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Abstract

Lexically constrained text generation is one of001
the constrained text generation tasks, which002
aims to generate text that covers all the given003
constraint lexicons. While the existing ap-004
proaches tackle this problem using a lexically005
constrained beam search algorithm or dedi-006
cated model using non-autoregressive decod-007
ing, there is a trade-off between the generated008
text quality and the hard constraint satisfaction.009
We introduce AutoTemplate, a simple yet effec-010
tive lexically constrained text generation frame-011
work divided into template generation and lex-012
icalization tasks. The template generation is013
to generate the text with the placeholders, and014
lexicalization replaces them into the constraint015
lexicons to perform lexically constrained text016
generation. We conducted the experiments on017
two tasks: keywords-to-sentence generations018
and entity-guided summarization. Experimen-019
tal results show that the AutoTemplate outper-020
forms the competitive baselines on both tasks021
while satisfying the hard lexical constraints.022

1 Introduction023

Text generation often requires lexical constraints,024

i.e., generating a text containing pre-specified lex-025

icons. For example, the summarization task may026

require the generation of summaries that include027

specific people and places (Fan et al., 2018; He028

et al., 2020), and advertising text requires the inclu-029

sion of pre-specified keywords (Miao et al., 2019;030

Zhang et al., 2020b).031

However, the black-box nature of recent text032

generation models with pre-trained language mod-033

els (Devlin et al., 2019; Lewis et al., 2020; Brown034

et al., 2020) makes it challenging to impose such035

constraints to manipulate the output text explicitly.036

Hokamp and Liu (2017) and others tweaked the037

beam search algorithm to meet lexical constraints038

by increasing the weights for the constraint lex-039

icons, but it often misses to include all the con-040

strained lexicons. Miao et al. (2019) and oth-041

Summary y:
Japan is considering legal changes to allow 
Emperor Akihito to abdicate at the end of 
2018, say local media reports citing 
government sources.

Article x:
Crown Prince Naruhito could then ascend the 
throne on …

Lexical Constraints Z: {Japan, Akihito}

Input x:
TL;DR:<X> Japan<Y> Akihito<Z> | Crown Prince 
Naruhito could then ascend the throne on …

Output y:
<X><Y> is considering legal changes to allow 
Emperor<Z> to abdicate at the end of 2018, 
say local media reports citing government 
sources.<W>

AutoTemplate format

~

~

Figure 1: Illustration of AutoTemplate. We build the
model input x̃ by concatenating the constraint lexicons
Z with mask tokens. For the conditional text generation
task, we further concatenate input document x. We
also build the model output ỹ by masking the constraint
lexicons in summary y. Then, we can train a standard
sequence-to-sequence model, p(ỹ | x̃), generate masked
template ỹ given input x̃, and post-process to achieve
lexically constrained text generation.

ers introduced specialized non-autoregressive mod- 042

els (Gu et al., 2018; Lee et al., 2018) that insert 043

words between the constraint lexicons, but the gen- 044

erated texts tend to be lower-quality than standard 045

autoregressive models. 046

On the other hand, classical template-based 047

methods (Kukich, 1983; Tanaka-Ishii et al., 1998) 048

can easily produce text that satisfies the lexical 049

constraints as long as we can provide appropriate 050

templates. Nevertheless, it is impractical to prepare 051

such templates for every combination of constraint 052

lexicons unless for specific text generation tasks 053

where the output text patterns are limited, such as 054

data-to-text generation tasks (Angeli et al., 2010; 055
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Wiseman et al., 2017). Still, if such a template056

