
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Densest Subhypergraph: Negative Supermodular Functions and
Strongly Localized Methods

Anonymous Author(s)
∗

ABSTRACT
Dense subgraph discovery is a fundamental primitive in graph and

hypergraph analysis which among other applications has been used

for real-time story detection on social media and improving access

to data stores of social networking systems. We present several

contributions for localized densest subgraph discovery, which seeks

dense subgraphs located nearby a given seed sets of nodes. We first

introduce a generalization of a recent anchored densest subgraph
problem, extending this previous objective to hypergraphs and also

adding a tunable locality parameter that controls the extent towhich

the output set overlaps with seed nodes. Our primary technical

contribution is to prove when it is possible to obtain a strongly-

local algorithm for solving this problem, meaning that the runtime

depends only on the size of the input set. We provide a strongly-

local algorithm that applies whenever the locality parameter is

at least 1, and show why via counterexample that strongly-local

algorithms are impossible below this threshold. Along the way to

proving our results for localized densest subgraph discovery, we

also provide several advances in solving global dense subgraph

discovery objectives. This includes the first strongly polynomial

time algorithm for the densest supermodular set problem and a flow-

based exact algorithm for a densest subgraph discovery problem in

graphs with arbitrary node weights. We demonstrate the utility of

our algorithms on several web-based data analysis tasks.

CCS CONCEPTS
• Theory of computation→ Network flows; Network opti-
mization; Linear programming; •Mathematics of computing→
Hypergraphs; • Information systems→Web mining.

KEYWORDS
Densest Subgraph, Strongly Localized Graph Algorithms, Hyper-

graph Algorithms, Maximum Flow, Supermodular Functions

ACM Reference Format:
Anonymous Author(s). 2018. Densest Subhypergraph: Negative Supermod-

ular Functions and Strongly Localized Methods. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https:

//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
A common paradigm in unsupervised data analysis is to take as

input a graph or hypergraph and to output extremal subsets. The

types of extremal subsets range from sets of minimum cut [39] to

minimum sparsest cut [33] to maximal clique [8]. The underlying

hypothesis is that extremal sets reflect important and noteworthy

structures that are informative for exploratory data analysis, or

useful for downstream algorithms such as graph partitioners or ma-

chine learning pipelines that operate on subsets of the larger graph.

This basic paradigm is fundamental in Web analysis and applied

to problems such as detecting real-time stories on social media [6],

improving access to data stores of social-networking systems [21],

and a wide variety of clustering and community detection tasks

over web-based datasets [4, 18, 30, 45].

An issue with this paradigm is that there are many cases where

extremal sets are trivial or simply unuseful. For instance, the mini-

mum cut set in an unweighted graph with any degree 1 node is just

that single node, which yields little information; a set of minimum

conductance may be a simple small subgraph that just happens

to have a small number of bridges to the rest of the graph [30].

A second and related challenge is that finding the extremal sub-

set typically results in an NP-complete problem. Even if solved

approximately, it may still consume substantial time.

Localized graph algorithms are a practical solution to this prob-

lem. The idea is that we rephrase the extremal search problem

with respect to a reference set of nodes 𝑅. For instance, we may

want the solution within 𝑅 or nearby 𝑅 with some measure of dis-

tance or fraction of 𝑅. This area has been most developed in the

space of algorithms for finding small conductance cuts in a graph

where techniques range between spectral methods [3, 4], flowmeth-

ods [5, 19, 29, 36, 46, 47], and heat-kernel diffusions [27]. These tech-

niques have also been extended to hypergraph analysis [26, 32, 43].

For methods that are able to effectively grow small subsets, then

𝑅 may be as small as a single node; whereas for other techniques

that shrink or adapt 𝑅, then 𝑅 must be considerably larger. Often,

a goal with these algorithms is to get a strongly localized runtime

guarantee such that the total runtime scales with the size of the

output instead of the size of the input graph. Using a localized algo-

rithm enables one to analyze many interesting sets in the graph by

varying the reference set 𝑅. These localized algorithms have already

been widely used in web-based data analysis tasks such as detecting

related retail products on Amazon [27, 42, 46], identifying groups

of same-topic posts on Stackoverflow [42], clustering restaurants

based on reviews on Yelp [32], and finding communities in various

types of online social networks [27, 46, 47].

Although many extremal set problems in graph analysis focus on

finding small cut values, another perspective on extremal sets seeks

high density independently of cut values. The densest subgraph is

one such example that seeks a subgraph 𝑆 of maximum average de-

gree. In a small surprise, this subset can be computed in polynomial

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

time by a classic flow algorithm [22] or via linear programming [10].

A simple peeling algorithm that removes vertices from the graph

one at a time has long been known to be a 2-approximation for the

problem [10]. More recently, an iterated peeling algorithm has been

shown to converge to the optimal solution [11]. Many variants and

generalizations of the densest subgraph problem have been studied

and considered (see [28] for a very recent survey). One of the most

general of these is the densest supermodular subset problem (DSS),

where the goal is to maximize the ratio between a nonnegative

monotone supermodular function 𝑓 and the size of the returned

set. Localized variants of the densest subgraph problem have also

been considered recently [15]. However, localized algorithms for

dense subgraph discovery remain underexplored and remain far

less understood than localized algorithms for finding small cuts.

In this paper we greatly expand the scope of possible algorithms

for dense subgraph computations, both in terms of global and local

variants of the problem. We first provide a simple reduction that

leads to efficient exact algorithms for a more general version of

the densest supermodular subset (DSS) problem where the super-

modular function does not need to be nonnegative (Theorem 1).

This captures several dense subgraph problems that are not spe-

cial cases of the standard nonnegative DSS problem [15, 34]. We

then provide the first strongly polynomial algorithm for DSS (Al-

gorithm 1, Theorem 2); previous approaches came with weakly

polynomial runtimes. Our final contribution to global dense sub-
graph discovery algorithms is to design a flow-based exact algo-

rithm for finding the densest subset of a node-weighted graph or

hypergraph. Prior research on this problem showed how to obtain

efficient flow-based solutions in the case of graphs with strictly

non-negative weights [17, 22]; our results show how this can be

extended to arbitrary node weights (Section 5.1).

In addition to our results for global dense subgraph discovery,

we greatly advance the state of the art in localized densest sub-

graph computations (Section 5.2). First, we establish a parametric

formulation of the discrete objective function underlying localized

densest subgraph discovery (Problems 5, 6). This allows us to vary

the degree of localization and continuously tradeoff between the

degree of localization and the amount of computation. We explicitly

delineate the region of strong locality where algorithms can have a

runtime that scales independently of graph size (Theorem 4). More-

over, we show hypergraph generalizations of all of these algorithms.

Our methods use max-flow / min-cut computations as a primitive

and we show (in the appendix) counter-examples where standard

peeling methods cannot approximate these objectives at all.

We demonstrate the advantages of the techniques on a variety of

web-relevant datasets. This includes a hypergraph of web domains

where hypergraphs are induced by hosts (Section 6.1). We show

how our localized algorithms can help identify a densely connected

set of about 1300 academic domains around the world.

2 PRELIMINARIES AND RELATEDWORK
Let𝐺 = (𝑉 , 𝐸) denote a graph with vertex set𝑉 and edge set 𝐸. Let

H = (𝑉 , E) be a hypergraph with vertex set𝑉 and hyperedge set E.
Each hyperedge 𝑒 ∈ E is a subset of𝑉 and a graph is the special case

of a hypergraph with |𝑒 | ⩽ 2. Our results for hypergraphs focus on

unweighted and undirected hyperedges without self-loops, though

Table 1: Two kinds of degrees we consider.

Normal Fractional

Degree deg(𝑣) = ∑
𝑒∋𝑣 1 deg(𝑣) = ∑

𝑒∋𝑣
1

|𝑒 |
Volume Vol(𝑆) = ∑

𝑣∈𝑆 deg(𝑣) Vol(𝑆) = ∑
𝑣∈𝑆 deg(𝑣)

Maximum Δ(𝑆) = max𝑣∈𝑆 deg(𝑣) Δ̄(𝑆) = max𝑣∈𝑆 deg(𝑣)

the techniques can be easily extended to weighted hyperedges.

At the same time, our results in some cases rely on reductions to

weighted and directed graphs. By default, we use 𝑢𝑣 to denote a

directed edge from vertex 𝑢 to 𝑣 , and a set of nodes {𝑣1, . . . , 𝑣𝑘 } to
denote a hyperedge. For a hypergraph, let 𝑟 = max𝑒∈E |𝑒 | denote
its rank. For a (hyper)graph and a set 𝑆 , let 𝑒 [𝑆] denote the number

of (hyper)edges fully contained in 𝑆 . For any vector 𝑞 ∈ 𝑅𝑉 and

vertex set 𝑆 ⊂ 𝑉 , let 𝑞(𝑆) = ∑
𝑣∈𝑆 𝑞(𝑣) denote the summation of

entries of 𝑞 indexed by 𝑆 .

Throughout this paper, we mainly consider two kinds of degrees,

the definitions of them and their corresponding volumes and maxi-

mums are summarized in Table 1.We have the following connection

between degree and fractional degree.

Lemma 1. For a hypergraph, we have

2deg(𝑣)⩽𝑑𝑒𝑔(𝑣)⩽𝑟deg(𝑣), and as
a result 2Vol(𝑆)⩽Vol(𝑆)⩽𝑟Vol(𝑆).

Proof. Because we focus on hypergraphs without self-loops,

2deg(𝑣) =
∑
𝑒∈E:𝑒∋𝑣

2

|𝑒 | ⩽
∑
𝑒∈E:𝑒∋𝑣 1. Since 𝑟 = max𝑒∈E |𝑒 |,

𝑟deg(𝑣) = ∑
𝑒∈E:𝑒∋𝑣

𝑟
|𝑒 | ⩾

∑
𝑒∈E:𝑒∋𝑣 1. □

To evaluate any set function 𝑓 : 2
𝑉 → R we assume it is avail-

able as a value oracle as is standard practice. A set function 𝑓 is

normalized if 𝑓 (∅) = 0 and nonnegative if 𝑓 (𝑆) ⩾ 0,∀𝑆 ⊆ 𝑉 .

Further, let 𝐸𝑂 (𝑓) be the maximum amount of time to evaluate

𝑓 (𝑆) for a subset 𝑆 ⊆ 𝑉 and 𝑀 (𝑓) be an upper bound for |𝑓 (𝑆) |
for all 𝑆 ⊆ 𝑉 . A set function 𝑓 is supermodular if and only if

𝑓 (𝑆) + 𝑓 (𝑇) ⩽ 𝑓 (𝑆 ∩𝑇) + 𝑓 (𝑆 ∪𝑇) for any 𝑆,𝑇 ⊆ 𝑉 , and accord-

ingly 𝑓 is submodular if −𝑓 is supermodular. A function is modular

if it is both supermodular and submodular. Note that a normalized,

nonnegative and supermodular set function 𝑓 is monotone.

2.1 Graph Cut and Hypergraph Cut
Densest subgraph discovery(DSG) has a close connection with

graph cut problems as the decision version of DSG is solvable by

reducing it to a graph min 𝑠-𝑡 cut problem [22]. Here we briefly in-

troduce some graph cut concepts that will show up in the following

discussion. For a weighted directed graph 𝐺 = (𝑉 , 𝐸,𝑤 : 𝐸 → R)
and a set 𝑆 , the value of its induced cut is cut𝐺 (𝑆) =

∑
𝑢∈𝑆,𝑣∈𝑆 𝑤𝑢𝑣 .

The graph min 𝑠-𝑡 cut problem is to find the minimal graph cut

while enforcing 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆 . In other words, min-st-cut𝐺 =

min𝑆⊂𝑉 :𝑠∈𝑆,𝑡 ∈𝑆 cut𝐺 (𝑆).
The introduction of hyperedges enables a variety of definitions

of cut as one hyperedge can be cut in more than one way now.

Here we adopt a recent generalized notion of a hypergraph cut

function [31, 42]. Given a hypergraphH = (𝑉 , E), associate each
hyperedge 𝑒 with a splitting function 𝑤𝑒 : 2

𝑒 → R⩾0
that maps

each subset 𝐴 ⊆ 𝑒 to a nonnegative splitting penalty. The value

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑤𝑒 (𝐴) indicates the penalty when 𝑆∩𝑒 = 𝐴. Then for one vertex set

𝑆 ⊆ 𝑉 , the cut penalty it incurs is cutH (𝑆) =
∑
𝑒∈E 𝑤𝑒 (𝑆 ∩ 𝑒). The

corresponding hypergraph min 𝑠-𝑡 cut problem is min-st-cutH =

min𝑆⊂𝑉 :𝑠∈𝑆,𝑡 ∈𝑆 cutH (𝑆).

