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Abstract

In the era of large language models, apply-001
ing techniques such as Retrieval Augmented002
Generation can better address Open-Domain003
Question-Answering problems. Due to con-004
straints including model sizes and comput-005
ing resources, the length of context is of-006
ten limited, and it becomes challenging to007
empower the model to cover overlong con-008
texts while answering questions from open009
domains. This paper proposes a general and010
convenient method to cover longer contexts in011
Open-Domain Question-Answering tasks. It012
leverages a small encoder and cross-attention013
mechanism and effectively encodes contexts.014
With our method, the original language models015
can cover several times longer contexts while016
keeping the computing requirements close to017
the baseline. Our experiments demonstrate018
that after fine-tuning, there is improved perfor-019
mance across two held-in datasets, four held-020
out datasets, and also in two In Context Learn-021
ing settings. Our code will be released at url.022

1 Introduction023

Transformer-based (Vaswani et al., 2017) architec-024

tures with pre-training on large corpus have become025

popular in recent Natural Language Processing re-026

search (Brown et al., 2020; Workshop et al., 2022;027

Chowdhery et al., 2023). An increasing number of028

Natural Language Processing (NLP) tasks need029

to process long contexts such as Open-Domain030

Question Answering (ODQA) with Retrieval Aug-031

mented Generation (RAG) (Lewis et al., 2020; Izac-032

ard and Grave, 2020; Gu et al., 2018). However,033

the fine-tuning and inference stages in downstream034

tasks are still constrained by the input length, e.g.,035

2048 tokens for Bloomz (Muennighoff et al., 2022)036

and Llama-1 (Touvron et al., 2023).037

With RAG, the input can easily surpass the max-038

imum length the model can handle and it becomes039

challenging for the model to perform both fine-040

tuning and inference on overlong contexts. More-041
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Figure 1: A comparison of our method (lower) and re-
trieval augmented ODQA without vectorization (upper).
In the upper part, limited retrieved contexts are pro-
cessed by the task model to finish the task. The lower
part illustrates our method in which an encoder is incor-
porated to encode overlong retrieved contexts.

over, in the in-context learning (ICL) (Dong et al., 042

2022; Kim et al., 2022) setting, the context will be 043

much longer together with retrieved contexts. In 044

such cases, the demand for the model to handle 045

longer input text significantly increases. 046

To enable the model to cover longer context dur- 047

ing both fine-tuning and inference stages, this paper 048

proposes a method that leverages a 100 million- 049

level encoder model in downstream ODQA tasks 050

with a 1 billion-level language model as illustrated 051

in the lower part of Fig. 1. With our method, the 052

length of context that the model can cover increases 053

from 2k (in text form) to a maximum of 10k (in 054

dense form, which is condensed by the encoder). 055

Experiments are designed under three settings to 056

validate the effectiveness of our method. In the 057

experiments, we first fine-tune the model, option- 058

ally including the encoder, on two popular ODQA 059

datasets with retrieved contexts and evaluate our 060

method in held-in, held-out, and ICL settings. Ex- 061
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Figure 2: Speed illustration. Run time is measured on
a single A100 GPU and the batch size is set to 1
for all curves. "2k" on the horizontal axis represents
the baseline model’s run time to train or infer on data
of length 2k. "5k" and "10k" correspond to two vari-
ants of our method that can cover at most 5k and 10k
tokens when training and inferring. Training time mea-
sures the average over five consecutive training steps.
Inference time measures the average over five consecu-
tive generation steps. Specifically, we measure the exe-
cution duration of functions Trainer.training_step
and model.generate based onhuggingface.

perimental results show that our method outper-062

forms the baseline, which is fine-tuned on data of063

length 2k, in all three settings.064

Regarding the speed of our method, we mea-065

sure the run time of each training and inference066

step. Compared with work that compresses the067

contexts with the original task model (Chevalier068

et al., 2023), which requires techniques to reduce069

the computation graph during backpropagation, we070

employ a 10x smaller model to perform the en-071

coding of excessive texts, so a complete gradient072

descent procedure can be kept. To sum up, our073

contributions are as follows:074

1. We propose a method that incorporates a small075

encoder model for excessively long context en-076

coding by applying cross-attention mechanism077

with the original task model.078

2. We evaluate our method in two held-in, four079

held-out, and two ICL settings after being fine-080

tuned on two ODQA datasets and obtain im-081

proved performance.082

3. The computing resource requirements of our083

method are consistent with those of the baseline084

and the run time remains competitive.085

2 Method086

2.1 Backgrourd087

Consider an example query q with gold answer a
and independent C pieces of corresponding con-

