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Abstract

In this work, we address the challenge of data-efficient exploration in reinforcement learning by
developing a principled, information-theoretic approach to intrinsic motivation. Specifically,
we study a class of exploration bonuses that targets epistemic uncertainty rather than
the aleatoric noise inherent in the environment. We prove that these bonuses naturally
signal epistemic information gains and converge to zero once the agent becomes sufficiently
certain about the environment’s dynamics and rewards, thereby aligning exploration with
genuine knowledge gaps. Our analysis provides formal guarantees for IG-based approaches,
which previously lacked theoretical grounding. To enable practical use, we also discuss
tractable approximations via sparse variational Gaussian Processes, Deep Kernels and Deep
Ensemble models. We then propose a general Predictive Trajectory Sampling with Bayesian
Exploration (PTS-BE) framework, which combines model-based planning with the proposed
information-theoretic bonuses to achieve sample-efficient deep exploration. Empirically, we
demonstrate that PTS-BE substantially outperforms other baselines across a variety of
environments characterized by sparse rewards and/or purely exploratory tasks.

1 Introduction

The exploration-exploitation trade-off is a long-standing challenge in Reinforcement Learning (RL) (Sutton
& Barto, 2018). Exploration in classic RL algorithms is often achieved via simple heuristics such as ϵ-greedy
policy in Q-methods (Mnih et al., 2015), action noise injection (Lillicrap et al., 2015), or some form of policy
entropy regularizers in policy gradient methods (Sutton et al., 1999; Kakade, 2001; Schulman et al., 2017). In
some environments, these simple heuristics are enough to ensure sufficient exploration under uncertainty such
that the optimal policy can eventually be learned; in others, characterized by more ‘sparse’ rewards and noisy
transitions, they are prone to get the agent stuck in sub-optimal policy regions instead.

Different methods that satisfy the need for deeper exploration in sparse rewards environments have been
proposed, e.g., Thompson sampling adaptations (Osband et al., 2016; 2018) and Q-network parameter
uncertainty (Azizzadenesheli et al., 2018). Perhaps the most popular class of methods is the one based on
intrinsic motivation (Schmidhuber, 1991; Chentanez et al., 2004), or intrinsic rewards. Intrinsic motivation
methods introduce an additional reward signal that encourages the agent to explore and learn about aspects
of the environment beyond what the task-specific rewards alone can incentivize (Ladosz et al., 2022). This
means that when the agent encounters a new state, they assign it a higher internal, or ‘intrinsic’, exploration
bonus rit that encourages them to visit that state more often. Several different types of exploration bonuses
have been proposed, including model-based (Stadie et al., 2015; Osband et al., 2016; Pathak et al., 2017),
where the agent learns a model of the environment dynamics and uses an output from it (prediction error,
variance, etc.) to define rit, and count-based (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017),
where the intrinsic reward is defined as a function of the visitation frequency of a given state-action pair.

However, some intrinsic reward methods may inadvertently conflate epistemic uncertainty (lack of knowledge
about the environment due to limited data) with aleatoric uncertainty (inherent stochasticity that cannot
be reduced through data collection) (Hüllermeier & Waegeman, 2021). For instance, in highly noisy
environments, exploration methods based on prediction error may keep rewarding the agent for visiting
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already well-understood states whenever they produce random transitions or outcomes. As a consequence,
the agent may continue exploring those regions indefinitely, rather than shifting its exploration budget to
truly under-explored regions, resulting in high sample inefficiency. This challenge has led researchers to begin
to consider alternative intrinsic rewards specifications that attempt to “de-noise” the transitions (Pathak
et al., 2017; Jarrett et al., 2023), looking for underlying novelty signals. The overall aim of this paper is to
provide theoretically grounded insights for constructing good exploration measures that are naturally capable
of dissecting aleatoric and epistemic components.

Related Work Model-based intrinsic rewards (Bellemare et al., 2016; Osband et al., 2016; Pathak et al.,
2017) are a popular class of methods that address sparse rewards by leveraging exploration bonuses derived
from a learned model of the dynamics. Examples include next-state prediction error (Stadie et al., 2015;
Pathak et al., 2017) and variance (Sorg et al., 2010; Pathak et al., 2019). Information-theoretic intrinsic
rewards, rooted in Bayesian Optimal Experimental Design (BOED) (Lindley, 1956; Pukelsheim, 2006; Foster
et al., 2019; Rainforth et al., 2024) and Bayesian Active Learning (BAL) (Houlsby et al., 2011; Hanneke et al.,
2014; Gal et al., 2017) principles, have been previously proposed. Notably, Houthooft et al. (2016) introduced
Variational Information Maximizing Exploration (VIME), defining intrinsic rewards using Bayesian surprise
(Itti & Baldi, 2009), quantified as Information Gain (IG) via relative entropy between posterior and prior
parameters. VIME specifically computes a one-step IG bonus using a variational Bayesian neural network
and incorporates this within a model-free policy-gradient learner. More recently, few contributions proposed
employing IG within a model-based planning framework (mostly via the use of deep ensembles specifically as
a forward dynamics model) that explicitly considers longer planning horizons (Shyam et al., 2019; Sekar et al.,
2020). However, none of these prior contributions provide a formal theoretical analysis of the exploration
bonuses proposed. Tangentially related is the literature on Model-Based RL (MBRL) frameworks that have
frequently leveraged uncertainty quantification for exploration purposes, such as Gaussian Process-based
planners (Deisenroth & Rasmussen, 2011; Kamthe & Deisenroth, 2018; Mehta et al., 2022). Yet, many of these
works either focus solely on dynamics uncertainty or do not explicitly address sparse reward environments or
purely exploratory tasks. While the idea of integrating information gain bonuses within MBRL planners
is present in prior work, formal analyses characterizing their theoretical properties — such as convergence
and contraction rates — remain largely unexplored. Finally, our work also connects closely to the seminal
literature on Bayesian RL (Strens, 2000; Duff, 2002; Ghavamzadeh et al., 2015), which inherently balance
exploration and exploitation through Bayesian uncertainty quantification.

Contributions In this work, we study a class of information-theoretic exploration bonuses inspired by
Bayesian surprise and rigorously analyze their theoretical and practical properties. Although employing
information gain itself as an exploration bonus is not new, our contributions are as follows: i) we provide
a rigorous theoretical foundation for information-theoretic exploration bonuses, proving key convergence
and contraction properties, which nicely complement prior works such as VIME (Houthooft et al., 2016)
and other existing “planning-to-explore" approaches (Shyam et al., 2019; Sekar et al., 2020), which lack
such formal analysis; ii) we advocate for the use of model-based planning approaches for settings that
require high data efficiency, and propose a general Predictive Trajectory Sampling with Bayesian Exploration
(PTS-BE) framework, which simply generalizes planning-to-explore methods by supporting arbitrary Bayesian
models (GPs, deep ensembles, etc.), and explicitly model epistemic uncertainty both in next state and
rewards predictions; iii) We empirically demonstrate the theoretical properties of these information-theoretic
bonuses and thoroughly investigate their practical benefits in terms of sample efficiency when combined with
standard policy-gradient algorithms (e.g., Proximal Policy Optimization, Soft Actor-Critic), particularly
emphasizing their effectiveness in sparse-reward environments and exploratory tasks that inherently demand
careful uncertainty quantification and strategic exploration. Overall, this work is intended to provide novel
theoretical insights into the properties of Bayesian information-based intrinsic rewards and to introduce a
generalized and theoretically justified MBRL planning-to-explore framework.

2 Problem Setup

We begin by defining some concepts and notation that will be used throughout the paper. Firstly, consider
the canonical definition of a Markov Decision Processes (MDP) (Puterman, 2014; Sutton & Barto, 2018).

2



Under review as submission to TMLR

A MDP is a tuple ⟨S,A, pτ , p0, r
e, γ⟩, defined over an horizon of t ∈ {1, ..., T} time steps where: i) S is the

state space; ii) A is the action space; iii) pτ (·|s, a) ∈ Pτ is the state transition probability that determines
the next state st+1 given the current state and action pair (st, at); iv) p0 ∈ P0 is the initial state probability,
s0 ∼ p0(·); v) re : S × A → C ⊂ R is a bounded extrinsic reward function output from the environment; vi)
γ ∈ (0, 1) is a discount factor.

A policy is a function π : S → A that defines an agent’s behaviour by mapping a certain state s ∈ S to
an action a ∈ A, and can be either deterministic or stochastic. Given a certain policy π ≡ π(at|st) and
transition probability pτ ≡ p(s′|s, a), the action-value function Qπ,pτ (s, a) can be defined via the one-step
Bellman equation, Qπ,pτ (s, a) = re(s, a) + γEpτ

[V π,pτ (s′)], where V π,pτ (s) is the state-value function instead:
V π,pτ (s) = Ea∼π(·|s) [re(s, a) + γ Epτ [V π,pτ (s′)]]. Lastly, another useful quantity is the discounted returns
defined as J(π; pτ ) =

∑T
t=0 γ

tEat∼π,s′∼pτ [re(st, at)]. An optimal policy π∗ is equivalently defined as the
maximizer of Qπ,pτ (s, a), V π,pτ (s) and J(π; pτ ), for all s ∈ S.

2.1 Intrinsic Curiosity and Exploration Bonuses

Intrinsic curiosity, or intrinsic motivation, (Schmidhuber, 1991; Barto, 2013) in RL is a technique that
involves augmenting the environment’s extrinsic reward signal re(st, at) with some notion of intrinsic reward
rit(st, at) ∈ R, such that the total reward signal at time t from pair (st, at) received by the agent equals
r(st, at) = re(st, at)+ηtri(st, at), where ηt is a scaling factor that can be decayed as a function of the time step
t. The intrinsic reward rit ≡ ri(st, at) constitutes a form of exploration bonus that the agent gets to enhance
visitation of unseen regions of the state-action space S×A. This intrinsic reward augmentation technique, which
generates the cumulative sum of discounted returns J(π; pτ ) =

∑T
t=0 γ

tEat∼π,s′∼pτ

[
re(st, at) + η ri(st, at)

]
,

can also be viewed as the regularized solution to the constrained optimization problem (Altman, 2021;
Gattami et al., 2021) defined as follows:

max
π

J(π; pτ ) =
T∑
t=0

γtEat∼π,s′∼pτ
[re(st, at)] s.t.

T∑
t=0

γtEat∼π,s′∼pτ

[
ri(st, at)

]
≥ η ,

where η ≥ 0 is some desired level of cumulative exploration. Intrinsic rewards, or exploration bonuses, have
been defined in a variety of different ways in the literature. Some popular methods include, but are not
limited to, intrinsic rewards based on:

i) Prediction Error (Schmidhuber, 1991; Stadie et al., 2015; Pathak et al., 2017), where rit is defined as
rit = η

2 ∥fθ(st, at) − st+1∥p, ∥·∥p denotes the L space norm and fθ(·, ·) is a predictive model for the
environment dynamics, i.e. Ê[p(st+1|st, at)] = fθ(st, at) (e.g., a neural network).

ii) Variance (Hester & Stone, 2012), where rit can be defined as rit = E
[
∥fθ(st, at) − Eθ[fθ(st, at)]∥2

2
]
, and

fθ(·, ·) again is a model of the environment dynamics.

iii) Visitation Frequency of state-action pairs (st, at) (Bellemare et al., 2016; Tang et al., 2017; Ostrovski
et al., 2017), where rit is defined as rit = ηN(st, at)−1, and N(st, at) is the count of encountered (s, a)
pairs. Pseudo-counts are typically used with high-dimensional S × A.

iv) Empowerment (Klyubin et al., 2005; Salge et al., 2014), where rit = η I(st+1, at|st = s). Here, I(·, ·|·) is
the conditional mutual information quantifying the amount of control the agent can exert via at in a
specific state st = s. Empowerment based intrinsic rewards rit nudge the agents towards more controllable
states.

