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ABSTRACT

Query-based models are extensively used in 3D object detection tasks, with a wide
range of pre-trained checkpoints readily available online. However, despite their
popularity, these models often require an excessive number of object queries, far
surpassing the actual number of objects to detect. The redundant queries result in
unnecessary computational and memory costs. In this paper, we find that not all
queries contribute equally – a significant portion of queries have a much smaller
impact compared to others. Based on this observation, we propose an embarrass-
ingly simple approach called Gradually Pruning Queries (GPQ), which prunes
queries incrementally based on their classification scores. A key advantage of
GPQ is that it requires no additional learnable parameters. It is straightforward
to implement in any query-based method, as it can be seamlessly integrated as a
fine-tuning step using an existing checkpoint after training. With GPQ, users can
easily generate multiple models with fewer queries, starting from a checkpoint
with an excessive number of queries. Experiments on various advanced 3D de-
tectors show that GPQ effectively reduces redundant queries while maintaining
performance. Using our method, model inference on desktop GPUs can be accel-
erated by up to 1.31x. Moreover, after deployment on edge devices, it achieves up
to a 67.86% reduction in FLOPs and a 76.38% decrease in inference time. The
code will be available soon.

1 INTRODUCTION

3D object detection is a key task for autonomous driving. Among various algorithms, DETR-based
methods (Carion et al., 2020; Wang et al., 2022; Liu et al., 2022; Wang et al., 2023a;b) stand out for
their end-to-end detection capabilities without relying on hand-crafted components, thanks to their
set-prediction pipeline. A key feature of DETR-based models is the use of pre-defined queries in
transformer modules, which are generated from pre-defined reference points Zhu et al. (2020); Liu
et al. (2022; 2023a); Wang et al. (2023a;b); Jiang et al. (2024); Li et al. (2022); Yang et al. (2023);
Liao et al. (2023a;b). These queries are refined in the self-attention module and interact with image
features in the cross-attention module. The updated queries are then passed through MLPs to predict
classification scores and 3D bounding boxes.

Despite their effectiveness, these methods are computationally intensive due to the large number of
object queries required. More precisely, the number of pre-defined queries is typically set to 300
for 2D object detection tasks (Meng et al., 2021; Chen et al., 2023; Gao et al., 2022), and this num-
ber increases to 900 for 3D detection (Wang et al., 2022; Li et al., 2023; Liu et al., 2022; Wang
et al., 2023a;b; Jiang et al., 2024), which significantly exceeds the actual number of objects in both
cases. As depicted in DETR3D (Wang et al., 2022), the performance of the model is positively cor-
related with the number of queries. We conducted experiments with different query configurations
of StreamPETR (Wang et al., 2023b), which further validates this conclusion. Specifically, as shown
in Table 1, the model’s performance consistently declines as the number of queries is reduced.

Since the number of predictions during model inference is tied to the number of queries, fewer
queries lead to fewer predictions. Reducing queries requires additional computation to cover the
solution space and may even result in failure to find optimal parameters. Therefore, using fewer
queries generally results in poorer performance. For instance, as illustrated in Figure 1 (a), if a
model were to use only a single query to predict two object types – such as pedestrians and barriers
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# Ref. Queries # Pro. Queries # Tot. Queries mAP↑ NDS↑ Memory(MiB)↓ FPS↑
1288 512 1800 39.62% 0.4965 2580 12.7
1074 426 1500 39.37% 0.4945 2520 15.7
858 342 1200 39.23% 0.4960 2466 15.8
644 256 900 37.83% 0.4737 2338 16.1
430 170 600 37.43% 0.4770 2334 17.0
236 64 300 33.62% 0.4429 2332 18.5
108 42 150 26.46% 0.3763 2332 18.8
64 26 90 19.54% 0.2940 2330 18.8