2.2 Related Work
The classic densest subgraph problem is defined as

Problem 1 (Densest Subgraph (DSG)). Given a graph 𝐺 =

(𝑉 , 𝐸), find a vertex set 𝑆 maximizing the fraction 𝑒 [𝑆]/|𝑆 |. 1

DSG and its variants have received significant attention over

the past a few decades. They mainly admit two categories of exact

solutions, one is flow-based [22] and the other one is based on a

linear program (LP) [10]. One popular approximation algorithm for

DSG and some variants is greedy peeling [10], which runs in linear

time and is much faster than exact solutions. One variant of DSG,

called densest hypersubgraph (DHSG), is same as Problem 1 except

the graph 𝐺 is replaced by a hypergraph H [25]. For a detailed

introduction, refer to the recent tutorial [41] and survey [28].

Recently [9] introduces an iterative peelingmethod for Problem 1

called Greedy++ which shows quick convergence to the optimum.

Then [11] showed that Greedy++ achieves a (1 − Y)-approximation

in 𝑂 (1/Y2) iterations and extends iterative peeling to a broader

class of problems called densest supermodular subset (DSS).

Problem 2 (Densest Supermodular Subset (DSS) [11]). Given
a normalized, nonnegative monotone supermodular function 𝑓 :

2
𝑉 → R⩾0

, maximize 𝑓 (𝑆)/|𝑆 |.

This is an important breakthrough because numerous DSG vari-

ants are special cases of Problem 2 [17, 22, 25, 40, 44]. Therefore

iterative peeling offers a faster algorithm for them compared with

flow and LP. Moreover, [24] proposes an even faster and more

scalable iterative algorithm for Problem 2 based on solving the

quadratic relaxation of the dual of Charikar’s LP. Although itera-

tive peeling converges fast in practice, it is hard to terminate as

soon as some user-defined approximation ratio is achieved as the

optimum is not known in advance. Recently, [17] tackles this issue

for a subclass of Problem 2, DSG with nonnegative vertex weights.

Besides the line of designing faster global algorithms for DSG

and its variants, there is some recent interest in studying seeded

variants of DSG where a seed set 𝑅 is given and the objective is to

find a densest subgraph around this seed set [15, 17, 38]. Of these,

only [15] provides an objective that gives a strongly local algorithm,

meaning that the optimal answer is found only by exploring a small

portion of the whole graph, via the objective:

Problem 3 (Anchored Densest Subgraph (ADS)). Given a
graph𝐺 = (𝑉 , 𝐸) and a seed set 𝑅 ⊂ 𝑉 , find a vertex set 𝑆 maximizing(
2𝑒 [𝑆] − Vol(𝑆 ∩ 𝑅)

)
/|𝑆 |.

In Problem 3, the bias towards the seed set is encoded by adding

penalties onto vertices outside the seed set.

3 GENERAL DENSE SUPERMODULAR SUBSET
The function 2𝑒 [𝑆] − Vol(𝑆 ∩ 𝑅) in Problem 3 is a normalized su-

permodular function as 𝑒 [𝑆] is supermodular and Vol(𝑆 ∩ 𝑅) is
1
We always treat 0/0 = −∞.

modular. But it is not a special case of Problem 2 as this function is

not guaranteed to be nonnegative. This inspires our broader class:

Problem 4 (Densest Supermodular Subset with Possible

Negative Values). Given a normalized supermodular function 𝑓 :

2
𝑉 → R, maximize 𝑓 (𝑆)/|𝑆 |.

In addition to the anchored densest subgraph objective men-

tioned above, this new formulation also generalizes the objective

max𝑆⊂𝑉
(
𝑒 [𝑆] − 𝛼𝑒 (𝑆, 𝑆)

)
/|𝑆 | considered in [34] . We prove the

following connection between this extension and the class DSS.

Theorem 1. For any normalized supermodular function 𝑓 : 2
𝑉 →

R, one can construct a normalized, nonnegative monotone supermod-
ular function 𝑔 : 2

𝑉 → R⩾0
such that

argmax

𝑆⊂𝑉
𝑓 (𝑆)/|𝑆 | = argmax

𝑆⊂𝑉
𝑔(𝑆)/|𝑆 |

and the difference between functions 𝑓 and 𝑔 can be computed in
𝑂 (|𝑉 |𝐸𝑂 (𝑓)) time.

Proof. Let 𝐶 = max{0,max𝑣∈𝑉 −𝑓 ({𝑣})}, in other words 𝐶 is

the smallest nonnegative quantity such that 𝐶 + 𝑓 ({𝑣}) ⩾ 0,∀𝑣 ∈
𝑉 . Then we construct 𝑔 as 𝑔(𝑆) B 𝑓 (𝑆) + 𝐶 |𝑆 |,∀𝑆 ⊂ 𝑉 . Since

𝐶 |𝑆 | is modular, 𝑔 is still supermodular. Observe that because 𝑓 is

supermodular, for any set 𝑆 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑆 | } ⊂ 𝑉 , we have𝑔(𝑆) =
𝑓 (𝑆) +𝐶 |𝑆 | ⩾ 𝑓 (𝑆 \ {𝑣1}) + 𝑓 ({𝑣1}) +𝐶 |𝑆 | ⩾ . . . ⩾

∑ |𝑆 |
𝑖=1

𝑓 ({𝑣𝑖 }) +
𝐶 |𝑆 | ⩾ 0 which means that 𝑔(𝑆) is nonnegative and implies that

𝑔(𝑆) is monotone. Thus,

max

𝑆⊂𝑉
𝑓 (𝑆)/|𝑆 | +𝐶 = max

𝑆⊂𝑉
𝑔(𝑆)/|𝑆 |.

And 𝐶 can be computed by querying 𝑓 ({𝑣}) for each 𝑣 ∈ 𝑉 , which

can be done in 𝑂 (|𝑉 |𝐸𝑂 (𝑓)) time. □

This theorem implies that any exact algorithm for DSS will re-

main as an exact algorithm for the extended Problem 4, such as

using linear programming or combining binary search with re-

peated submodular minimization.

While extending the definition to non-negative valued functions

may seem a minor change as it is easy to adapt exact algorithms,

this change has large implications for approximation algorithms.

For instance, the efficient greedy peeling fails to hold a constant

approximation ratio. In the Appendix B, we show one example

where greedy peeling may perform arbitrarily badly. Even for the

recent iterative peeling approach [11], the picture is more complex

and the bounds are not straightforward. That said, we hypothesize

that iterative peeling remains an effective practical heuristic.

4 A STRONGLY POLYNOMIAL ALGORITHM
Strongly polynomial algorithms are those having a running time

bounded by a polynomial of the number of input numbers instead

of their size. In the context of Problem 4, a strongly polynomial

algorithm is one whose runtime is dependent on |𝑉 |, 𝐸𝑂 (𝑓) but
independent of𝑀 (𝑓).

As mentioned before, two common exact solutions for Problem 4

are linear programming or combining binary search with submod-

ular minimization. However, neither of those two algorithms are

strongly polynomial. In particular, there is no strongly-polynomial

time solution for linear programming. Meanwhile, given a problem

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1 Density Improvement Framework for Problem 4

Input: Anormalized supermodular function 𝑓 : 2
𝑉 → R via oracle

Output: 𝑆∗ maximizing 𝑓 (𝑆)/|𝑆 |.
1: 𝑆0 ← 𝑉 , 𝑡 ← 0

2: repeat
3: 𝑡 ← 𝑡 + 1, 𝛽𝑡 ← 𝑑 (𝑆𝑡−1)
4: 𝑆𝑡 = argmin 𝑆⊂𝑉 𝛽

𝑡 |𝑆 | − 𝑓 (𝑆)
5: until 𝛽𝑡 |𝑆𝑡 | − 𝑓 (𝑆𝑡) = 0

6: return 𝑆𝑡−1

instance of Problem 4, one can binary search the optimum and an-

swer the decision problem that given a parameter 𝛽 , decide whether

there exists one set 𝑆 with 𝑓 (𝑆)/|𝑆 | > 𝛽 . However, the range to

perform binary search and the termination condition both depend

on𝑀 (𝑓). For example, for the simplest case that 𝑓 is nonnegative

and integral, we have 𝑀 (𝑓) = 𝑓 (𝑉) = max𝑆⊂𝑉 𝑓 (𝑆). Thus the
optimum falls into the range [0, 𝑓 (𝑉)] and for any two 𝑆,𝑇 ⊂ 𝑉

with 𝑓 (𝑆)/|𝑆 | and 𝑓 (𝑇)/|𝑇 | different, the minimum gap between

𝑓 (𝑆)/|𝑆 | and 𝑓 (𝑇)/|𝑇 | is 1/|𝑉 |2. This means the binary search takes

𝑂 (log(𝑀 (𝑓) |𝑉 |2)) iterations. Hence it has a dependence on𝑀 (𝑓)
and is not strongly polynomial.

2

Inspired byDinklebach’s algorithm [16], we give a simple strongly

polynomial algorithm framework for a general normalized super-

modular function 𝑓 in Algorithm 1. Each iteration minimizes a

submodular function in strongly polynomial time [37]. And thus,

we call it a density improvement framework as in each iteration

the answer gets improved. More importantly, we will also show in

numerical experiments that this in fact can be much faster than

alternatives based on binary search commonly used in the literature.

The following standard result shows optimality at termination,

of which proof is included in Appendix A.1.

Lemma 2. For a normalized, supermodular function 𝑓 : 2
𝑉 → R,

and a given parameter 𝛽 , min𝑆⊂𝑉 𝛽 |𝑆 | − 𝑓 (𝑆) < 0 if and only if there
exists a set 𝑆 such that 𝑓 (𝑆)/|𝑆 | > 𝛽 . As a result, min𝑆⊂𝑉 𝛽 |𝑆 | −
𝑓 (𝑆) = 0 if and only if max𝑆⊂𝑉 𝑓 (𝑆)/|𝑆 | ⩽ 𝛽 .

Suppose Algorithm 1 runs for𝑇 iterations. By Lemma 2, 𝛽𝑇 |𝑆𝑇 |−
𝑓 (𝑆𝑇) = 0 suggests that

max

𝑆⊂𝑉
𝑓 (𝑆)/|𝑆 | ⩽ 𝛽𝑇 = 𝑓 (𝑆𝑇−1)/|𝑆𝑇−1 |,

which means 𝑆𝑇−1
is optimal. We make one important observation

that the size of 𝑆𝑡 is strictly decreasing. This is intuitive since we can

view 𝛽 |𝑆 | as an ℓ1-norm penalty on |𝑆 |, thus with penalty coefficient

𝛽 increasing, the size of the solution to min𝑆⊆𝑉 𝛽 |𝑆 | − 𝑓 (𝑆) tends
to decrease. By our algorithm design, ∀𝑡 < 𝑇,

𝛽𝑡 |𝑆𝑡 | < 𝑓 (𝑆𝑡), (1)

because we terminate the algorithm once at a point we get 𝛽𝑡 |𝑆𝑡 | =
𝑓 (𝑆𝑡). As 𝑓 is normalized, for 𝑡 < 𝑇 , 𝑆𝑡 is non-empty. Hence Equa-

tion (1) implies ∀𝑡 < 𝑇,

𝛽𝑡 < 𝑓 (𝑆𝑡)/|𝑆𝑡 | = 𝛽𝑡+1, (2)

2
This statement holds for a general function 𝑓 . For specific 𝑓 , we may have that𝑀 (𝑓)
is a simple function of |𝑉 | or |𝐸 | and binary search would be strongly polynomial.

where the equality follows from the definition of 𝛽𝑡 . This means

the sequence of 𝛽 is strictly increasing. By our algorithm design, for

∀𝑡 > 0, 𝑆𝑡 is the minimizer of 𝛽𝑡 |𝑆 | − 𝑓 (𝑆), hence we have ∀𝑡 > 0

𝛽𝑡 |𝑆𝑡 | − 𝑓 (𝑆𝑡) = min

𝑆⊂𝑉
𝛽𝑡 |𝑆 | − 𝑓 (𝑆) ⩽ 𝛽𝑡 |𝑆𝑡+1 | − 𝑓 (𝑆𝑡+1). (3)

Observe that via Equation (2), we have ∀𝑡 < 𝑇 − 1,

𝑓 (𝑆𝑡)/|𝑆𝑡 | = 𝛽𝑡+1 < 𝛽𝑡+2 = 𝑓 (𝑆𝑡+1)/|𝑆𝑡+1 |.
which further shows that ∀𝑡 < 𝑇 − 1,

𝛽𝑡+1 |𝑆𝑡+1 | − 𝑓 (𝑆𝑡+1) < 0 = 𝛽𝑡+1 |𝑆𝑡 | − 𝑓 (𝑆𝑡) . (4)

Combine Equation (3) and (4), we get ∀1 ⩽ 𝑡 < 𝑇 − 1

𝛽𝑡 (|𝑆𝑡 | − |𝑆𝑡+1 |) ⩽ 𝑓 (𝑆𝑡) − 𝑓 (𝑆𝑡+1) < 𝛽𝑡+1 (|𝑆𝑡 | − |𝑆𝑡+1 |).
As 𝛽𝑡 < 𝛽𝑡+1 for ∀𝑡 < 𝑇 , we get for all 1 ⩽ 𝑡 < 𝑇 − 1,

|𝑆𝑡 | > |𝑆𝑡+1 |.
Notice that if 𝑇 > 1, then 𝑑 (𝑆1) = 𝛽2 > 𝛽1 = 𝑑 (𝑆0) = 𝑑 (𝑉) where
the last equality is because of our choice of 𝑆0

. Thus 𝑆1 ≠ 𝑉 and

|𝑆1 | < |𝑉 | = |𝑆0 |.
Based on the discussion above, we have the following result.