could be generated automatically, it would be eas-057

ier to perform lexically constrained text generation.058

We propose AutoTemplate, a simple framework059

for lexically constrained text generations by auto-060

matically generating templates given constrained061

lexicons and replacing placeholders in the tem-062

plates with constrained lexicons. The AutoTem-063

plate, for example, can be used for summariza-064

tion tasks, as illustrated in Figure 1, by replac-065

ing the constraint lexicons (i.e., {Japan, Akihito})066

in the output text with placeholder tokens during067

training and using these constraints as a prefix of068

the input, creating input-output pairs, and then069

using a standard auto-regressive encoder-decoder070

model (Sutskever et al., 2014; Bahdanau et al.,071

2015) to train the AutoTemplate model. During072

the inference, the constraint lexicons are prefixed073

in the same way, the model generates the template074

for the constraints, and the placeholder tokens are075

replaced with the constraint lexicons to perform076

lexically constrained text generation.077

We evaluate AutoTemplate across two tasks:078

keywords-to-sentence generation on One-Billion-079

Words and Yelp datasets (§3.1), and entity-guided080

summarization on CNNDM (Hermann et al.,081

2015) and XSum datasets (Narayan et al., 2018)082

(§3.2). The AutoTemplate shows better keywords-083

to-sentence generation and entity-guided summa-084

rization performance than competitive baselines,085

including autoregressive and non-autoregressive086

models, while satisfying hard lexical constraints.087

We will release our implementation of AutoTem-088

plate under a BSD license upon acceptance.089

2 AutoTemplate090

AutoTemplate is a simple framework for lexically091

constrained text generation (§2.1), divided into two092

steps: template generation (§2.2) and lexicalization093

(§2.3). The template generation task aims to gener-094

ate the text with placeholders ỹ, which we defined095

as a template, given constraint lexicons Z , and the096

lexicalization is to replace these placeholders with097

the constraints to perform lexically constrained text098

generation.099

2.1 Problem Definition100

Let x be a raw input text, and Z be a set of101

constraint lexicons; the goal of the lexically con-102

strained text generation is to generate a text y that103

includes all the constraint lexicons Z based on the104

input text x. For example, given a news article x 105

and some entities of interest mathcalZ, the task is 106

to generate a summary y that includes all entities. 107

Note that unconditional text generation tasks, such 108

as keywords-to-sentence generation (§3.1), are only 109

conditioned by a set of lexicons Z , and in this case, 110

we treat the input data x as empty to provide a 111

unified description without loss of generality. 112

2.2 Template Generation 113

Given training input-output pairs (x, y) and con- 114

straint lexicons Z , we aim to build a model that 115

generates a template ỹ, which has the same number 116

of placeholder tokens as the constraint lexicons Z . 117

We assume that the output text y in the training set 118

includes all the constraint lexicons Z . 119

The template ỹ is created by replacing the con- 120

straint lexicon Z in the output text y with unique 121

placeholder tokens according to the order of appear- 122

ances (i.e., <X>, <Y>, and <Z> in Figure 1),1 and 123

then the model input x̃ is created by prefixing the 124

constraint lexicons Z with the raw input text x.2 125

These lexicons Z are concatenated with the unique 126

placeholder tokens to let the model know the align- 127

ment between input and outputs. We discuss this 128

design choice in §4 129

Using the AutoTemplate input-output pairs 130

(x̃, ỹ), we can build an automatic template genera- 131

tion model p(ỹ|x̃) using any sequence-to-sequence 132

models. This study builds the template genera- 133

tion model p using an autoregressive Transformer 134

model with a regular beam search (Vaswani et al., 135

2017). 136

2.3 Lexicalization 137

After generating the template ỹ, we replace the 138

placeholder tokens with constraint lexicons Z as 139

post-processing to achieve lexically constrained 140

text generation. Specifically, during inference, con- 141

straint lexicons are prefixed to the input text x in 142

the same way to build the model input x̃. Then, 143

we can obtain the template ỹ from the model p and 144

replace the placeholder tokens with the constraint 145

lexicons Z . 146

2.4 Comparison with existing approaches 147

We summarize the properties of existing lexically 148

constrained text generation methods and AutoTem- 149

1We also prefix and postfix the placeholder tokens to use
them as BOS and EOS tokens.

2We use | as separator token for constraints Z and input
text x and also prefixed TL;DR:.
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multiple keywords autoregressive decoding keyword conditioning constraint satisfaction

SeqBF (Mou et al., 2016) ✗ ✗ ✓ ✓
CGMH (Miao et al., 2019) ✓ ✗ ✓ ✓
GBS (Hokamp and Liu, 2017) ✓ ✓ ✗ ✗
CTRLsum (He et al., 2020) ✓ ✓ ✓ ✗

AutoTemplate (ours) ✓ ✓ ✓ ✓

Table 1: Summary of existing work for lexically constrained text generation. SeqBF (Mou et al., 2016) and
CGMH (Miao et al., 2019) use non-autoregressive decoding methods to insert words between given keywords.
While these methods easily satisfy the lexical constraints, in general, non-autoregressive methods tend to produce
lower-quality text generation than autoregressive methods. GBS (Hokamp and Liu, 2017) and CTRLSum (He
et al., 2020) use autoregressive methods to perform text generation, but there is no guarantee to satisfy all lexical
constraints. AutoTemplate empirically demonstrates the capability to generate text that satisfies the constraints.