Table 1: Results of StreamPETR (Wang et al., 2023b) with varying numbers of queries. The model
utilizes two types of queries when inference: queries generated from pre-defined reference points
(Ref. Queries) and queries propagated from Ref. Queries (Pro. Queries). All experiments were
conducted over a total of 24 epochs.
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Figure 1: Illustration of query-based detection methods. (a) When using only a few queries, they
must balance across different object instances, leading to poor prediction performance. Introducing
excessive queries allows each one to handle a specific object instance, but this creates redundancy.
Our method removes redundant queries that contribute little to the model’s performance. (b) The
workflow of a single transformer layer. Pre-defined queries are fed into the self-attention module,
where they interact with each other. The output of self-attention then serves as the query in cross-
attention, with image features acting as the key and value.

– that query would need to capture the features of both objects simultaneously. By handling multiple
tasks, the query would need to strike a compromise between the performance of the two object types.
If we use more queries, such as two, one can focus on detecting pedestrians while the other identifies
barriers, which reduces the interference between two queries. This means that the more queries there
are, the less burden each individual query has to bear. Given the complexity of spatial attributes in
3D detection tasks – such as location, rotation, and velocity for moving objects – it is understandable
that the performance of query-based models is sensitive to the number of queries.

1.1 CONFIGURING AN EXCESSIVE NUMBER OF QUERIES IS INEFFICIENT

As is well known, DETR-based models use the Hungarian algorithm to match predictions with
ground truth labels. When the number of queries significantly exceeds the number of objects to
be detected, most predictions are treated as negative instances during bipartite matching. In fact, in
most non-specialized scenes, the number of objects to be detected is typically fewer than 100 (Caesar
et al., 2020; Wilson et al., 2021), implying that during the training process, the ratio of negative to
positive instances could reach 8:1. For these negative instances, there are no ground truth labels to
serve as supervision. As a result, during loss calculation, zero vectors are matched with negative
predictions, progressively driving these queries to produce lower classification scores.

In cases where positive instances far outnumber negative ones, the selection of queries would grad-
ually become imbalanced. This not only results in wasted computational resources but also causes
the classification scores of queries that are more frequently selected as negative instances to be sig-
nificantly lower than others. During inference, NMS-free selector directly selects predictions with
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Figure 2: Selection frequency of queries (sorted in ascending order) during inference for different
methods. Among these methods, PETR, PETRv2, FocalPETR and StreamPETR are 3D object
detection methods, and the other two are 2D object detection methods. As illustrated, the selection
frequency of queries is imbalanced across both 2D and 3D query-based methods. In PETR, PETRv2,
and FocalPETR, there are even queries that were never selected as final results.

the highest classification scores as final results(Carion et al., 2020). For instance, if we use 900
queries to predict 10 classes, the model generates a tensor of shape 900× 10, which corresponds to
900×10 = 9000 instances. The top-k instances with the highest classification scores are selected as
final predictions. As a result, queries with lower classification scores are unlikely to be selected. As
illustrated in figure 2, during inference, the frequency at which queries are selected becomes imbal-
anced. Even some queries are never selected at all. These underutilized queries produce background
predictions and contribute far less to the model’s output than the more frequently selected queries.

Given that these queries play a minimal role, is there a way to discard them without compromising
the model’s performance?

1.2 PRUNING REDUNDANT QUERIES

To address query redundancy, we propose GPQ, a method that gradually prunes redundant queries.
Queries with lower classification scores are considered less contributive to detection and exhibit
weaker representation capabilities. As a result, we remove these lower-scoring queries, retaining
only those with higher classification scores to ensure better performance.

Our method is embarrassingly simple: load a checkpoint and run the model as it should be, then
sort the queries by classification scores after each iteration, and remove the bottom-k queries every
n iterations. Compared to existing pruning methods that utilize a learnable binary mask (Yu et al.,
2022; Kong et al., 2022; Tang et al., 2023; Shi et al., 2023; Chen et al., 2024; Ilhan et al., 2024;
Khaki & Plataniotis, 2024; Wei et al., 2023; Yu & Xiang, 2023), GPQ introduces no additional
learnable parameters and, therefore, incurs no extra computational cost. Additionally, our method
allows for the creation of multiple model versions with varying numbers of queries using an existing
checkpoint that contains a large number of queries. This eliminates the need to re-train the model
with fewer queries, which would require additional time to restore performance.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to address the issue of redundant queries in
commonly used 3D object detectors and to conduct a comprehensive analysis of the role
of queries in detection transformers. Our findings indicate that the majority of queries in
existing query-based methods are redundant and unnecessary.

