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ABSTRACT

This paper aims at discovering meaningful subsets of related images

from large image collections without annotations.We search groups

of images related at di�erent levels of semantic, i.e., either instances

or visual classes. While k-means is usually considered as the gold

standard for this task, we evaluate and show the interest of di�usion

methods that have been neglected by the state of the art, such as

the Markov Clustering algorithm.

We report results on the ImageNet and the Paris500k instance

dataset, both enlarged with images from YFCC100M. We evaluate

our methods with a labelling cost that re�ects how much e�ort a

human would require to correct generated clusters.

Our analysis highlights several properties. First, when powered

with an e�cient GPU implementation, the cost of the discovery

process is small compared to computing the image descriptors, even

for collections as large as 100 million images. Second, we show that

descriptions selected for instance search improve the discovery of

object classes. Third, the Markov Clustering technique consistently

outperforms other methods; to our knowledge it has never been

considered in this large scale scenario.

CCS CONCEPTS

• Information systems→ Image search; Top-k retrieval in databases;

• Theory of computation → Unsupervised learning and cluster-

ing; • Computing methodologies → Motif discovery;

KEYWORDS

computer vision; clustering; kNN graphs

1 INTRODUCTION

Large collections of images are now prominent. The diversity

of their visual content is high, and due to the “long-tail” issue

well known by researchers working on text data, a few classes are

very frequent, but the vast majority of the classes do not occur

often. In the visual world we consider, it is hard to collect enough

labelled data for most of the visual entities. This is in contrast with

the balanced and strongly supervised setting of ImageNet [10].
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In our paper, we consider the problem of visual discovery. The

task is to automatically suggest subsets of related images, without

employing any label or tag. This di�ers from semi-supervised learn-

ing [13], where a fraction of the dataset is annotated beforehand

with a pre-de�ned set of labels. It is also di�erent from noisy super-

vision with unreliable hashtags, as in Joulin et al. [29]. Most of the

early work on discovery focused on instances [8], location recogni-

tion or city-level 3D reconstruction [1, 14], where the best methods

are powered by spatial recognition, guaranteeing high matching

performance by drastically reducing the rate of false positives. Such

methods are not applicable to non-rigid instances or classes. Few

studies have considered the problem of class discovery, which is

harder to de�ne from a user interest point of view, beyond classical

clustering metrics like the square loss.

We address a general discovery scenario, with an application

in mind where we need to detect visually related images from a

novel collection for the purpose of navigation, trend analysis or

fast labelling. In this context, the user interest could be related to

categories depicted in the collection but unseen at train time, or to

speci�c objects such as paintings or locations. For example, given

a collection of landmark images, how can we determine that the

user’s interest is in distinguishing between Romanesque and Gothic

architectures, or between the façade of the Notre Dame cathedral

and other buildings? This problem is challenging because it ad-

dresses di�erent levels of semantics, which are not necessarily well

identi�ed by a single kind of descriptor. For this purpose, we study

recent candidate methods initially designed for instance recognition

and image classi�cation, namely R-MAC [46] and Resnet [22], and

several discovery mechanisms based on kNN graphs and clustering.

Our approach exploits dataset characteristics: if the dataset con-

tains many Notre Dame images, then they will get a group of their

own, otherwise they can be grouped with other Gothic cathedrals.

Our paper makes the following main contributions:

• We propose an evaluation protocol for the proposed dis-

covery task, which accounts for di�erent semantic levels

and is extensible to arbitrarily large datasets using a dis-

tractor dataset.

• We evaluate the performance and scalability of four clus-

tering strategies, namely k-means, agglomerative clus-

tering, power-iterative clustering and an improved variant

of the Markov Cluster Algorithm.

• We show that when e�cient CPU and GPU implementa-

tions of kNN search are used, di�usion methods can easily

handle 10- to 100- million scale datasets, i.e., one or two

orders of magnitude larger than the most accurate com-

petingmethods based on approximate k-means or di�usion,

e.g., the works of Avrithis et al. [2] and Iscen et al. [23, 24].
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• We apply Markov Clustering to this task, and show it sig-

ni�cantly outperforms k-means, which is considered as

a top-line in other approaches.