A drawback of some intrinsic reward approaches, especially when transitions are noisy, is that they are
not guaranteed to diminish as the agent becomes more familiar with the environment, since they conflate
epistemic uncertainty with aleatoric uncertainty. This persistence can lead to excessive exploration of already
well-understood state-action pairs, hindering the convergence to high reward regions (Chentanez et al., 2004;
Burda et al., 2018). Furthermore, when intrinsic rewards are incorporated into the learning process, they
effectively modify the original MDP by altering the reward function. This implies that the resulting value
and discounted return functions Qπ,pτ (s, a), V π,pτ (s) and J(π; pτ ) are effectively ‘biased’ with respect to the
main task described by the original MDP. If the intrinsic reward modification is persistent, it may bias trained
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policies away from optimal solutions. Therefore, it is essential to design intrinsic rewards that facilitate
efficient exploration at early stages of training, by disentangling epistemic and aleatoric uncertainties, and at
the same time naturally fade to zero once the local environment dynamics is well understood.

2.2 Bayes-Adaptive MDPs and Exploration as a Complementary Task

A grounded way of representing the agent’s complementary task of exploration, such that it is consistent
with an MDP’s state values functions, can be devised by adopting a Bayesian perspective on the uncertainty
stemming from the environment dynamics. To this end, let us define the true parameters underlying the
transition distribution of the dynamics as θtrue ∈ Θ, where we equivalently use p(st+1, rt|st, at; θtrue) ≡
pθtrue

(st+1, rt|st, at). The typical Bayesian approach entails placing some form of prior distribution p(θ) on
the unknown θtrue, define a likelihood on the collected data p(Dn|θ), where n is the sample size, and update
beliefs on it after collecting new data Dn through Bayes rule, p(θ|Dn) ∝ p(Dn|θ)p(θ). With this in mind,
we can formulate a modified version of the classic MDP, Bayes-Adaptive Markov Decision Process
(BAMDP) (Duff, 2002; Ross et al., 2007), which explicitly incorporates belief updates over θ into the agent’s
decision-making process and enables one to define intrinsic rewards as a function of the agent’s current belief
over θ:
Definition 2.1 (BAMDP). A BAMDP is a tuple ⟨HS ,A, ph, p0, r

h, γ⟩, defined over an horizon of t ∈ {1, ..., T}
time steps where:

i) HS = S × Θ is the set of hyper-states, defined as the Cartesian product of the environment states space
S and the space of parameters of the posterior transition dynamics Θ;

ii) A is the action space;
iii) ph(·|hst

, at) ∈ Pτ is the hyper-state transition probability that determines the next hyper-state
(st+1, θ

′) given the current hyper-state (st, θ) and action at, and is such that pht(st+1, θ
′|st, at; θ) =

p(st+1|st, at; θ)p(θ′|st, at; θ). The probability p
(
θ′|(st, at, st+1); θ

)
is then the updated belief poste-

rior p(θ′|D; θ) on θtrue ∈ Θ, given the revealed new state st+1 that completes the full transition
(st, at, st+1) ≡ D (i.e., one new data point);

iv) p0 ∈ P0 is the joint distribution of the initial state and the prior on the dynamics parameters, which can
be assumed to be independent, i.e., p0(s0, θ) = p(s0)p(θ), where s0 ∼ p(s0);

v) rh : HS ×A → C ⊂ R is a bounded combined reward function that stems from the hyper-state HS = S ×Θ
and action A spaces and include both extrinsic rewards re, strictly generating from S × A, and intrinsic
rewards ri, generating from Θ, as discussed below;

vi) γ ∈ (0, 1) is a discount factor.

Our definition of a BAMDP differs slightly from that typically found in the literature on Bayesian RL (Duff,
2002; Ross et al., 2007; Ghavamzadeh et al., 2015), as we added an explicit decomposition of the total rewards
rh into extrinsic rewards re, stemming uniquely from S × A, and intrinsic rewards ri stemming from Θ,
i.e., ri : Θ → C ⊂ R. A BAMDP explicitly incorporates the agent’s updated belief about the unknown
dynamics parameter, expressed via the posterior distribution p(θ|D) — in the short form notation where
D = (s, a, s′) — into the decision-making process, in addition to expressing the complementary task of
exploring the environment to learn this parameter through the intrinsic rewards defined as a function of the
current belief on θ, ri(θ). We have intentionally kept the definition of ri(θ) vague for now, as in the next
section we will discuss how to develop a measure for ri(θ) with certain desirable properties, such that the
BAMDP aligns back with the original underlying MDP asymptotically during training, through its value
functions and discounted cumulative returns.

3 Information-Theoretic Intrinsic Rewards

In this section, we discuss a principled approach to define the intrinsic reward ri(θ) using information-theoretic
measures. Specifically, we focus on the concept of Bayesian Surprise (Itti & Baldi, 2009), which quantifies
the amount of information acquired about the unknown dynamics parameters θ ∈ Θ after observing new
data Dn of sample size n. By incorporating an information-theoretic measure into the intrinsic reward, we
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encourage the agent to explore areas of the state-action space S × A that are most informative in terms of
uncertainty reduction from a prior p(θ) to the posterior p(θ|Dn).

3.1 Epistemic versus Aleatoric Uncertainty

The total variation residing in the random variable θ ∈ Θ can be quantified with the Shannon entropy
H [p(θ)] = Eθ∼p[− log p(θ)] (Shannon, 1948). The total entropy H [p(θ)] can be decomposed, with respect to
another random variable Y , as H [p(θ)] = H [p(θ|Y )] + I(θ;Y ) (Cover, 1999). Here, the conditional entropy
H [p(θ|Y )] quantifies the residual uncertainty after observing all the realization of Y = y, i.e., aleatoric
uncertainty. The mutual information component, I(θ;Y ), measuring the uncertainty reduction in one variable
after observing the other, incorporates all the epistemic components. Conditioning everything on some n
sized dataset Dn, we obtain:

I(θ;Y |Dn) = H [p(θ|Dn)] −H [p(θ|Y,Dn)] = IGθ(Y,Dn) , (1)

where the conditional mutual information I(θ;Y |Dn) = IGθ(Y,Dn) is typically referred to as Information
Gain (Lindley, 1956) and it measures the reduction in the entropy of parameters θ ∈ Θ before and after
conditioning on the new random variable Y . Thus, intuitively IGθ(·) captures the epistemic uncertainty gains
(Hüllermeier & Waegeman, 2021; Wimmer et al., 2023) relative to parameters θ ∈ Θ, as we progressively
gather more data.

Information gain IGθ(·) appears to be an appealing candidate for a measure of intrinsic reward. In the
context outlined by (BA)MDPs the information gain can be written in full form as:

IGθ(st, at, st+1) = H[p(θ|st, at)] −H[p(θ|st, at, st+1)] (2)
= Ep(θ|st,at,st+1)[log p(θ|st, at, st+1)] − Ep(θ|st,at)[log p(θ|st, at)] ,

where, similarly to before, IGθ(st, at, st+1) measures the reduction in uncertainty around θ ∈ Θ after observing
the transition (st, at, st+1). Houthooft et al. (2016) were the first to leverage an information gain IGθ(·)
bonus such as the one described above, by specifically employing a variational Bayesian Neural Network to
compute a one-step IG inside a model-free policy gradient learner. Their method neither embeds IG into a
multi-step planner nor provides any formal analysis of bonus decay or convergence.

Relation to Visitation-Frequency Bonuses Bellemare et al. (2016) show that both exact counts and
pseudo-counts can be interpreted as the Bayesian Information Gain of an agent that maintains a density
model of the observations encountered; the corresponding pseudo-count (or count) exploration bonus can
therefore be viewed as an explicit measure of epistemic uncertainty as well. Earlier count-based algorithms
such as MBIE-EB (Strehl & Littman, 2008) and UCRL2 (Auer et al., 2008) already exploited this idea
implicitly by adding a bonus β/

√
N(s, a) to guarantee optimism and PAC-MDP or regret bounds. Subsequent

density-model variants — e.g. hashing–pseudo-counts (Tang et al., 2017) and PixelCNN pseudo-counts
(Ostrovski et al., 2017) — retain the same uncertainty interpretation while scaling to high-dimensional inputs.
In these works the intrinsic reward decays at the non-asymptotic rate O(1/

√
N(s, a)). A key distinction with

the dynamics model-based approach considered in this work however lies in the fact that forward dynamics
models naturally provide both next-state and reward predictions, together with the possibility of producing
uncertainty measures for H-step-ahead predictions. In contrast, visitation-frequency bonuses depend on future
counts, which are less straightforward to incorporate into look-ahead planning, as both a density model and
a forward dynamics model would need to be specified.

3.2 Why Information Gain Intrinsic Rewards?

The intrinsic reward defined as rit(θ) = IGθ(st, at, st+1) possesses the desirable property that it is guaranteed
to gradually diminish as the agent explores the environment. This happens because, as the agent collects
more transitions from the environment, its posterior belief over the dynamics parameters θ ∈ Θ becomes
increasingly concentrated — thus, the epistemic information gain from new observations naturally decreases.
To formally demonstrate this, assume for simplicity S,A ⊆ R and that the transition distribution pθtrue(s′|s, a)
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with true parameters θtrue ∈ Θ follows a Markov dynamics characterized by the following additive noise
structural equation:

St+1 = f(St, At) + εt , where εt ∼ N (0, σ2) and σ2 ∈ R+ , (3)

and where f ∈ F is some arbitrarily complex function. Suppose we want to model the two unknown parameters
in (3), i.e., θ = (f, σ2) ∈ F ×R+, in a Bayesian way, by placing a prior p(θ) = p(f, σ2) = p(f)p(σ2). Consider
the IGθ(·) associated with a specific one-step transition (s, a, s′), i.e., IGθ(s, a, s′), so that the data Dn in
this setting is equal to Dn ≡ {(si, ai, s′

i)}ni=1. Under the mild assumptions of θtrue ∈ KL-support
(
p(θ)

)
and

“testability” (Schwartz, 1965; Ghosal et al., 1999) discussed in the Appendix, Section A.1, we have that:
Proposition 3.1 (Consistency). Assume the true data generating model in (3) with true parameters
θtrue = (ftrue, σ2

true), a prior distribution p(θ) ∈ P and the induced posterior p
(
θ | {(si, ai, s′

i)}ni=1
)
. Given

conditions for weak posterior consistency (discussed in the proof), such that for ϵ > 0,

p
(
θ ∈ Θ : d

(
(f, σ), (ftrue, σtrue)

)
> ϵ | {(si, ai, s′

i)}ni=1
) Pθtrue→ 0 ,

as n → ∞, then rit(θ) = IGθ(s, a, s′)
Pθtrue→ 0 as n → ∞.

More practically, since we are interested primarily in carrying out Bayesian inference on the unknown function
f ∈ F for exploration purposes, we might also treat σ2 as fixed and estimate it via maximum likelihood,
while instead maintaining only a Bayesian prior on p(f) (e.g., Gaussian Process, Bayesian Neural Networks,
Deep Ensembles, etc.).

