81 x 1071 1 -

Note: Statistical confidence: 95%.

3.2 Physiological meaningfulness

In Roblitz et al. (2013), GynCycle has been fitted against a database
(courtesy of Pfizer) comprising 20-25 measures for 4 observed hor-
mones (E2, P4, FSH and LH) on 12 healthy women, totalling more
than 1000 measurements. This activity produced a parameter as-
signment A”) € A which entails model behaviours averaging those
of such 12 patients (see Section SM2.2).

In hormonal signalling pathways like those in GynCycle, all
healthy humans show the same qualitative time course of such hor-
mones. Hence, 2(*) defines a VP that we can (and do) regard as a ref-
erence VP. Thus, we defined function ¢ (which encodes the
physiological meaningfulness criteria that must be satisfied by a par-
ameter assignment A for it to be considered a VP, see Section 2.1)
asking for (loose) qualitative similarity between the model observa-
tion functions under 4 and those under 2%, Namely, we proceed as
outlined in the following sections.

Representative portfolio of input functions. In order to derive
VPs whose behaviour is meaningful also when drugs are adminis-
tered, we defined a representative portfolio U of 5 different input
functions. Beyond the no-drug input (under which the GynCycle ob-
servation function must represent a healthy natural menstrual cycle),
we considered two standard treatment strategies, consisting of daily
administrations of two different doses for each of the two pharma-
ceutical compounds supported by the model (see Section SM2.2.1).

Physiological meaningfulness as qualitative similarity. Our func-
tion ¢ returns true on A € A (thus declaring 4 to be a VP), if and
only if the model observation functions under 7, when subject to
each of the input functions in U, have values always within certain
physiological bounds, and can be (jointly) time-scaled and/or time-
shifted (up to a certain limit) so to satisfy certain qualitative similar-
ity metrics, when compared to the observation functions entailed by
the reference VP A) under the same input. Time shifting and scaling
allow us to deal with time-alignment issues and different menstrual
cycle durations, respectively.

The qualitative similarity metrics we exploited are standard (dis-
crete-time) signal processing metrics (see, e.g. Vaseghi, 2009): the
Normalised Zero-Lag Cross-Correlation (NZC) and the Normalised
Energy Difference (NED), which we require to be, respectively,
above and below certain thresholds. In our experiments, we set such
thresholds to 70% and 80%, respectively. We also set limits for
time-scaling and time-shifting to =10% and 35 days, respectively.
Such values (defined after preliminary experiments) are generous
enough to allow us to accept model behaviours quite different from
those entailed by the reference VP, but still appearing physiological-
ly meaningful to a visual inspection.

The intuition behind and the formal definitions of our metrics,
as well as technical details on how ¢(2) is actually computed (for
any given A € A), are reported in Section SM2.2.2. Here, we just
point out that such computations are quite heavy. In particular,
GynCycle must be numerically simulated under each candidate par-
ameter 4 and each input function u € U, in order to retrieve the ob-
servation function y(u, 4). Also, time-scaling and time-shifting issues
must be evaluated before computing our similarity metrics between
y(u,2) and y(u, A?). To cope with such issues efficiently, our ap-
proach envisions the solving of a constraint satisfaction problem to

enumerate all possible peak alignments between the two observation
functions, and the use of algorithms to compute NZC and NED be-
tween (the time-scaled and time-shifted) y(u, ) and y(u, 2(?)), for
eachu e U.

3.3 Stratified phenotypes

Our definition of behavioural indistinguishability (i.e. same-
phenotype equivalence relation) of different VPs follows an ap-
proach consistent to the one we used to decide physiological mean-
ingfulness. However, in this case, similarity is quantitatively
evaluated between the observation functions of each pair of VPs (i.e.
parameters that, by satisfying function ¢ in Section 3.2, already sat-
isfy the qualitative similarity metrics thresholds against the reference
VP 1O,

To compare two observation functions available in the form of
discrete sequences of real-valued samples evenly spaced in time (as is
our case), we compare the coefficients of their Discrete Fourier
Transform (DFT) (see, e.g. Vaseghi, 2009). In particular, to define
behavioural indistinguishability among VPs, we use an equivalence
relation ~y, parametric in ¥ € R, (the quantization factor). Two
VPs D and 1® belong to the same equivalence class (i.e.
M~y 4@ if and only if the DFT coefficients of their associated
VPH model observation functions (for all observables and for all in-
put functions u € U) belong to the same quantum (for a formal
statement see Definition 4 in Section SM2.3). The size of quanta for
DFT coefficients is inversely proportional to both i and the energy
of the observation function of each model observable i € [1,7] under
the distinguished parameter assignment A© (|ly;(u, A?)||?), which
acts as a normalizing factor. This is important, because the different
model observables may assume values in very different ranges. In

our experiments (Section 3.5) A% is the GynCycle reference VP.