As a result of our study, we provide recommendations for the

discovery task, and propose choices that will hopefully serve as

baselines in future work on large-scale discovery.

The rest of this paper is organized as follows. After introducing

related work in Section 2, we introduce the large-scale discovery

strategy in Section 3. The experiments and evaluation are presented

in Section 4. Section 5 concludes the paper.

2 RELATED WORK

This section presents related work on visual discovery, associated

with various problems like image description, classi�cation and

e�cient clustering. Note that typical descriptors employed for class

and instance recognition are di�erent. Even though these problems

mainly di�er by composition granularity, they are addressed by

two distinct tasks and evaluation protocols in the literature, namely

image classi�cation and instance search/image search. We provide

background references on these related tasks and cite relevant

description schemes that we employ as input for our method. We

also discuss prior art on discovery, including algorithms that aim

to improve scalability.

Image descriptors for class and instance discovery. Traditionally,

discovery [4, 18, 46] uses image descriptionmethods borrowed from

image matching, in particular those based on keypoint indexing [33,

38, 43, 45], with impressive results when �ne-tuned for rigid objects,

like buildings on the Oxford dataset [19, 40]. For class discovery

or semi-supervised labelling [13], semantic global descriptors like

GIST [34] are preferred. Recently, classi�cation performance has

substantially improved with deep CNN architectures [22, 42] which

are therefore compelling choices for our purpose.

Weiler & Fergus [51] visualize the object classes corresponding

to di�erent activation levels of AlexNet and show that semantic

levels correspond to layers. For networks trained on a dataset with

general visual classes like ImageNet, this hints at employing di�er-

ent layers of the network to enable discovery at di�erent levels of

semantic. Interestingly, the winning entry of ImageNet 2015, the

so-called ResNet [22], substantially improves accuracy by introduc-

ing skip connections in CNN architectures. However, for similar

instance search, aggregation strategies [3] signi�cantly outperform

the choice [4] of simply extracting the activation at a given layer.

Works on co-segmentation [28] and the approach of Cho et

al.. [6] aim at discovering objects by matching image regions. These

techniques are accurate but do not scale beyond a few thousand

images as they require maintaining and processing local descriptors.

In contrast, we use only global image descriptors.

Clustering & kNN Graph. The gold-standard clustering method is

k-means. Min-hashing [53] or binary k-means [17] have also been

considered for visual discovery. However algorithms that can take

an arbitrary metric on input are more �exible. We consider in partic-

ular clustering methods based on a di�usion process, which share

some connections with spectral clustering [5]. They are an e�cient

way of clustering images given a matrix of input similarity, or a

kNN graph, and have been successfully used in a semi-supervised

discovery setup [13]. In [39], a kNN graph is clustered with spec-

tral clustering, which amounts to computing the k eigenvectors

associated with the k largest eigenvalues of the graph, and clus-

tering these eigenvectors. Interestingly, when the eigenvalues are

obtained via Lanczos iterations [16, Chapter 10], the basic operation

is still a kind of di�usion process.

This is also related to Power Iteration Clustering [32]. In our

experiments we evaluate a simpli�ed version of it proposed by Cho

et al. [7] to �nd clusters: instead of clustering a low-dim space, we

follow the path to the mode of each cluster. We refer the reader to

[11] for a review of di�usion processes and matrix normalizations.

Approximate algorithms [2, 9, 21, 30] have been proposed to e�-

ciently produce the kNN graph used as input of iterative/di�usion

methods, some of them operating in the compressed domain.