Cross-attn

MLP

Self-attn

MLP
×	𝑁

Encoder

key  value

Text form 
𝒙(𝒒, 𝒌𝒎𝒂𝒙, 𝑷)

Projector

Embeddings

query

⋯

Additional
Context
𝒌𝒂𝒅𝒅	

Figure 3: Method illustration of model architecture
(purple blocks) and data flows (along black/purple ar-
rows). The purple dashed arrows mean that the output
of MLP module will be the "query" to the next layer of
Cross-attn module. ×N means that the modules with
dotted backgrounds are repeated with multiple layers in
the task model.

text information k = {k1,k2, ...,kC}, with each
being a sequence of tokens, where k is retrieved by
some retriever from a given corpus1

k = Retriever(q, corpus)

Ideally, the C retrieved contexts contain the knowl-
edge needed to answer q correctly, but there may
also be noise. Given a decoder model Dec pa-
rameterized by θ, the output sequence y is usually
modeled by

Pθ(y|q,kmax,P ) = Dec(y|q,kmax,P )

where kmax = {k1,k2, ...,km} ∈ k,m < C. 088

m refers to the number of contexts that reach the 089

model’s throughput. P stands for the prompts 090

that connect related content2. Given the model, 091

kmax is usually a subset of k because the maxi- 092

mum length of contexts is often constrained by the 093

model’s throughput or computing resources, and 094

1Refer to Sec. 3.1 for detailed definition of corpus and
retriever in our experiments.

2The forms of P vary with different settings, and there
will be detailed definitions in Sec. 3.1.
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During training, we aim to maximize the term095

Pθ(a|q,kmax,P ), and formalize the ODQA prob-096

lem as a language modeling task. Specifically,097

for a query q, its gold answer a and contexts098

kmax, they are connected linguistically with099

proper prompts P , together denoted as an input100

sequence x(q,a,kmax,P ) = {x1, x2, ...}. Then101

we aim to minimize the language modeling loss102

over the set D of all training examples:103

Lθ(D) = −
∑

x(q,a,kmax,P )∈D

∑
i

log(Pθ(xi|x<i))