Theorem 2. Assume the density improvement procedure termi-
nates after 𝑇 iterations, then we have

• ∀𝑡 < 𝑇, 𝛽𝑡 < 𝛽𝑡+1.
• ∀𝑡 < 𝑇 − 1, |𝑆𝑡 | > |𝑆𝑡+1 |.

As a result, this procedure will terminate after at most |𝑆0 |+1 = |𝑉 |+1

iterations and the algorithm runs in strongly polynomial time.

This conclusion shows that Algorithm 1 will iteratively decrease

the size of the solution. The supermodularity of 𝑓 ensures that Line

4 of Algorithm 1 can be done in strongly polynomial time. As a

result, the whole procedure is strongly polynomial. We can see that

in each iteration, when minimizing 𝛽𝑡 |𝑆 | − 𝑓 (𝑆), the minimization

algorithm does not matter much as long as it is strongly polynomial.

Also here for simplicity of analysis, we take 𝑆0 = 𝑉 , but we can

always start from some better initial sets and there is some potential

to reuse information from previous solutions, which is sometimes

more useful than solving the whole problem from scratch. The

bound on the number of iterations is also rather loose, in other

words, we believe in practice the number of iterations may be

𝑜 (|𝑉 |). Moreover, the supermodularity of 𝑓 is not necessary as long

as 𝑓 has some special properties which enable a strong polynomial

algorithm for minimizing 𝛽 |𝑆 | − 𝑓 (𝑆).

5 ANCHORED DENSEST SUBHYPERGRAPH
We now turn to concrete special cases of Problem 4 that focus on

returning a dense subhypergraphs that are localized around a given

seed set in a hypergraph.

Problem 5 (AnchoredDensest Subhypergraph (ADSH)). Given
a hypergraph H = (𝑉 , E), a locality parameter Y ⩾ 0 and a seed
set 𝑅 ⊂ 𝑉 , find a vertex set 𝑆 maximizing 𝑑 (𝑆) = (𝑒 [𝑆] − YVol(𝑆 ∩
𝑅)/2)/|𝑆 |.

Problem 6 (Anchored Densest Subhypergraph with Frac-

tional Volume (ADSH-F)). Given a hypergraph H = (𝑉 , E), a
locality parameter Y ⩾ 0 and a seed set 𝑅 ⊂ 𝑉 , find a vertex set 𝑆
maximizing ¯𝑑 (𝑆) = (𝑒 [𝑆] − YVol(𝑆 ∩ 𝑅))/|𝑆 |.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

These problems are inspired by ADS (Problem 3) and generalize

it by applying to hypergraphs and including a locality parameter.

They use the two different types of hypergraph volume and ADSH-

F avoids situations where large hyperedges incur extremely large

penalties. We focus results on ADSH in the interest of space.

5.1 A Flow-Based Exact Algorithm
We first introduce a flow-based exact algorithm that applies to the

following problem that generalizes Problems 5 and 6:

max

(
𝑒 [𝑆] − 𝑝 (𝑆)

)
/|𝑆 |, 𝑝 : 𝑉 → R⩾0

. (5)

We show how to solve this by reducing it to a sequence of general-

ized hypergraph 𝑠-𝑡 cut problems, which can be solved in turn via

reduction to graph 𝑠-𝑡 cut problems using existing techniques [42].

Consider the decision version of Eq. (5). For a parameter 𝛽 , there

exists an 𝑆 such that

(
𝑒 [𝑆] − 𝑝 (𝑆)

)
/|𝑆 | > 𝛽 if and only if there

exists an 𝑆 such that 𝑝 (𝑆) + 𝛽 |𝑆 | − 𝑒 [𝑆] < 0. We have that 𝑒 [𝑆] =
Vol(𝑆) −∑𝑒∈E 𝑔𝑒 (𝑆) where 𝑔𝑒 (𝑆) = min

1

|𝑒 | {|𝑒 ∩ 𝑆 |,∞|𝑒 \ 𝑆 |}, as

𝑒 [𝑆] =
∑︁
𝑒∈E

1{𝑒⊂𝑆 } =
∑︁
𝑒∈E

(
|𝑒 ∩ 𝑆 |
|𝑒 | − 𝑔𝑒 (𝑆)

)
(6)

=
∑︁
𝑣∈𝑆

∑︁
𝑒∋𝑣

1

|𝑒 | −
∑︁
𝑒∈E

𝑔𝑒 (𝑆) = Vol(𝑆) −
∑︁
𝑒∈E

𝑔𝑒 (𝑆).

We can therefore verify whether there exists an 𝑆 such that 𝑝 (𝑆) +
𝛽 |𝑆 | − 𝑒 [𝑆] < 0 by solving a hypergraph min 𝑠-𝑡 cut problem on

the extended hypergraphH𝛽 constructed as follows:

• Keep all of H = (𝑉 , E) and for each hyperegdge 𝑒 , assign one

splitting function 𝑔𝑒 (𝑆) = min
1

|𝑒 | {|𝑒 ∩ 𝑆 |,∞|𝑒 \ 𝑆 |}.
• Introduce one super source 𝑠 and create one edge {𝑠, 𝑣} with

weight deg(𝑣) for each 𝑣 ∈ 𝑉 .

• Introduce one super sink 𝑡 and create one edge {𝑣, 𝑡} with weight
𝛽 + 𝑝 (𝑣) for each 𝑣 ∈ 𝑉 .

We focus here on the case where 𝛽 ⩾ 0 since the optimal solutions

to Problems 5 and 6 are always nonnegative. Note however that we

can also handle 𝛽 < 0 using slight adjustments to the construction

above. We refer to edges directed connected to 𝑠 or 𝑡 terminal edges,
denoted by E𝑠𝑡 . Their splitting function is the same as the cut

function for a standard graph: the penalty is 0 if the edge is not

cut and otherwise is equal to the weight of the edge. Every 𝑆 ⊂ 𝑉
induces a hypergraph 𝑠-𝑡 cut onH𝛽 with value

cut(𝑆 ∪ {𝑠}) =
∑︁
𝑣∈𝑆

deg(𝑣) +
∑︁
𝑣∈𝑆

(
𝑝 (𝑣) + 𝛽

)
+
∑︁
𝑒∈E

𝑔𝑒 (𝑆) (7)

= Vol(𝑆) + 𝛽 |𝑆 | + 𝑝 (𝑆) +
∑︁
𝑒∈E

𝑔𝑒 (𝑆)

= Vol(H) − 𝑒 [𝑆] + 𝛽 |𝑆 | + 𝑝 (𝑆) .

where the last equality is due to Eq. (6). We summarize as:

Observation 1. The minimum 𝑠-𝑡 cut ofH𝛽 is strictly smaller
than Vol(H) if and only if there exists 𝑆 with

(
𝑒 [𝑆] − 𝑝 (𝑆)

)
/|𝑆 | > 𝛽 .

For each 𝑒 ∈ E, the splitting function𝑔𝑒 is submodular, cardinality-

based and asymmetric. Under these conditions, previous work has

shown how to reduce a generalized hypergraph 𝑠-𝑡 cut problem to a

graph 𝑠-𝑡 cut problem.We include details here for completeness. For

this reduction, no change needs to be made to terminal edges, since

by construction they already involve only two nodes. As shown in

[25, 42], each 𝑒 ∈ E can be replaced by the following gadget
• Introduce one auxiliary node 𝑣𝑒 .

• For each 𝑣 ∈ 𝑒 , introduce a directed edge from 𝑣 to 𝑣𝑒 with weight
1

|𝑒 | , and a directed edge from 𝑣𝑒 to 𝑣 with weight∞.
This leads to a new directed graph𝐺H on an augmented node set.

For any 𝑆 ⊂ 𝑉 , if we include 𝑣𝑒 on the same side of 𝑆 , then we

incur a directed cut penalty of∞|𝑒 \ 𝑆 |/|𝑒 |, otherwise the incurred
directed cut penalty is |𝑒 ∩ 𝑆 |/|𝑒 |. The minimum 𝑠-𝑡 cut solution

in 𝐺H will naturally place the auxiliary node 𝑣𝑒 in a way that

incurs the minimum possible penalty subject to the placement of

the original node set𝑉 . Therefore, for a node set 𝑆 ⊆ 𝑉 , the penalty

incurred because of nodes in hyperedge 𝑒 is exactly 𝑔𝑒 (𝑆).
With this core algorithmic step, what is left is to determine

what 𝛽s to test. The density improvement framework introduced

in Section 4 applies here and provides a strongly polynomial algo-

rithm. One could also use binary search, as done in many densest

subgraph variants. Observe that the answer falls in the interval

[−𝑝 (𝑉), |E |]. When 𝑝 is integral or rational, there exists some pre-

determined smallest gap between any two possible non-equal val-

ues of

(
𝑒 [𝑆] − 𝑝 (𝑆)

)
/|𝑆 |, and we can determine the termination

condition accordingly. When 𝑝 is irrational, although this strategy

fails, we can still apply parametric flow to solve it, as in [22].

New results for DSG in vertex-weighted graphs. We note

in passing that our approach for solving Objective 5 implies more

general results for solving densest subgraph problems in vertex-

weighted graphs. The following problem was introduced in [22]

and later considered in [17].

Problem 7 (Heavy and Dense Subgraph Problem (HDSP)).

Given an undirected graph (𝐺,𝑉 , 𝐸,𝑤𝑉 ,𝑤𝐸) without self-loops, where
𝑤𝑉 : 𝑉 → R⩾0

and𝑤𝐸 : 𝐸 → R⩾0
, find 𝑆∗ ⊂ 𝑉 such that

𝑆∗ = argmax

𝑆⊂𝑉

𝑒 [𝑆] +∑𝑣∈𝑆 𝑤𝑉 (𝑣)
|𝑆 | ,

where 𝑒 [𝑆] is the sum of the weights of edges fully contained in 𝑆 .

This problem explicitly considers weighted edges. Note that our

approach for solving Objective 5 can easily be extended to weighted

settings as well by scaling hyperedges (and the resulting edges in

the reduced graph). While HDSP focuses only on standard graphs,

our approach applies more generally to hypergraphs. Furthermore,

while HDSP focuses on nonnegative vertex weights, our approach

effectively deals with nonpositive vertex weights. Combining our

techniques with Goldberg’s flow network for HDSP [22] leads to

the following stronger result.

Observation 2. There is an efficient flow-based exact algorithm
for any problem of the form max𝑆⊂𝑉

(
𝑒 [𝑆] + 𝑝 (𝑆)

)
/|𝑆 |, where 𝑝 :

𝑉 → R is a vertex function with no sign constraint.

5.2 A Strongly-local Flow Algorithm
We now show how to design a strongly-local algorithm for Prob-

lem 5, meaning that the runtime depends only on the size of 𝑅.

Showing how to obtain a runtime that is independent of global

graph properties is the most technically challenging contribution

of our paper. Our goal here is to strike a balance between obtaining

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

strong theoretical guarantees of this form while ensuring the algo-

rithm is practical. Thus, rather than pursuing the tightest possible

analysis, we focus on providing the simplest exposition that leads

to a runtime that is bounded exclusively in terms of |𝑅 | and Vol(𝑅).
We first provide high-level intuition as to why strongly-local al-

gorithms are possible. For Problem 5, we have 𝑝 (𝑆) = Y deg(𝑆∩𝑅)/2.
This means that in the directed graph 𝐺H presented in Section 5.1,

every vertex will have one directed edge from the source node 𝑠

with weight deg(𝑣) and one directed edge to the sink node 𝑡 with

weight 𝛽 + Y deg(𝑣 ∩ 𝑅)/2. When solving a maximum 𝑠-𝑡 flow prob-

lem in this graph, if Y is large enough we can pre-route a significant

amount of flow and saturate many of the edges leaving the source

node 𝑠 . In particular, for large enough Y, pre-routing flow in this

way will saturate all edges (𝑠, 𝑣) for each 𝑣 ∈ 𝑅. In the remaining

residual graph, the 𝑠 will only be adjacent to nodes in 𝑅, and the

total weight of edges leaving 𝑠 will be much smaller than the total

weight of edges entering 𝑡 . In this way, the maximum 𝑠-𝑡 flow value

will be bounded in terms of the size of 𝑅 (rather than the size of the

whole graph), and by carefully solving a sequence of smaller flow

problems “nearby” 𝑅 we will be able to find the minimum 𝑠-𝑡 cut

of the entire graph 𝐺H without having to visit all of its nodes and

edges. In what follows we provide complete details for formalizing

this intuition. Formally, we will prove that when Y ⩾ 1, Problem 5

can be solved exactly by a strongly-local algorithm.