Our definition of ~y implies (see Remark 1 in Section SM2.3)
that ¥ is an upper bound to the NED shown by the observation
functions of any two VPs A1 and 2? such that 24V~ 2%, for any
model observable i € [1,#] and input function u € U. Thus, by con-
sidering L increasing values for y: Yy < -+ < Y (L € N, ), we de-
fine L equivalence relations ~y,, ..., ~y, that group VPs in larger
behavioural indistinguishability classes as their associated quantiza-
tion factor increases (stratified phenotypes). In our experiments
(Section 3.5), we choose L = 7 and an increasing set of 7 values for
¥ (see Table 1), where y; is such to place all generated VPs into a
single equivalence class.

Indeed, value  turns out to be a very loose upper bound for the
NED between VPs belonging to the same equivalence class. This is
because it does not take into account the fact that all our VPs are
known to satisfy the physiological meaningfulness criteria of Section
3.2 (qualitative similarity with respect to the behaviour of the VPH
model under parameter A?). In particular, since such criteria de-
pend on optimal time-shifts and time-stretches sought for each single
VP, our bound to the NED cannot exploit such knowledge and
needs to stick to the worst case. To this end, in our experimental
analysis, we also compute, by means of auxiliary hypothesis testing-
based SMC tasks (along the lines of our main algorithm of Section
2.2.1, with error margin 1% and confidence ratio 5%), the actual
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Fig. 2. (a) Time evolutions for the GynCycle observables under the VPs belonging to the computed stratified APPs. (b) Average error margin (¢) reached during parallel compu-

tations (stratum 3). (c) Parameter space exploration

maximum NED between VPs belonging to the same equivalence
class of each stratum (see Table 1).

3.4 Sampling policy and parallel computation

Like many VPH models, GynCycle is organized in several compo-
nents, one for each of the modelled hormones. Changing the values
of the elements of the parameter vector occurring in a few compo-
nents typically changes the overall model dynamics only partially.

This key observation is at the heart of our sampling policy. In
order to draw, with high probability, a parameter assignment that
proves to be a VP, we exploit the knowledge acquired in the past
iterations, in terms of the parameter assignments that already
proved to be VPs. Namely, let Acyrrene be the set of VPs already dis-
covered (population of known VPs). Our sampling policy draws a
random parameter A by changing uniformly at random the elements
occurring in p € N, model components (chosen uniformly at ran-
dom) from a parameter ) chosen uniformly at random from A cugrent
(if Acurrent i empty, then / /» =29, Value of p is drawn from a Zipf’s
distribution (i.e. p ~ ap~, where a is a normalization factor), in
order to draw with high probability small values. In our experiments
we set b to 3 so that the expected value for p is about 1.11.

The sampling policy is periodically revised by updating Acyrrent
with the new discovered VPs. However, in order to avoid too fre-
quent policy updates (which would resort in an immediate reset of
the consecutive failure counters, see Section 2.2.1), set Acyrrenc 1S
updated only every a given number N of samples. In our experi-
ments we chose N such that experiencing N consecutive failures to
find a new VP (regardless of its phenotype) would allow us to con-
clude, with statistical confidence (1 — ) = 95%, that the probability
that additional VPs will be found by further sampling is less than
e=1-06"N =5x107° = 0.005%. This results in N = 59914.

For the above sampling policy to work on top of a slicing of the
parameter space A to be processed in parallel, it is enough to ensure
that A©) belongs to all slices. This was done by defining our (initially
continuous) parameter space finitisation as a grid having A©) as one
of its vertlces, and by defining the k slices by bisecting A on values
Aflo),... for any subset of coordinates iy,...,i, w1th1n [1,76],
thus deflnlng k=2" slices Ay,..., Ay all contalmng 9. In our
experiments we chose r = 7 random coordinates, hence k = 128.

3.5 Experimental results

Here we present our results on GynCycle. In Section 3.5.1 we show
the APPs we computed, in Section 3.5.2 we analyse the behaviour of
our sampling policy, and in Section 3.5.3 we perform a qualitative
and quantitative evaluation of the representativeness of our popula-
tions with respect to retrospective clinical data (86 medical cases
courtesy of Hannover Medical School, University Hospital of
Lausanne, and Pfizer).