(1)104

2.2 Encoding and Cross-Attention105

We propose a method that can utilize additional106

contexts kadd = {km+1,km+2, ...} several107

times longer than kmax. First, we introduce an108

encoder parameterized by ϕ. Then we apply cross-109

attention with the original task model and introduce110

a projector, a cross-attention module and a Multi-111

Layer Perceptron (MLP) in each layer, together de-112

noted the parameters as π. Denote ω = {ϕ, π, θ}113

as all the parameters in our model. On the whole,114

our method models the output y by an encoder-115

decoder model Enc-Dec116

Qω(y|q,kmax,P ,kadd)117

= Enc-Dec(y|q,kmax,P ,kadd)118

During training, inputs x(q,a,kmax,P ) are em-119

bedded by the origin task model’s embedding layer120

Emb121

hq = Emb(x(q,a,kmax,P ))122

and each of the additional contexts ki in kadd is123

encoded by the encoder Enc124

h
(i)
add = Enc(ki)125

Note that the length of encoding from the encoder126

is flexible practically and we compress each ki127

into one vector. Following the output of the en-128

coder, a projector Proj is used to align the high-129

dimensional hidden spaces between the encoder130

and task model in each layer131

hkv = Proj(hadd)132

where hadd is concatenated of all h(i)
add calculated133

from last step. Each layer of the task model is134

assigned to an independent projector as different 135

layers may learn different representations. 136

In each layer, to incorporate the information 137

stored in kadd we add a cross-attention module, 138

where representations of additional contexts hkv 139

serve as "key" and "value", followed by an MLP. In 140

the first layer, the embeddings of original input hq 141

act as "query", and in the rest of the layers output 142

h
′
q from the previous layer act as "query" (h

′
q will 143

be defined later). 144

hc = Cross-attn(hq/h
′
q,hkv) 145

hm = MLP (hc) 146

Cross-attn(hq,hkv) is calculated as follows 147

Q = WQhq 148

K,V = WKhkv,W
V hkv 149

o = softmax(
QKT

√
dk

)V 150

hc = WOo 151

where WQ,WK ,W V ,WO refer to weight matri- 152

ces and dk refers to the dimension of each attention 153

head. Then the output of cross-attention and MLP 154

is normally processed by a self-attention and an- 155

other MLP module. The output acts as "query" in- 156

put to the cross-attention module in the next layer. 157

h
′
q = MLP (Self -attn(hm)) 158

At last, the output of the last layer is expanded to
the vocabulary-size dimension to predict the next
token (not shown in Fig. 3 for simplicity), and we
aim to maximize the probability

Qω(a|q,kmax,P ,kadd)

Consistent with the setup mentioned before, to 159

maximize term Qω(a|q,kmax,P ,kadd), we turn 160

it into minimizing the language modeling loss 161

Jω(D) = −
∑

x(q,a,kmax,P ),kadd∈D

∑
i

log(Qω(xi|x<i,kadd))

(2)

162

2.3 ICL Setting 163

Our method can also be applied to ICL settings. 164

Based on the aforementioned setup, we denoted 165

ICL samples as lmax = {l1, l2, ..., lm}, with each 166
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li composed of another pair of query and answer.167

We optimize objective 3 below on data where each168

li(q
′
,a

′
) refers to only query-answer ICL samples169

(without context) and q
′
a

′
refer to another query-170

answer pair:171

J
′
ω(D) = −

∑
s(q,a,lmax,P ),kadd∈D

∑
i

log(Q
′
ω(si|s<i,kadd))

(3)

172

s = {s1, s2, ...} refers to the inputs composed of173

(q,a, lmax,P ) and Q
′

shares a similar definition174

to Q in objective 2. Additional contexts kadd are175

utilized in the same way as in Sec. 2.2 by perform-176

ing encoding, cross-attention, etc.177

2.4 Training178

Theoretically, training processes stated in Sec. 2.2179

all remain differentiable and thus all the parame-180

ters can be optimized via normal gradient descent181

w.r.t. objective 2. Note that the parameters ϕ182

of the encoder can be initialized from a well-pre-183

trained model on a large scale corpus and the pre-184

trained parameters possess good performance in185

many downstream tasks based on text encoding.186

However, the parameters in the projector module187

are randomly initialized. Thus at the start of the188

training, according to the chain rule, the gradients189

to the whole encoder will be random as well, which190

poses a risk of breaking the encoding utility of the191

encoder. This intuition proves to be true in our192

experiments.193

Therefore, we design two strategies of training:194

1. Directly freeze parameters ϕ and make param-195

eters (π, θ) trainable during the whole training196

process.197

2. In the first few training steps (e.g., one epoch),198

ϕ is kept frozen to prevent random gradients199

from breaking its well-pre-trained parameters.200

After that, ϕ is optimized w.r.t. objective 2201

together with the other modules (π, θ).202

3 Experiment203

3.1 Experiment settings204

Data To evaluate our method, we first fine-tune205

our model on two ODQA datasets separately, Triv-206

iaQA (Joshi et al., 2017) and Natural Questions207

Settings Data format

Held-in
Held-out

Answer the question:
Knowledge: {context k1 }
...{context km}.
Q: Who got the first nobel prize in physics
A:

ICL format
w/ contexts

Answer the following questions based
on the Knowledge:
Knowledge: {context k

′
1}

Q: Who developed the first printing press
in 1430s
A: Johannes Gutenberg
...(Knowledge: ... Q: ... A: ...)
Knowledge: {context k

′′
1}

Q: Who got the first nobel prize in physics
A:

ICL format
w/o contexts

(Sec. 2.3)

Answer the following questions:
Q: Who developed the first printing press
in 1430s
A: Johannes Gutenberg
(Q: ... A: ...)...
Q: Who got the first nobel prize in physics
A:

Additional
Contexts

{context km+1};
{context km+2};
...