plate in Table 1. SeqBF (Mou et al., 2016) is150

the first neural text generation model for lexi-151

cally constrained text generation based on non-152

autoregressive decoding. The SeqBF performs lex-153

ically constrained text generation by generating154

forward and backward text for a given constraint155

lexicon. The most significant limitation is that only156

a single keyword can be used for the constraint.157

CGMH (Miao et al., 2019) and similar mod-158

els (Zhang et al., 2020b; He, 2021) are yet another159

non-autoregressive models that achieve lexicon-160

constrained generation by inserting words between161

given constraint vocabularies, thus easily incorpo-162

rating multiple constraints into the output text. Nev-163

ertheless, non-autoregressive models require com-164

plicated modeling and training to generate text as165

good as that of autoregressive models (Gu et al.,166

2018; Gu and Kong, 2021). Our experiments also167

confirmed that the AutoTemplate, which can take168

advantage of autoregressive models, produces con-169

sistently higher quality text than non-autoregressive170

methods, with or without leveraging pre-training171

(§3.1).172

Another direction is to incorporate soft con-173

straints into the autoregressive models such as con-174

strained beam search (Hokamp and Liu, 2017; Post175

and Vilar, 2018) and keywords conditioning (Fan176

et al., 2018; He et al., 2020). GBS (Hokamp and177

Liu, 2017) is a constrained bean search technique178

that incorporates multiple keywords as constraints179

and promotes the inclusion of those keywords in180

the output during beam search. However, GBS181

often misses keywords in the output text.182

CTRLSum (He et al., 2020) imposes keyword183

conditioning into encoder-decoder models by pre-184

fixing the keywords with the input. This method185

can be easily conditioned with multiple keywords186

as a prefix and can be implemented on an autore-187

gressive model, resulting in high-quality text gen- 188

eration. However, the CTRLSum model cannot 189

guarantee to satisfy lexical constraints. Our ex- 190

periments show that as the number of constraints 191

increases, it is more likely to miss constraint lexi- 192

cons in the output text (§3.2). 193

3 Experiments 194

We present experiments across two tasks: 195

keywords-to-sentence generation (§3.1), and 196

entity-centric summarization (§3.2). 197

3.1 Keywords-to-Sentence Generation 198

Keywords-to-sentence generation is a task to gener- 199

ate a sentence that includes pre-specified keywords 200

as lexical constraints. We will show that AutoTem- 201

plate is a simple yet effective method to perform 202

this problem without relying on any complex de- 203

coding algorithms. 204

Dataset We use One-Billion-Word and the Yelp 205

dataset following the previous studies (Miao et al., 206

2019; Zhang et al., 2020b; He, 2021). One-Billion- 207

Word is a dataset for language modeling based on 208

the WMT 2011 news crawl data (Chelba et al., 209

2014). The Yelp dataset is based on the Yelp open 210

dataset.3 We utilized the publicly available pre- 211

processed dataset,4 which consists of 1M, 0.1M 212

sentences for training and development sets, re- 213

spectively, and 6k sentences with 1-6 pre-specified 214

keywords for test sets, which we summarized in 215

Table 3. 216

Baselines For the baselines, we used strong 217

competitive models for lexically constrained text 218

generation, including SeqBF (Mou et al., 2016), 219

GBS (Hokamp and Liu, 2017), CGMH (Miao 220

3https://www.yelp.com/dataset
4https://github.com/NLPCode/CBART
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Model One-Billion-Word Yelp
B2 B4 N2 N4 M SR B2 B4 N2 N4 M SR

SeqBF (Mou et al., 2016) 4.4 0.7 0.62 0.62 7.0 <100. 6.9 2.1 0.52 0.53 8.7 <100.
GBS (Hokamp and Liu, 2017) 10.1 2.8 1.49 1.50 13.5 ≤100. 13.6 4.5 1.68 1.71 15.3 ≤100.
CGMH (Miao et al., 2019) 9.9 3.5 1.15 1.17 13.1 100. 12.3 4.6 1.41 1.45 14.6 100.
POINTER (Zhang et al., 2020b) 8.7 1.6 2.11 2.12 14.3 100. 10.6 2.4 2.14 2.16 16.8 100.
CBART (He, 2021) 15.6 6.6 2.16 2.19 15.2 100. 19.4 9.0 2.54 2.64 17.4 100.

AutoTemplate
w/ T5-base 18.3 7.6 3.39 3.45 16.0 100. 23.7 10.8 3.62 3.76 17.8 100.
w/ T5-large 18.9 8.1 3.49 3.54 16.2 100. 24.1 11.1 3.68 3.83 17.9 100.

Table 2: Results of keywords-to-sentence generation on the One-Billion-Word and Yelp datasets. Bold-faced and
underlined denote the best and second-best scores respectively. Baseline results are copied from He (2021). B2/4
denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, and SR denotes the success rate of lexical
constraint satisfaction.

Data # example output len. # constraints

1B-Words 12M 27.08 1 – 6
Yelp 13M 34.26 1 – 6

CNNDM 312k 70.58 4.53
XSum 226k 29.39 2.11

Table 3: Dataset Statistics: The output length is the num-
ber of BPE tokens per example using the T5 tokenizer.
For the summarization datasets, the average number of
constraints per example is shown.