2. We propose an embarrassingly simple yet effective strategy that gradually prunes redundant
queries in detection transformers, enabling us to better utilize existing pre-trained check-
points to reduce model complexity while maintaining detector performance.
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3. We conducted extensive experiments on various query-based detectors to evaluate the ef-
fectiveness of our proposed method. The results indicate that, on desktop GPUs, GPQ
achieves inference acceleration of up to 1.31× and it achieves at most a 67.87% reduction
in FLOPs with a 76.38% decrease in inference time after deployment on edge devices.

2 RELATED WORK

2.1 DETR-BASED 3D OBJECT DETECTORS

Based on transformers (Vaswani et al., 2017), DETR-based methods have been widely used in 3D
object detection tasks (Li et al., 2022; Yang et al., 2023; Liu et al., 2022; 2023a; Wang et al., 2023a;
Jiang et al., 2024; Li et al., 2023; Liu et al., 2023b; Chen et al., 2022; Wang et al., 2024b; Xie et al.,
2023). Liu et al. (2022) develops position embedding transformation to generate position-aware 3D
features. Liu et al. (2023a) introduces temporal modeling and generates 3D positional embedding
according to features of input images. Wang et al. (2023b) proposes an object-centric temporal
modeling method that combines history information with little memory cost. By utilizing high-
quality 2D object prior, Far3D (Jiang et al., 2024) generates 3D adaptive queries to complement 3D
global queries, which extends the detection range to 150 meters.

All these methods use similar pre-defined queries, either as learnable parameters or generated from
pre-defined reference points. Despite variations in sampling strategies (Li et al., 2022; Zhu et al.,
2020), they all share the query, key and value components, which are processed through trans-
former layers. While these methods share similar designs and advantages, they also face common
drawbacks: high computational costs and excessive memory usage. This makes it particularly chal-
lenging to deploy DETR-based methods on edge devices.

2.2 PRUNING TRANSFORMERS

Distillation and pruning methods have been developed to reduce the resource requirements of large
models (Yang et al., 2022; Li et al., 2024; Liang et al., 2023). As transformers have become increas-
ingly prominent in fields like natural language processing and computer vision, numerous pruning
methods targeting transformer models have been proposed (Michel et al., 2019; Fan et al., 2019;
Chen et al., 2021; Sanh et al., 2020; Liu et al., 2024; Lagunas et al., 2021; Yu et al., 2022; Kwon
et al., 2022; Yu & Xiang, 2023). In particular, Michel et al. (2019) discovers that a large percentage
of heads can be removed at test time. Fan et al. (2019) randomly drops transformer layers at training
time. Chen et al. (2021) explores sparsity in vision transformers, which proposes an unstructured
and a structured methods to prune the weights. While magnitude pruning methods rely on the ab-
solute values of parameters to determine which units to prune, Sanh et al. (2020) uses first-order
information rather than zero-order information as the pruning criterion. Lagunas et al. (2021) ex-
tends Sanh et al. (2020) to local blocks of any size. Yu et al. (2022) reduces both width and depth of
transformer simultaneously. Kwon et al. (2022) proposes a post-training pruning method that does
not need retraining. Yu & Xiang (2023) proposes an explainable method by assigning each unit an
explainability-aware mask. Liu et al. (2024) prunes tokens in ViT(Dosovitskiy, 2020) model, where
pruned tokens in the feature maps are preserved for later use.