Similarity or distance normalization. In retrieval applications,

images are typically ordered by distances, meaning that only the

relative distances to the query matter. However, discovery is a de-

tection problem, and its quality depends on the absolute distances

between all pairs of descriptors. When building a kNN graph, it is

therefore important to ensure that edges originating from di�er-

ent nodes have comparable weights. This problem is well known

in spectral clustering [52] and computer vision [36, 41], and has

led authors to propose di�erent normalization pre-processing of

distances or similarities. For instance, the contextual dissimilarity

measure [26] regularizes distances by local updates. Another re-

lated work by Omercevic et al. [35] uses the distribution of points

relatively far away from the current point to regularize the distance

distribution. This empirical choice is supported [15] by extreme

value theory and estimation, which was also been successful to

calibrate the output of classi�ers [41]. We use a simpler version of

this regularization [25] and symmetrize it.

3 DISCOVERY PIPELINE

This section describes the di�erent methods and choices involved

in our discovery pipeline, namely the image description, kNN graph

construction and metric normalization when applicable, and four

clustering algorithms subsequently evaluated in Section 4.

3.1 Description: combining semantic levels

The image descriptors must be (1) reasonably fast to compute, and

(2) compact enough so that the clustering algorithms can handle

them afterwards. For (1), we chose a 34-layer ResNet, trained on an

unrelated image classi�cation dataset as baseline descriptor.

Figure 1 shows the clustering performance based on descriptors

from several activation maps of the ResNet, for instance and classi-

�cation tasks. When activation maps have a spatial extent (i.e., they

are not 1x1 pixel), we aggregate them into a 512D descriptor using

the RMAC technique [46]: this an aggregation of overlapping win-

dows extracted from the map, whitened and L2-normalized. RMAC

lays at the basis of many state-of-the-art methods for instance

search [19, 40] when applied to full-resolution images.

Given these results, we picked two 512D image descriptors:

• high-level: vector from the 33rd layer (just before the last

fully connected layer).

• low-level: the RMAC of the 7 × 7 × 512 activation map of

the 30th layer.

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

2



��

����

����

����

����

����

����

�� �� �� �� �� �� �� �� ��

�
���

��

�������������

��������
���������

single descriptor PCA128 concatenation

level performance

ImageNet250 high (33) 0.376 0.353 0.323

Paris500k low (30) 0.160 0.180 0.179

Figure 1: Top: discovery performance for k-means (minNLC,

lower is better) as a function of the CNN activation level for

the two evaluation datasets (ImageNet for classi�cation and

Paris500k for instance search). Bo�om: impact of PCA di-

mensionality reduction and concatenation. See Section 4 for

details on the datasets and the evaluation.

To make them more compact, the low- and high-level descrip-

tors are both PCA-reduced to 128 dimensions, L2-normalized and

concatenated. PCA dimensionality reduction is routinely adopted

to process features extracted from neural networks [4, 46], and in

fact PCA whitening is part of the RMAC aggregation.

The table in Figure 1 shows the impact of this choice. Starting

from the full descriptor, the PCA from 512D to 128D has an impact

of 2 points (negative for instance search, positive for classi�ca-

tion). Concatenating the two descriptors improves the classi�cation

performance signi�cantly and has no impact on instance recog-

nition. Therefore, in the following, we use a single concatenated

description vector in 256D.

We also experimented by combining kNN graphs built separately

from the low- and high-level features, but the resulting performance

was at best identical to that of the concatenated features.

3.2 kNN graph construction on the GPU

Three of the four clustering algorithms we consider in this section

use a matrix as input containing the similarity between all the

images of the dataset. The graph matrix A ∈ RN×N is sparse

and is equivalent to a kNN graph connecting each image to its

neighbors, as determined by the similarity metric.

To construct the graph, we use a multi-GPU implementation of

kNN search, implemented in the Faiss library1 [27]. For small collec-

tions, i.e., up to 1 million images, we use a brute-force exact graph

construction. For larger datasets, we use the Faiss IndexIVFFlat

structure. Some Faiss search methods operate in the compressed

domain, but we do not use them because they are slower on the

1Available at https://github.com/facebookresearch/faiss.