3.5.1 Computed APPs

We ran our SMC-based algorithm on a parallel HPC infrastructure
(the Marconi cluster at Cineca, Italy) with the settings defined
above, in order to compute the stratified APPs as defined in Section
3.3. Confidence ratio 6 was set to 0.05.

The computation was stopped after around 60 days. In total, our
algorithm sampled 414 245 648 parameters (simulating GynCycle
for 7 months on each of them and for each of the input functions in
the representative portfolio described in Section 3.2). Overall,
4 830 264 parameters were declared to define VPs.

Table 1 lists the sizes of the 7 comgqted APPs. The bottom line
refers to the entire population of VPs, A~ (which is an APP with re-
spect to equivalence relation 1).

We decided to terminate our (any-time) computation when we
achieved ¢ = 5 x 1075 for all slices on the top three strata. This
means that (see Section 2.2.1 and Theorem 1 in Section SM1.2.1),
with statistical confidence 1 — § = 95%, the probability that further
sampling (in any single slice) would disprove that such top three
APPs are indeed CAPPs is below the error margin (5 x 107°).

As for the other strata, the table reports minimum, maximum
and average error margins across the k& = 128 parallel processes
(one per slice) at the time of termination of our any-time computa-
tion. Since the exploration of each slice is an independent process,
the k error margins for each stratum can be quite different, as the
value for ¢ for a given slice depends on the time when the last VP
belonging to that slice was generated. Also, when we terminated our
experiment, a new VP (of a phenotype known to the top three
strata) was just generated. Hence, the max ¢ for the population A
consisting of all VPs (bottom line of Table 1) is 1.

Figure 2(a) shows the trajectories of the GynCycle observables
under the VPs belonging to the computed APPs for all strata except
the extreme two. It can be seen that, despite the number of VPs
greatly reduces at higher levels of our stratification, all APPs retain
full representativeness of the entire spectrum of possible behaviours.

A final note is in order. Although 60 days could appear an un-
usually long time for a computation (especially if compared to the
time typically needed by classical model fitting tasks), this is a orne-
time activity for the input VPH model, and can be sped-up almost
arbitrarily by using a higher number of parallel processes (e.g. using
1280 processes—which is perfectly feasible in today’s infrastructure-
as-a-service platforms—with groups of 10 processes jointly explor-
ing each of our 128 slices, would have required just 6 days). Indeed,
once a population of VPs for a given model has been computed, it
can be used to carry-out multiple ISCT (i.e. for different treatment
strategies or medical devices). Each ISCT can be carried-out on the
most appropriate stratum of VPs, depending, e.g. on the chosen
trade-off between budgeted computational effort and required be-
havioural granularity of the VPs recruited for the trial. Also, more
sophisticated approaches can be exploited, e.g. iterative deepening
within the stratification of phenotypes (guided by simulation results)
searching for a VP showing a failure of the candidate treatment or
medical device (a counter-example, see, e.g. Mancini et al., 2013).

3.5.2 Sampling policy behaviour

Our informed sampling policy was able, on average, to find (within
our 128 slices) an admissible VP every 86 attempts (average success
rate: 1.17%). This is to be compared to a uniform (non-informed)
sampling policy, which was unable to discover a single VP after 50
million attempts.

Figure 2(b) shows the error margin achieved by our informed
sampling policy during generation of A s, i.e. the APP associated
to the smallest value of s (see Table 1) for which we reached an
error margin of 5 x 107 for all slices. The plot shows the values for
the error margin reached by each of the 128 parallel computations
(light curves) when discovering each of its VPs (x axis), thus disprov-
ing that the current APP was indeed a CAPP. Values for x have been
normalized into percentages of the total number of the VPs discov-
ered by each parallel computation. We note that the average error
margin (dark curve) lies for most of the time at values one order of
magnitude higher than the value we chose to terminate our experi-
ments (¢ =35 x 107°, see Table 1). This shows that our informed
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Fig. 3. (a) Qualitative and (b) quantitative validation of our GynCycle population against clinical data

sampling policy was always effective to extract (with probability
much higher than 5 x 107%) new VPs when (we know that) they ac-
tually exist.

Finally, Figure 2(c) shows, as a radar plot, the location of VPs
within the GynCycle parameter space. The figure shows one poly-
gon per VP, which connects the chosen values for the 76 parameter
vector elements. Interestingly, for some of them, only a few values
of their domains actually occur in VPs. Such constraints were un-
known at the time of model design.

3.5.3 Validation against clinical data

The previous sections show that our computed populations exhibit
the properties of pairwise distinguishability and stratifiedness, as
well as that representativeness of the spectrum of behaviours is kept
among the different strata.