et al., 2019), POINTER (Zhang et al., 2020b), and221

CBART (He, 2021). SeqBF, GBS, and CGMH are222

implemented on top of GPT2-small (Radford et al.,223

2019) (117M parameters). POINTER is imple-224

mented on BERT-large (Devlin et al., 2019) (340M225

parameters), and CBART is on BART-large (Lewis226

et al., 2020) (406M parameters).227

Model We instantiate the template generation228

model based on the Transformer (Vaswani et al.,229

2017) initialized with T5 checkpoints (Raffel230

et al., 2020) implemented on transformers231

library (Wolf et al., 2020). We specifically232

utilized the T5-v1.1-base (220M parameters)5233

and T5-v1.1-Large (770M parameters)6 (Shazeer,234

2020). To train the model, we used AdamW opti-235

mizer (Loshchilov and Hutter, 2019a) with a linear236

scheduler and warmup, whose initial learning rate237

is set to 1e-5, and label smoothing (Szegedy et al.,238

2016) with a label smoothing factor of 0.1.239

Since the dataset used in this experiment is a240

set of raw texts, we randomly select 1 to 6 words241

from the text and decompose them into constraint242

5https://huggingface.co/google/t5-v1_
1-base

6https://huggingface.co/google/t5-v1_
1-large

lexicons Z and a template ỹ to create the AutoTem- 243

plate training data. Note that the constraint lexicons 244

Z were selected from the words excluding punctu- 245

ations and stopwords (Loper and Bird, 2002). 246

Metrics All performance is measured with 247

the BLEU-2/4 (Papineni et al., 2002), NIST- 248

2/4 scores (Doddington, 2002), and METEOR 249

v1.5 (Denkowski and Lavie, 2014). Following the 250

previous study, we show the averaged performance 251

across the number of keywords (He, 2021). 252

Results Table 2 shows the results of keywords- 253

to-sentence generation. First, the performance of 254

GBS is not as high as non-autoregressive methods. 255

In general, autoregressive decoding produces bet- 256

ter text quality than non-autoregressive decoding. 257

However, since GBS is not conditioned on the key- 258

words, it sometimes produces more general text 259

that does not satisfy the keyword constraint. 260

Second, among the non-autoregressive base- 261

line models, CBART outperforms CGMH and 262

POINTER. This suggests that encoder-decoder- 263

based models such as CBART can produce higher- 264

quality text than decoder-only models such as 265

CGMH and POINTER. 266

Finally, AutoTemplate consistently outperforms 267

all the baselines on both datasets by a large margin 268

while keeping the success rate at 100% regardless 269

of the model size. This indicates that AutoTem- 270

plate could take advantage of both autoregressive 271

decoding and encoder-decoder models as described 272

above. We also confirm that using larger T5 mod- 273

els consistently improves text generation quality 274

across all metrics. 275

Table 4 and 5 show qualitative examples of gen- 276

erated texts of CBART and AutoTemplate and hu- 277

man written reference. The examples show that the 278
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Keywords: leading , currency , software , industry

Reference: Transoft International , Inc. is a leading
provider of currency supply chain management

software solutions for the banking industry .

CBART: The leading edge currency trading

software industry .

AutoTemplate: The company is a leading provider

of currency management software to the financial

services industry .

Table 4: Example generations for the keywords-to-
sentence generation on One-billion-word.

Keywords: nail , salon , always , world

Reference: this is the very best nail salon ! i
always see amanda , her workmanship is out of this

world !

CBART: this is my favorite nail salon in town !
always clean , friendly and the world amazing .

AutoTemplate: I have been going to this nail salon
for over a year now. they always do a great job, and

the prices are out of this world .

Table 5: Example generations for the keywords-to-
sentence generation on Yelp.