Under the mild assumptions of Proposition 3.1, we can guarantee that the exploration incentive rit = IGθ(·)
associated with a full transition (s, a, s′) asymptotically converges to zero, as the agent progressively learns
θ ∈ Θ via collecting new samples. Notice that this implies that the state-value (and action-value) function
elicited by the augmented rewards rt = ret + ηir

i
t(θ) = ret + ηiIGθ(·), which characterize the BAMDP defined

above in 2.1, convergences in probability to the original MDP’s value functions. More formally, this reads:
Corollary 3.2 (Value Function Convergence). Given the state-value function associated with the BAMDP,
V π,pτ

BAMDP(s), where rit(θ) = IGθ(·) defined as:

V π,pτ

BAMDP(s) = Ea∼π(·|s)
[
re(s, a) + ηiIGθ(s, a, s′) + γ Epτ

[V πBAMDP(s′)]
]
,

and the value function V π,pτ

MDP(s) associated with the original MDP, then we have that, under the conditions
outlined in Proposition 3.1, V π,pτ

BAMDP(s) P→ V π,pτ

MDP(s) as n → ∞. A similar result holds for the action-value
function Qπ,pτ

BAMDP(s, a) P→ Qπ,pτ

MDP(s, a) and the discounted returns JBAMDP(π; pτ ) P→ JMDP(π; pτ ).

These results ultimately establish, albeit asymptotically, the soundness of information gain as a desirable
intrinsic reward signal, ensuring that it effectively drives exploration in the early stages of learning, while
naturally diminishing as the agent becomes more familiar with the environment.

3.3 Information Gain Decay and Problem Complexity

While Proposition 3.1 guarantees that the intrinsic reward rit(θ) = IGθ(st, at, st+1) asymptotically converges
to zero as the number of observations increases, the rate at which this occurs is influenced by factors affecting
the hardness of the f ∈ F estimation problem, such as the signal-to-noise ratio and the smoothness of the
true function f0, and the type of prior p(f) that is placed on f . For example, suppose we consider a Gaussian
Process (GP) regression (Rasmussen et al., 2006) prior: f |ω ∼ GP

(
0, C(·, ·|ω)

)
, where C(·, ·|ω) is a kernel

covariance function with hyper-parameters ω ∈ Ω. We can further derive minimax contraction rates ϵn
(Ghosal & Van der Vaart, 2017) at which rit(θ) = IGθ(·) converges by imposing functional form restrictions
on the true underlying ftrue ∈ F . If we assume that: X = S × A = [0, 1]|A|+1; f0 ∈ Cα(X ) ∩Hα(X ), where
Cα(·) is the Hölder space and Hα(·) is the Sobolev space of order α; C(x, y) = ω1∥x− y∥αKα(ω2∥x− y∥) in
f |ω ∼ GP

(
0, C(·, ·|ω)

)
is the Matérn kernel, then we have (Van Der Vaart & Van Zanten, 2011):

Proposition 3.3 (Contraction Rates). Under the same assumptions of 3.1, if (f0, σ0) ∈ Cα(X ) ∩Hα(X ) ×
[c, d], where X = [0, 1]|A|+1, and f |ω ∼ GP

(
0, C(·, ·|ω)

)
where C(·, ·|ω) is the Matérn kernel, then:

IGθ(st, at, st+1) P
∞
0→ 0 as n → ∞ ,
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at the optimal minimax rate ϵn = n− 1
(2+|X |/α) (Yang & Barron, 1999).

The optimal minimax rate ϵn achieved in Proposition 3.3 typically pertains to a purely ‘passive’ or random
sampling strategy, and can potentially be improved under certain conditions through ‘active’ sampling (Willett
et al., 2005; Castro & Nowak, 2008; Hanneke & Yang, 2015). We include a brief discussion on this in the
Appendix, Section A.3. Also, note that V π,pτ

BAMDP(s) P→ V π,pτ

MDP(s) obviously occurs at the same rate.

Notice that the same type of asymptotic convergence characterizing IGθ(·) is not guaranteed for other types
of intrinsic rewards rit, such as those based on prediction error rit = η

2 ∥fθ(st, at) − st+1∥p (Stadie et al.,
2015; Pathak et al., 2017) in stochastic environments. In settings such as the one described in the ‘noisy
TV problem’ (Tang et al., 2017), prediction error can remain persistently high due to inherent aleatoric
uncertainty, randomness in the environment that cannot be reduced through further data collection.

4 Efficient Model-Based Bayesian Exploration

While we have demonstrated above that defining intrinsic rewards via information gain rit(θ) =
IGθ(st, at, st+1) is theoretically appealing, this poses two practical challenges for its implementation in
RL, and especially in MBRL domains. Firstly, computing IGθ(st, at, st+1) for each timestep requires a
posterior update over θ after observing each new transition (st, at, rt, st+1). Maintaining and updating exact
Bayesian posteriors in high-dimensional parameter spaces can be computationally expensive, especially when
θ parameterizes complex neural networks, as in Houthooft et al. (2016). Secondly, full IGθ(·) for a state-action
pair (st, at) is only calculated after the next state st+1 is observed and the posterior is updated accordingly,
p(θ|st, at, st+1). Hence, similarly to other intrinsic rewards, IGθ(st, at, st+1) can only be computed “in retro-
spect”, which makes it sample inefficient and complicates its integration into planning or policy optimization
MBRL algorithms that instead typically look ahead.

A computationally more tractable, and planning-friendly, alternative is to employ the posterior predictive distri-
bution directly, which marginalizes over the θ parameters, i.e., p(st+1|st, at) =

∫
p(st+1|st, at; θ)p(θ|st, at) dθ,

instead of the updated posterior distribution over the parameters after seeing st+1, i.e., p(θ|st, at, st+1).
However, in this scenario, we need to define a predictive surrogate for IGθ(st, at, st+1), i.e., an Expected
Information Gain, EIGθ(st, at), that marginalizes over the distribution of possible next states st+1. In this
way, we can avoid explicitly updating the posterior for every new transition. The surrogate EIGθ(st, at) can
be derived as follows:

EIGθ(st, at) = Ep(st+1|st,at)
[
IGθ(st, at, st+1)

]
(4)

= Ep(θ|st,at)p(st+1|st,at;θ)
[

log p(θ|st, at, st+1) − log p(θ|st, at)
]

= Ep(θ|st,at)p(st+1|st,at;θ)
[

log p(st+1|st, at; θ) − log p(st+1|st, at)
]

= H
[
p(st+1|st, at)

]
− Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
, (5)

where we use the fact that p(θ|st, at, st+1) ∝ p(θ|st, at)p(st+1|st, at, θ) by Bayes rule and p(st+1|st, at) =∫
θ
p(st+1|st, at, θ)p(θ|st, at)dθ by marginalization. Full derivation is provided in the Appendix, Section B.1.

One can intuitively view EIGθ(st, at) as the expected reduction in uncertainty over θ, if the agent takes action
at in state st. Notice also that equivalently we can express EIGθ(st, at) as EIGθ(st, at) = H

[
p(st+1|st, at)

]
−

Ep(θ|st,at)
[
H[p(st+1|st, at; θ]

]
= Ep(θ|st,at)[DKL(p(st+1|st, at; θ)∥p(st+1|st, at))]. Since EIGθ(st, at) does not

explicitly require intermediate posterior computations, we do not necessarily need to maintain an updated
posterior p(θ | st, at) throughout the training. Instead, for instance, we can resort to approximate methods,
such as an ensemble of probabilistic deep dynamics models {fθm

(st, at)}Mm=1, that approximate the predictive
posterior via model averaging (Lakshminarayanan et al., 2017; Wilson & Izmailov, 2020). One can then show
that, under a deep ensemble model of the dynamics, EIGθ(st, at) is theoretically equivalent to computing the
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Figure 1: Left panels show a homoskedastic regression case, where predictive H[·] and EIGθ(·) identify similar
regions of uncertainty. Right panels show a heteroskedastic regression case, where predictive H[·] is influenced
by state-dependent noise, while EIGθ(·) still identifies regions of epistemic uncertainty. The regression model
employed is an ensemble of probabilistic neural networks.

disagreement among the ensemble’s predictive distribution (Hanneke et al., 2014; Shyam et al., 2019), that is:

EIGθ(st, at) = Ep(θ|st,at)p(st+1|st,at;θ)
[

log p(st+1|st, at; θ) − log p(st+1|st, at)
]

= Ep(θ|st,at)p(st+1|st,at;θ)
[

log p(st+1|st, at; θ) − log
∫

Θ
p(st+1|st, at; θ)p(θ|st, at) dθ

]
= H

[
Ep(θ|st,at)[p(st+1|st, at; θ)]

]
− Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
= JSDθ

(
p(st+1|st, at; θ) | θ ∼ p(θ|st, at)

)
, (6)

where JSD is the Jensen-Shannon Divergence. The intuition behind the equivalence in (6) is that, under a
deep ensemble dynamics model, EIG can be computed as the level of disagreement across different plausible
dynamics models consistent with the current data. Full derivation is provided in the Appendix, Section B.3.
The above quantity can be approximated via Monte Carlo estimates by averaging the predictions of the
probabilistic neural networks in the ensemble, as

EIGθ(st, at) = H
[
Ep(θ|st,at)[p(st+1|st, at; θ)]

]
− Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
≈ H

[
1
M

M∑
m=1

p(st+1|st, at; θm)
]

− 1
M

M∑
m=1

H
[
p(st+1|st, at; θm)

]
.

Ensembles of probabilistic neural networks are a cheaper, approximate alternative to other Bayesian regression
models such as Gaussian Processes or Bayesian Neural Networks, and work reasonably well when exact
computation of the posterior (and posterior predictive) becomes intractable in high-dimensional state-action
space settings.

4.1 Disagreement and Heteroskedastic Noise

An important distinction arises based on whether the environment’s noise is homoskedastic or heteroskedastic.
In the homoskedastic case, the transition noise variance σ2 remains (theoretically) constant across all states,
σ(s) = σ for all s ∈ S. This constancy means that relative differences in a predictive uncertainty measure (e.g.,
predictive entropy or variance) primarily reflect the model’s epistemic uncertainty: if all states are subject
to the same inherent noise, then the model’s uncertainty should vary mainly due to gaps in its knowledge
about the dynamics, rather than state-specific stochasticity. In practice, of course, approximation errors can
still inflate or reduce these estimates, so the absolute values of such measures will not perfectly align with
epistemic uncertainty — thus, using EIGθ(·) is still more efficient (see experiment in Section 5.1.1 below).
However, their variations across states can still somehow provide a more meaningful exploration signal in a
homoskedastic setting. In contrast, for heteroskedastic noise, where the noise variance σ2(s) depends on the
state realization s, the same measures blend irreducible aleatoric uncertainty with epistemic uncertainty. As
a result, highly noisy state regions may trigger misleading signals as they exhibit large predictive entropy (or
variance) even if the model is confident about the underlying dynamics, simply because the environment
itself is noisier.