We assume throughout our analysis that 𝑑 (𝑅) = Ω(1). In other

words, the subhypergraph induced by𝑅 has a density lower bounded

by some universal constant. This will simplify the technical exposi-

tion without significantly changing the analysis. We could alterna-

tively weaken this to a natural assumption that 𝑅 contains at least

one hyperedge, which would only change the analysis slightly.

As a warm-up we prove that when Y ⩾ 2, Problem 5 is equivalent

to finding the densest subhypergraph within 𝑅. A strongly-local

algorithm can then easily be obtained by considering only subsets

of 𝑅. This provides additional intuition as to why strongly-local

algorithms are possible for large enough Y.

Lemma 3. When Y ⩾ 2, max𝑆⊂𝑉 𝑑 (𝑆) ⇔ max𝑆⊂𝑅 𝑑 (𝑆).

The proof is provided inAppendix A.2.We nowpresent a strongly-

local algorithm for 1 ⩽ Y < 2. We first bound the range of values

containing the optimal solution 𝑑∗.

Lemma 4. Let 𝑑∗ = max𝑆⊂𝑉 𝑑 (𝑆), then for 1 ⩽ Y < 2,

Ω(1) ⩽ max

𝑆⊂𝑅
𝑑 (𝑆) ⩽ 𝑑∗ ⩽ Δ̄(𝑅) .

The proof is provided in Appendix A.3. Hence, we only need

to test those 𝛽s falling into this range of values that contains 𝑑∗.
Recall that for a given parameter 𝛽 , one can verify whether there

exists one set 𝑆 such that

(
𝑒 [𝑆] − 𝑝 (𝑆)

)
/|𝑆 | > 𝛽 by minimizing

𝑝 (𝑆) + 𝛽 |𝑆 | − 𝑒 [𝑆] and comparing the minimum to 0. Since 𝑝 (𝑆) =
YVol(𝑆 ∩ 𝑅)/2, we specifically minimize

YVol(𝑆 ∩ 𝑅)/2 + 𝛽 |𝑆 | − 𝑒 [𝑆] . (8)

The following lemma bounds the size of the optimal set 𝑆∗ =

argmax 𝑆⊆𝑉𝑑 (𝑆), and the degree of nodes in 𝑆∗, in terms of the

quantities that depend only on 𝑅.

Lemma 5. When Y ⩾ 1, let 𝑆∗ = argmax 𝑆⊆𝑉𝑑 (𝑆), then we have

(1) |𝑆∗ | ⩽ Vol(𝑅).

(2) ∀𝑣 ∈ 𝑆∗, deg(𝑣) ⩽ 𝑂 (Vol(𝑅) + Δ(𝑅)) .

Appendix A.4 provides a proof. This Lemma implies that when

searching for the optimal 𝑆∗, we can ignore vertices with very high

degrees. This is done by adding a directed edge from those vertices

to 𝑡 with weight∞. These edges will never be a part of the minimum

𝑠-𝑡 cut, meaning that these vertices will never be part of 𝑆 .

The main challenge is to find a minimum 𝑠-𝑡 cut in H𝛽 in a

strongly-local manner. Recall from the construction ofH𝛽 in Sec-

tion 5.1 that for every vertex 𝑣 ∈ 𝑉 , there is an edge (𝑠, 𝑣) and
another edge (𝑣, 𝑡). This means that the minimum 𝑠-𝑡 cut solution

will have to cut one of these two edges for each vertex. Note that

we can equivalently alter H𝛽 so that each vertex in 𝑅 has either
an edge to the source 𝑠 or sink 𝑡 but not both. Concretely, for each

𝑣 ∈ 𝑅, we can remove the edge connected to 𝑠 with weight deg(𝑣)
and decrease the weight of the edge to 𝑡 by deg(𝑣), so that the new

weight is 𝛽 + Y deg(𝑣)/2 − deg(𝑣). This is guaranteed to be nonneg-

ative, since by Lemma 1 and the assumption that Y ⩾ 1 we have

Y deg(𝑣)/2 ⩾ deg(𝑣). This adjustment will change the value of the

minimum 𝑠-𝑡 cut by Vol(𝑅), but will not change the minimizer. In

what follows we assume we are working with this slightly altered

hypergraph; we overload the notation and still call thisH𝛽 .

Our strongly-local procedure works by starting with a subset of

H𝛽 and growing it as needed in search for a global minimum 𝑠-𝑡 cut

solution. We assume for this process that the hypergraph is given

by oracle accesses. For each 𝑣 ∈ 𝑉 , let NE (𝑣) = {𝑒 ∈ E : 𝑒 ∋ 𝑣} be
the set of hyperedges that 𝑣 belongs to and NE (𝑆) =

⋃
𝑣∈𝑆 NE (𝑣).

Let 𝑉 (𝑒) = {𝑣 : 𝑣 ∈ 𝑒} be the set of vertices that belongs to 𝑒 and
𝑉 (𝐸) = ⋃

𝑒∈𝐸 𝑉 (𝑒). Let N𝑠𝑡 (𝑣) denote those terminal edges inci-

dent to 𝑣 andN𝑠𝑡 (𝑆) = ⋃
𝑣∈𝑆 N𝑠𝑡 (𝑣). Given a vertex 𝑣 ∈ 𝑉 or a hy-

peredge 𝑒 ∈ E, we can efficiently queryNH (𝑣) or𝑉 (𝑒) respectively.
Combining these two oracles, we can efficiently compute the vertex

neighborhood of one vertex N𝑉 (𝑣) = {𝑢 ∈ 𝑉 : ∃𝑒 s.t. 𝑢, 𝑣 ∈ 𝑒}
and N𝑉 (𝑆) =

⋃
𝑣∈𝑆 N𝑉 (𝑣). We also assume some simple metadata

are pre-stored together with the hypergraph, for example we can

query deg(𝑣), deg(𝑣) for any 𝑣 , and |𝑒 | for any 𝑒 in𝑂 (1) time. Hence

N𝑠𝑡 (𝑆) can be constructed efficiently.

Instead of building all ofH𝛽 explicitly and computing the mini-

mum 𝑠-𝑡 cut, we alternate between the following two steps:

• Compute a minimum 𝑠-𝑡 cut 𝑆L on a local hypergraph L ⊆ H𝛽 .

• Expand the local hypergraph L based on the min 𝑠-𝑡 cut 𝑆L
obtained in the above step.

This procedure ends at a point where we can certify that the 𝑠-𝑡 cut

on L is also a solution to the 𝑠-𝑡 cut on the entire hypergraphH𝛽 .

Concretely, let L = (𝑉L ∪ {𝑠, 𝑡}, EL ∪ E𝑠𝑡L , 𝑔) where 𝑉L ⊂ 𝑉 is a

subset of the vertices of the hypergraphH , EL is a subset of the

hyperedges inH𝛽 and E𝑠𝑡L is the set of the terminal edges inH𝛽

between 𝑉L and {𝑠, 𝑡}, and 𝑔 is the set of splitting functions corre-

sponding to EL ∪ E𝑠𝑡L . We initialize 𝑉L to be 𝑅 ∪ N𝑉 (𝑅), in other

words, the seed set union its vertex neighborhood. We initialize

EL to be NE (𝑅), in other words, those hyperedges touching the

seed set 𝑅. Finally we initialize E𝑠𝑡L to be the terminal edges con-

nected to 𝑉L . When we grow L, we always guarantee it remains a

subhypergraph ofH𝛽 , which means we always have

min-st-cutL ⩽ min-st-cutH𝛽
. (9)

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 2 Strongly local method for solving Prob. 5 when Y ⩾ 1.

Input: 𝑅, Y, 𝛽 , oracle access to a hypergraphH .

Output: 𝑆 minimizing Objective (8) for 𝑝 (𝑆) = YVol(𝑆 ∩ 𝑅)/2.
1: 𝑉L ← 𝑅 ∪ N𝑉 (𝑅), E𝐿 ← NE (𝑅), E𝑠𝑡L ← N

𝑠𝑡 (𝑉L), 𝑋 ← 𝑅

2: repeat
3: 𝑆L = Solve min-st-cut in L Step 1
4: 𝑆new = 𝑆L \

(
𝑋 ∪ {𝑠, 𝑡}

)
Step 2: Grow local hypergraph L

5: 𝑉L ← 𝑉L ∪ N𝑉 (𝑆new)
6: EL ← EL ∪ NE (𝑆new), E𝑠𝑡L ← E

𝑠𝑡
L ∪ N

𝑠𝑡 (𝑆new)
7: 𝑋 ← 𝑋 ∪ 𝑆new
8: until 𝑆new = ∅
9: return 𝑆L

By carefully choosing how the local hypergraph L grows, we can

guarantee that the inequality will reach equality,without ever hav-

ing to explore the entire hypergraph. This growing process expands

L by considering nodes in 𝑆L and adding all of its neighboring

edges and nodes fromH𝛽 that are not already in the local hyper-

graph L. We specifically have the following two update rules:

• Update the vertex set by setting 𝑉L ← 𝑉L ∪ N𝑉 (𝑆L).
• Update the edge set by setting EL ← EL ∪ NE (𝑆L), E𝑠𝑡L ←
E𝑠𝑡L ∪ N

𝑠𝑡 (𝑆L).
To avoid adding the neighbor of one vertex multiple times, we keep

a list 𝑋 and mark those vertices as explored. The algorithm ends

when 𝑆L does not introduce new vertices and edges. The whole

procedure is summarized in Algorithm 2. Theorem 3 guarantees

this will find the optimal minimum 𝑠-𝑡 cut set, and Theorem 4

guarantees it will have a strongly-local runtime. We defer the proof

for these results to the Appendix A.5 and A.6.

Theorem 3. When Y ⩾ 1, the optimal set 𝑆 returned by Algo-
rithm 2 minimizes the objective (8).

Theorem 4. For Y ⩾ 1, the local hypergraph L will contain
𝑂 ((Vol(𝑅) + |𝑅 |)𝛿) hyperedges and at most𝑂 ((Vol(𝑅) + |𝑅 |)𝛿𝑟) ver-
tices where 𝛿 = 𝑂 (Vol(𝑅) + Δ(𝑅)).

6 EXPERIMENTS
We implement our proposed algorithms in Julia. Specifically, we

solve the min. 𝑠-𝑡 cut using a highest-label push-relabel algorithm

with optimizations from [12]. We preprocess all the hypergraphs

we use to remove dangling nodes, self-loops and multihyperedges.

To demonstrate the advantages and differences of the anchored

densest subhypergraphs found by Problem 5 and 6, we compare

them against running the anchored densest subgraph algorithm

on the clique expansions of hypergraphs [15]. The specific clique

expansions we consider are unweighted clique expansion (UCE)

and weighted clique expansion (WCE). For WCE, each hyperedge 𝑒

will be replaced by one clique where each edge has weight
1

|𝑒 | . For
UCE, it is replaced by one clique where each edge has weight 1.

6.1 Density Improvement vs. Binary Search
To demonstrate that our Density Improvement Framework shown

in Algorithm 1 has good performance in practice, we perform

comparison experiments against binary search on five different

Table 2: Comparison between our Density Improvement (DI)
Framework shown in Algorithm 1 and the standard binary
search (BS). Time is the running time in seconds and itera-
tions represent the number of subproblems solved.

Datasets 𝑛 𝑚 |𝑒 | DI BS

time iters time iters

Walmart 87k 65k 6.9 6.4 9 18.5 43

Trivago 173k 220k 3.2 10.1 10 26.3 42

Math SX 153k 563k 2.6 19.5 8 89.5 47

Ask Ubuntu 82k 114k 2.3 2.6 10 8.7 43

Amazon 4.2M 2.3M 17.2 2239 10 9333 54

0.25 0.50 0.75 1.00

F
1

S
co

re

0.2

0.4

0.6

0.8

FracVol
Vol
WCE

Figure 1: Solving Probs 5, 6 (Vol, FracVol) outperforms An-
chored Densest Subgraph (WCE) in planted set models. The
x-axis represents difficulty (𝑚1/𝑚2). Lines show mean F1
scores and bands show standard errors.

real-world hypergraph datasets, Walmart Trips [2], Amazon Re-

views [35], Trivago Clicks [14], Threads Ask Ubuntu and Threads

Math SX [7]. Since the search range and termination condition of bi-

nary search gets complicated when the complexity of the objective

function increases, here we simply study the densest subhyper-

graph problem. In other words, 𝑓 (𝑆) = 𝑒 [𝑆]. Each subproblem is

solved by the same max. 𝑠-𝑡 flow solver. We compare two methods’

running time and number of subproblems solved.

The results are summarized in Table 2. Concretely, as is standard,

for binary search, we let the search range be [0, |E |] and termi-

nation condition is when the search range becomes shorter than

1/(|𝑉 | (|𝑉 | − 1)) [28]. For our density improvement, we let 𝑆0 = 𝑉 .

We can see that on all five datasets, density improvement shows

about 3.5x speed up, which demonstrates it is practical.