Algorithm
use

graph
update

variable

hyper-

parameter
runtime (s)

k-means centroids k = 10000 21.3

AGC x node weights τ = 200000 21.4 + 0.24

PIC x node weights σ = 0.5 21.4 + 0.35

MCL x edge weights r = 1.4 21.4 + 44.6

Table 1: Summary of the evaluated algorithms and their typi-

cal runtimes on ImageNet250 (300k images). Each algorithm

has a parameter that sets the granularity of the clusters, we

indicate its optimal value. For the methods that build upon

the kNN graph, the graph construction time is added.

GPU. Besides, since the memory usage is dominated by the matrix

storage, we do not bene�t from compression.

3.3 Clustering algorithms

We now introduce four clustering methods that we evaluate for

the discovery task. The �rst is a regular k-means applied on the

input descriptor. The three other ones use as input the sparse sim-

ilarity matrix A, post-normalized with metric normalization and

symmetrized, which amounts to adding A⊤ to A. The best normal-

ization strategy depends on the method, but it typically involves a

bandwidth parameter that controls the importance of weak versus

strong edges. The key features of the algorithms are summarized

in Table 1.

K-means. We use the multi-GPU k-means implementation of

Faiss. Performing a k-means on N = 100 million descriptors is fast

compared to the step of extracting the descriptors with a ResNet2.

Our multi-GPU implementation produces the clusters in about

15min with 8 Nvidia Titan X Maxwell GPUs, which we reduce to

4min by sub-sampling the descriptors during the E-M iterations.

Agglomerative Clustering (AGC). Agglomerative (or single-link)

clustering depends only on the ordering of the edge weights. It

removes edges that are below a given similarity threshold and

identi�es the connected components. Therefore, the weights must

be globally comparable and a normalization pre-processing step

is important. A simple similarity normalization [25] that updates

each similarity by subtracting from it a similarity to a far away

neighbor (the rank-50 nearest-neighbor) works the best in practice.

When swiping over the thresholds, a binary tree is generated

where each cluster is a node and the two children of a node are

two clusters at a �ner granularity that were fused to produce the

node. Any number of clusters τ can be obtained by stopping the

agglomeration at a given threshold. A recent study [31] observes

that such a single-link clustering tends to produce long chains. Our

experiments in Section 4 concur with this observation.

Power Iteration Clustering (PIC). Power iteration clustering �nds

a stationary distribution over the nodes of the graph by repeatedly

multiplying a vector with the graph matrix until convergence. The

actual clusters are typically extracted from the �nal distribution

2The k-means complexity is determined by niter×N ×k ×d . With niter = 25, d = 256,
k = 105 and a dataset comprising N = 95 million images, meaning about 640 M�ops
per image. This �gure should be compared to 3.6 G�ops reported for the ResNet
architecture [22], and even more for the VGG network [42]
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dataset # images # labeled # classes class size (min/max)

ImageNet250 319512 319512 250 860/1300

Paris500k 501356 94303 79 114/22799

Flickr100M 95074575 0 0 N/A

Table 2: The three image datasets.

by clustering them in 1D [32]. However, this approach is hard to

tune because it requires stopping the iterations before the clusters

become indistinguishable. Therefore, we use a simple variant [7]

where the clusters are identi�ed by following the neighbors by a

steepest ascent to a local maximum of the stationary distribution.

Similar to other works [7], we found that a negative exponential to

convert distances to weights x 7→ exp(−x2/σ 2) produces the best

results, with σ controlling the bandwidth.

Markov Clustering (MCL). This algorithm iterates over the simi-

larity matrix as

A← A ×A (1)

A← Γr (A) (2)

where Γr is an element-wise raising to power r of the matrix, fol-

lowed by a column-wise normalization [12]. The power r ∈ (1, 2] is

the bandwidth parameter; when r is high, small edges are reduced

quickly along the iterations. A smaller r preserves the edges longer.

We found the matrix converges in 10-50 iterations. The clusters are

read from the �nal matrix by extracting the connected components.