8
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Algorithm 1 Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE)
1: Initialize policy πψ, transitions buffer Denv, Bayesian dynamics model p(f) (e.g., GP, Deep Ensembles, ...)
2: for T steps do
3: Given state st, sample action at ∼ πψ(st); receive rt and st+1
4: Add Denv ← Denv ∪ {st, at, rt, st+1}
5: if t > twarm then
6: if t mod tpolicy = 0 then
7: Sample K actions from policy {a(k)

t }Kk=1 ∼ πψ(st)
8: Rollout J-length trajectories and define Dmodel = {{(s(k)

t+j , a
(k)
t+j , r

(k)
t+j , s

(k)
t+1+j)}

J
j=0}Kk=1

9: Compute rit+j and augment each r
(k)
t+j in Denv as r(k)

t+j = ret+j + ηtr
i
t+j = ret+j + ηtEIGθ(s(k)

t+j , a
(k)
t+j)

10: for G policy gradient updates do
11: Update ψ in πψ(s) using Dmodel
12: if t mod tmodel = 0 then
13: for M model updates do
14: Update dynamics model p(f |Denv)← p

(
f |Denv, (st, at, rt, st+1)

)
Figure 1 illustrates these behaviors in a simple regression setting with either homoskedastic or heteroskedastic
noise. Under homoskedastic noise, the relative levels of predictive entropy (in red) and information-theoretic
exploration measure EIGθ(·) (in green) align closely with regions of true knowledge gaps. In contrast, for
heteroskedastic noise, predictive entropy spikes in the (middle) region with higher noise, whereas EIGθ(·)
remains low there because the model has ample data – i.e., EIGθ(·) explicitly factors out irreducible noise,
focusing on states that would reduce the model’s parameter uncertainty. This illustrates why we not only
need an uncertainty-aware dynamics model but also need to carefully disentangle aleatoric and epistemic
uncertainties when deriving exploration signals.

4.2 Predictive Trajectories Sampling with EIG Exploration Bonus

For some of the setups in the experimental Section 5 below, we will be using standard model-free policy
gradient algorithms, namely Proximal Policy Optimization (PPO) (Schulman et al., 2017) for environments
with discrete action spaces and Soft Actor-Critic (SAC) (Haarnoja et al., 2018) for ones with continuous
action spaces. We generally employ vanilla versions of these algorithms, and versions that are augmented
with intrinsic curiosity, i.e., the collected extrinsic rewards ret in the replay buffer D = {st, at, rt, st+1}Tt=0 are
augmented with intrinsic rewards rit computed using the forward dynamics model according to the description
in Section 2.1.

For some other specific setups instead, we instead employ a general Predictive Trajectory Sampling with
Bayesian Exploration (PTS-BE) framework, which extends prior planning-to-explore and model predictive
control approaches (Chua et al., 2018; Shyam et al., 2019; Sekar et al., 2020) by supporting arbitrary Bayesian
models of both dynamics and rewards. In this framework we maintain an ensemble of M probabilistic models
{fθm

}Mm=1, each predicting the joint distribution pθm
(r, s′ | s, a). Notice that here we generally consider

prediction of both reward and next state as part of an encompassing dynamics prediction effort, but one can
easily focus only on next state prediction, particularly in settings where reward prediction is secondary. Because
r and s′ are conditionally independent given (s, a), we factorize each pθm(r, s′ |s, a) = pθm(r |s, a) pθm(s′ |s, a).
Under the usual assumption that (r, s′) form a multivariate Gaussian with diagonal covariance, deep ensembles
provide a scalable, approximate Bayesian predictive posterior without explicit posterior updates. Instead of
selecting actions through optimization procedures like Random Shooting or CEM, as in traditional Model
Predictive Control (Draeger et al., 1995; Chua et al., 2018), we instead maintain a policy parametrization
πψ(s) (e.g., PPO, SAC, etc.) that does not necessarily require updates at each time step t, as proposed also
in Shyam et al. (2019) and Foster et al. (2021). Similarly to model-free algorithms, this policy is trained by
maximizing the cumulative sum of both extrinsic rewards re and intrinsic rewards ri,

∑T
t=1(ret + ηrit), where

ri again can be generally defined as an output of the predictive model for pθ(r, s′|s, a) (e.g., Variance, Entropy,
EIG, etc.), but uses a different data buffer. Specifically, the ensemble models are leveraged to generate
K independent predictive trajectories from the current state st, each unrolled for J steps into the future,
{(skt+j , akt+j , rkt+j , s′k

t+j+1)}Jj=1. Actions are drawn from the current policy akt+j ∼ πψ(skt+j), while next state

9
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Figure 2: Intrinsic reward uncertainty measures on the homoskedastic and heteroskedastic versions of the
Mountain Car environment, recorded at every update of the dynamics model fθ(st, at), under a random
policy. From left to right plot: prediction error rit = ∥fθ(st, at) − st+1∥2, entropy rit = H[pθ(r, s′|s, a)] and
expected information gain rit = EIGθ(·).

and rewards are sampled from the predictive posterior pθ(r, s′|s, a). Intrinsic rewards rit are computed for
every k and j entry and added up to the estimated extrinsic ones, if included. Finally, the policy parameters
ψ are updated periodically every n steps using purely model-generated data from the PTS step. One could
also potentially consider using a combination of real and imagined trajectories, like in Model-Based Policy
Optimization (Janner et al., 2019). A pseudo-code representation of the full algorithm’s structure is depicted
in Algorithm 1.

Obtaining p(f |D) for different forward models. Line 14 in Algorithm 1 yields an updated belief posterior
p(f |Dt) on the environment dynamics. In practice, the way this belief posterior is obtained depends on
which Bayesian dynamics model is used. In particular: (i) Exact GPs maintain a full multivariate Gaussian
posterior p(f | D), using (s, a) as inputs; ii) DKs maintain a multivariate Gaussian posterior using latent
input representations ϕ(s, a), where the marginalization is identical to the full GP, but performed in a latent
space H; iii) Stochastic Variational variants of GPs and DKs (SVGP / SVDK) maintain a Gaussian posterior
using a subset of representative inducing points in either (s, a) or ϕ(s, a), respectively — the marginalization
is again identical to the GP or DK, but carried out using only the inducing points; iv) Deep Ensembles
(DEs) approximate the full belief posterior via an empirical mixture of M probabilistic neural networks —
marginalization is obtained via Monte Carlo averaging: p̂(f | D) = 1

M

∑M
m=1 δfθm

.

5 Experiments

In this section, we evaluate the performance and the practical benefits of information-theoretic exploration
bonuses through three sets of experiments. The first set is designed to validate the theoretical claims made in
earlier sections and demonstrate the advantages of the proposed PTS-BE (Algorithm 1) in terms of planning
deep exploration strategies. The second set introduces a simple unichain environment to allow comparison of
the approximate uncertainty quantification properties of deep ensembles with those of Gaussian Processes
(Rasmussen et al., 2006), which provide full Bayesian predictive posterior, in terms of their ability to generate
a reliable exploration signal based on epistemic uncertainty. In this second set of experiments, we include
also Deep Kernels (Wilson et al., 2016b) in the comparison, and other popular curiosity-based algorithms
that use intrinsic reward augmentation on the environment’s data buffer to update the policy via exploration
bonuses computed “in retrospect” (see discussion in Section 4). Deep Kernels combine the flexibility of deep
learning with the principled uncertainty estimation of Gaussian Processes, making them a valuable baseline
for assessing the trade-offs between expressiveness and calibrated uncertainty in exploration-driven tasks.
Lastly, the third set of experiments showcases the applicability of the PTS-BE approach to more challenging,
sparse-reward, Maze environments characterizing close to purely explorative tasks.

5.1 Heteroskedastic Noise Model in Mountain Car

We begin by introducing a modified version of the canonical Mountain Car environment. In our variant, we
incorporate a heteroskedastic noise model based on the environment’s physical dynamics. The transition
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Homosk σ Returns

Random -1000.0 ± 0.000

BE H[·] -1000.0 ± 0.000
BE EIG -1000.0 ± 0.000

PTS-BE H[·] -842.3 ± 105.9
PTS-BE EIG -424.7 ± 122.5

Heterosk σ(s) Returns

Random -1000.0 ± 0.000

BE H[·] -1000.0 ± 0.000
BE EIG -1000.0 ± 0.000

PTS-BE H[·] -702.0 ± 105.9
PTS-BE EIG -356.7 ± 90.0

Figure 3: Results from the second experiment on Noisy Mountain Car. The two plots report the cumulative
fraction of visited states by the agent over 1000 steps, while the tables report the average returns. These are
computed over 20 different replications. The methods being compared are: a random agent (Random), a
baseline model-free agent with intrinsic rewards augmentation (BE) and a model-based Predictive Trajectory
Sampling (PTS-BE) agent, as described in Section 4.2. The BE and PTS-BE methods are compared on both
the homoskedastic and heteroskedastic versions of the environment, using either predictive entropy H[·] or
EIG as intrinsic reward. The baseline solver is PPO.

dynamics are modified so that the noise variance is state-dependent, St+1 = f(St, At) + εt where εt ∼
N

(
0, σ2(St)

)
, thereby mimicking realistic scenarios where uncertainty varies with the agent’s position and

velocity. In particular, noise σ2(St) is higher for higher velocities (more chaotic dynamics at higher speeds)
and for positions near the bottom of the valley (simulating factors such as different terrain conditions).
Conversely, we define the homoskedastic version of the environment as one where the transition noise remains
constant across all states, i.e., εt ∼ N

(
0, σ2)

. Throughout the experiments in this section, we make use of a
deep ensemble to estimate the dynamics {fθm(st, at)}Mm=1.

The first set of results reported in Figure 2 illustrates the values of different model-based uncertainty
measures that can be used to define the intrinsic rewards rit, in both the homoskedastic and heteroskedastic
versions of Noisy Mountain Car. The measures are: i) mean-squared prediction error, defined as rit =
∥fθ(st, at) − st+1∥2 (Stadie et al., 2015; Pathak et al., 2017); ii) entropy of the predictive distribution, defined
as rit = H[pθ(r, s′|s, a)]; iii) EIG, defined according to Equation 6, as we are specifically making use of a deep
ensemble dynamics model in this context. Each uncertainty measure is computed at every model update, that
is, every tmodel = 64 environment steps, and transitions are gathered under a random policy. As can be seen
from the plots of Figure 2, EIG progressively converges to zero as the number of model updates increase, while
prediction error and entropy plateau at higher values. Moreover, EIG shows very similar progression both in
the homoskedastic and heteroskedastic noise scenarios. This is because EIG, in the form of Jensen-Shannon
Divergence here, is low in regions with high noise but rich in data, since even if the predictive variance in
each ensemble member is high, the overall “disagreement” among the ensemble’s predictive distributions,
{p(r, s′|s, a; θm)}Mm=1, is low. Predictive entropy’s values instead are consistently higher in the heteroskedastic
case relative to the homoskedastic one, since aleatoric and epistemic uncertainties are fused in together in the
measure, resulting in a stronger, but deceiving, exploration signal to the agent, as the relative difference is
driven solely by aleatoric uncertainty. Finally, prediction error curves slightly diverge for approximately the
first 50 model updates, then plateau at similar values. Notice that importantly, even though the prediction
error curves do converge to similar values in this specific example, where we employ deep ensemble, the
process of averaging predictions in the ensemble can mask substantial disagreement among ensemble members

— meaning that even when the ensemble’s mean prediction has low MSE, the underlying epistemic uncertainty
may still be high. Similar reasoning naturally holds also in this case of non-ensemble, and more generally
non-Bayesian, predictive models (e.g., a single neural net).