Table 1: Examples of data format. Gray tokens refer
to prompts P mentioned in Sec. 2 and the context is
omitted here.

(NQ) (Kwiatkowski et al., 2019). Besides evaluat- 208

ing our method on the held-in data, we also evalu- 209

ate four held-out data, namely CommonsenseQA 210

(Talmor et al., 2019), SQuAD2.0 (Rajpurkar et al., 211

2016), Webquestions (Berant et al., 2013) and 212

ComplexWebQuestions (Talmor and Berant, 2018). 213

Specifically, samples in CommonsenseQA dataset 214

are formulated as multi-choice problems, and we 215

evaluate the performance in both multi-choice and 216

sequence-to-sequence formats. Refer to App. A.1 217

for the detailed format. 218

Format of input x in Sec. 2.2 is formulated as 219

"Held-in Held-out" format in Table 1, and we eval- 220

uate the model’s performance on samples of ICL 221

format with context. Format of input s in Sec. 2.3 222

is formulated as "ICL format w/o contexts" in Ta- 223

ble 1. 224

Additional contexts km+1,km+2 are encoded 225

by the encoder separately and independently with- 226

out prompts. The forms of prompts P defined 227

previously are shown in gray tokens in Table 1. 228
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Retriever For contexts of the datasets TriviaQA229

and NQ, we utilize those collected by Karpukhin230

et al. (2020), which are collected with BM25231

(Robertson et al., 2009) and Dense Passage Re-232

trieval techniques. For contexts of the four held-233

out datasets, we follow Izacard et al. (2022) and234

Shi et al. (2023) and use Contriver (Izacard et al.,235

2021) as our retriever. Contexts k are retrieved236

from Wikipedia dump dated December 20, 2018,237

the version released by Karpukhin et al. (2020).238

Baseline Recent decoder-only models like239

Bloomz (Muennighoff et al., 2022) and GPTs240

(Radford et al., 2019; Achiam et al., 2023) have241

shown good performance in generation-like tasks,242

and we use Bloomz-1b73 for the task model θ.243

When fine-tuning the baseline model, inputs are244

constructed according to the "Held-in Held-out"245

setting as stated in Table 1. The length of the input246

is extended to utilize as many contexts as possible,247

consistent with the maximum input length (2k)248

of the model while doing pre-training (Workshop249

et al., 2022).250

Additionally, note that the context information251

kmax provided in the inputs is ranked from best to252

worst based on Dense Retrieval (Karpukhin et al.,253

2020), which means the baseline we adopt is rather254

stronger than randomly providing as many con-255

texts as possible without considering the quality.256

The baseline can be seen as a model fine-tuned on257

the most relevant contexts incorporating reranking258

techniques (Karpukhin et al., 2020; Khalifa et al.,259

2023).260

Initialization and Training Settings Weights261

of popular pre-trained encoder models like BERT262

(Devlin et al., 2018) should be good initialization263

for the encoder ϕ and thus we adopt BERT-base-264

uncased4 for initialization of ϕ. Parameters of at-265

tention and MLP modules are also adapted from266

Bloomz-1b7. To keep the encoding process effi-267

cient, we use a simple Linear module as the pro-268

jector that is randomly initialized and fine-tuned269

to align the hidden dimension of 768 (BERT-base-270

uncased) to 2048 (Bloomz-1b7).271

In our experiment, we use BERT to indepen-272

dently encode additional contexts on 10 or 20 con-273

texts, which can cover approximately 5k to 10k ad-274

ditional context tokens. Then the hidden states of275

the [CLS] token are concatenated and fed-forward276

3https://huggingface.co/bigscience/bloomz-1b7
4https://huggingface.co/bert-base-uncased