AutoTemplate generates long and fluent sentences279

while the CBART tends to generate short text in Ta-280

ble 4 or non-fluent text in Table 5. More examples281

can be found in Appendix.282

3.2 Entity-guided Summarization283

Automatic text summarization distills essential in-284

formation in a document into short paragraphs,285

but different readers might want to know differ-286

ent things about specific entities, such as people287

or places. Thus, one summary might not meet288

all readers’ needs. Entity-guided summarization289

aims to generate a summary focused on the enti-290

ties of interest. This experiment demonstrates that291

AutoTemplate can produce summaries that satisfy292

lexical constraints, even under complex entity con-293

ditioning.294

Dataset We use CNNDM dataset (Hermann et al.,295

2015) and XSum dataset (Narayan et al., 2018)296

for the experiment. We simulate the entity-guided297

summarization setting by providing the oracle en-298

tity sequence from the gold summary as lexical299

constraints. Specifically, we use stanza, an off- 300

the-shelf NER parser (Qi et al., 2020), to parse 301

the oracle entity sequence from the gold summary 302

to create entity-guided summarization data. As 303

summarized in the statistics in Table 3 and more 304

detailed entity distributions in Figure 2, the CN- 305

NDM dataset tends to have more entities than the 306

XSum dataset. Note that one instance in the test set 307

of the CNNDM dataset has a 676-word reference 308

summary with 84 oracle entities, which is difficult 309

to deal with large pre-trained language models, so 310

we excluded it from the success rate evaluation. 311

Baselines We used competitive models as base- 312

lines, including fine-tuned BART (Lewis et al., 313

2020) and CTRLSum (He et al., 2020). Similar 314

to AutoTemplate, CTRLSum further conditions 315

the input with lexical constraints and generates the 316

output. The difference is that CTRLSum directly 317

generates the output text, while AutoTemplate gen- 318

erates the corresponding template. 319

Model We use the same training configurations 320

to instantiate the model used in the keywords-to- 321

sentence generation task. To build the training 322

dataset, we use the masked gold summary by the 323

oracle entity sequence as the output template ỹ 324

as described in §2, At inference time, we use the 325

oracle entity sequence and the source document as 326

input to generate the template and post-process to 327

produce the output summary. 328

Metrics We evaluate the entity-guided summa- 329

rization performance using F1 scores of ROUGE- 330

1/2/L (Lin, 2004),7 BERTScore (Zhang et al., 331

2020a),8 and the success rate of entity constraint 332

satisfaction. Note that our evaluation protocol for 333

the success rate of entity constraint satisfaction is 334

different and more difficult than in previous stud- 335

ies. (Fan et al., 2018; He et al., 2020). While the 336

previous studies measure whether a single speci- 337

fied entity is included in the generated summary, 338

this study measures whether all oracle entities are 339

included. 340

Results Table 6 shows the results of entity- 341

guided summarization. CTRLSum and AutoTem- 342

plate show improvements in summarization per- 343

formance compared to the standard BART model, 344

indicating that entity guidance contributes to the 345

improvement in summarization performance. 346

7https://github.com/pltrdy/files2rouge
8https://github.com/Tiiiger/bert_score

5

https://github.com/pltrdy/files2rouge
https://github.com/Tiiiger/bert_score


Model CNNDM XSum
R1 R2 RL BS SR R1 R2 RL BS SR

reported results
BART (Lewis et al., 2020) 44.24 21.25 41.06 0.336 - 45.14 22.27 37.25 - -
CTRLSum (He et al., 2020) 48.75 25.98 45.42 0.422 - - - - - -

our implementation
BART (Lewis et al., 2020) 44.20 21.28 41.02 0.358 26.12 44.21 20.93 35.18 0.510 46.69
CTRLSum (He et al., 2020) 47.57 25.56 44.30 0.437 75.46 50.07 26.73 40.90 0.581 86.32

AutoTemplate .
w/ T5-base 51.02 27.59 47.85 0.441 100. 50.49 28.19 43.89 0.591 100.
w/ T5-large 52.56 29.33 49.38 0.465 100. 52.65 30.52 46.19 0.614 100.

Table 6: Results of entity-guided summarization with oracle entities on CNNDM and XSum datasets. R1/2/L
denotes ROUGE-1/2/L, BS denotes BERTScore, and SR denotes the success rate of lexical constraint satisfaction.
Bold-faced and underlined denote the best and second-best scores respectively.
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Figure 2: Distribution of the number of oracle enti-
ties. The CNNDM dataset (left) tends to have longer
summaries and contains more entities than the XSUM
dataset. As the number of entities increases, it becomes
more and more difficult to include all the entities in the
generated summary.

On the other hand, while AutoTemplate always347

satisfies entity constraints, CTRLSum shows a con-348

straint satisfaction success rate of 75.46% for CN-349

NDM and 86.32% for XSum, characterizing the350

difference between AutoTemplate and CTRLSum.351

As shown in Figure 3, while CTRLSum shows a352

high success rate when the number of entity con-353

straints is limited, the success rate decreases mono-354

tonically as the number of constraints increases. In355

contrast, the AutoTemplate showed a 100% success356

rate regardless of the number of entity constraints357

and the highest summarization quality.358

Table 7 shows the qualitative examples of the359

generated summaries by CTRLSum and AutoTem-360

plate. While CTRLSum could only include 10 of361

the 18 constraint entities in the generated summary,362

AutoTemplate covered all entities and generated a363

fluent summary.364

We also show the generated summaries with dif-365

ferent entity conditioning by AutoTemplate in Ta-366

ble 8. We confirmed that AutoTemplate can pro-367

duce summaries with a different focus using differ-368

ent entity conditioning and can also include con-369

straint entities in the generated summary.370
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Figure 3: Success rate of entities included in the gen-
erated summary at a different number of entities. The
green line denotes the BART model (Lewis et al., 2020),
the orange line denotes the CTRLSum model (He
et al., 2020), and blue line denotes AutoTemplate model.
These graphs show that CTRLSum can include a lim-
ited number of entities in summary with a high chance.
However, it becomes more and more difficult as the
number of entities increases, while AutoTemplate al-
ways satisfies the constraint.