5.1.1 Planning to explore with PTS-BE

In the second set of results regarding the Noisy Mountain Car environment, we aim to assess the performance
of EIG based intrinsic rewards (i.e., which we refer to as “Bayesian Exploration”, or BE onward, for simplicity)
in conjunction with Predictive Trajectory Sampling, in the form of the algorithm introduced in 1. To this
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Method % States

Random 0.23 ± 0.02
PPO 0.35 ± 0.09

PPO ICM 0.51 ± 0.11
PPO VIME 0.48 ± 0.08

PTS-BE-GP 0.98 ± 0.02
PTS-BE-DK 0.99 ± 0.01
PTS-BE-DE 0.99 ± 0.01

Method Returns

Random 0.11 ± 0.04
PPO 0.24 ± 0.10

PPO ICM 0.43 ± 0.13
PPO VIME 0.30 ± 0.09

PTS-BE-GP 0.98 ± 0.02
PTS-BE-DK 0.99 ± 0.01
PTS-BE-DE 0.99 ± 0.01

Figure 4: Results from the L = 50 states Unichain environment. The first plot reports cumulative fraction of
visited states. The second plot reports cumulative rewards. The tables include fraction of visited states and
cumulative rewards respectively, at episode termination. The models being compared are: a Random policy,
PPO, PPO with ICM intrinsic rewards, PPO with VIME, and three version of the PTS-BE algorithm with
different dynamics model specifications, i.e., GP, Deep Kernels (DK) and Deep Ensembles (DE).

end, we compare two types of algorithms. The first one is a baseline, model-free, PPO agent (Schulman
et al., 2017) that uses intrinsic rewards augmentation and updates the policy retrospectively based on these
augmented rewards in the buffer (we will denote this with the “BE” prefix). In short, at each policy update
we form a dataset DT = {(si, ai, rei , s′

i)}Tt=1 of environment interactions, then replace each reward ret with
rt = ret + ηrit, where rit is the intrinsic bonus for that transition (Entropy or EIG) and η its scaling factor.
Then, we performance the usual PPO update. The second is the PTS-BE algorithm presented in Section
4.2, which instead leverages the learnt dynamics model to do Predictive Trajectory Sampling, and updates a
policy using these sampled trajectories. We also include a random policy agent as an additional baseline
(“Random”). The results of this experiment are reported in Figure 3. Both BE and PTS-BE are run with
different configurations, that is: i) using either predictive entropy H[·] or EIG as intrinsic rewards (hence
the different suffix); ii) under either the homoskedastic or heteroskedastic version of the Noisy Mountain
Car environment. For the PTS-BE specifications, we use an horizon of J = 100 steps ahead and K = 10
independent rollouts. The results demonstrate the natural data efficiency of the PTS-BE method in planning
for deep exploration, while BE methods would necessitate a lot more samples to achieve similar state space
coverage. On the difference between intrinsic reward measures employed, we notice that EIG generally does
better than predictive entropy both in the homoskedastic and heteroskedastic scenarios. Furthermore, we
note that a random policy achieves under 40% state-space coverage in 1.000 steps, under 70% in 5.000 steps,
and about 90% only after 10.000 steps. And in none of these instances does it solve the environment’s
task. By contrast, PTS-BE-EIG solves the task 18/20 times in the heteroskedastic setting and 17/20 in the
homoskedastic one, in fewer than 1.000 steps. PTS-BE-H[·] solves it only 8/20 and 10/20 times, respectively,
within the same budget, demonstrating once again the superiority of EIG as an intrinsic reward signal.
Finally, we also emphasize how PTS-BE-H[·] exhibits higher variance than PTS-BE-EIG, as its error bands
are significantly wider.

5.2 Dynamics Models Comparison

In the second set of experiments we introduce an alternative simple unichain environment, similar to the
ones used by Osband et al. (2016) and Shyam et al. (2019). The aim of this last setup is to compare the
performance of PTS-BE with different dynamics model specifications, in particular with Gaussian Processes
(GPs) (Rasmussen et al., 2006) and Deep Kernels (DKs) (Wilson et al., 2016b). GPs are considered to
be a gold standard for uncertainty quantification in regression problems, as they elicit a full, closed form,
posterior predictive distribution on the output. The downside with GPs is that they notoriously scale poorly
with sample size and input dimensions. In particular, in the context of dynamics MBRL modeling, their
computational cost amounts to O(n2|S × A|) for evaluating the kernel matrix, in addition to the O(n3) and
O(n2) costs incurred for matrix inversion at train and test time, respectively. Additionally, in MBRL, we
typically model |S| + 1 (states and rewards) outputs, which implies that we would need to maintain and
update |S| + 1 different GP models, increasing the cost by a factor proportional to |S| + 1. For these reasons,
deep ensembles are often preferred for their better scalability with input and output dimensions, albeit at the
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Figure 5: Results on the four different configurations of the maze environment, namely: i) an open maze
with no obstacles (“Open”); ii) a U-shaped maze (“U Shape”; iii) a maze featuring two U turns (“Double U
Shape”); iv) a large maze with several obstacles in the middle (“Obstacles”). The plots show the cumulative
probability of reaching the goal at every step t, i.e., p(ret = 1), for each of the four methods compared: SAC,
BE-SAC, PTS-SAC and PTS-BE-SAC.

cost of having an approximate posterior predictive distribution. DKs (Wilson et al., 2016b) instead represent
an alternative, principled way of reducing the input’s computational cost in GPs. They first map inputs to a
lower-dimensional latent space H, fh : S × A → H, where fh is a neural net. Then a GP prior is placed on
the latent space, fs : H → S. The parameters in both fh and fs are optimized end-to-end by minimizing
a single loss. DKs reduce the kernel matrix evaluation costs from O(n2|S × A|) to O(n2|H|), where |H| is
controllable by the user. However, they still bear the cost of maintaining |S| + 1 GP models, one per output,
on the latent space. Finally, we specify that in order to reduce the cost associated with sample size n only,
we employ sparse input variational methods for both GP and DK specifications (Titsias, 2009; Wilson et al.,
2016a). This reduces the kernel evaluation cost from O(n2|S × A|) to O(nm|S × A|), where m is the size of
the chosen sub-sample, and the matrix inversion cost from O(n3) to O(m3) at train time and from O(n2) to
O(m2) at test time for GPs (for DKs, replace |S × A| with |H|).

The unichain environment version we consider is made of L = 50 discrete states and three discrete actions:
{go-left, stay, go-right}. We use a continuous representation of the discrete states as in Osband et al.
(2016) and Shyam et al. (2019). The agent is spawned at the second state s0 = 2. Rewards are sparse, equal
to 0.001 in the first state and to 1.0 in the last state, while they are zero everywhere else. A visual depiction
of the unichain environment is included in the Appendix, Figure 7, together with an additional experiment
on a L = 100 states, noisy unichain environment. Results from the experiment are depicted in Figure 4. The
plots measure the cumulative fraction of visited states and the cumulative rewards respectively, for each
method. The tables instead report the fraction of visited states and the cumulative rewards achieved at
episode termination. The list of methods compared is the following: a random agent (Random); a PPO agent
(PPO); a PPO agent augmented via Intrinsic Curiosity Module (ICM) (Pathak et al., 2017), a popular method
based on prediction error intrinsic rewards (PPO ICM); a PPO agent augmented with VIME intrinsic rewards
(Houthooft et al., 2016), which are based on the IG specification introduced in Equation 2 (PPO VIME);
lastly, we include three versions of the PTS-BE algorithm, using EIG as an intrinsic reward, with different
dynamics model specifications based on GPs (PTS-BE-GP), Deep Kernels (PTS-BE-DK) and Deep Ensemble
(PTS-BE-DE). The results again show superiority of the PTS approaches compared to popular methods such
as ICM and VIME, for settings where deep look-ahead exploration is required to preserve sample efficiency.
In addition, we note that GPs and DKs specification display only marginally better performance, as they
elicit a full posterior predictive distribution, compared to Deep Ensembles. This demonstrate that, even if the
posterior predictive distribution in Deep Ensemble is only approximate and may not have the same coverage
properties of the full one in GPs, it still provides a sufficiently reliable signal for exploration.

5.3 Maze Exploration Environments

The last set of experiments features four types of 2D Gymnasium Robotics maze structures (Fu et al.,
2020) of increasing complexity. The agent’s task in this setting is to explore the environment and collect a
goal object located somewhere in the maze. The environments are characterized by continuous states and
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actions. Rewards are sparse, equal to zero everywhere except from in the goal state, where ret = 1. The four
environments include: i) an open maze with no obstacles (“Open”); ii) a U-shaped maze (“U-Shape”); iii)
a medium size maze with double U-shape (“Double U-Shape”); iv) a larger maze with random obstacles
in the middle (“Obstacles”. The methods we compare here are: Soft Actor-Critc (SAC) (Haarnoja et al.,
2018); SAC with Bayesian Exploration intrinsic reward augmentation (BE-SAC) based on EIG; a version of
PTS planning algorithm without any intrinsic rewards, based only on extrinsic signal, using SAC as solver
(PTS-SAC); lastly, the PTS-BE algorithm using SAC policy (PTS-BE-SAC). For the PTS-BE specification,
we use an horizon of J = 64 and K = 16 independent rollouts. Results are reported in Figure 5. The plots
show the cumulative probability of reaching the goal and solving the maze at every time step t, i.e. p(ret = 1),
for each different maze configuration.

The results demonstrate that, even in the case of continuous control problems, PTS-BE guarantees better
performance and sample efficiency, as it generally achieves the goal in significantly less steps. In particular,
the gap in performance with respect to SAC, BE-SAC and PTS-SAC agents is smaller in the case of the
first “Open” maze, as this is a considerably easier scenario to solve relative to the other configurations,
while it becomes significantly larger in the other three setups where the task gets increasingly harder. The
baseline PTS-SAC was included to further disentangle the contribution of model-based planning versus
that of information gain intrinsic rewards. As expected, PTS-SAC alone does not really push performance
up significantly, which confirms that the substantial gain particularly stems from the synergy between the
information gain intrinsic rewards and the “planning-to-explore” approach, beyond planning alone.

6 Conclusions

In this work, we tackled the challenge of data-efficient exploration in MBRL by studying a principled
information-theoretic approach to intrinsic motivation. Firstly, we derived a class of information-theoretic
exploration bonuses grounded in Bayesian principles, specifically designed to target the epistemic uncertainty
rather than the aleatoric uncertainty stemming from the environment (“Bayesian Exploration”). We then
demonstrated, both theoretically and empirically, that, unlike other existing intrinsic rewards methods, these
information gain bonuses have the desirable properties of naturally signaling epistemic gains and converging to
zero asymptotically. We also discussed tractable equivalent measures that can be efficiently approximated with
less computational effort via a deep ensembles dynamics model (Shyam et al., 2019). Finally, we introduced
a general Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) framework — compatible
with any Bayesian dynamics and reward model — that embeds these bonuses into multi-step planning.
Empirically, PTS-BE outperforms reactive intrinsic-reward and model-free baselines on sparse-reward and
pure-exploration tasks. As a final note, we conclude by stressing that, as with most planning-based MBRL
methods, PTS-BE trades higher computational cost (maintaining a policy, a Bayesian model, and imagined
rollouts) for improved sample efficiency. This trade-off is advantageous when environment interactions are
expensive, while simpler methods may suffice when data is cheap.
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A Proofs of Propositions

In order to prove the convergence properties of IGθ(·) presented in the main body’s propositions, we need to
define a couple of necessary building blocks concepts (Ghosal & Van der Vaart, 2017). For this section, let us
rename the prior distribution as π(θ), or shortly π, and the posterior as π

(
θ|(ξt)n

)
for simplicity, where ξnt is

a sequence of samples n ∈ {1, 2, ...} following likelihood distribution ξn ∼ p(ξn|θ) with θ ∈ Θ and θ ∈ π(θ).
The posterior distribution associated with n-th sample, πn (B | Dn), is obtained via Bayes theorem as

πn (B | ξn) =
∫
B
pn (ξn | θ) dπn(θ)∫

Θ pn (ξn | θ) dπn(θ)
, where B ⊂ Θ,

as we assume that with increasing n, the data ξn provide more information about θ ∈ Θ.