Learning Rate 2e-5

Optimizer AdamW

Lr scheduler cosine

Warmup ratio 0.03

FP 16 True

FP 16 eval True

Globa batch size 8

Save steps 4000

Eval steps 4000

Max epochs 4

GPU name NVIDIA A100-SXM 80G

Table 3: Hyperparameters

to subsequent modules as illustrated in Fig. 3. For 277

both the baseline and our method, we evaluate the 278

model checkpoint with the lowest language mod- 279

eling loss on the development set and report the 280

Exact Match (EM) metric. 281

As discussed in Sec. 2.4, there are mainly two 282

choices of training strategies of which parts of our 283

proposed model are optimized. We experiment 284

with both strategies and report the results of the 285

"frozen encoder" setting in Sec. 3.2 and the "train- 286

ing encoder" setting in Sec. 4.1 respectively. We 287

report important hyperparameters in App. 3. 288

Hyperparameters We list important hyperpa- 289

rameters in our experiments in Table 3. 290

3.2 Main Results 291

We present our main result of the first training 292

strategy discussed in Sec. 2.4 in Table 4. Upon 293

fine-tuning on two datasets and evaluating on three 294

(held-in, held-out and ICL) settings, our method 295

achieves performance superior to that of the base- 296

line in five out of six settings, except for one setting 297

on one dataset. 298

In held-in settings (training on TriviaQA/NQ 299

and evaluating on TriviaQA/NQ), our model con- 300

sistently demonstrates superior performance rel- 301

ative to the baseline. Moreover, it demonstrates 302

stable improved performance as more contexts are 303

encoded by our method, showing the potential of 304

our model to encode even longer contexts. 305

In held-out settings, our method outperforms the 306

baseline in all the datasets after being fine-tuned on 307

TriviaQA and outperforms three of four datasets af- 308

ter being fine-tuned on NQ, suggesting the general 309

applicability of our method. From the "Com.QA 310
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Train \ Evaluate
TriviaQA NQ Com.QA test SQuAD Web.Q Comp.Q Triviaqa (ICL) NQ (ICL)
dev test dev test choice seq2seq test test test dev test dev test

TriviaQA
baseline 45.740 46.203 14.868 16.288 17.199 2.785 10.191 9.524 4.490 31.764 31.857 8.999 9.058

+ 5k 47.686 47.742 17.506 19.307 19.328 3.194 12.684 10.053 5.513 32.341 32.034 10.677 11.136

+ 10k 47.901 48.245 18.465 19.529 17.363 2.539 12.667 11.111 6.024 34.027 34.235 11.671 11.801

NQ
baseline 42.809 43.976 37.159 37.978 19.410 4.095 21.199 14.815 13.498 35.521 35.967 19.242 21.136

+ 5k 43.669 44.657 37.01 38.698 19.656 4.095 22.724 15.344 13.214 35.883 35.985 19.265 21.413

+ 10k 44.189 45.107 37.581 39.114 21.294 4.423 22.918 15.873 13.413 36.381 36.569 19.447 21.662

Table 4: Main results of performance with frozen encoder on held-in, held-out and ICL settings. Boldface marks the
best results in each setting. Com.QA refers to CommonsenseQA. Web.Q refers to WebQuestions. Comp.Q refers
ComplexWebQuestions. TriviaQA (ICL) and NQ (ICL) show the results evaluated on ICL setting where the data is
formed as illustrated in Table 1 ICL.