4 Analysis 371

Does AutoTemplate generate fluent text? Au- 372

toTemplate decomposes the lexically constrained 373

text generation task into template generation and 374

lexicalization tasks. The template generation task 375

aims to produce unnatural text with placeholders, 376

leading to concerns that the final output text will be 377

less fluent than the directly generating natural text. 378

To this end, we compare the fluency of the output 379

text by AutoTemplate and baselines. We specifi- 380

cally used the grammatical acceptability classifier 381

based on roberta-large fine-tuned on CoLA 382

dataset (Warstadt et al., 2019) following Krishna 383

et al. (2020)9 and show the micro averaged accu- 384

racy of sentence-level grammaticality.10 385

9https://huggingface.co/cointegrated/
roberta-large-cola-krishna2020

10Although we can also measure fluency using the perplex-
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Constrained Entities: { Amir Khan , Manny Pacquiao , Abu Dhabi , UAE , Khan , Floyd Mayweather Jr , Las Vegas ,

PacMan , Bob Arum , UAE , Khan , Muslim , Brit , the Money Man , PacMan , Khan , Chris Algieri , New York }

CTRLSum (He et al., 2020): Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan has been linked with

a fight with Floyd Mayweather Jr in Las Vegas . The PacMan ’s promoter Bob Arum is keen for a fight in the UAE .

AutoTemplate: Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan is preparing to face

Floyd Mayweather Jr in Las Vegas on May 2. PacMan ’s vintage promoter Bob Arum has to hand a treasure trove

of an offer for a fight in the UAE this November or December. Khan is a hero of the Muslim world, the Brit would be a

huge attraction there. Assuming that the Money Man wins his interim bout with PacMan next month, all that would appear

to stand between him and his long-awaited mega-fight is the outside chance of a re-match. Khan is set to fight Chris Algieri

in New York next month.

Table 7: Qualitative comparisons between CTRLSum and AutoTemplate. Constraint entities are extracted from
the reference summary (oracle entities). Underlined entities are missed by the CTRLSum (He et al., 2020) while
AutoTemplate can incorporate them into the generated summary. Full version of this Table is in Appendix.

Constraint Entities: { Game Boy , Apple , Chris Gallizzi , Nintendo }

AutoTemplate: Case adds iconic Game Boy buttons to Apple handset. It also lets gamers play their existing cartridges on

their handset. Developer Chris Gallizzi said: ’We wanted to create a retro device that can be easily adapted into any modern
gamer’s arsenal of devices’ Nintendo advised keeping cartridges away from dust, where possible, to avoid gameplay glitches.

Constraint Entities: { Hyperkin , Nintendo , Game Boy Color , Start and Select }

AutoTemplate: Hyperkin has designed a case that adds the iconic directional arrows from the Nintendo Game Boy Color .
It was originally devised as part of an April Fool’s joke, but the popularity and demand for a real product was so high the firm
has announced plans to sell it. It will feature an eight-way D-pad, two action buttons, a Start and Select button, and a battery
that can be charged through the phone.

Table 8: Examples of controlled summary generation by changing constraint entities. By conditioning with different
entities, the model can generate summaries with different points of interest for the same source article.

We show the results in Table 10. For the386

keywords-to-sentence generation task, AutoTem-387

plate shows better fluency scores than the CBART388

model, characterizing the differences between389

CBART and AutoTemplate. While CBART re-390

lies on the non-autoregressive models, which leads391

to non-fluent text generation, AutoTemplate can392

be implemented on top of autoregressive models.393

Thus, AutoTemplate can generate more fluent out-394

put text.395

For the entity-guided summarization task, Au-396

toTemplate shows similar fluency with the state-397

of-the-art autoregressive text generation models,398

including BART and CTRLSum, indicating that399

the AutoTemplate can generate as fluent text as the400

state-of-the-art direct generation models.401

ity of an external language model, it can assign low perplexity
to unnatural texts containing common words (Mir et al., 2019).
Therefore, we decided to evaluate fluency using the classifier.

Importance of Pre-training To evaluate the im- 402

portance of pre-training for AutoTemplate, we per- 403

formed ablation studies using a randomly initial- 404

ized model. As shown in 9, we confirmed that 405

the model with pre-training significantly improves 406

the quality of generated text in both keywords-to- 407

sentence generation and entity-guided summariza- 408

tion cases. Note that the keywords-to-sentence 409

generation model with random initialization gener- 410

ally produced better text quality than the baseline 411

model, CBART, confirming the importance of us- 412

ing autoregressive models. 413

Are unique placeholders needed? Throughout 414

this study, we assumed the unique placeholder to- 415

kens according to the order of appearance, i.e., 416

<X>, <Y> and <Z>, so we investigate the impor- 417

tance of this design choice. We show the perfor- 418

mance of AutoTemplate with a single type of place- 419

holder token (i.e., <X> for all placeholders in the 420

template ỹ) in Table 9. We observed a significant 421
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Keywords-to-Sentence Generation Entity-guided Summarization
One-Billion-Word Yelp CNNDM XSum

B2 B4 N2 N4 M B2 B4 N2 N4 M R1 R2 RL BS R1 R2 RL BS

AutoTemplate 18.3 7.6 3.39 3.45 16.0 23.7 10.8 3.62 3.76 17.8 51.02 27.59 47.85 0.441 50.49 28.19 43.89 0.591
w/ random init 17.0 6.5 3.23 3.27 15.6 22.4 9.8 3.42 3.54 17.6 38.38 11.91 35.06 0.210 39.51 15.84 32.07 0.412
w/ single mask 16.6 5.9 3.15 3.19 15.0 15.9 5.2 2.86 2.92 13.8 48.05 24.53 44.69 0.387 45.67 23.07 39.31 0.493

Table 9: Ablation studies for keywords-to-sentence generation and entity-guided summarization tasks using T5-
base checkpoints. B2/4 denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, R1/2/L denotes
ROUGE-1/2/L, and BS denotes BERTScore.