A.1 Proof of Proposition 3.1

We start with the notion of posterior consistency. For simplicity let us redefine θtrue ≡ θ0. Posterior
consistency loosely means that for n → ∞, the posterior π

(
θ|(ξt)n

)
converges weakly to the Dirac measure

δθ0 in Θ, and this depends on the topology of Θ. More formally, let us assume that Θ is a metric space
equipped with metric d(·, ·), then:
Definition A.1 (Posterior Consistency). Given a prior distribution π(θ) ∈ Π, a posterior distribution
π

(
θ|(ξt)n

)
is said to be consistent w.r.t. a true parameter θ0 ∈ (Θ, d) if

π
(
θ ∈ Θ : d(θ, θ0) > ϵ | ξnt

) Pθ0→ 0 as n → ∞ .

One important consequence of posterior consistency that we are going to make use of relates to the consistency
of estimators θ̂n = T (ξn) defined from the posterior, and it is stated as follows:
Proposition A.2 (Estimators Consistency). Assume Θ∗ ⊂ Θ is a subset such that posterior consistency
holds for θ0 ∈ Θ∗. The following facts are true:

i) There exists ∃ θ̂n = T (ξn) an estimator that is consistent for θ0 ∈ Θ∗, i.e., d(θ̂n, θ0)
Pθ0→ 0 when

ξn ∼ p(ξn|θ0)

ii) If Θ is convex and d(·, ·) is a bounded and convex distance function, then θ̂n = T (ξn) can be the posterior
mean θ̂n = T (ξn) =

∫
θdπn(θ|ξn)

iii) If g : Θ → Θ is a function continuous at θ0, then d
(
g(θ̂n), g(θ0)

) Pθ0→ 0.

Convexity of Θ indeed holds for the non-parametric regression problem defined by Yi = θ(Xi) + εi, where
f = θ ∈ Θ = C(X ) and X ∈ X . As for what requirements are needed for posterior consistency, we need
intuitively that prior π(θ) do not exclude θ0 from its support. Define the ‘model’ as the likelihood density
function that generates samples ξnt ∼ p0 ∈ P, where P is a probability measure, and p0 ∈ P being the
true density. Schwartz (1965) derived conditions for posterior consistency based on whether the true data
generating model p0 belongs to the KL support of the prior π. In particular, we define
Definition A.3 (KL-support of p(θ)). By denoting as dKL(p, q) the KL-divergence between distributions p
and q, p0 is said to belong to the KL support of the prior π, written p0 ∈ KL(π), if

∀ϵ > 0, π
(
p : dKL(p0, p) < ϵ

)
> 0 .

Now, define U ⊂ P as a open neighborhood of p0 according to metric d(·, ·), then we intuitively have that the
posterior π(·|ξnt ) is also consistent if and only if for every open neighborhood U of p0, π(U c|ξnt ) → 0 (i.e., if
all neighborhood around p0 collapse to 0). This is formalized as follows (Schwartz, 1965; Ghosal & Van der
Vaart, 2017). Given a neighborhood U ⊂ P, then we can test hypotheses H0 : p = p0 versus H1 : p ∈ U .
Assume these exist a real function φn = φ(ξ1, ..., ξn) : Ξ → [0, 1], representing the probability of rejecting H0,
such that Ep0 [φn] → 0 and supp∈U Ep[1 − φn] → 0 (i.e., probability of rejecting H0 goes to zero if p = p0,
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and conversely probability of rejecting H1 goes to zero when p ̸= p0). The idea of Schwartz (1965) theorem is
that posterior consistency is guaranteed if the prior π assigns mass that is ‘arbitrarily close’ to the true model
p0 ∈ P and as n grows we can more correctly classify H0 vs H1. In addition, define P∞

0 as the joint density
of ξn = (ξ1, ξ2, ...) under data generating model p0. In full form then the weak consistency theorem reads:
Theorem A.4 (Schwartz (1965)). Assume that p0 ∈ KL(π), and that for neighborhoods Un ⊂ P of p0 there
are test functions φn satisfying the following requirements:

Ep0φn ≤ Be−bn, sup
p∈Uc

n

Ep (1 − φn) ≤ Be−bn

for some constants b, B > 0, then π(Un|ξn) P
∞
0→ 0, or equivalently, π(θ|ξnt ) P

∞
0→ δθ0 via corollary result.

Now we revert back to our specific dynamics model case, having true parameters θ0 = (f0, σ
2
0) ∈ (Θ, d).

Assuming the data generating model p0 described by equation (3), and assuming that p0 ∈ KL(π), we have
by Schwartz’s theorem that π(θ|ξnt )

Pθ0→ δθ0 . As stated in Proposition 2.1 this translate into

p
(
θ ∈ Θ : d

(
(f, σ), (f0, σ0)

)
> ϵ | (s, a)n

) Pθ0→ 0 as n → ∞,

in our case. As per Proposition A.2 reported above then we know that we can construct an estimator
g(θ̂n) = T (ξn) from the posterior π(θ|ξn)) that is consistent for the parameter g(θ0) ∈ Θ. Arbitrarily,
we can pick g(θ̂n) to be exactly T (ξn) = IGθ(ξn, st+1). Then, according to Proposition A.2, we have
d
(
IGθ(ξn, st+1), IGθ0(ξn, st+1)

) Pθ0→ 0 or

Pr
(
θ ∈ Θ : d

(
IGθ(ξn, st+1), IGθ0(ξn, st+1)

)
> ϵ

) Pθ0→ 0 as n → ∞ .

However, since at convergence we have π(θ|ξnt ) P
∞
0→ δθ0 , then the equivalence p(θ|ξt) = p(θ|ξt, st+1) holds (i.e.,

new datum st+1 does not convey any additional information on θ ∈ Θ). This implies that IGθ0(ξn, st+1)
)

=

H[δθ0 ] −H[δθ0 ] = 0, thus the convergence result is H[p(θ|ξt)] −H[p(θ|ξt, st+1)]
Pθ0→ H[δθ0 ] −H[δθ0 ] = 0, or

similarly d
(
IGθ(ξn, st+1), 0

) Pθ0→ 0.

A.1.1 Convergence to Optimal Value Function

As a corollary of Proposition 3.1 proved above, we can straightforwardly show that the value function V ∗,augm

defined by the augmented rewards rt = ret + ηir
i
t is such that V ∗,augm P→ V ∗. More formally, we define

V ∗,augm as follows

V ∗,augm
t (s, θ) = max

a∈A

[
re(s, a) + ηir

i(s, a; θ) + γ

∫
S,Θ

p(s′|s, θ, a)V ∗
t−1(s′, θ′)ds′dθ′

]
(7)

while the optimal value function associated with the original MDP’s extrinsic rewards only is simplified to

V ∗
t (s; θ0) = max

a∈A

[
re(s, a) + γ

∫
S
p(s′|s, a; θ0)V ∗

t−1(s′; θ0)ds′
]

Wrapping this up in a corollary statement:
Corollary A.5 (V ∗,augm Convergence). Under the conditions for posterior consistency of Proposition 2.1, it
is easy to see from Eq. (7) that we have V ∗,augm

t (s, θ)
Pθ0→ V ∗

t (s; θ0), as rit = IGθ(·)
Pθ0→ 0 and θ

Pθ0→ θ0.

A.2 Proof of Proposition 3.3

The intuition behind Proposition 3.3 is simply that, following the statement of Proposition 3.1, if we can
prove a contraction rate ϵn holds for posterior convergence π(θ|ξn) → δθ0 , then in light of the proves in the
above section, both d

(
IGθ(ξn, st+1), 0

) Pθ0→ 0 and d(V augm,∗, V ∗)
Pθ0→ 0 happen at the same rate ϵn. To prove

Proposition 3.3, we begin by defining contraction rates for a consistent posterior π(θ|ξnt ), where the true
θ0 ∈ (Θ, d). Notice that posterior consistency always implies a contraction rate ϵn (Ghosal & Van der Vaart,
2017). We define
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Definition A.6 (Contraction Rate). A posterior π(θ|ξnt ) is said to contract to δθ0 at the rate ϵn → 0, if for
every constant ∀M > 0:

π
(
θ ∈ Θ : d(θ, θ0) > Mϵn | ξn

) Pθ0→ 0 when ξn ∼ pn(ξ|θ0) .

A corollary of Proposition A.2 then straightforwardly holds, with respect to posterior estimators θ̂n = T (ξn)
convergence rate, and states:
Corollary A.7 (Estimator Contraction). If posterior π(θ|ξnt ) contracts at rate ϵn (or faster) to θ0 ∈ Θ0 ⊂ Θ,
then there exists an estimator θ̂n = T (ξn) that is consistent for θ ∈ Θ0 and converges at least as fast as ϵn.

Assume now the dynamics model presented in Section 3.2 holds, that is:

St+1 = f(St, At) + εt , where εt ∼ N (0, σ2) , and σ2 ∈ R+

and assume that (f0, σ0) ∈ Cα(X ) × [c, d], where: X = S × A is a compact subset of R; Cα(·) is the class of
continuous functions with finite Hölder norm of order α; and [c, d] ⊂ R+. Notice that we assumed that S,A ⊆
R, so that the target variable st+1 is single-task continuous St+1 ∈ R, but the following would hold also for
multi-task settings, just individually and independently for each task. Finally, assume that f ∼ GP

(
0, C(·, ·)

)
,

a GP prior where C(·, ·) is the isotropic squared exponential kernel, i.e., C(x, y) = exp{−l2∥x− y∥2} with
length parameter l ∈ R+. Then, one can prove that posterior π(f, σ|ξn) contracts at the optimal minimax
rate up to a log constant, that is:
Theorem A.8 (van der Vaart & van Zanten (2008)). Assume (f0, σ0) ∈ Cα(X ) × [c, d], where X is a compact
subset of R, the dynamics model in (3), and f ∼ GP

(
0, C(·, ·)

)
prior where C(·, ·) is the squared exponential

kernel. Then, denoting p = |S × A|:

π
(
{(f, σ) : d

(
(f.σ), (f0, σ0)

)
> ϵn} | ξnt

) P∞
0→ 0 as n → ∞

where ϵn = n− 1
(2+p/α) (logn)t with t = 1 − 1

(2+4α/p) .

Notice that with (logn)t = 1, the above is equal to the minimax rate (best rate of estimation) for functions
in the class Cα(X ) (Yang & Barron, 1999). Since posterior consistency implies the existence of a contraction
rate ϵn, then given that conditions for posterior consistency hold in Proposition 3.1, and given result in
Corollary A.7, we have that IGθ(ξn, st+1) → 0 at the same rate ϵn. Same hold for V ∗,augm

t (s, θ) → V ∗
t (s; θ0),

by extending Corollary A.5. Thus, this implies that under the condition of Theorem A.8 above, we have that
IGθ(ξn, st+1) → 0 and V ∗,augm

t (s, θ) → V ∗
t (s; θ0) at same rate ϵn = n− 1

(2+p/α) (logn)t.