An important computational parameter is the sparsity of the

matrix, determined by the number of non-zero elements of the

matrix. After each A × A product, we use a global threshold on

the matrix to force low elements to 0. If the matrix contains kN

non-zero elements, the storage and computational complexity of

one iteration is O (Nk
2). Because of this storage requirement, MCL

is only applicable to relatively small collections (million-sized). To

normalize A, we linearly map the rows of A to the [0, 1] interval.

4 EXPERIMENTS

This section describes our experiments carried out on the instance

and category discovery tasks.

4.1 Datasets

We use 3 datasets in this study, see Table 2 for statistics.

ImageNet. We use ImageNet 2012 [10] for evaluating the se-

mantic discovery performance. We withhold the images from 750

classes (chosen at random) out of the 1000 to train the ResNet im-

age descriptor. The ImageNet250 dataset is the set of classes that

remain and used for evaluation of class discovery. The class sizes

are balanced by design.

Paris500k. For the instance search dataset we use the Paris500k

collection [48]. It contains a set of Paris images from photo sharing

sites, including landmarks, buildings, paintings, façades of cafés, etc.

The authors did an extensive study of this dataset [50], with useful

insights on the types of objects that appear in it, the reliability of

geometrical matching, how to �nd representative images, etc. The

dataset is partially labelled into classes, i.e. the unlabelled part of

the dataset also contains instances of the classes.

YFCC100M. This dataset [44] contains 100 million representative

images from the Flickr photo sharing site (we managed to download

95M of them). We use these images as distractors and consider

them as unlabeled, even if some works have shown that the tags

or GPS metadata can be used as weak supervision [29, 49]. The

images are diverse. A large fraction is portraits; there are also series

of images from CCTV cameras.

Image description. The two image descriptors we employ are

described in Section 3.1. We trained the ResNet on 750 classes3

on 4 Nvidia K40 GPUs during 3 days. The �nal top-1 error after

90 epochs is 26.5 %. To analyze the images, we resize all images

to 244 × 244 pixels and do a forward pass of the ResNet and keep

activation maps of the layers we are interested in. Each minibatch

of 128 images is processed in 670ms on a K40.

Dataset bias. When combining datasets, it is important to be

aware of the biases that de�ne the datasets [47]. Some bias may

cause the generation of dataset-uniform clusters, which makes the

distractor set pointless. A priori, all images are mined from similar

photo sharing sites (Flickr and Panoramio), but a di�erent sampling

or image preprocessing may introduce some bias as well.

We observe such a bias on the Paris dataset: many generated clus-

ters were suspiciously pure clusters from Paris500k. To check this,

we selected images from YFCC100M with the same selection crite-

rion as Paris500k (on the GPS bounding box). Then we measured

how the retrieval mAP for the labelled part of Paris500k decreased

when adding distractors from Paris500k and Paris images selected

from YFCC100M. The mAP decreases similarly, which shows that

the only bias is due to the semantic content of the images.

4.2 Clustering performance evaluation

Given a reference clustering, there are several clustering perfor-

mance measures that evaluate how similar the found clusters are

to the ground truth classes (aka “reference clustering”). Classical

measures include the normalized mutual information, cluster purity

and rand index [32].

Labelling cost, NLC and MinNLC. In this work, we choose the

labelling cost (LC) as a performance measure. This cost was initially

introduced by Guillaumin et al. for a face labelling task [20]. It sim-

ulates the cost of an annotation interface that would be built on the

given clustering. The annotator sees the clusters one after another,

and can take two possible actions: (a) annotating the whole cluster

of faces with a name, and (b) correcting the names of the faces of

the cluster that are not the dominant identity of the cluster. The

advantage of this measure is that it has a “physical” interpretation,

and also o�ers an elegant way of selecting the tradeo� between

under- and over-segmentation of the dataset. It is a cost, so lower

is better. It is bounded by the the number of classes (lower bound,

reached with a perfect clustering) and the number of images (upper

bound, reached if each image gets a cluster).