Most of the aforementioned pruning methods use a binary mask to determine which parameters to
prune (Yu & Xiang, 2023; Yu et al., 2022; Sanh et al., 2020; Lagunas et al., 2021), which adds extra
training costs. Furthermore, these methods often struggle to adapt effectively to 3D object detection
models or show limited performance when applied to such tasks. This limitation arises from several
key challenges:

Nonexistent Pruning Targets. Many pruning methods for NLP or ViT models focus on “attention
head” pruning (Michel et al., 2019; Kwon et al., 2022; Yu et al., 2022). This is feasible because,
in these models, “attention heads” are well-defined, trainable structural components that can be
partially pruned using techniques like masking. However, in object detection methods, particularly
3D object detection, attention heads are essentially implemented as reshaping operations (Wang
et al., 2022; Liu et al., 2022; 2023a; Wang et al., 2023a). Modifying their number does not impact the
computational cost. Consequently, such pruning methods are not applicable to 3D object detection.
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Structural Inconsistencies. In NLP or ViT models, an important assumption is that tokens gen-
erated from the input simultaneously act as queries, keys, and values. This ensures the resulting
attention map is a square matrix with dimensions Nq × Nk. Several pruning methods depend on
this square attention map structureWang et al. (2024a). However, in object detection tasks, pre-
defined queries are commonly used, resulting in Nq ̸= Nk. As a result, the attention map becomes
a non-square matrix, rendering these methods unsuitable for 3D object detection models.

Massive Data Differences. In ViT models, each batch typically processes a single image, producing
fewer than 200 tokens per image. However, in 3D object detection, the need to predict additional
indicators and process multi-view images significantly increases the token count. Even with lower
resolutions, at least 4,000 tokens are generated, and this number can exceed 16,000 when using
larger backbones and higher resolutions. The sheer volume of tokens presents a significant chal-
lenge for applying token-pruning methods to 3D object detection, as the computational cost of these
methods often scales with the number of tokens(Bolya et al.; Wang et al., 2024a).

These challenges highlight the need for dedicated pruning strategies tailored to the unique charac-
teristics of 3D object detection models.

3 METHOD

3.1 TRANSFORMER AND PRE-DEFINED QUERIES REVISITING

The scaled-dot attention (Vaswani et al., 2017) operation contains three inputs: query Q ∈ RNq×E ,
key K ∈ RNk×E and value V ∈ RNk×Dv . An attention weight matrix will be calculated using
query and key, which will be used to sample value. Learnable parameters in attention operation are
its projection matrices WQ ∈ RE×E , WK ∈ RE×E , WV ∈ RDv×Dv and WO ∈ RDv×Dv :

AttnOut = Softmax
(
(QWQ)(KWK)T

√
Dv

)
(VWV ) ·WO ∈ RNq×Dv (1)

where Nq is the number of queries, Nk is the number of keys and values, E is the dimension for
query and key, and Dv is the dimension for value.

Each transformer layer used in query-based methods typically consists of a self-attention layer, a
cross-attention layer, and a feedforward network, as illustrated in Figure 1 (b). The self-attention
module uses the pre-defined queries as query, key, and value, and its output is then fed into the
cross-attention module as the query to interact with image features.

To stack multiple transformer layers, the output of layer l serves as the input for layer l+1, allowing
the pre-defined queries to be updated. Let FI ∈ RNk×E represent the image features, this process
can be described as follows:

Ql ←
{

Self-Attention(Ql) , l = 0

Self-Attention(Ql−1) , l > 0
(2)

Ql ← Cross-Attention(Ql, FI , FI) (3)
Ql ← FFN(Ql) (4)

where l is the index of current transformer layer, and FFN is the feedforward network, which is a
multi-layer perception with a large hidden dimension h≫ Dv . Q0 represents the initial pre-defined
queries, which will be updated at each layer through interactions with themselves in self-attention
and with image features in cross-attention.