choice" setting we can see that though our model311

is not trained to answer multi-choice questions, it312

performs better in selecting choices than baseline.313

In the last two columns TriviaQA (ICL) and314

NQ (ICL), we evaluate whether the optimized315

model can generalize to a similar ICL setting.316

Specifically, with optimized parameter ω∗ after317

fine-tuning objective 2 we evaluate how well we318

can model Qω∗(a|q, lmax,P ,kadd) where each319

li(q
′
,a

′
,k

′
) is an ICL sample composed of an-320

other query, context and answer. Surprisingly, we321

obtain a similar improved performance to the held-322

in setting. Steadily improved performance indi-323

cates that the training method we adopt is robust,324

maintaining both the encoder and decoder’s effi-325

cacy in retrieving useful information while the eval-326

uation data format diverges from the training data.327

In summary, from the results presented in Ta-328

ble 4, it is observable that in comparison with the329

baseline, employing our method to encode a greater330

volume of retrieval information offers a predomi-331

nantly positive enhancement to the model’s perfor-332

mance across various settings, including held-in,333

held-out, and ICL.334

4 Analysis335

In this section, we present the results of three ana-336

lytical experiments. The first one shows the result337

of the other training strategy discussed in Sec. 2.4.338

The second shows the evaluation results of optimiz-339

ing objective 3. The third shows the effectiveness340

of our method in a more challenging setting.341

4.1 Encoder Training342

In our experiments, we first try optimizing the en-343

coder ϕ with the other parameters (π, θ) from the344

very beginning of the training process. Results turn 345

out to verify our anticipation: newly introduced 346

random parameters (the projector) easily mess up 347

with the parameters in the encoder, consequently 348

undermining its capability to encode information 349

and resulting in worse performance than baseline. 350

Here we evaluate the training strategy we pro- 351

posed in Sec. 2.4 that aims to fix this problem. The 352

encoder is optimized after several training steps, 353

and in our experiment, we set it to one epoch. Be- 354

sides, the parameters in the cross-attention mod- 355

ule are initialized by those in the pre-trained self- 356

attention module to minimize the amount of ran- 357

domly initialized parameters. 358

Evaluations are done in the same settings as in 359

Table 4. By applying this two-step training method, 360

we succeed in obtaining better performance than 361

the baseline in most of the settings. It can be in- 362

ferred that compared with the setting of a frozen 363

encoder (i.e., ϕ is not optimized), further introduc- 364

ing trainable encoder parameters did not further 365

enhance the model’s performance as anticipated. 366

Although we can achieve better results in most 367

settings than baseline, performance in held-in and 368

held-out settings seems to be less stable compared 369

to the "frozen encoder" setting. Particularly, we 370

find that optimizing the encoder results in degraded 371

performance in the ICL setting, especially after be- 372

ing fine-tuned on TriviaQA datasets. We attribute 373

this to the fact that million-scale parameter models, 374

after fine-tuning on certain data, cannot guarantee 375

to generalize the encoding capability to a broader 376

range of scenarios, e.g. the ICL setting, as defined 377

in Table 1. We present the results of the second 378

training strategy discussed in Sec. 2.4 in Table 5. 379
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Train \ Evaluate
TriviaQA NQ Com.QA test SQuAD Web.Q Comp.Q Triviaqa (ICL) NQ (ICL)
dev test dev test choice seq2seq test test test dev test dev test

TriviaQA
baseline 45.740 46.203 14.868 16.288 17.199 2.785 10.191 9.524 4.490 31.764 31.857 8.999 9.058
+ 5k 48.082 47.803 15.896 16.898 14.333 3.112 10.755 11.640 4.945 16.646 16.645 6.178 6.676

+ 10k 47.980 47.750 16.079 17.008 15.807 2.867 10.823 11.111 5.058 16.103 16.300 6.383 7.008

NQ
baseline 42.809 43.976 37.159 37.978 19.410 4.095 21.199 14.815 13.498 35.521 35.967 19.242 21.136
+ 5k 43.397 44.524 37.387 39.03 15.889 4.095 22.092 14.286 12.958 33.993 34.341 17.951 19.640

+ 10k 43.284 44.047 37.205 39.28 16.790 3.931 22.143 16.402 12.788 33.122 33.404 18.933 20.914

Table 5: Analysis of training encoder along with the task model when fine-tuning. Experiments are conducted under
the same setting to Sec. 3.2

ICL samples
w/o contexts

TriviaQA NQ
dev test dev test

baseline 20.052 20.083 19.242 19.529
+ 10 vec 19.939 20.233 19.539 19.668
+ 20 vec 20.358 20.578 19.333 19.501

Table 6: Result of fine-tuning on data with ICL samples
(without context information) and evaluating on held-in
setting.