6.2 Experiments with Planted Dense Sets
We first study the capacity of our objectives to find dense subhy-

pergraphs on problems with planted dense subsets. Specifically, we

build a graph with 1000 vertices and assign each vertex into one of

the 30 clusters uniformly at random similar to a stochastic block

model. Then we generate two kinds of hyperedges,𝑚1 hyperedges

between clusters and𝑚2 hyperedges inside clusters. This allows

us to plant 30 dense sets into this hypergraph. This is similar to

scenarios for planted partitions in uniform hypergraphs where each

hyperedge has the same size [20] and inspired by various ideas in

random hypergraph and graph generation [1, 13, 23].

We let𝑚2 = 50000, and then compare our objectives with the

baselines to see how well they can detect the underlying planted

densest subhypergraphs when we vary𝑚1. The average hyperedge

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) A 1543 vertex, density 22.34
subhypergraph from Chinese universities

(b) A 1923 vertex, density 19.76
subhypergraph from on UK universities

(c) A 1356 vertex, density 23.51
subhypergraph from the intersection

Figure 2: We show sets of domains as a colored map based on the number of domains associated with that region normalized by
the total domains in the region. (Our attribution of domain to region is imperfect, but should capture general trends.)

0.0 0.5 1.0

T
im

e(
s)

10-0.5

100.0

100.5

101.0

101.5

FracVol Vol
UCE WCE

(a) Walmart Trips

0.0 0.5 1.0

T
im

e(
s)

10-1

100

101

FracVol Vol
UCE WCE

(b) Trivago Clicks

0.0 0.5 1.0

T
im

e(
s)

10-1.0

10-0.5

100.0

100.5

FracVol Vol
UCE WCE

(c) Threads Ask Ubuntu

0.0 0.5 1.0

T
im

e(
s)

100.0

100.5

101.0

101.5

FracVol Vol
UCE WCE

(d) Threads Math SX

Figure 3: Running time comparison. x-axis represents Y. We generate 100 different 𝑅 for each dataset and run each method on
them. Here we report the mean and stderr of the running time. Specifically, each 𝑅 is generated by randomly sampling 10 seed
nodes and then expand them to a set with 200 nodes using random walks.

size in the hypergraphs we generate is 5.7. For each cluster, we

generate 10 different seed sets 𝑅 by sampling 5% vertices from that

cluster and performing length-2 random walks to grow it to a set

with size equal to 1.5 times the cluster size. In total, we generate

300 seed sets. For each objective, we compute F1 score between

the detected subhypergraph and the ground truth planted cluster.

Appendix D.1 gives details for generating hyperedges.

The results are summarized in Figure 1. Here we do not show the

result for UCE as it exhibits similar behavior with WCE empirically.

We can see that when the planted dense structures are relatively

clear, i.e. the ratio
𝑚1

𝑚2

is relatively small, both Vol and FracVol

penalty are able to perfectly detect the planted dense cluster while

WCE can not. As is expected, with𝑚1 increasing, it is harder for

all methods to recover the planted dense cluster but FracVol has a

clear advantage throughout.

6.3 Densely linked domains on the web
We perform a case study on the web graph to show the local

dense subgraph tools we build are useful in network analysis. We

take the host-level webgraph data from Common Crawl (https://

commoncrawl.org/blog/host-and-domain-level-web-graphs-oct-nov-

jan-2020-2021). It contains 490 million nodes and 2.6 billion directed

edges between hosts. We build a domain-level hypergraph by form-

ing one hyperedge for each host within a domain. The contents of

the hyperedge are all the domains linked from that host. We focus

on the subgraph induced by the domain names of educational and

academic institutions. Concretely, we take all domains★.edu,★.ac.★

or★.edu.★. This hypergraph has 147k vertices and 138k hyperedges,

with average hyperedge size 11.3. One common phenomenon of

densest subgraph like objectives is that on real-world graphs, they

usually do not have large densest subgraphs. On this hypergraph,

the densest subhypergraph contains 105 nodes, 103 US domains

and 2 UK domains (Oxford, Cambridge) with density 45.73.

Our tools allow us to go beyond this simple set. Here we take

domains from the UK and mainland China as reference sets re-

spectively and vary Y from 0.0 to 1.5 to find large, and reasonably

dense subhypergraph. We identify one anchored densest subhy-

pergraph with size 1923 and density 19.76 from the UK, and one

anchored densest subhypergraph with size 1543 and density 22.34

from mainland China. By intersecting those two sets, we can get a

denser subhypergraph with 1356 nodes and density 23.51 that spans

universities throughout the world. This is illustrated in Figure 2.

6.4 Running Time Comparison
We compare runtime on real-world datasets and summarize results

in Figure 3. All methods run faster when Y is large and their running

time sharply decreases when Y enters the strongly local regime. Also,

in general our anchored densest subhypergraph solvers are faster

than clique expansion alternative when the hypergraph has a large

mean hyperedge size, e.g. Walmart Trips and Trivago Clicks.

7 CONCLUSION
We propose two localized densest subhypergraph objectives and

demonstrate their utility through experiments. Along the way, we

also prove several interesting results for the general densest sub-

graph discovery problem. Future directions are making the algo-

rithms scale to hypergraphs with billions of nodes and edges and

futher exploring the space of localized objectives for different sce-

narios.

8

https://commoncrawl.org/blog/host-and-domain-level-web-graphs-oct-nov-jan-2020-2021
https://commoncrawl.org/blog/host-and-domain-level-web-graphs-oct-nov-jan-2020-2021
https://commoncrawl.org/blog/host-and-domain-level-web-graphs-oct-nov-jan-2020-2021

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Leman Akoglu and Christos Faloutsos. 2009. RTG: a recursive realistic graph

generator using random typing. Data Mining and Knowledge Discovery 19, 2

(July 2009), 194–209. https://doi.org/10.1007/s10618-009-0140-7

[2] Ilya Amburg, Nate Veldt, and Austin R. Benson. 2020. Clustering in

Graphs and Hypergraphs with Categorical Edge Labels. In Proceedings of
The Web Conference 2020. 706–717. https://doi.org/10.1145/3366423.3380152

arXiv:1910.09943 [physics, stat]

[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local Graph Partitioning

using PageRank Vectors. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’06).

[4] Reid Andersen and Kevin J Lang. 2006. Communities from seed sets. In Proceed-
ings of the 15th international conference on World Wide Web. 223–232.

[5] Reid Andersen and Kevin J Lang. 2008. An algorithm for improving graph

partitions.. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA ’08, Vol. 8). 651–660.

[6] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen,

and Srikanta Tirthapura. 2014. Dense subgraph maintenance under streaming

edge weight updates for real-time story identification. The VLDB journal 23
(2014), 175–199.

[7] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Klein-

berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of the
National Academy of Sciences (2018). https://doi.org/10.1073/pnas.1800683115

[8] Immanuel M Bomze, Marco Budinich, Panos M Pardalos, and Marcello Pelillo.

1999. The maximum clique problem. Handbook of Combinatorial Optimization:
Supplement Volume A (1999), 1–74.

[9] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos

Tsourakakis, Di Wang, and Junxing Wang. 2020. Flowless: Extracting Densest

Subgraphs Without Flow Computations. In Proceedings of The Web Conference
2020 (WWW ’20). Association for Computing Machinery, New York, NY, USA,

573–583. https://doi.org/10.1145/3366423.3380140

[10] Moses Charikar. 2000. Greedy Approximation Algorithms for Finding Dense

Components in a Graph. In Approximation Algorithms for Combinatorial Opti-
mization (Lecture Notes in Computer Science), Klaus Jansen and Samir Khuller

(Eds.). Springer, 84–95. https://doi.org/10.1007/3-540-44436-X_10

[11] Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. 2022. Densest Subgraph:

Supermodularity, Iterative Peeling, and Flow. In Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and
Applied Mathematics, 1531–1555. https://doi.org/10.1137/1.9781611977073.64

[12] Boris V. Cherkassky and Andrew V. Goldberg. 1995. On Implementing Push-

Relabel Method for the Maximum Flow Problem. In Integer Programming and
Combinatorial Optimization, Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Egon

Balas, and Jens Clausen (Eds.). Vol. 920. Springer Berlin Heidelberg, Berlin,

Heidelberg, 157–171. https://doi.org/10.1007/3-540-59408-6_49

[13] Philip S Chodrow. 2020. Configuration models of random hypergraphs. Journal
of Complex Networks 8, 3 (June 2020). https://doi.org/10.1093/comnet/cnaa018

[14] Philip S. Chodrow, Nate Veldt, and Austin R. Benson. 2021. Generative Hyper-

graph Clustering: From Blockmodels to Modularity. Science Advances 7, 28 (July
2021), eabh1303. https://doi.org/10.1126/sciadv.abh1303

[15] Yizhou Dai, Miao Qiao, and Lijun Chang. 2022. Anchored Densest Subgraph. In

Proceedings of the 2022 International Conference on Management of Data. ACM,

Philadelphia PA USA, 1200–1213. https://doi.org/10.1145/3514221.3517890

[16] Werner Dinkelbach. 1967. On nonlinear fractional programming. Management
science 13, 7 (1967), 492–498.

[17] Adriano Fazzone, Tommaso Lanciano, Riccardo Denni, Charalampos E.

Tsourakakis, and Francesco Bonchi. 2022. Discovering Polarization Niches via

Dense Subgraphs with Attractors and Repulsers. Proceedings of the VLDB Endow-
ment 15, 13 (Sept. 2022), 3883–3896. https://doi.org/10.14778/3565838.3565843

[18] GaryWilliam Flake, Steve Lawrence, and C LeeGiles. 2000. Efficient identification

of web communities. In Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining. 150–160.

[19] Kimon Fountoulakis, Meng Liu, David F Gleich, and Michael W Mahoney. 2023.

Flow-based algorithms for improving clusters: A unifying framework, software,

and performance. SIAM Rev. 65, 1 (2023), 59–143.
[20] Debarghya Ghoshdastidar and Ambedkar Dukkipati. 2014. Consistency of Spec-

tral Partitioning of Uniform Hypergraphs under Planted Partition Model. In

Advances in Neural Information Processing Systems, Vol. 27. Curran Associates,

Inc.

[21] Aristides Gionis, Flavio PP Junqueira, Vincent Leroy, Marco Serafini, and Ingmar

Weber. 2013. Piggybacking on social networks. In VLDB 2013-39th International
Conference on Very Large Databases, Vol. 6. 409–420.

[22] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report.
University of California at Berkeley, USA.

[23] Lilith Orion Hafner, Chase Holdener, and Nicole Eikmeier. 2022. Functional Ball

Dropping: A superfast hypergraph generation scheme. In 2022 IEEE International
Conference on Big Data (Big Data). IEEE. https://doi.org/10.1109/bigdata55660.

2022.10020506

[24] Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. 2022. Faster and Scalable

Algorithms for Densest Subgraph and Decomposition. Advances in Neural
Information Processing Systems 35 (Dec. 2022), 26966–26979.

[25] Shuguang Hu, Xiaowei Wu, and T-H. Hubert Chan. 2017. Maintaining Densest

Subsets Efficiently in Evolving Hypergraphs. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. ACM, Singapore

Singapore, 929–938. https://doi.org/10.1145/3132847.3132907

[26] Rania Ibrahim and David F Gleich. 2020. Local hypergraph clustering using

capacity releasing diffusion. Plos one 15, 12 (2020), e0243485.
[27] Kyle Kloster and David F Gleich. 2014. Heat kernel based community detection.

In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’14). 1386–1395.

[28] Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi.

2023. A Survey on the Densest Subgraph Problem and Its Variants. https:

//doi.org/10.48550/arXiv.2303.14467 arXiv:2303.14467 [cs]

[29] Kevin Lang and Satish Rao. 2004. A Flow-Based Method for Improving the

Expansion or Conductance of Graph Cuts. In Conference on Integer Programming
and Combinatorial Optimization (IPCO ’04). 325–337. https://doi.org/10.1007/978-
3-540-25960-2_25

[30] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[31] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous hypergraph clustering with

applications. Advances in neural information processing systems 30 (2017).
[32] Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F Gleich. 2021. Strongly

local hypergraph diffusions for clustering and semi-supervised learning. In

Proceedings of the Web Conference 2021. 2092–2103.
[33] David W Matula and Farhad Shahrokhi. 1990. Sparsest cuts and bottlenecks in

graphs. Discrete Applied Mathematics 27, 1-2 (1990), 113–123.
[34] Atsushi Miyauchi and Naonori Kakimura. 2018. Finding a Dense Subgraph with

Sparse Cut. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management (CIKM ’18). Association for Computing Machinery,

New York, NY, USA, 547–556. https://doi.org/10.1145/3269206.3271720

[35] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations

Using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China, 188–197.

https://doi.org/10.18653/v1/D19-1018

[36] Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-based algorithms for local

graph clustering. In Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms (SODA ’14). SIAM, 1267–1286.