3.2 THE ALGORITHM OF GRADUALLY PRUNING QUERIES

We consider each query as the fundamental unit for pruning and use classification scores as the
pruning criterion. During iteration process, we gradually prune redundant queries. The pruning
operation is triggered every n iterations. Each time, we select the query that generates the lowest
classification scores and remove it from current queries. The dropped query is immediately removed
from the model. During both training and inference, these queries will no longer participate in any
operations. Note that it is the queries, not the predictions, that are dropped. The pruning procedure
is illustrated in Figure 3, and the pseudo-code is provided in Algorithm 1.
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Figure 3: The pruning
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from the model and
will no longer partici-
pate in any operations
after being pruned.

Algorithm 1: Gradually Pruning Queries
Input: Total iterations T , the number of initial (final) queries Nq (N ′

q), a 3D detection model
with queries Q, and pruning interval n.

1 Load the model from an existing checkpoint with queries Q
2 Initialize current iteration t = 1, and the number of current queries N = Nq

3 while t ≤ T do
4 Load images I , and extract image features F from I
5 Update Q through Transformer-Layers
6 Get classification scores C through the Classification-Branch
7 if N > N ′

q then
8 Record classification scores of each query
9 if t mod n = 0 and N > N ′

q then
10 Select the query that generates the lowest classification score relying on records
11 Remove the selected query from Q
12 Update current query number N ← N − 1

13 t← t+ 1

Output: Final pruned queries Q ← Q

3.3 WHY IS PRUNING QUERIES EFFECTIVE?

The reason why our method works is that queries are much independent between each others. Re-
moving a certain query has slight impact to other queries. According to the rule of matrix multipli-
cation, multiplying a matrix A ∈ RNA×M by a matrix B ∈ RM×NB is equivalent to multiplying
each row Ai ∈ RM of A by B individually, and then concatenating the results:

AB ≡ Concat
i=1,··· ,NA

(AiB) (5)

where NA, NB and M are positive integers. If we delete the i-th row from A, the results of the
multiplication involving the remaining rows with B will remain unchanged.

In each MLP and cross-attention module, the query matrix Q appears only once. This means that,
according to Equ. 5, if we remove Qi from Q, the results of the other queries in the MLP and
cross-attention modules will remain unaffected.

The only influence occurs in the self-attention modules. In the self-attention mechanism, the query
Q also serves as both the key K and the value V . When a query Qi is removed, the other queries are
affected because the right side of the matrix multiplication has also changed. According to Equ. 1,
self-attention mechanism can be formated as:

SelfAttention = Softmax
(
(QWQ)(QWK)T

√
E

)
(QWV ) ·WO (6)

In multi-layer transformers, the queries interact with image features in the cross-attention module,
so queries in the deeper layers of the transformer also contain feature information related to the
input image during self-attention. At this stage, self-attention can partially replicate the function of
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cross-attention by sampling image features. However, this sampling is indirect and has less impact
compared to cross-attention. Therefore, we can remove these queries.

3.4 WHY NOT TRAIN A NEW MODEL USING ONLY A FEW QUERIES?

We introduce a query pruning method to reduce the computational load for DETR-based detectors.
A natural question arises: why not train the model with fewer queries from the beginning? On one
hand, as discussed in Section 1, training with a larger number of queries enhances the model’s capac-
ity to adapt to a diverse range of objects. By using GPQ, it becomes possible to prune a checkpoint
trained with many queries, producing models with different query counts. This approach offers flex-
ibility for various scenarios without necessitating retraining for each specific query configuration.

On the other hand, a key advantage of GPQ is its ability to retain the knowledge gained during
training with a higher query count. This leads to more accurate predictions compared to training a
model from scratch with fewer queries. As illustrated in Figure 4, the distinction between pruning
redundant queries and training with fewer queries becomes more apparent. When redundant queries
are pruned, the remaining queries cluster together and continue to occupy the original solution plane.
In contrast, training with fewer queries from the outset results in a more scattered distribution of
queries, reducing their overall representational effectiveness.
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Figure 4: Illustration of reference points that are used to generate queries in PETRv2. (a) training
using 900 queries; (b) training using 300 queries; (c) pruning from 900 to 300 queries. Training
from scratch with fewer queries results in a more scattered and disordered distribution of queries.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and Detectors. We conduct our experiments on the nuScenes dataset (Caesar et al., 2020),
which consists of over 23,000 samples. The 3D detection task involves 10 object classes, including
both static and dynamic objects.