Fluency (%) Keywords-to-Sentence
One-billion-words Yelp

CBART (He, 2021) 94.42 93.95
AutoTemplate 97.05 98.15
Reference 97.25 90.77

Fluency (%) Entity-guided summarization
CNNDM XSum

BART (Lewis et al., 2020) 96.77 98.88
CTRLSum (He et al., 2020) 96.68 99.01
AutoTemplate 96.38 98.91
Reference 91.55 98.73

Table 10: Results of fluency evaluations by the accept-
ability classifier trained on CoLA dataset (Warstadt
et al., 2019).

.

drop in the quality of the generated text for both422

keywords-to-sentence generation and entity-guided423

summarization tasks, suggesting the importance of424

using unique placeholder tokens in the template.425

5 Further Related Work426

Template-based Text Generation For classical427

text generation systems, templates were an impor-428

tant building block (Kukich, 1983; Tanaka-Ishii429

et al., 1998; Reiter and Dale, 2000; Angeli et al.,430

2010). The advantage of a template-based system431

is that it can produce faithful text, but it can pro-432

duce disfluent text if an inappropriate template is433

selected. Therefore, the current primary approach434

is to produce fluent text directly from the input435

using end-to-end neural generation models.436

More recent studies have focused mainly on us-437

ing templates as an auxiliary signal to control the438

stylistic properties of the output text, such as deriv-439

ing templates as latent variables (Wiseman et al.,440

2018; Li and Rush, 2020; Fu et al., 2020) and using441

retrieved exemplars as soft templates (Cao et al.,442

2018; Peng et al., 2019; Hossain et al., 2020).443

Copy mechanism The copy mechanism was444

originally introduced to deal with the out-of-445

vocabulary problem in machine translation by se-446

lecting the words from the source for the generation 447

in addition to the vocabulary, such as the unknown 448

word replacement with post-processing (Jean et al., 449

2015; Luong et al., 2015), and the joint modeling of 450

unknown word probabilities into encoder-decoder 451

models (Gu et al., 2016; Gulcehre et al., 2016), but 452

with the advent of subword units (Sennrich et al., 453

2016; Kudo, 2018), the unknown word problem has 454

been diminished. Thus, the copy mechanism is not 455

widely used now for handling out-of-vocabulary 456

problems. 457

However, the copy mechanism still plays a vital 458

role in more complex text generation tasks such 459

as involving numerical computation (Murakami 460

et al., 2017; Suadaa et al., 2021) or logical rea- 461

soning (Chen et al., 2020). Specifically, they 462

produce special tokens that serve as placeholders 463

and replace them with the desired words in post- 464

processing. AutoTemplate adapts a similar copy 465

mechanism to perform lexically constrained text 466

generation, showing that it can cover all the con- 467

strained entities in its outputs, even for more com- 468

plex conditioning (more than ten entities). 469

6 Conclusions 470

This study proposes AutoTemplate, a simple yet 471

effective framework for lexically constrained text 472

generation. The core idea is to decompose lexically 473

constrained text generation into two steps, template 474

generation and lexicalization, by converting the in- 475

put and output formats. The template generation 476

can be done with standard encoder-decoder mod- 477

els with beam search so that AutoTemplate can 478

perform lexically constrained text generation with- 479

out using dedicated decoding algorithms such as 480

non-autoregressive decoding and constrained beam 481

search. Experimental results show that the Au- 482

toTemplate significantly outperforms the competi- 483

tive baselines across keywords-to-sentence genera- 484

tion and entity-guided summarization tasks while 485

satisfying the lexical constraints. 486
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7 Ethical Considerations487

We do not see any ethical issues, but we would like488

to mention some limitations. This study proposes a489

method to perform hard lexically constrained text490

generation and shows that our proposed method491

could generate high-quality text in terms of the492

automatic evaluation metrics while satisfying the493

lexical constraints, but this does not guarantee the494

faithfulness of generated text. For example, in the495

summarization task, our method does not directly496

generate entities prone to errors, so the risk of gen-497

erating summaries with unfaithful entities to the498

input text could be lower than existing methods.499

Still, the risk of generating unfaithful text in other500

areas remains.501
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A More qualitative examples870

Table 11-14 show more qualitative examples of871

keywords-to-sentence generation task, and Ta-872

ble 15 shows the full set of qualitative examples of873

entity-guided summarization task, including BART874

and reference summaries.875

Keywords: government , ability , companies , legal

Reference: Generally , the government has

the ability to compel the cooperation of private

companies and assure them legal immunity with a
valid court order .