4.2 ICL Setting w/o Contexts380

We also experiment with optimizing objective 3381

defined in Sec. 2.3 where only query-answer pairs382

are provided in the ICL format input. The detailed383

data format is shown in Table 1 "ICL format w/o384

contexts" and the query-answer pair is sampled385

as many as possible from the held-in dataset. The386

utility of the encoder remains the same as it encodes387

10 (+ 10 vec) or 20 (+ 20 vec) pieces of context and388

is kept frozen during the training.389

The model is fine-tuned on TriviaQA and NQ390

and evaluated in held-in settings. We report the391

result in Table 6. First, we see that our method392

can still enhance the model in this setting but the393

improvements seem to be not consistent or promi-394

nent. Second, notice that the improvement on each395

dataset is not as remarkable as that in the ICL set-396

ting in Table 4, where each ICL sample is provided397

along with one piece of context.398

To summarize the findings here, our method for399

encoding context exhibits a more pronounced per-400

formance enhancement in ICL settings that incorpo-401

rate context information. We posit that the underly-402

ing reason for this is that the cross-attention mech-403

anism, which facilitates information interchange404

between inputs (embedded by the task model) and405

dense context information (encoded by the en-406

coder), is particularly effective when context in- 407

teracts with context, instead of context with ICL 408

samples with only query-answer pairs. 409

4.3 A More Challenging Setting 410

In our method presented in Sec. 2.2, we adopt 411

a projector module that is applied to align the 412

high-dimensional hidden spaces and adopt cross- 413

attention mechanism to incorporate the dense con- 414

text information in each layer. In this section, we 415

evaluate the effectiveness of our method in a more 416

challenging setting. 417

Specifically, compared to the data format stated 418

in the "Held-in Held-out" setting in Table 1, we 419

remove the contexts in input x and keep only ques- 420

tions and answers in the training data, i.e., x in 421

objective 2 becomes (q,a, {},P ). Only several 422

contexts are supplied as "Additional Contexts" en- 423

coded by the encoder. Note that though supply- 424

ing text-form contexts can greatly enhance models 425

in ODQA tasks, here we remove them to test the 426

effectiveness of the encoder and cross-attention 427

mechanism in a more challenging setting. 428

Results are shown in Table. 7. "+ 1/5/10 vec" 429

means we utilize 1/5/10 pieces of contexts and en- 430

code them into 1/5/10 vectors by taking the [CLS] 431

tokens’ hidden states. It can be inferred that, firstly, 432

with only one encoded vector, our method can en- 433

hance the model. Secondly, we observe consistent 434

improvement across two datasets and three variants 435

of our method that incorporating more contexts 436

leads to better performance (+ 10 vec > + 5 vec > 437

+ 1 vec). 438

5 Related Work 439

5.1 Retrieval Augmentation 440

Recently, retrieval augmentation has been utilized 441

to improve a large amount of Natural Language 442
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kmax = {}
TriviaQA NQ

dev test dev test

baseline 20.391 20.472 18.968 19.889
+ 1 vec 21.636 21.533 20.041 20.637
+ 5 vec 21.942 22.010 20.258 20.942
+ 10 vec 21.964 22.072 22.268 22.632

Table 7: Effectiveness of our method on encoding when
we remove the influence on text form context informa-
tion in x.