To validate the effectiveness and efficiency of our proposed method, we perform experiments on
five advanced detectors: DETR (Wang et al., 2022), PETR (Liu et al., 2022), PETRv2 (Liu et al.,
2023a), FocalPETR (Wang et al., 2023a) and StreamPETR (Wang et al., 2023b). Notably, PETRv2
employs VovNet (Lee & Park, 2020) as its image backbone, while the remaining detectors utilize
ResNet50 (He et al., 2016) as their image backbone.

Evaluation Metrics. In the field of 3D object detection, the primary performance evaluation metrics
are mean Average Precision (mAP). NuScenes also provides the nuScenes Detection Score (NDS),
which is derived from mAP, along with several other error metrics: mean Average Translation Error
(mATE), mean Average Scale Error (mASE), mean Average Orientation Error (mAOE), mean Av-
erage Velocity Error (mAVE), and mean Average Attribute Error (mAAE). Mathematically, NDS =
1

5

[
5mAP +

∑
mTP

(1−min(1,mTP))
]

, where mTP ∈ {mATE,mASE,mAOE,mAVE,mAAE}.

Additionally, to assess the improvement in model runtime achieved by our method, we calculate the
FLOPs (Floating Point Operations) for each module and record the model’s runtime before and after
pruning on resource-constrained edge devices. Typically, we use GFLOPs, where 1 GFLOPs =
1× 109 FLOPs.
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4.2 IMPLEMENTATION DETAILS

We use AdamW (Loshchilov & Hutter, 2019) optimizer with a weight decay of 1.0 × 10−2. When
training from scratch, we use a base learning rate of 2 × 10−4 with a batch size of 8, and apply a
cosine annealing policy (Loshchilov & Hutter, 2022) for learning rate decay. When fine-tuning from
an existing checkpoint, the learning rate is set to 1.0× 10−4. The point cloud range is configured to
[−61.2m, 61.2m] along the X and Y axis, and [−10.0m, 10.0m] along the Z axis for all methods.

For all methods, classification and bounding box losses are applied with respective loss weights of
2.0 and 0.25. In line with the original publications, an additional 2D auxiliary task is introduced
for both FocalPETR and StreamPETR. Furthermore, PETRv2 and StreamPETR leverage temporal
information by incorporating historical frames into their models. During inference, the top 300
predictions with the highest classification scores are selected as the final results.

4.3 MAIN RESULTS

4.3.1 COMPARISON OF DETECTION PERFORMANCE BEFORE AND AFTER PRUNING

Model Backbone Image
Size Queries FPS↑ mAP ↑ NDS ↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

DETR3D ResNet50 1408x512

900 / - 8.2 24.63% 0.3054 0.9534 0.2867 0.7005 0.9959 0.2417
300 / - 9.2 23.43% 0.2953 0.9851 0.2865 0.7189 0.9667 0.2613
150 / - 9.2 20.55% 0.2694 1.0045 0.2925 0.7426 1.1308 0.2981
900 / 300 9.3 24.78% 0.3234 0.9404 0.2789 0.6139 0.9397 0.2326
900 / 150 9.4 22.63% 0.3015 0.9713 0.2813 0.6444 0.9919 0.2276

PETR

ResNet50 1408x512

900 / - 7.1 31.74% 0.3668 0.8395 0.2797 0.6153 0.9522 0.2322
300 / - 8.9 31.19% 0.3536 0.8449 0.2872 0.6156 1.0673 0.2762
150 / - 9.2 28.37% 0.3158 0.8664 0.2899 0.7340 1.1074 0.3706
900 / 300 8.9 32.85% 0.3884 0.8003 0.2791 0.5507 0.9108 0.2179
900 / 150 9.3 30.52% 0.3671 0.8237 0.2792 0.5804 0.9441 0.2282