[37] James B. Orlin. 2009. A Faster Strongly Polynomial Time Algorithm for Sub-

modular Function Minimization. Mathematical Programming 118, 2 (May 2009),

237–251. https://doi.org/10.1007/s10107-007-0189-2

[38] Mauro Sozio and Aristides Gionis. 2010. The Community-Search Problem and

How to Plan a Successful Cocktail Party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’10).
Association for Computing Machinery, New York, NY, USA, 939–948. https:

//doi.org/10.1145/1835804.1835923

[39] Mechthild Stoer and Frank Wagner. 1997. A simple min-cut algorithm. Journal
of the ACM (JACM) 44, 4 (1997), 585–591.

[40] Charalampos Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

Proceedings of the 24th International Conference on World Wide Web (WWW ’15).
International World Wide Web Conferences Steering Committee, Republic and

Canton of Geneva, CHE, 1122–1132. https://doi.org/10.1145/2736277.2741098

[41] Charalampos Tsourakakis and Tianyi Chen. 2021. Dense Subgraph Discovery:
Theory and Applications (Tutorial SDM 2021). https://tsourakakis.com/dense-

subgraph-discovery-theory-and-applications-tutorial-sdm-2021/

[42] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2020. Hypergraph Cuts with

General Splitting Functions. arXiv:2001.02817 [cs]

[43] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2020. Minimizing Localized

Ratio Cut Objectives in Hypergraphs. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1708–1718.

[44] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2021. The Generalized Mean

Densest Subgraph Problem. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining (KDD ’21). Association for Computing

Machinery, New York, NY, USA, 1604–1614. https://doi.org/10.1145/3447548.

3467398

[45] Nate Veldt, David F Gleich, and Anthony Wirth. 2018. A correlation clustering

framework for community detection. In Proceedings of the 2018 World Wide Web
Conference. 439–448.

[46] Nate Veldt, Christine Klymko, and David F. Gleich. 2019. Flow-Based Local

Graph Clustering with Better Seed Set Inclusion. In Proceedings of the 2019 SIAM
International Conference on Data Mining (SDM ’19).

[47] Di Wang, Kimon Fountoulakis, Monika Henzinger, Michael W Mahoney, and

Satish Rao. 2017. Capacity releasing diffusion for speed and locality. In Interna-
tional Conference on Machine Learning. PMLR, 3598–3607.

9

https://doi.org/10.1007/s10618-009-0140-7
https://doi.org/10.1145/3366423.3380152
https://arxiv.org/abs/1910.09943
https://doi.org/10.1073/pnas.1800683115
https://doi.org/10.1145/3366423.3380140
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.1137/1.9781611977073.64
https://doi.org/10.1007/3-540-59408-6_49
https://doi.org/10.1093/comnet/cnaa018
https://doi.org/10.1126/sciadv.abh1303
https://doi.org/10.1145/3514221.3517890
https://doi.org/10.14778/3565838.3565843
https://doi.org/10.1109/bigdata55660.2022.10020506
https://doi.org/10.1109/bigdata55660.2022.10020506
https://doi.org/10.1145/3132847.3132907
https://doi.org/10.48550/arXiv.2303.14467
https://doi.org/10.48550/arXiv.2303.14467
https://arxiv.org/abs/2303.14467
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1145/3269206.3271720
https://doi.org/10.18653/v1/D19-1018
https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/2736277.2741098
https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/
https://tsourakakis.com/dense-subgraph-discovery-theory-and-applications-tutorial-sdm-2021/
https://arxiv.org/abs/2001.02817
https://doi.org/10.1145/3447548.3467398
https://doi.org/10.1145/3447548.3467398

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A PROOFS
A.1 Proof of Lemma 2
Since 𝑓 is normalized, if 𝛽 |𝑆 | − 𝑓 (𝑆) < 0, then 𝑆 ≠ ∅. Therefore any
𝑆 satisfying 𝛽 |𝑆 | − 𝑓 (𝑆) < 0 has 𝑓 (𝑆)/|𝑆 | > 𝛽 . Meanwhile any 𝑆

with 𝑓 (𝑆)/|𝑆 | > 𝛽 naturally has 𝛽 |𝑆 | − 𝑓 (𝑆) < 0.

Further, notice that 𝛽 |∅| − 𝑓 (∅) = 0, hence min𝑆⊂𝑉 𝛽 |𝑆 | − 𝑓 (𝑆) ⩽
0 always holds. As min𝑆⊂𝑉 𝛽 |𝑆 |− 𝑓 (𝑆) < 0 and max𝑆⊆𝑉 𝑓 (𝑆)/|𝑆 | >
𝛽 are equivalent, the complement of them are also equivalent.

A.2 Proof of Lemma 3
By our assumption, 𝑑 (𝑅) is positive. Hence the optimal 𝑆 maximiz-

ing 𝑑 (𝑆) has to intersect 𝑅, otherwise

𝑒 [𝑆] − YVol(𝑆 ∩ 𝑅)/2
|𝑆 | =

𝑒 [𝑆] − YVol(𝑆)/2
|𝑆 | ⩽ 0.

For an 𝑆 that intersects 𝑅, let𝐴 = 𝑆 ∩𝑅 and 𝐵 = 𝑆 ∩𝑅 = 𝑆 \𝐴. Then

𝑒 [𝑆] − YVol(𝑆 ∩ 𝑅)/2
|𝑆 | ⩽

𝑒 [𝑆] − Vol(𝑆 ∩ 𝑅)
|𝑆 | ⩽

𝑒 [𝑆 ∩ 𝑅]
|𝑆 |

⩽
𝑒 [𝑆 ∩ 𝑅]
|𝑆 ∩ 𝑅 | =

𝑒 [𝐴] − YVol(𝐴 ∩ 𝑅)
|𝐴| .

For the second inequality we use the fact that any hyperedge fully

contained in 𝑆 and intersecting 𝑆 ∩ 𝑅 is counted at least once in

Vol(𝑆 ∩ 𝑅). The last equality follows from the definition of 𝐴. This

inequality shows that for any set 𝑆 intersecting 𝑅, removing vertices

outside 𝑅 will not make the answer worse. Thus it is equivalent to

maximizing 𝑑 (𝑆) over 𝑆 ⊂ 𝑅.

A.3 Proof of Lemma 4
On the one hand, we know that 𝑑∗ ⩾ max𝑆⊂𝑅 𝑑 (𝑆) ⩾ 𝑑 (𝑅) = Ω(1)
by assumption. On the other hand, observe that

𝑑 (𝑆) = 𝑒 [𝑆] − YVol(𝑆 ∩ 𝑅)/2
|𝑆 | ⩽

Vol(𝑆) − 1

2
Vol(𝑆 ∩ 𝑅)
|𝑆 |

⩽
Vol(𝑆) − Vol(𝑆 ∩ 𝑅)

|𝑆 | ⩽
Vol(𝑆 ∩ 𝑅)
|𝑆 ∩ 𝑅 | ⩽ Δ̄(𝑅).

The first inequality relies on Eq. (6) and the second inequality

follows from Lemma 1.

A.4 Proof of Lemma 5
By Lemma 4, we have when 1 ⩽ Y < 2,

𝑑∗ =
𝑒 [𝑆∗] − YVol(𝑆∗ ∩ 𝑅)

|𝑆∗ | = Ω(1),

which means

𝑒 [𝑆∗] − YVol(𝑆∗ ∩ 𝑅)/2 ⩾ Ω(|𝑆∗ |)

⇒Vol(𝑆∗) −
∑︁
𝑒∈E

𝑔𝑒 (𝑆∗) − YVol(𝑆∗ ∩ 𝑅)/𝑤 ⩾ Ω(|𝑆∗ |)

⇒Vol(𝑆∗) ⩾
∑︁
𝑒∈E

𝑔𝑒 (𝑆∗) + YVol(𝑆∗ ∩ 𝑅)/2 + Ω(|𝑆∗ |)

⇒Vol(𝑆∗ ∩ 𝑅) = Vol(𝑆∗) − Vol(𝑆∗ ∩ 𝑅)

⩾
∑︁
𝑒∈E

𝑔𝑒 (𝑆∗) +
(
YVol(𝑆∗ ∩ 𝑅)/2 − Vol(𝑆∗ ∩ 𝑅)

)
+ Ω(|𝑆∗ |)

⇒Vol(𝑅) = Vol(𝑆∗ ∩ 𝑅) + Vol(𝑆∗ ∩ 𝑅)

⩾
∑︁
𝑒∈E

𝑔𝑒 (𝑆∗) +
(
YVol(𝑆∗ ∩ 𝑅)/2 − Vol(𝑆∗ ∩ 𝑅)

)
+ Vol(𝑆∗ ∩ 𝑅) + Ω(|𝑆∗ |). (10)

Recall that ∀𝑒 ∈ E, 𝑔𝑒 (𝑆) = min
1

|𝑒 | {|𝑒 ∩ 𝑆 |,∞|𝑒 \ 𝑆 |} ⩾ 0, thus∑
𝑒∈E 𝑔𝑒 (𝑆

∗) is nonnegative. By Lemma 1, we have Vol(𝑆∗ ∩ 𝑅) ⩾
2Vol(𝑆∗∩𝑅), which implies YVol(𝑆∗∩𝑅)/2−Vol(𝑆∗∩𝑅) ⩾ 0 when

Y ⩾ 1. Hence all four terms of RHS of (10) are nonnegative. This

means

Vol(𝑅) ⩾
∑︁
𝑒∈E

𝑔𝑒 (𝑆∗), (11)

Vol(𝑅) ⩾ YVol(𝑆∗ ∩ 𝑅)/2 − Vol(𝑆∗ ∩ 𝑅), (12)

Vol(𝑅) ⩾ Ω(|𝑆∗ |) . (13)

Hence Ineq. (13) concludes that |𝑆∗ | ⩽ 𝑂 (Vol(𝑅)).
To bound the degree of 𝑣 ∈ 𝑆∗, we need to group the degree of

each vertex into two subgroups contributed by hyperedges with

different sizes. Let E1 = {𝑒 ∈ E : |𝑒 | = 2}, E2 = E \ E1. Let

deg𝑖 (𝑣) =
∑
𝑒∈E𝑖 1{𝑣∈𝑒 } ,∀𝑖 ∈ {1, 2} . In other words, we count the

degree contributed by size-2 hyperedges separately. Accordingly, let

Vol𝑖 (𝑆) =
∑

𝑣∈𝑆 deg𝑖 (𝑣),N𝑖 (𝑆) = {𝑒 ∈ E𝑖 : |𝑒 ∩ 𝑆 | > 0},∀𝑖 ∈ {1, 2}.
For any 𝑣 ∈ 𝑆∗ ∩ 𝑅, its degree is bounded by Δ(𝑅). For any

𝑣 ∈ 𝑆∗ ∩𝑅, we consider its deg
1
(𝑣) and deg

2
(𝑣) separately. Because

of Ineq. (12) and Y ⩾ 1, we have

Vol(𝑅) ⩾ YVol(𝑆∗ ∩ 𝑅)/2 − Vol(𝑆∗ ∩ 𝑅)

⩾
1

2

Vol(𝑆∗ ∩ 𝑅) − Vol(𝑆∗ ∩ 𝑅)

=
∑︁

𝑣∈𝑆∗∩𝑅

∑︁
𝑒∈E:𝑒∋𝑣

(1
2

− 1

|𝑒 |)

⩾
1

6

Vol2 (𝑆∗ ∩ 𝑅),

which implies that for any 𝑣 ∈ 𝑆∗ ∩ 𝑅, deg
2
(𝑣) ⩽ Vol2 (𝑆∗ ∩ 𝑅) ⩽

6Vol(𝑅).
10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

By Ineq. (11), we have

2Vol(𝑅) ⩾ 2

∑︁
𝑒∈E

𝑔𝑒 (𝑆∗) ⩾ 2

∑︁
𝑒∈E1

𝑔𝑒 (𝑆∗)

=
∑︁
𝑒∈E1

min{|𝑒 ∩ 𝑆∗ |,∞|𝑒 \ 𝑆∗ |}

=
∑︁
𝑒∈E1

1{ |𝑒∩𝑆∗ |=1} ⩾ |N1 (𝑆∗) ∩ 𝑆∗ |

where the first equality is due to the definition of 𝑔𝑒 and the second

equality is due to E1 only contains size-2 hyperedges. In summary,

for any 𝑣 ∈ 𝑆∗ ∩ 𝑅,

deg
1
(𝑣) = |N1 (𝑣) |

= |N1 (𝑣) ∩ 𝑆∗ | + |N1 (𝑣) ∩ 𝑆∗ |
⩽ |𝑆∗ | + |N1 (𝑆∗) ∩ 𝑆∗ |

= 𝑂 (Vol(𝑅)).

Thus for any 𝑣 ∈ 𝑆∗ ∩ 𝑅, we have deg(𝑣) = 𝑂 (Vol(𝑅)). Combined

with the case 𝑣 ∈ 𝑆∗ ∩ 𝑅 that we have discussed, we get the conclu-

sion that for any 𝑣 ∈ 𝑆∗, deg(𝑣) = 𝑂 (Vol(𝑅) + Δ(𝑅)).