Moreover, Van Der Vaart & Van Zanten (2011) show that the optimal minimax rate ϵn = n− 1
(2+p/α) (Yang &

Barron, 1999) for posterior contraction can be also achieve instead by imposing a further restriction on f0
and assuming the covariance function C(·, ·|·) is a Matérn kernel. Define Hα(X ) as the Sobolev space, then:
Theorem A.9 (Van Der Vaart & Van Zanten (2011)). Given f0 ∈ Cα(X ) ∩Hα(X ) and f ∼ GP

(
0, C(·, ·|·)

)
where C(·, ·|·) is a Matérn kernel on X = [0, 1]p, then the posterior π(f |·) contracts at rate ϵn = n− 1

(2+p/α) .

Thus, under the assumptions specified by Theorem A.9, also IGθ(ξn, st+1) → 0 and V ∗,augm
t (s, θ) → V ∗

t (s; θ0)
happen at the same rate ϵn = n− 1

(2+p/α) .

A.3 Brief Discussion on Active vs Passive Learning Rates

The posterior contraction rates ϵn derived in the results above all pertains to the classical case of ‘passive’
learning (Yang & Barron, 1999). We note that these can be improved under some conditions with an active
sampling strategy (Hanneke et al., 2014; Hanneke & Yang, 2015), which is what the work ultimately advocates
for the realm of data-efficient exploration in MBRL. In Willett et al. (2005), the authors show that the
minimax convergence rates for regression cases where f0 is a piecewise constant function can be strictly
reduced from ϵn = n−1/|X | (passive) to ϵn = n−1/(|X |−1) (active). Castro & Nowak (2008) instead show

21



Under review as submission to TMLR

that for classification problems with similar Hölder smooth decision boundaries the minimax lower bound
convergence rate can be tightly improved from ϵn = nκ/(κ+ρ−1) (passive) to ϵn = nκ/(κ+ρ−2) (active), where
ρ = (|X | − 1)/α and κ is the highest integer such that κ < α. As a final example, results in Wang et al.
(2018) show that if f0 is strongly smooth and convex (e.g., as in Example 2 in their paper), with α = 2, one
can achieve a much better rate of ϵn = n−1/2 compared to the passive minimax, which in that example’s case
is ϵn = n−2/4+|X |.

B Information Gain Derivations

In this second appendix section we include the full derivations of the Expected Information Gain (EIG)
measures (Lindley, 1956; Bernardo, 1979; Rainforth et al., 2024) and the version of EIG under a Gaussian
dynamics model and under a deep ensemble dynamics model. We assume the setup is the one described in
the MDP definition in the main paper. The Information Gain (IG) of the full transition t → t+ 1 composed
by (st, at, st+1) is defined as

IGθ(st, at, st+1) = H[p(θ|st, at)] −H[p(θ|st, at, st+1)] = (8)
= Ep(θ|st,at,st+1)[log p(θ|st, at, st+1)] − Ep(θ|st,at)[log p(θ|st, at)] ,

where p(θ|st+1, st, at) ∝ p(θ)p(st+1|θ, st, at), and where H[p(x)] = E[− log p(x)] is the Shannon entropy
(Shannon, 1948) and θ ∈ Θ the set of dynamics parameters. As stated in main paper, the issue associated with
computing IGθ(st, at, st+1) is that it can be done only in a reactive setting where st+1 is actually revealed to
the agent. Thus in an active setting, we have to resort to an expected value surrogate version of it, EIGθ(·).

B.1 Expected Information Gain

As st+1 is not revealed to the agent at time t, we can use EIGθ(st, at) = Epθ(st+1|st,at)
[
IGθ(st, at, st+1)

]
,

which essentially marginalizes over possible next st+1 ∈ S, defined in full form as:

EIGθ(st, at) = Ep(st+1|st,at)
[
IGθ(st, at, st+1)

]
=

= Ep(st+1|st,at)
[
Ep(θ|st,at,st+1)[log p(θ|st, at, st+1)] − Ep(θ|st,at)[log p(θ|st, at)]

]
. (9)

Now we note that we can re-write p(st+1|st, at) =
∫
p(st+1|st, at, θ)p(θ|st, at) dθ by marginalization, and that

following Bayes theorem:

p(θ|st, at) = p(st+1|st, at, θ)p(st, at, θ)∫
Θ p(st+1|st, at, θ)p(st, at, θ) dθ

=

= p(st+1|st, at, θ)p(st, at|θ)p(θ)∫
Θ p(st+1|st, at, θ)p(st, at|θ)p(θ) dθ

.

Using these two facts and applying them to (9) we get:

Ep(st+1|st,at)
[
Ep(θ|st,at,st+1)[log p(θ|st, at, st+1)] − Ep(θ|st,at)[log p(θ|st, at)]

]
=

= Ep(θ)p(st+1|θ,st,at)

log

p(st+1|st,at,θ)p(st,at|θ)p(θ)∫
Θ
p(st+1|st,at,θ)p(st,at|θ)p(θ) dθ

p(st,at|θ)p(θ)
p(st,at)

 =

= Ep(θ)p(st+1|θ,st,at)

log
p(st+1|st,at,θ)p(st,at|θ)p(θ)

p(st+1|st,at)p(st,at)
p(st,at|θ)p(θ)
p(st,at)

 =

= Ep(θ)p(st+1|st,at,θ)
[

log p(st+1|st, at, θ) − log p(st+1|st, at)
]

=
= H

[
p(st+1|st, at)

]
− Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
=

= Ep(θ|st,at)[DKL(p(st+1|st, at; θ)∥p(st+1|st, at))] ,

22



Under review as submission to TMLR

by canceling terms out and re-ordering. Thus, we have now obtained an equivalent specification of EIGθ(st, at)
that can be computed using only the posterior predictive distribution pθ(st+1|st, at), which marginalizes
over parameters θ ∈ Θ according to their posterior, i.e., pθ(st+1|st, at) =

∫
Θ pθ(st+1|st, at, θ)p(θ|st, at) dθ.

EIGθ(st, at) in this form can be interpreted as follows: it represents the expected reduction in the predictive
uncertainty over the next state st+1 obtained from observing a different set of parameters θ.

B.2 EIG under Gaussian dynamics

If the predictive posterior distribution is a (multivariate) Gaussian, such as in the case of Gaussian Processes
and Deep Kernels, we can simplify EIGθ(st, at) calculations even more. This is because if p(x) ≜ N (µ,Σ),
the entropy H[p(x)] can be simplified (Cover, 1999) as:

H[p(x)] = −
∫ ∞

−∞
N (µ,Σ) log N (µ,Σ) dx =

= D

2 log 2π + 1
2 log det(Σ) + 1

2E
[
(x − µ)⊤Σ−1(x − µ)

]
=

= D

2 log 2π + 1
2 log det(Σ) + 1

2D =

= 1
2 log det(Σ) + D

2 (1 + log 2π) ,

where D is the dimensionality of the multivariate normal, that in our case corresponds to D = |S|, and where
the term E

[
(x − µ)⊤Σ−1(x − µ)

]
is simplified as follows:

E
[
(x − µ)⊤Σ−1(x − µ)

]
= E

[
tr((x − µ)⊤Σ−1(x − µ))

]
=

= E
[
tr(Σ−1(x − µ)(x − µ)⊤)

]
=

= tr(E
[
Σ−1(x − µ)⊤(x − µ)

]
) =

= tr(Σ−1Σ) =
= tr(ID) =
= D

Taking this simplification into account, we can in turn reduce EIGθ(st, at) calculations to the following:

Ep(θ)p(st+1|st,at,θ)
[
H[p(st+1|st, at)] −H[p(st+1|st, at, θ)]

]
=

= Ep(θ)p(st+1|st,at,θ)

[
1
2 log det(V[p(st+1|st, at)]) − 1

2 log det(V[p(st+1|st, at, θ)])
]

=

= 1
2

(
log det(V[p(st+1|st, at)]) − Ep(θ)

[
log det(V[p(st+1|st, at, θ)])

])
,

where V[p(·)] denotes the variance of distribution p(·).

B.3 EIG as Disagreement of a Gaussian Mixture

In settings where the dynamics model being employed does not yield a full, Gaussian posterior predictive
distribution such as in the case of GPs and DKs, then closed-forms EIG as described above cannot really be
computed. This is, for example, the case where deep ensembles are utilized as a model for the dynamics.
However, we can show that EIG in this setting can be computed as the Jensen Shannon-Divergence among a
Gaussian mixture consisting of all the M probabilistic neural network predictive distributions in an ensemble,
i.e., {p(r, s′|s, a; θm)}Mm=1. This is derived as follows. First consider that:

EIGθ(st, at) = Ep(θ|st,at)p(st+1|st,at;θ)
[

log p(st+1|st, at; θ) − log p(st+1|st, at)
]

=

= Ep(θ|st,at)p(st+1|st,at;θ)
[

log p(st+1|st, at; θ) − log
∫

Θ
p(st+1|st, at; θ) dθ

]
=

= H
[
Ep(θ|st,at)[p(st+1|st, at; θ)]

]
− Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
,
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where the term Ep(θ|st,at)[p(st+1|st, at; θ)] is the expected predictive distribution over next states, which
equals the marginal p(st+1|st, at) in the previous section’s specification. Thus, Ep(θ|st,at)[p(st+1|st, at; θ)] =
H[p(st+1|st, at)]. The other term Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
is the expected entropy of the predictive

distribution for specific θ values. Now, note that the JSD for a set of M distributions with discrete weights
πm is defined as:

JSDπ1,...,πM
(p1, ..., pM ) = H

[
M∑
m=1

πmpm

]
−

M∑
m=1

πmH[pm] .

In our context, we can view the probability p(θ|st, at) as continuous weights, so that we obtain:

EIGθ(st, at) = H
[
Ep(θ|st,at)[p(st+1|st, at; θ)]

]
− Ep(θ|st,at)

[
H[p(st+1|st, at; θ)]

]
=

= JSDθ

(
p(st+1|st, at; θ) | θ ∼ p(θ|st, at)

)
.

C Additional Information on the PTS-BE algorithm

This section includes some additional information regarding the components featuring in the PTS-BE
algorithm that we introduce in the main paper. In particular, we describe the specifications of all the different
dynamics model that we tried in synergy with the proposed PTS-BE algorithm, namely Exact and Sparse
Input versions of both Gaussian Processes and Deep Kernels, and then Deep Ensembles.

C.1 Models for the Environment Dynamics

The principal component in both a “BE” type of algorithm, that employ retrospective intrinsic reward
augmentation, and a PTS-BE one, that is based on the planning-to-explore principle instead, is a Bayesian
model of the environment dynamics. This is because only Bayesian, uncertainty aware models allow for the
incorporation of information gain measures. We review specifications of three classes of regression models:
(Stochastic Variational) Gaussian Processes (Quinonero-Candela & Rasmussen, 2005; Rasmussen et al., 2006;
Hensman et al., 2013), Deep Kernels (Wilson et al., 2016b;a) and deep ensembles (Lakshminarayanan et al.,
2017; Rahaman et al., 2021). We briefly discuss their specific implications in terms of posterior coverage
uncertainty properties.