VovNet 1600x640
900 / - 3.1 40.45% 0.4517 0.7282 0.2706 0.4482 0.8404 0.2179
300 / - 3.8 38.98% 0.4279 0.7636 0.2732 0.4820 0.9198 0.2315
900 / 300 3.7 40.04% 0.4507 0.7278 0.2723 0.4383 0.8451 0.2110

PETRv2 VovNet 800x320

900 / - 5.5 40.64% 0.4949 0.7374 0.2693 0.4636 0.4162 0.1967
300 / - 6.5 39.19% 0.4893 0.7595 0.2678 0.4416 0.4360 0.1916
150 / - 6.8 38.00% 0.4709 0.7710 0.2760 0.4773 0.4652 0.2013
900 / 300 6.7 40.26% 0.4944 0.7383 0.2701 0.4542 0.4146 0.1916
900 / 150 6.9 39.16% 0.4919 0.7385 .02702 0.4271 0.4135 0.1898

FocalPETR ResNet50 704x256

900 / - 16.4 32.44% 0.3752 0.7458 0.2778 0.6489 0.9458 0.2522
300 / - 19.3 31.59% 0.3524 0.7594 0.2838 0.7154 1.0432 0.2973
150 / - 21.2 27.78% 0.3071 0.8276 0.2826 0.7863 1.2156 0.4178
900 / 300 19.6 33.17% 0.3925 0.7446 0.2800 0.6265 0.8619 0.2203
900 / 150 21.2 31.81% 0.3834 0.7563 0.2829 0.6119 0.8792 0.2259

StreamPETR ResNet50 704x256

900 / - 16.1 37.83% 0.4734 0.6961 0.2822 0.6846 0.2856 0.2084
300 / - 18.5 33.62% 0.4429 0.7305 0.2837 0.6800 0.3333 0.2251
150 / - 18.8 26.46% 0.3763 0.8195 0.2921 0.8135 0.3998 0.2353
900 / 300 18.7 39.42% 0.4941 0.6766 0.2711 0.5799 0.2708 0.2136
900 / 150 19.3 34.94% 0.4633 0.6989 0.2749 0.6226 0.3124 0.2050

Table 2: Pruning results for different models. The column of “Queries” is of format “# Initial
queries/ # Final queries”. Lines where “# Final queries” remain blank are baselines used to compare.
All baselines and checkpoints are trained for 24 epochs, with the pruning process completed within
the first 6 epochs when loading a checkpoint. The FPS is measured on a single RTX3090 GPU.

One of the key objectives of our pruning method is to maintain the performance of the original
models. As demonstrated in Table 2, our approach successfully preserves, and in some cases en-
hances, the performance of various detectors, even when pruning a checkpoint with a large number
of queries. GPQ can also accelerate model inference on desktop GPUs. For example, in the case of
PETR, pruning from 900 to 150 queries results in an mAP of 30.52%, which is 2.15 points higher
than training from scratch with 150 queries (28.37%), and its speed increases from 7.1 fps to 9.3,
which is 1.31x faster. Remarkably, pruning from 900 to 300 queries achieves an mAP of 32.85%,
outperforming the result of training from scratch with 900 queries (31.74%). Similarly, for both Fo-
calPETR and StreamPETR, pruning from 900 to 300 queries yields optimal performance, surpassing
the results obtained from training with 900 queries from scratch. For PETRv2, while pruning from

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

900 to 300 queries results in a slightly lower mAP than training from scratch with 900 queries, it
still exceeds the performance of training from scratch with 300 queries.

For 3D objects, their poses and moving states are also important. the NDS of pruned models with
a final query count of 300 is higher than that of models with 900 queries for PETR, FocalPETR,
and StreamPETR. In the case of PETRv2, although the NDS slightly decreases for pruned models,
it remains comparable to the performance with 900 queries.