What remains to be shown is that our sampling policy was in-
deed able to extract VPs representative of the entire space of physio-
logically meaningful behaviours that our input VPH model is
capable to represent. Such a full set is of course not known.
However, GynCycle was experimentally shown in (Roblitz et al.
2013) to be expressive enough to correctly represent a wide spec-
trum of behaviours of healthy women.

Hence, here we compare the behaviours shown by our VPs with
respect to retrospective clinical data we got from 86 health records,
kindly made available to us by Hannover Medical School (35
patients), University Hospital of Lausanne (39 patients) and Pfizer
(12 patients, which were originally used in (Roblitz et al. 2013) to
compute the reference GynCycle VP). In each dataset, for each
health record we have actual measurements of the blood levels of
the 4 model observables (LH, FSH, E2, P4) on a (roughly) daily
basis for an entire menstrual cycle (all health records refer to healthy
patients subject to no pharmaceutical treatment).

Below we perform both a qualitative and a quantitative assess-
ment of the representativeness of our computed VP population
against such datasets.

Qualitative evaluation. Figure 3(a) shows daily blood hormone
levels on the 86 health records (box-and-whisker plots) on top of the
model observation functions (i.e. the time functl?ns of the 4 model
observables) of all VPs in our full APP (i.e. A of Table 1, blue
curves). Curves as well as data have been aligned on the LH peak
(used to estimate the ovulation day), in order to account for different
transient periods among our VPs. The figure shows that our VP
population is indeed highly representative of the available clinical
measurements, and that the qualitative behaviours of our VPs faith-
fully reflect those of the available data.

Quantitative evaluation. Our approach for a quantitative evalu-
ation of the representativeness of our full APP A~ with respect to the
human behaviours occurring in our datasets, has been shaped on the
fact that A* does not defi{le a probability distribution of behaviours.
In particular, although A" might (and indeed does, see Table 1) con-
tain VPs showing similar behaviours (which are then removed from
the higher strata of our hierarchy), the number of VPs exhibiting
any behaviour has no relation with the frequency of that behaviour
in the real world, but only depends on the model ODEs and on the
definition and usage of parameters within them. This implies that
statistical approaches to measure the similarity between our APP
and the distribution of behaviours shown in our datasets (e.g. those
based on the relative entropy of two probability distributions or the
similarity of their momenta) cannot be employed in our case.

To assess the representativeness of our APP with respect to the
available datasets, we then proceed at computing a deterministic
measure of coverage, by assessing the percentage of health records
for which there exist a VP in our APP exhibiting a good-enough fit.
Such measure is defined in terms of a given upper bound of a stand-
ard error metric, the Average Normalised Mean Absolute Error
(aNMAE).

Full details on how we formalize each health record in our data-
sets and on how we compute the aNMAE of each VP with respect to
it are delayed to Section SM3. Here, we comment on Figure 3(b),
which shows the coverage of our three datasets as a function of the
aNMAE, as resulting from our analysis. The figure shows that most
health records are covered by our population within small aANMAE
values. Namely, the totality of the Pfizer, Hannover, and Lausanne
medical records are covered within aNMAE 15%, 20% and 35%,
respectively. As for the latter dataset, 90% of the cases are actually
covered within an aNMAE of just 20%.

4 Conclusions

In this article, we presented methods and software to compute a
complete and stratified population of pairwise distinguishable VPs
for a given quantitative model of the human physiology (plus drugs
PK/PD). The availability of such populations is a key enabler for
ISCT and model-based therapy design and optimisation (see, e.g.
Mancini et al., 2018; Sinisi et al., 2020). Our approach is especially
designed for complex (e.g. non-linear stiff ODE-based) parametric
non-identifiable VPH models that cannot be analysed symbolically
or integrated in closed form, but must be numerically simulated. To
this end, our algorithm runs a global search on the space of model
parameter assignments, guided by statistical model checking and hy-
pothesis testing, and exploiting suitable biological and medical
knowledge elicited from experts to recognize physiologically mean-
ingful behaviours and different phenotypes, as well as structural
knowledge of the model to intelligently drive the search via an
informed sampling policy. Our algorithm can be stopped at any
time, since it continuously provides an upper bound (correct with a
user-defined confidence level) to the probability that further compu-
tation will discover new phenotypes.

We proved the effectiveness of our algorithm on a state-of-the-
art non-identifiable ODE-based VPH model of the female HPG axis,
by generating a population of 4 830 264 VPs stratified into 7 levels
(at different granularity of behaviours), and assessed its representa-
tiveness against 86 retrospective health records.
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