3We used the resnet implementation from https://github.com/facebook/fb.resnet.torch

Session 1 Thematic Workshops’17, Oct. 23–27, 2017, Mountain View, CA, USA

4

https://github.com/facebook/fb.resnet.torch


��
����
����
����
����
����
����
����
����
����

��

��� ���� ����� ������ ������� ������

��
�

������������������

������������

������
���
���
���

��

����

����

����

����

��

��� ���� ����� ������ ������� ������

��
�

������������������

���������

������
���
���
���

Figure 2: Comparison of clustering methods, in terms of NLC. By varying the hyper-parameters of Table 1, the number of

clusters (x axis) can be adjusted.

To compare datasets of di�erent sizes, we divide the LC by the

number of images to annotate, yielding the normalized labelling

cost (NLC). We often evaluate labelling costs for various cluster-

ings that o�er coarse-to-�ne tradeo�s. In this case we report the

minimum NLC over all cluster sizes (minNLC).

Precision and recall. To compare with prior studies on the Paris

dataset, we report the measures de�ned in the work by Weyand

et al. [48], called precision and recall (somewhat misleadingly in

a document retrieval context). Here, precision is computed as the

number of images whose class is dominant in the cluster they are

assigned to, normalized by the total number of images. This is

related to cluster purity, but larger classes get a higher weight. The

authors argue that this re�ects applications where larger classes

are simply more important. Recall is the dual of precision; it is the

fraction of images that belong to the cluster that contains most

images of their class. Achieving a high recall means that the images

of a given class are not spread out over several clusters.

Handling distractors. Distractors are unlabelled images that come

from Paris500k and YFCC100M. They may or may not belong to

one of the classes we are evaluating the clustering on. For our

NLC measure we follow the practice of Weyand et al. and the

“junk” images for Oxford Building evaluation [37]: we ignore the

distractors in the computation of NLC. The measures are still

relevant, because if many images with the same label are clustered

together, it is likely that the unlabelled images of the cluster are

also from the same class.

4.3 Results on the individual datasets

In Figure 2 we compare the clustering methods in terms of labelling

cost, swiping di�erent numbers of clusters. The �rst observation is

that the NLC for Paris500k is much lower than that of ImageNet250,

which re�ects the fact that instance recognition is an easier task

than image classi�cation, for typical modern datasets. This is true

despite the fact that the descriptors we use are close to the state of

the art for image classi�cation, but quite sub-optimal for instance

search, since the R-MAC descriptions are extracted at a �xed reso-

lution and without any �ne-tuning of the convolutional part of the

CNN [19, 40].

��
����
����
����
����
����
����
����
����
����

��

���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��

������

�������
���

Figure 3: Precision vs. recall on the Paris dataset.

ImageNet250. The MCL method is the clear winner, followed by

k-means and PIC, while AGC gives very poor performance. The

best performance is obtained for a number of clusters in between

1000 and 10000, which is larger than the number of categories of

ImageNet250: it is easer for an annotator to label slightly over-

segmented clusters than to dive into large clusters to individually

label their contents.

Paris500k. The ranking of methods is about the same as for Ima-

geNet250. Note that for this dataset, the largest class is that of the

Ei�el Tower, the best strategy when presented with a single cluster

of all images is to label them all as Ei�el Tower (which is correct for

22% of the images), and correct the remaining images. This explains

that the NLC is bounded at 0.78 for low numbers of clusters.

The clustering P-R is the standard performance measure for

this dataset, and allows a direct comparison to previous studies.

The performance that we achieve is lower than that reported in

the original paper [48], which is expected since they use a full

geometrical method and require a much more dense and costly

comparison method.

The comparison to the results of Avrithis et al. [2], which consid-

ers a more similar setup and is oriented towards e�cient discovery,

shows that our method obtains much better results (they have P-R
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Figure 4: Sizes of the clusters produced by the clustering

methods on ImageNet250, sorted from smallest to largest.

The size of each clustering is chosen at the point where the

minimum Labelling Cost is obtained.

operating points of around (0.42, 0.10)). This is partly because we

use a more powerful representation (ResNet rather than AlexNet),

but also because our clustering method is better. More speci�cally,

Figure 3 shows that MCL is signi�cantly better than k-means in

this instance discovery scenario. Our method is also faster, thanks

to our better CPU and GPU implementations.