CBART: The government has restricted the ability

of insurance companies to take legal action .

AutoTemplate: The government has the ability to

force companies to comply with legal requirements,
he said.

Table 11: Example generations for the keywords-to-
sentence generation on One-billion-word.

Keywords: time , voters , primary , days

Reference: At the same time , he said the more he
appears before voters , the better he does on primary

days .

CBART: The last time , the voters were in the
primary , two days before Nov .

AutoTemplate: At the same time , voters will be able
to cast their ballots during the primary days , he said.

Table 12: Example generations for the keywords-to-
sentence generation on One-billion-word.

B Additional Experimental Details 876

B.1 Training details 877

Major hyper-parameters for training models are re- 878

ported in Table 16 following the "Show-You-Work" 879

style suggested by Dodge et al. (2019). 880
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Keywords: experience , top , easily , driver

Reference: my experience with lv cans was top

notch . cab was easily flagged just off the strip , the

route was direct and the driver was very nice .

CBART: the whole experience was top notch ,

easily by the driver .

AutoTemplate: i had a great experience with this com-

pany. they were on top of everything. i was easily

able to get a driver to pick me up at my hotel.

Table 13: Example generations for the keywords-to-
sentence generation on Yelp.

Keywords: southern , fresh , made , friendly

Reference: absolutely , the best pizza in southern
nevada ! the pizza is always fresh , made fresh as
ordered . the wait staff is very friendly and effecient !

CBART: great southern food , fresh and made with
friendly staff .

AutoTemplate: this is the best southern food i have
ever had. everything is fresh and made to order. the
staff is very friendly and helpful. i will definitely be
back.

Table 14: Example generations for the keywords-to-
sentence generation on Yelp.
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Constrained Entities: { Amir Khan , Manny Pacquiao , Abu Dhabi , UAE , Khan , Floyd Mayweather Jr , Las Vegas ,

PacMan , Bob Arum , UAE , Khan , Muslim , Brit , the Money Man , PacMan , Khan , Chris Algieri , New York }

BART (Lewis et al., 2020): Amir Khan has been linked with a fight with Manny Pacquiao . The fight could take place in

Abu Dhabi in November or December. Khan is preparing to fight Chris Algieri in New York next month. Pacquiao is

preparing to face Floyd Mayweather on May 2 in Las Vegas .

CTRLSum (He et al., 2020): Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan has been linked with

a fight with Floyd Mayweather Jr in Las Vegas . The PacMan ’s promoter Bob Arum is keen for a fight in the UAE .

AutoTemplate: Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan is preparing to face

Floyd Mayweather Jr in Las Vegas on May 2. PacMan ’s vintage promoter Bob Arum has to hand a treasure trove

of an offer for a fight in the UAE this November or December. Khan is a hero of the Muslim world, the Brit would be a

huge attraction there. Assuming that the Money Man wins his interim bout with PacMan next month, all that would appear

to stand between him and his long-awaited mega-fight is the outside chance of a re-match. Khan is set to fight Chris Algieri

in New York next month.

Reference: Amir Khan could be set to face Manny Pacquiao in Abu Dhabi , UAE . Khan ’s hopes of taking on

Floyd Mayweather Jr in Las Vegas have faded. PacMan ’s promoter Bob Arum has a mega offer for a UAE fight

late in 2015. Khan is a hero of the Muslim world and his lure in the Middle East is clear. The Brit will be ringside when

the Money Man fights the PacMan on May 2. Khan must first win interim bout with Chris Algieri in New York on May

29.

Table 15: Full version of the qualitative examples including BART and reference summaries in addition to
CTRLSum and AutoTemplate. Constraint entities are extracted from the reference summary (oracle entities).
Underlined entities are missed by the CTRLSum (He et al., 2020) while AutoTemplate can incorporate them into
the generated summary.
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Computing infrastructure NVIDIA A100

Training duration 4h

Search strategy Manual tuning

Model implementation [MASK]

Model checkpoint [MASK]

Hyperparameter Search space Best assignment

# of training steps 50,000 50,000

validation interval 5,000 5,000

batch size 32 32

initial checkpoint for base models google/t5-v1_1-base google/t5-v1_1-base
initial checkpoint for large models google/t5-v1_1-large google/t5-v1_1-large

label-smoothing (Szegedy et al., 2016) choice[0.0, 0.1] 0.1

learning rate scheduler linear schedule with warmup linear schedule with warmup

warmup steps 5,000 5,000

learning rate optimizer AdamW (Loshchilov and Hutter, 2019b) AdamW (Loshchilov and Hutter, 2019b)

AdamW β1 0.9 0.9

AdamW β2 0.999 0.999

learning rate 5e-5 5e-5

weight decay choice[0.0, 1e-3, 1e-2] 1e-2

max grad norm 0.1 0.1

Table 16: AutoTemplate search space and the best assignments.
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