Processing downstream tasks such as question-443

answering (Chen et al., 2017; Lewis et al., 2020;444

Kwiatkowski et al., 2019; Fan et al., 2019), dia-445

logue (Moghe et al., 2018), language modeling446

(Khandelwal et al., 2020), NER (Wang et al., 2022,447

2021) and machine translation (Gu et al., 2018;448

Xu et al., 2022). In the aforementioned work, the449

utilization of retrieval information has been funda-450

mentally capable of enhancing model performance451

across all dimensions.452

5.2 Related Model Architectures453

Referring to the base model, there has been increas-454

ing interest in using models of encoder-decoder or455

decoder-only architectures in solving downstream456

tasks with retrieval augmentation recently.457

Allaouzi et al. (2019) and Zhou et al. (2023) em-458

ploy models of encoder-decoder architectures to459

solve visual question answering task in the med-460

ical domain. In their work, the encoder model is461

responsible for extracting prominent features from462

a medical image and the decoder part generates463

the answer. Li et al. (2023) utilizes an encoder-464

decoder model with constrained decoding to solve465

extractive question answering task.466

Decoder-only models, e.g., ChatGPT and GPT-4467

(Achiam et al., 2023), are more famous for their sur-468

prisingly great performance on tasks like question469

answering (Ali et al., 2022) and there is abundant470

work that tries to improve the performance based on471

GPTs (Pereira et al., 2023). Kim and Min (2024) in-472

troduce a chatbot model that utilizes generative AI473

and the Retrieval Augmented Generation method474

to address the issue that achieving regulatory com-475

pliance necessitates the intricate navigation of ex-476

ceptionally complex and voluminous guidelines in477

the pharmaceutical industry.478

In our work, we also incorporate an encoder for479

context encoding. However, compared to the tra-480

ditional encoder-decoder models, the encoder part481

in our method is several times smaller than the de- 482

coder part. Although our method does not alter the 483

quadratic complexity of the attention mechanism, 484

it instead processes the long contexts in a much 485

lower dimension, thus being able to quintuple the 486

capacity to cover context information without the 487

need to utilize additional computing resources. 488

5.3 Utilizing Long Contexts 489

To handle contexts with excessive length, recently 490

proposed techniques such as context compression 491

are increasingly investigated in NLP research. 492

Chevalier et al. (2023) proposes "AutoCompres- 493

sors" that uses OPT (Zhang et al., 2022) and Llama- 494

2 (Touvron et al., 2023) to compress texts into 495

summary vectors and show that utilizing long con- 496

texts can improve perplexity. In their method, the 497

compression is done by the billion-level language 498

model, and in one of their experiments, they train 499

on sequence with 30720 tokens with 20 compres- 500

sion steps. However, the complete computation 501

graph cannot be fully kept in such settings, and the 502

optimizing process has to rely on stopping gradi- 503

ents, which poses potential risks to the mathemati- 504

cal principle behind gradient descent. Similarly in 505

Zhang et al. (2024)’s work, the long context is first 506

partitioned into multiple intervals, and then a slid- 507

ing window is employed to sequentially process 508

one interval at a time and the compressed token 509

embeddings are kept for the next token prediction. 510

It is implemented by introducing additional train- 511

able parameters to the origin language model to 512

finish the task of "Activation Condensing", and ori- 513

gin parameters are frozen throughout the training 514

process. 515

6 Conclusion 516

In this paper, we propose a method that incorpo- 517

rates a small encoder model for excessively long 518

context encoding by applying cross-attention mech- 519

anism with the origin task model. The method 520

is simple and general for transformer-based lan- 521

guage models. In our experiments, after fine-tuning 522

on ODQA dataset, we find improved performance 523

across two held-in, four held-out and two ICL set- 524

tings, compared to a baseline that incorporates the 525

reranking technique on training data, showing the 526

effectiveness of our method in utilizing long con- 527

texts. Regarding the efficiency, the need for GPU 528

quantity remains unchanged and the run time re- 529

mains competitive to the baseline. 530
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7 Limitations531

First, we have only tested our method in 1B7 mod-532

els with a 110M encoder, and yet we have not tested533

the effectiveness of our method on larger language534

models, e.g., 7B and 70B, due to limited computing535

resources.536

Second, we observe that our method exhibits537

relatively modest performance under setting 4.2,538

with only a slight improvement compared to the539

baseline. We attribute the potential reasons for this540

to the cross-attention mechanism being unsuitable541

for modeling the relationship between context and542

ICL samples (without contexts).543
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A Appendix782

A.1 CommonsenseQA Format783

We show how we reformat data from Common-784

senseQA in Table 8. Reformated choice turn785

A/B/C/D/E into 1/2/3/4/5 to avoid causing ambi-786

guity with “A:” in prompts P . The choices are787

removed in seq2seq format and the problem be-788

comes more challenging.789
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Setting Format

Origin Format

A revolving door is convenient for two direction travel, but it also

serves as a security measure at a what?

A: bank

B: library

C: department storeD: mall

E: new york

Answer: A

Reformatted choice

Q: A revolving door is convenient for two direction travel, but it also

serves as a security measure at a what? Choose from 1-5 given below.

1: bank

2: library

3: department store

4: mall

5: new york

A:

Answer: 1 or bank

Reformatted seq2seq

Q: A revolving door is convenient for two direction travel, but it also

serves as a security measure at a what?

A:

Answer: bank

Table 8
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