4.4 Balanced clusters

We analyze whether the four clustering methods produce balanced

clusters in terms of size. Our measurements are carried on the Ima-

geNet250 dataset, for which all classes have a very similar number

of images. We would therefore have expected the di�erent methods

to produce balanced clusters.

It is in fact not the case: Figure 4 shows that k-means produces the

most balanced clusters. For PIC and MCL about half of the clusters

are singletons. The most unbalanced clustering is the agglomerative

method. Its optimal operating point is at 200,000 clusters, which

entails that 80 % of its clusters are singletons.

4.5 Large-scale results

We combine ImageNet250 and Paris500k with a varying number

of distractor images to evaluate the performance of the discovery

on a large scale. Figure 5 reports the performance as a function of

the dataset size. We do not experiment with AGC, which is clearly

inferior. MCL is di�cult to scale beyond 10M images: the squared

matrixA×A has up to 13 billion edges, and the total memory usage

is up to 120 GB. As expected, the performance degrades when the

number of distractors increases. However, it degrades signi�cantly

slower for instance-level discovery than for class discovery. This is

because the clusters have much clearer boundaries in the instance

search case. In particular, MCL is almost not a�ected by distractors.

4.6 Visual results

We present examples of image clusters in Figures 6 and 7. The

clusters are obtained by mixing both ImageNet250 and Paris500k

with 95M images from YFCC100M. Recall that we rely on the visual
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Figure 5: Clustering performance (minNLC, lower is bet-

ter) as a function of number of distractors. The three curves

above are for ImageNet250, the three below for Paris500k.

content only to produce the clusters. To get an idea of how this could

be combined with image tags to automatically label the clusters, we

report the available annotations for the clusters: for ImageNet250

this is the synset name. For YFCC100M, we construct a bag of words

(BoW) from the captions of the images of each cluster and report

the most frequent words. The classes of Paris500k are not labelled.

Figure 6 shows that it is possible to propagate the ImageNet250

annotations to a whole cluster, or to �nd a more accurate name

for animal species (dog↔ Bedlington terrier). For the Paris500k

images, the BoW annotation gives a reliable name for the locations

viewed in the images.

Figure 7 shows that there are many new clusters that also appear

in the dataset. They are typically related to events (prom, concert),

to objects that are not in the ImageNet collection (gra�tti, fashion),

or to combination of several classes occurring simultaneously in

the cluster’s images.

5 CONCLUSION

This paper presents a thorough evaluation of a large-scale discov-

ery pipeline for both visual instances and categories. Our analysis

of di�erent clustering methods, distance normalizations, and de-

scriptors shows that the best choices depend on the scale of the

problem. The Markov Clustering algorithm o�ers the best quality

but is scale-bounded because of the size of the a�nity matrix. For

large collections such as the YFCC100M dataset, Power Iteration

Clustering and k-means are the best competitors.

Our experiments have been carried out with the novel and e�-

cient multi-GPU implementations of the Faiss library, typically able

to cluster 95 million images into 100,000 groups on one machine in

less than 5 minutes. As a result, we report state-of-the-art results

with respect to the trade-o� between performance and e�ciency.

Another conclusion is that category-level clusters can be im-

proved by using lower-level descriptors. We plan to publish code

and data that reproduce the experiments.
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Size 3095 / BoW: 601*dog 265*dogs 259*poodle 182*park 128*puppy / Bedlington terrier
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Figure 6: Example clusters with large intersections with a ground-truth category. For each cluster we indicate its size, themost

frequentwords from the Flickr annotations and the name of the ImageNet250 cluster withwhich it has the largest intersection.

Although clusters contain Imagenet and Flickr500k images, we show only Flickr images for copyright reasons (and indicate

the author’s name).
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Figure 7: Example clusters without any speci�c intersection with a ground-truth category.
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