A.5 Proof of Theorem 3
Let L be the final local hypergraph when Algorithm 2 stops, and 𝑆

be the corresponding algorithm output. By our algorithm design,

𝑆 is the solution ofmin-st-cutL and all the hyperedges adjacent

to 𝑆 are included in the local hypergraph L as all vertices in 𝑆 are

explored. Hence we have

min-st-cutL = cutL (𝑆) = cutH𝛽
(𝑆)

⩾ min-st-cutH𝛽
⩾ min-st-cutL ,

where the first equality is due to the optimality of 𝑆 on L, the
second equality is because those hyperedges can be cut by 𝑆 has

already all been included in L, the first inequality is due to the fact

one 𝑠-𝑡 cut has value not less than the min. 𝑠-𝑡 cut, and the last

inequality is because of Eq. (9). This sandwich results shows that

min-st-cutL = min-st-cutH𝛽
and 𝑆 is also the global optimum.

A.6 Proof of Theorem 4
One key difficulty of proving Theorem 4 is that the vertex set re-

turned by Algorithm 2 is the solution of the decision problem (8)

instead of the original optimization Problem 5. To better distinguish

them, let 𝑆𝛽 be the minimizer of the problem in Eq. (8) with parame-

ter 𝛽 given by the decision problem, and let 𝑆∗ be the maximizer of

Problem 5, 𝑑∗ B 𝑑 (𝑆). Lemma 4 shows the range of values where

𝑑∗ lies, hence this is also the range of 𝛽 values we need to test, in

other words, Ω(1) ⩽ 𝛽 ⩽ Δ̄(𝑅) .
Recall that 𝛿 = Vol(𝑅) + Δ(𝑅). The high-level idea of the proof

is that we prove the following two claims

• The set of explored nodes 𝑋 has size 𝑂 (|𝑅 | + Vol(𝑅)).
• The maximum degree of vertices inside 𝑋 is 𝑂 (𝛿).

By design, Algorithm 2 only adds hyperedges to the local hyper-

graph if they are in the neighborhood of some node in 𝑋 . Thus, if

we can proves the two claims above, this guarantees the number of

hyperedges inside L is bounded by |𝑋 |Δ(𝑋) = 𝑂 (Vol(𝑅)𝛿). Since

the rank of the hypergraph is 𝑟 , the number of nodes inside L is

𝑂 (Vol(𝑅)𝛿𝑟).
Additional Notation. To prove these two claims, we introduce

some additional algorithmic notation. Recall that for our strongly-

local algorithm we are working with the version ofH𝛽 where node

𝑣 ∈ 𝑅 has no edge from the source, but has an edge (𝑣, 𝑡) of weight
𝛽 +Y deg(𝑣)/2−deg(𝑣) ⩾ 0. We call this the terminal edge or 𝑡-edge

of node 𝑣 . LetL𝑖 = (𝑉𝑖 ∪{𝑠, 𝑡}, E𝑖 ∪E𝑠𝑡𝑖) be the local hypergraph on
which we solve the minimum 𝑠-𝑡 cut problem in the 𝑖-th iteration.

Let 𝑆𝑖 be the minimum 𝑠-𝑡 cut set in the 𝑖-th iteration. Recall from

Section 5.2 that we find the minimum 𝑠-𝑡 cut in the hypergraph

by reducing it to a graph minimum 𝑠-𝑡 cut problem by replacing

each hyperedge with a certain graph cut gadget. Let 𝐺𝑖 represent

the reduced graph for L𝑖 , and 𝑆 ′
𝑖
be the minimum 𝑠-𝑡 cut set in

𝐺𝑖 . Recall that 𝐺𝑖 contains all the same nodes as L𝑖 in addition to

new auxiliary nodes. The construction of 𝐺𝑖 is designed so that

𝑆𝑖 = 𝑆 ′
𝑖
∩𝑉𝑖 . None of the auxiliary nodes have edges to 𝑠 or 𝑡 . Let

𝑁𝑖 be the set nodes that are added to 𝑋 for the first time in iteration

𝑖 > 1. In other words, 𝑁𝑖 is the set of nodes in 𝑅 whose 𝑡-edge

was cut for the first time in iteration 𝑖 > 1. When Algorithm 2

terminates, we have 𝑋 = 𝑅 ∪⋃𝑇
𝑖=1

𝑁𝑖 .

Implicit flow claim. In practice, a graph minimum 𝑠-𝑡 cut is

typically computed by solving the dual maximum 𝑠-𝑡 flow problem.

By the min-cut/max-flow theorem, every edge in the minimum 𝑠-𝑡

cut is saturated by the maximum 𝑠-𝑡 flow. The solution to these

problems may not be unique, but this holds independent of which

min-cut or max-flow we find. In practice we can use any minimum

𝑠-𝑡 cut or maximum 𝑠-𝑡 flow. However, we will prove the following

result regarding the existence of a maximum 𝑠-𝑡 flow with a special

property, in order to later bound the size of the set 𝑋 .

Claim 1. In iteration 𝑗 > 1 of Algorithm 2, there exists some
maximum 𝑠-𝑡 flow that saturates the 𝑡-edge of every node in 𝑋 ∩ 𝑅 =⋃𝑗

𝑖=1
𝑁𝑖 .

Proof. We prove the claim by induction. 𝑁1 is exactly the set of

nodes in 𝑅 whose 𝑡-edge is cut by the minimum 𝑠-𝑡 cut of𝐺1. By the

min-cut/max-flow theorem, every maximum 𝑠-𝑡 flow will saturate

the 𝑡-edges of 𝑁1, so the result holds for the base case 𝑖 = 1.

For the induction hypothesis we assume that in iteration 𝑗 − 1,

there is some maximum 𝑠-𝑡 flow in the local graph L 𝑗−1, call it

𝐹 𝑗−1, that saturates the 𝑡-edge of every node in

⋃𝑗−1

𝑖=1
𝑁𝑖 . Consider

the next local graph L 𝑗 . Its construction does not depend in any

way on the specific flow function 𝐹 𝑗−1. Rather, the way it which

it expands L 𝑗−1 depends only on the set of nodes 𝑁 𝑗−1 that were

newly explored in the previous iteration. Our goal is to prove that

there exists some maximum 𝑠-𝑡 flow that saturates every node in⋃𝑗

𝑖=1
𝑁𝑖 . We do this by construction. Observe that 𝐹 𝑗−1 is already a

feasible flow for L 𝑗 since L 𝑗−1 is a subgraph of L 𝑗 . Starting from

𝐹 𝑗−1, we can search for augmenting paths along which to send

additional flow through L 𝑗 until we eventually reach a maximum

𝑠-𝑡 flow. We can assume without loss of generality that we never

unsaturate a 𝑡-edge that was saturated by 𝐹 𝑗−1, as there would

never be any net gain to sending flow from 𝑡 back to another node.

Let 𝐹 𝑗 denote the flow obtained by starting with 𝐹 𝑗−1 and aug-

menting it until it is a maximum 𝑠-𝑡 flow for L 𝑗 . By the min-

cut/max-flow theorem, it must saturate the 𝑡-edge of every node

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

in 𝑁 𝑗 , since nodes in 𝑁 𝑗 are in the minimum 𝑠-𝑡 cut set returned

in iteration 𝑗 . By construction, 𝐹 𝑗 also saturates the 𝑡-edge of ev-

ery node in

⋃𝑗−1

𝑖=1
𝑁𝑖 . We therefore have the desired result that 𝐹 𝑗

saturates the 𝑡-edge of every node in

⋃𝑗

𝑖=1
𝑁𝑖 . □

Bounding the size of 𝑋 . By the above claim, when Algorithm 2

terminates in iteration 𝑇 , there exists a maximum 𝑠-𝑡 flow that

saturates the 𝑡-edge of every node in 𝑋 ∩ 𝑅. Recall that the edges
adjacent to 𝑠 have weights that sum up to Vol(𝑅), so the maximum

flow through L𝑇 is at most Vol(𝑅). The 𝑡-edge of every node in

𝑋 has weight at least 𝛽 = Ω(1). Since every node in 𝑋 ∩ 𝑅 has its

𝑡-edge saturated by somemaximum 𝑠-𝑡 flow, the number of nodes in

𝑋 ∩𝑅 is at most
Vol(𝑅)

𝛽
= 𝑂 (Vol(𝑅)). Thus, |𝑋 | ⩽ 𝑂 (|𝑅 | +Vol(𝑅))).

Bounding the degree of vertices in 𝑋 . Lemma 5 shows that

Δ(𝑆∗) = 𝑂 (𝛿) where 𝛿 = Vol(𝑅) + Δ(𝑅). As mentioned before, this

means that when solving Problem 5, we can ignore those vertices

with degree higher than this threshold. This implies that when solv-

ing the decision version, one can also tweak the decision problem

a little bit and only focus on vertices with degree not higher than

this threshold. In other words, Δ(𝑆𝛽) ⩽ 𝑂 (𝛿). Formally, let 𝑉𝛿 be

the set of vertices with degree 𝑂 (𝛿), then by Lemma 5, we have

max

𝑆⊂𝑉
𝑒 [𝑆] − YVol(𝑆 ∩ 𝑅)/2

|𝑆 | = max

𝑆⊂𝑉𝛿

𝑒 [𝑆] − YVol(𝑆 ∩ 𝑅)/2
|𝑆 | .

So given a parameter 𝛽 , instead of solving the decision problem via

computing

min

𝑆⊂𝑉
𝛽 |𝑆 | − 𝑒 [𝑆] + YVol(𝑆 ∩ 𝑅)/2,

we compute

min

𝑆⊂𝑉𝛿
𝛽 |𝑆 | − 𝑒 [𝑆] + YVol(𝑆 ∩ 𝑅)/2.

This can be simply achieved via keeping the same 𝑠−𝑡 flow network

construction and add one edge from those vertices in 𝑉 \𝑉𝛿 to the

super sink 𝑡 with weight ∞. In this way, we can guarantee all

vertices inside 𝑆𝑖 have degree𝑂 (𝛿). As vertices inside 𝑅 has degree

𝑂 (𝛿), 𝑋 has maximum degree as 𝑂 (𝛿).

B COUNTEREXAMPLE FOR GREEDY PEELING
We adopt the greedy peeling algorithm for Problem 2 mentioned

in [11] (Theorem 3.1). For completeness, we restate it here. For

a normalized nonnegative supermodular set function 𝑓 : 2
𝑉 →

R⩾0
, we first initialize 𝑆 B 𝑉 and then we recursively find 𝑣 =

argmin

𝑣∈𝑆
𝑓 (𝑣 | 𝑆 − 𝑣) and update 𝑆 B 𝑆 \ {𝑣} until 𝑆 becomes empty.

Here 𝑓 (𝑣 | 𝑆 − 𝑣) B 𝑓 (𝑆) − 𝑓 (𝑆 \ {𝑣}) is the marginal gain brought

by element 𝑣 to the set 𝑆 . We see that when 𝑓 (𝑆) = 𝑒 [𝑆] as in the

classical DSG, 𝑓 (𝑣 | 𝑆 − 𝑣) becomes the degree of vertex 𝑣 in the

subgraph 𝐺 [𝑆].
Now we are ready to present one example which shows that

greedy peeling may perform very poorly when 𝑓 is not guaranteed

to be nonnegative. Here we give a counterexample on a graph,

which is a special case of a hypergraph. Consider the graph in

Figure 4, which contains two cliques linked by one edge. The clique

on the left-hand side contains 𝑎 vertices and the clique on the right-

hand side contains 𝑏 vertices. We let 𝑏 = 9𝑎. We denote the left

Figure 4: A counter example for greedy peeling.

clique by 𝑅 and the right clique by 𝑅 accordingly. We consider the

following objective

max

𝑆⊂𝑉
𝑒 [𝑆] − 𝑝 (𝑆)
|𝑆 |

where 𝑝 (𝑣) = 2

3
𝑏 for 𝑣 ∈ 𝑅 and 𝑝 (𝑣) = 0 for 𝑣 ∈ 𝑅. For this example,

greedy peeling will first remove vertices from 𝑅 as the marginal

gain brought by vertices from 𝑅 is at least
1

3
𝑏 = 3𝑎 and on the

contrary the marginal gain brought by vertices from 𝑅 is at most

𝑎. Hence greedy peeling will not start peeling off vertices from 𝑅

until the whole 𝑅 is peeled off. Then by symmetry, vertices from 𝑅

will be peeled off in any random order.

We notice that when the intermediate subgraph only contains

vertices inside 𝑅, the objective is negative since 𝑒 [𝑆] − 𝑝 (𝑆) =(|𝑆 |
2

)
− 2

3
𝑏 |𝑆 | < 0.

When the intermediate subgraph still contains vertices from

𝑅, as pointed out before, at this time the whole clique inside 𝑅 is

also contained in the intermediate subgraph. Assume it contains 𝑥

vertices from 𝑅, then the objective now is(𝑥
2

)
+ 1 +

(𝑏
2

)
− 2

3
𝑏2

𝑥 + 𝑏 ⩽

(𝑎
2

)
+ 1 +

(𝑏
2

)
− 2

3
𝑏2

𝑏
< 0

as we let 𝑏 = 9𝑎. This means the peeling algorithm will only output

negative answer on this example as we treat 0/0 = −∞. However
the optimal solution is choosing 𝑆 = 𝑅 and the optimum is

𝑎−1

2
.