C.1.1 Gaussian Processes

Gaussian Process (GP) Regression models place a prior on the functional form of f(·) ∼ GP
(
m(·), k(·, ·)

)
,

such that p(f) ≜ N (f |m(·), k(·, ·)
)
, where m(·) is a mean function (e.g., constant, linear, etc.) and k(·, ·)

a kernel function (e.g., linear, squared-exponential, matérn, etc.). Prior knowledge about f ∈ F can be
efficiently conveyed through the choice of m(·) and especially k(·, ·) (e.g., domain knowledge about the physics
of the environment), which governs main features of the function approximator f̂(·) such as smoothness and
sparsity. This feature makes it appealing in many applications where knowledge about the environment can
be incorporated a priori. The joint density of (y, f) and the marginal likelihood, which is used for training, in
a GP take the following form

p(y, f |X) = p(y|f , σ2)p
(
f |X;m(·), k(·, ·)

)
and p(y|X) =

∫
F
p(y|f , σ2)p(f |X) df ,

where all the quantities of interest can be computed analytically as the distributions are Gaussian. From
this point of view, GPs have the advantage of being complementary to the simplified version of EIGθ(st, at)
derived above, as their predictive posterior distribution on st+1 is in fact Gaussian as well. Besides GPs
are well-known for their excellent uncertainty quantification properties. Their main drawback lies in their
poor scalability, which is why we consider a Stochastic Variational approach where we learn a sub-sample of
inducing points u = {ui}mi=1 (Hensman et al., 2013). We also considered using multitask/multioutput kernel
learning (Alvarez et al., 2012) but did not notice any significant improvements, while training costs were
higher for the higher number of parameters involved in the multi-task kernels.

Throughout the experiments presented in the work, we utilize a GP with constant prior mean function,
m(·) = 0 and with base squared exponential kernel k(x, y) = Cff (x, y) = exp{−l2∥x− y∥2}.
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Figure 6: Comparison of uncertainty quantification models on a simple one dimensional regression example.
The sample size of generated data points is n = 100. The models considered are, starting from the top left
corner towards the bottom right corner: i) Exact GP, trained on the whole sample; ii) Exact DKL, trained on
the whole sample; iii) Stochastic Variational GP, trained on the ELBO loss over a subset of 20 data points; iv)
SV DKL, trained the same way as SVGP; v) SV DKL coupled with dropout fully-connected ResNet structure
and Bi-Lipschitz constraints to avoid feature collapse; vi) Deep ensembles made of 5 neural networks models.

C.1.2 Deep Kernels

Deep kernels (Wilson et al., 2016b;a) are a generalization of GPs where inputs (st, at), or just st, are
first mapped to a (potentially lower dimensional) latent representation space ht, fh : S × A → H or
fh : S → H, through a deep learning architecture. Then, the function to predict the next state, fs : H → S
or fs : H × A → S, can be assigned any GP prior (e.g., SVGP). The advantage of using deep kernels lies in
the fact that they are better suited for dealing with high-dimensional state-action spaces thanks to their deep
architecture, while they retain good function approximation and uncertainty quantification properties of GPs.
On this matter, we specifically employ a version of deep kernels that uses a fully-connected ResNet neural
net architecture (with dropout) for fh(·) and incorporates a bi-Lipschitz constraint on the transformations in
fh(·) (van Amersfoort et al., 2021), in order to avoid the tendency of neural nets of exhibiting feature collapse
(Guo et al., 2017). Note that the last GP layer in a deep kernel model scales by construction at a O(m3|H|3)
training and O(m2|H|2) test cost, where |H| is directly controllable. Lastly, notice that a (SV) deep kernel
still allow one to use the simplified version of EIGθ(st, at) on the latent space H, i.e., EIGθ(ht), as p(st+1|ht)
is modelled as a Gaussian, as any component coming after the neural network block that models p(st+1|ht)
behaves exactly as a Gaussian Process.
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Figure 7: Example of unichain environment made of L = 7 states. Arrows represent the possible actions in
each state, state one is shaded to indicate that the agent is spawned there as s0 = 1.

We have also considered implementing the MC dropout (Gal & Ghahramani, 2016) technique and apply it
to the deep neural network layers of deep kernels in order to get better generalization properties, but did
not notice any further improvement. MC Dropout consists in re-sampling a pre-trained neural network with
dropout layers K times, at test time, such that each prediction {(y|X)}Ki=1 represents a sample from the
predictive distribution q(· | ·), with different weights ω = {W}Li=1 and biases b = {b}Li=1:

q(y∗ | x∗) =
∫
p(y∗ | x∗,W,b) p(W,b) dWdb.

MC Dropout approximates sampling from the Bayesian posterior predictive distribution, marginalizing out
W,b. Perhaps the fact that MC dropout does not improve uncertainty quantification has to do with the fact
that using a sub-sample of input points through the SV inducing points procedure already prevents the deep
kernels model from being over-confident and collapsing to the mean (Rahaman et al., 2021), resulting into
better generalization properties than standard deep kernels. However, we leave this topic to be investigated
as part of future research.

Throughout the experiments, we consider a deep kernel model where the neural network architecture consists
of two hidden layers of [32, 32] units, and a GP with constant mean and squared exponential kernel.

C.1.3 Deep Ensembles

Deep ensembles (Lakshminarayanan et al., 2017) are arguably the most popular standard tool for uncertainty
quantification in neural networks, thanks to their very good generalization properties compared to other
sampling techniques such as MC dropout. The main difference with MC dropout is that deep ensembles
requires to separately train (so they operate at train time) a pool of different neural network independently
on the same data. Deep ensembles have been shown to have good out of sample uncertainty coverage (Wilson
& Izmailov, 2020) in some examples, although they rarely match that of Gaussian Processes.

Some of the models, and their variations, considered for the environment dynamics are compared in the one
dimensional regression example depicted in Figure 6. We use this simple example to depict each candidate
model’s generalization and uncertainty quantification properties. Description of each model is enclosed in
the figure’s caption. We can see how the best models emerging from this small scale study are the Exact
GP, SVGP and SVDKL. In particular, SV DKL trains over 15 times faster than Exact DKL, and we notice
that reducing the training sample to the 20 inducing points result in better uncertainty coverage in SV DKL
versus Exact DKL.

Throughout the experiments in this work, we consider a deep ensemble of 5/7/10 neural networks, as we did
not notice any appreciable improvement for ensembles larger than 10.

C.1.4 Policy Specifications in PTS-BE

In the PTS-BE algorithm, a policy πψ(st) parametrized by ψ ∈ Ψ is update by using the model generated
trajectories instead of the sampled ones to allow for planning and looking ahead. The policy πψ(st) is typically
parametrized by a neural network, and trained via gradient ascent, according to the policy gradient approach
(Kakade, 2001). In the discrete action settings above, we typically make use of Proximal Policy Optimization
(PPO) algorithms (Schulman et al., 2017). The standard PPO loss reads:

LPPO
t (ψ) = E

[
LClip
t (ψ) − c1LValue

t (ψ) + c2H[πψ(st)]
]
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Figure 8: Results on the L = 100 states unichain environment exploration task. The plots show the median
cumulative fraction of states visited (solid line) together with the 75th and 25th error bands, computed over
20 replications. The table instead reports the average fraction of states visited at termination (i.e., after 400
steps), together with the 95% confidence intervals.

where LClip
t is the clipped surrogate objective, LValue

t is a squared loss on the value function V (·) and H[πψ(st)]
is a policy entropy term used to ensure sufficient exploration (for more details see Schulman et al. (2017)).

In the continuous action settings, we instead use Soft Actor-Critic (SAC) (Haarnoja et al., 2018). SAC
updates the policy parameters by breaking down the policy improvement into separate Actor and Critic
updates, according to the modified objective:

J(π) = Eτ∼π

[ ∑
t

γt(r(st, at) + αH(π(·|st)))
]
,

where the entropy term (H(π(·|st))) encourages exploration by keeping the policy as random as possible. The
actor and critic networks, and the “temperature”, are trained to minimize the following losses:

L(ψactor) = E[α ∗ log(πψ(a|s)) −Qψcritic
(s, a)] , (10)

L(ψcritic) = E
[(
Qψcritic

(s, a) −
(
r + γ(Qtarget(s′, a′) − α log π(a′|s′))

))2]
, (11)

L(α) = E[−α log(πψactor
(a|s)) − αHtarget] , (12)

where the temperature parameter α is updated to achieve a target entropy Htarget.

D Additional Experiments

D.1 The Unichain Environment

In this last supplementary material section we include a brief description of the Unichain enviroment, plus
additional results on it where we consider a longer chain of L = 100 states, without noise this time.

As outlined in the main paper, the unichain environment consists in a simple sequence of L Markov sequentially
connected states, where the goal is usually to explore all the possible states and reach the final one (Puterman,
2014; Osband et al., 2016). We consider a discrete action space defined as A = {go left, stay, go right}. If the
agent is in the first or last state and tries to go left or right, it automatically hit a wall and remains in that
state. The agent is initially spawned in the second state s0 = 1 (state counter starting from 0). The reward
function re : S × A → R is sparse and assigns 0.001 to visiting the first state, 1 to visiting the last state, and
0 otherwise, i.e.:

re(st, at) =


0.001 if st = 0
1 if st = L

0 otherwise .
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Figure 9: Visual 3D renditions of three types of mazes that can be obtained from the 2D Maze environments
via customization of the maze structure: i) a u-shaped maze such as the one employed in the experiments
above; ii) a medium sized maze with ledges and obstacles in the middle, again similar to the one emplyed in
the experiment; iii) a larger maze with just ledges on the sides. The red ball denotes the goal object.

The sub-optimal reward associated with state 0 represents a ‘reward trap’ for algorithms based solely on
extrinsic reward exploitation, as it acts as disincentive for the agent to move elsewhere and explore. Thus,
strong exploration bonus is needed to move it away from there. A simple visual representation of a L = 7
state unichain environment, together with the possible actions is depicted in Figure 7. The shaded state
s0 = 1 represents the spawning location.

D.2 Additional Experiments on the 100 States Unichain Environment

In this subsection, we present the additional results on the L = 100 unichain environment, but without
added noise this time. The task is again purely exploratory, and the methods compared are a subset of
those compared in the main paper: i) PPO policy entropy H(πψ(st)) regularizer (Schulman et al., 2017)
(pi-Entropy); ii) PPO with ℓ2 prediction error as reactive intrinsic reward (Stadie et al., 2015; Pathak et al.,
2017) (ℓ2 Error); iii) PPO with VIME, i.e., IGθ(·) as a reactive intrinsic reward coupled with Bayesian
Neural Network dynamics (Houthooft et al., 2016) (VIME); iv) PTS-BE with Deep Ensembles (Shyam et al.,
2019); v) PTS-BE with SVGP (PTS-BE-GP); vi) PTS-BE with Deep Kernels (PTS-BE-DK).

We measure performance of the methods again via the cumulative fraction of visited states at each time step
t, and the final fraction of coverage at episodic termination, which we set to be after 400 steps in this case, as
the Markov chain of states is longer. PTS methods are left running for 10 steps initially in order to gather
enough data to estimate pθ(st+1|st, at). Results over 20 seeded replication of the experiment are reported in
Figure 8’s plots and table. Similarly to the unichain L = 50 states environment results presented in the main
paper, PTS methods consistently outperform the rest, as they require approximately 150 steps only to reach
complete coverage of the environment and solve the task.

D.3 Additional Details on the Medium Sized Maze

Finally, we report here a few extra information on the Maze environments. These are continuous control
environments with (S ⊆ R4,A ⊆ R2). The reward function is sparse, as the agents receive ret = 1 only when
they reach the objective, otherwise they receive ret = 0. The environments are 2D, and their state space S
features x and y coordinates of the agent and x and y coordinates linear velocity of the agent. The continuous
action space A instead include coordinate’s linear force applicable to the x and y directions.

These environment are highly customizable in terms of their shape and size. We experiment with different
shapes and sizes of increasing difficulty. Figure 9 above reports a visual 3D rendition of some possible maze
configuration achieved by customizing the map structure.
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