C EXAMPLE FOR Y < 1

First we give some high-level intuition why strong locality may fail

when Y < 1. Let us consider the degenerated case, graphs. Then the

objective we focus on would be equivalent to maximizing

𝑒 [𝑆] − Y
2
Vol(𝑆 ∩ 𝑅)
|𝑆 | ,

which can be further transformed into

1

2

(
Vol(𝑆) − 𝑒 (𝑆, 𝑆)

)
− Y

2
Vol(𝑆 ∩ 𝑅)

|𝑆 |

=
Vol(𝑆 ∩ 𝑅)/2 − 𝑒 (𝑆, 𝑆)/2 + (1 − Y)Vol(𝑆 ∩ 𝑅)/2

|𝑆 | .

This means when Y < 1, including vertices outside 𝑅 can not only

decrease the cut size but also add some volume reward.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Figure 5: One counter example that shows strong locality is
not guaranteed when Y < 1. It consists of three set of vertices
𝐴, 𝐵,𝐶, and they contain 𝑎, 𝑏, 𝑐 vertices respectively. 𝐴 form a
clique and 𝐵,𝐶 are both independent sets. There is an edge
between each vertex of 𝐴 and 𝐵, in other words there is a
complete bipartite graph between them, the same holds for
𝐵 and 𝐶. The seed set 𝑅 is 𝐴. The degree for vertices in 𝐴, 𝐵,𝐶

are 𝑎 − 1 + 𝑏, 𝑎 + 𝑐 and 𝑏 respectively.

We show the following result which discourages strong locality

when Y < 1.

Theorem 5. Assume the rank of H , and Y < 1 are constants.
There does not exist a universal polynomial 𝑓 (𝑅) only with regard to
quantities related to seed set 𝑅 such that the optimal 𝑆∗ of Problem 5
or 6 has size bounded by 𝑓 (𝑅).

Proof. We give a counterexample on a normal graph, which is

a special case of a hypergraph. Consider the example in Figure 5,

where the seed set 𝑅 forms a clique and its density is
𝑎−1

2
. Also,

Vol(𝑅) = 𝑎(𝑎 − 1 + 𝑏) is independent of 𝑐 . We take 𝑏, 𝑐 such that

𝑐 ≫ 𝑏 ≫ 𝑎.

Assume for a set 𝑆 , |𝑆 ∩𝐴| = 𝑥, |𝑆 ∩ 𝐵 | = 𝑦, |𝑆 ∩𝐶 | = 𝑧. Then the

objective for 𝑆 becomes

max

𝑎⩾𝑥⩾0,𝑏⩾𝑦⩾0,

𝑐⩾𝑧⩾0,𝑥+𝑦+𝑧>0

(𝑥
2

)
+ 𝑦 (𝑥 + 𝑧) − Y

2

(
𝑦 (𝑎 + 𝑐) + 𝑧𝑏

)
𝑥 + 𝑦 + 𝑧 . (14)

We study when the maximum is achieved. Our proof strategy is to

optimize over variables 𝑧,𝑦, 𝑥 sequentially to eliminate them one by

one. In other words, we find the optimal 𝑧 as a function of 𝑦, 𝑥 , then

the optimal 𝑦 as a function of 𝑥 , and in the end the optimal 𝑥 . We

do not write out the functions explicitly but instead pay attention

to the conditions when optimum is achieved.

Our proof heavily relies on the following observation.

Observation 3. When we are maximizing any fraction with the
form

𝑀𝑋 + 𝑁
𝑋 +𝑄

over 𝑋 ∈ [𝐿,𝑈] where𝑀, 𝑁, 𝐿,𝑈 ,𝑄 are given real numbers, 𝐿,𝑈 are
nonnegative, and 𝑄 is positive, the maximum is achieved on one of
the two extreme points, 𝑋 = 𝑈 or 𝑋 = 𝐿.

Proof. We have

max

𝑈⩾𝑋⩾𝐿

𝑀𝑋 + 𝑁
𝑋 +𝑄 = max

𝑈⩾𝑋⩾𝐿

𝑀 (𝑋 +𝑄) + 𝑁 −𝑀𝑄

𝑋 +𝑄

= max

𝑈⩾𝑋⩾𝐿
𝑀 + 𝑁 −𝑀𝑄

𝑋 +𝑄

= max{𝑀𝑈 + 𝑁
𝑈 +𝑄 ,

𝑀𝐿 + 𝑁
𝐿 +𝑄 }. (15)

□

To avoid the corner case that 𝑥+𝑦+𝑧 = 0, we divide the discussion

into two subcases. First, we deal with the special case that 𝑥 = 0.

When 𝑥 = 0, the objective (14) becomes

max

𝑏⩾𝑦⩾0,𝑐⩾𝑧⩾0,

𝑦+𝑧⩾1

𝑦𝑧 − Y/2
(
𝑦 (𝑎 + 𝑐) + 𝑧𝑏

)
𝑦 + 𝑧 . (16)

Notice that if we plug in 𝑦 = 𝑏, 𝑧 = 𝑐 then we get
(1−Y)𝑏𝑐−Y𝑎𝑏/2

𝑏+𝑐
which is positive as we assume Y is a constant and 𝑐 ≫ 𝑏 ≫ 𝑎.

This implies that any negative number cannot be the maximum of

objective (16).

If 𝑦 = 0, then we can see it is a constant function with value

− Y𝑏
2

< 0. If 𝑦 > 0, then objective (16) is equivalent to

max

𝑏⩾𝑦⩾1

max

𝑐⩾𝑧⩾0

𝑦𝑧 − Y/2
(
𝑦 (𝑎 + 𝑐) + 𝑧𝑏

)
𝑦 + 𝑧 . (17)

Using Observation 3, we see that

max

𝑐⩾𝑧⩾0

𝑦𝑧 − Y/2
(
𝑦 (𝑎 + 𝑐) + 𝑧𝑏

)
𝑦 + 𝑧

= max{−Y (𝑎 + 𝑐)/2,
𝑦𝑐 − Y/2

(
𝑦 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑦 + 𝑐 }.

As −Y (𝑎 + 𝑐)/2 is a negative constant, we have

(17) = max

𝑏⩾𝑦⩾1

𝑦𝑐 − Y/2
(
𝑦 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑦 + 𝑐

= max{ (1 − Y)𝑏𝑐 − Y𝑎𝑏/2
𝑏 + 𝑐 ,

𝑐 (1 − Y (1 + 𝑏)/2) − Y𝑎/2
1 + 𝑐 }

=
(1 − Y)𝑏𝑐 − Y𝑎𝑏/2

𝑏 + 𝑐 ,

where in the second equality we use observation 3 again and the

maximum is achieved when 𝑦 = 𝑏, 𝑐 = 𝑧. Now we turn to the main

case that 𝑥 > 0, and we can drop the constraint 𝑥 + 𝑦 + 𝑧 > 0 and

write objective (14) as

max

𝑎⩾𝑥⩾1

max

𝑏⩾𝑦⩾0

max

𝑐⩾𝑧⩾0

(𝑥
2

)
+ 𝑥𝑦 + 𝑦𝑧 − Y/2

(
𝑦 (𝑎 + 𝑐) + 𝑧𝑏

)
𝑥 + 𝑦 + 𝑧 . (18)

Apply observation 3 on variable 𝑧, we get

(18) = max

𝑎⩾𝑥⩾1

max

𝑏⩾𝑦⩾0

max{
(𝑥
2

)
+ 𝑥𝑦 + 𝑦𝑐 − Y/2

(
𝑦 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑥 + 𝑦 + 𝑐 ,(𝑥

2

)
+ 𝑥𝑦 − Y/2

(
𝑦 (𝑎 + 𝑐)

)
𝑥 + 𝑦 }. (19)

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Again, we apply observation 3 on variable 𝑦, we get

(18) = (19)

= max

𝑎⩾𝑥⩾1

max{
(𝑥
2

)
+ 𝑥𝑏 + 𝑏𝑐 − Y/2

(
𝑏 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑥 + 𝑏 + 𝑐 ,

(𝑥
2

)
− Y𝑏𝑐/2
𝑥 + 𝑐 ,(𝑥

2

)
+ 𝑥𝑏 − Y/2

(
𝑏 (𝑎 + 𝑐)

)
𝑥 + 𝑏 ,

(𝑥
2

)
𝑥
}.

Observe that by 𝑥 ⩽ 𝑎, our assumption that Y < 1 is a constant

and 𝑐 ≫ 𝑏 ≫ 𝑎, we have that
(𝑥

2
)−Y𝑏𝑐/2
𝑥+𝑐 and

(𝑥
2
)+𝑥𝑏−Y/2(𝑏 (𝑎+𝑐))

𝑥+𝑏
are both negative. Hence

(18) = max

𝑎⩾𝑥⩾1

max{
(𝑥
2

)
+ 𝑥𝑏 + 𝑏𝑐 − Y/2

(
𝑏 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑥 + 𝑏 + 𝑐 ,

𝑥 − 1

2

}.

When 𝑥 = 𝑎, (𝑥
2

)
+ 𝑥𝑏 + 𝑏𝑐 − Y/2

(
𝑏 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑥 + 𝑏 + 𝑐

=

(𝑎
2

)
+ (1 − Y/2)𝑎𝑏 + (1 − Y)𝑏𝑐

𝑎 + 𝑏 + 𝑐
⩾

𝑎 − 1

2

= max

𝑎⩾𝑥⩾1

𝑥 − 1

2

as 𝑐 ≫ 𝑏 ≫ 𝑎. Therefore

(18) = max

𝑎⩾𝑥⩾1

(𝑥
2

)
+ 𝑥𝑏 + 𝑏𝑐 − Y/2

(
𝑏 (𝑎 + 𝑐) + 𝑏𝑐

)
𝑥 + 𝑏 + 𝑐 .

And whatever value 𝑥 takes, the maximum is achieved when 𝑦 =

𝑏, 𝑧 = 𝑐 . Summarize all the cases above, the optimal 𝑆 has to contain

the whole 𝐵 and𝐶 , whichmeans |𝑆∗ | ⩾ 𝑏+𝑐 . Since |𝑅 | = 𝑎,Vol(𝑅) =
𝑎(𝑎 − 1 + 𝑏), which are both independent of 𝑐 , so we are unable to

find a universal polynomial which can bound the size of optimal 𝑆 .

D MORE IMPLEMENTATION DETAILS
D.1 Hyperedge Generation for Experiments

with Planted Dense Sets
Each hyperedge is generated in a similar way. Given a vertex pool

𝑆 , we first sample two different vertices from 𝑆 , and then we itera-

tively grow the hyperedge. In each iteration, with probability 𝑝 we

stop the generating process and with probability 1 − 𝑝 we sample

another unique vertex from 𝑆 and continue to the next iteration.

Once at a point the hyperedge reaches some pre-determined max

size threshold, we also end the generating process. For those𝑚1

hyperedges between clusters, we let the vertex pool 𝑆 of the whole

vertex set 𝑉 and for those𝑚2 hyperedges inside clusters, we pick

a random cluster for each and set the vertex pool as vertices from

that cluster. In this way, we plant 30 dense subhypergraphs in this

1000-vertex hypergraph. We let𝑚2 = 50000, 𝑝 = 0.2 and set max

hyperedge size as 12. With𝑚1 increasing, it will be much harder

to detect the planted densest subhypergraphs as the background

hypergraph gets denser and denser.

□

E ETHICS AND DATA
All of the data we use are publicly available and we do no mining

of the data for specific human identifiable attributes. Some of the

hypergraph data is based on public human activity, but we only

use those experiments to calibrate performance on commonly used

datasets. Our case study on the web graph is only based on linking

patterns among web hosts and domains. Our dense subhypergraph

tools have the potential to be used to identify extremal sets, which

– like many general purpose mining tools – could be used mali-

ciously to infer attributes that people would prefer stay secret if

the information was represented by a dense graph. However, we

believe that dense subgraph analysis and subhypergraph analysis

is a common algorithmic framework that has substantial non mali-

cious uses including novel studies of graph data and characterizing

dense interconnections in biological networks.

14

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Graph Cut and Hypergraph Cut
	2.2 Related Work

	3 General Dense Supermodular Subset
	4 A Strongly Polynomial Algorithm
	5 Anchored Densest Subhypergraph
	5.1 A Flow-Based Exact Algorithm
	5.2 A Strongly-local Flow Algorithm

	6 Experiments
	6.1 Density Improvement vs. Binary Search
	6.2 Experiments with Planted Dense Sets
	6.3 Densely linked domains on the web
	6.4 Running Time Comparison

	7 Conclusion
	References
	A proofs
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 4
	A.4 Proof of Lemma 5
	A.5 Proof of Theorem 3
	A.6 Proof of Theorem 4

	B Counterexample for Greedy Peeling
	C Example for < 1
	D more implementation details
	D.1 Hyperedge Generation for Experiments with Planted Dense Sets

	E Ethics and Data