In summary, the experimental results show that our pruning method significantly reduces the number
of queries while maintaining, or even slightly improving, performance compared to models trained
from scratch with a larger number of queries. Additionally, the pruned models consistently outper-
form those trained from scratch with the same number of queries.

4.3.2 COMPARISON OF INFERENCE SPEED BEFORE AND AFTER PRUNING

Model Backbone Pruned # Queries GFLOPs Reduced FLOPs Time (ms) Reduced Time

PETR

ResNet18
✕ 900 219.14 - 1829.44 -
✓ 300 164.61 24.89% 1231.46 32.69%
✓ 150 152.06 30.61% 1103.96 39.66%

w/o
✕ 900 99.39 - 1140.97 -
✓ 300 44.86 54.87% 563.85 50.58%
✓ 150 32.30 67.50% 439.34 61.49%

FocalPETR

ResNet18
✕ 900 162.36 - 1319.35 -
✓ 300 118.07 27.28% 846.62 35.83%
✓ 150 108.08 33.44% 745.44 43.50%

w/o
✕ 900 78.07 - 868.28 -
✓ 300 33.77 56.75% 416.12 52.07%
✓ 150 23.77 69.55% 319.84 75.76%

StreamPETR

ResNet18
✕ 900 172.08 - 1520.07 -
✓ 300 123.90 28.00% 916.03 39.74%
✓ 150 112.51 34.62% 791.08 47.96%

w/o
✕ 900 87.78 - 1030.38 -
✓ 300 39.59 54.90% 477.81 53.63%
✓ 150 28.21 67.86% 359.00 76.38%

Table 3: Running time on the Jetson Nano B01 device with and without backbone. Data preparation
time is excluded from the measurements. FlashAttention is not used, as it is not supported by
ONNX. Randomly generated dummy input images are used for testing, with sizes of 704× 256 for
FocalPETR and StreamPETR, and 800× 320 for PETR.

Inference speed is crucial for deploying models on edge devices. To verify whether pruning queries
can indeed improve speed, we export the model to ONNX format and deploy it on the Jetson Nano
B01 using ONNX Runtime to measure the model’s running time. After pruning from 900 to 300
queries, the FLOPs of StreamPETR are reduced by 28%, and the running time decreases by 39.74%.
Pruning further from 900 to 150 queries results in a 47.96% reduction in running time, making the
model 1.92× faster. The pruning method also proves effective for FocalPETR and PETR, signifi-
cantly reducing both FLOPs and running time. Further details can be found in Table 3.

Since our method does not modify the image backbones or necks, we remove the backbone module
to better illustrate the effects of our approach. Specifically, we run only the transformer decoder
using randomly generated dummy inputs. Results are also shown in Table 3. For all the evaluated
models, pruning from 900 queries to 300 results in saving more than half of the running time for
transformer-related modules. Additionally, compared to the model with 900 queries, StreamPETR
with 150 pruned queries achieves a 76.38% reduction in running time.

4.3.3 COMPARISON WITH TOME

To our knowledge, this is the first study to explore query redundancy in Transformer-based 3D detec-
tion models. As a result, it is challenging to find comparable methods for direct evaluation. However,
in this section, we compare our approach with ToMe (Bolya et al.), a method that shares a similar
goal of improving efficiency. Specifically, ToMe increases the throughput of Vision Transformer
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(ViT) models by dividing N tokens into two equal size groups A and B. These tokens represent
image features extracted by the image backbone. To merge similar tokens, ToMe calculates a simi-
larity matrix S of size N

2 ×
N
2 , where the (i, j)-th entry represents the similarity between token i in

group A and token j in group B. It then merges r token pairs with the highest similarity scores.

We apply ToMe to StreamPETR, and compare its performance with GPQ in Table 4. Surprisingly,
instead of accelerating computation, ToMe causes the model to run slower. We believe this is due
to the overhead introduced by calculating the similarity matrix. Unlike image classification tasks,
which typically handle only a few hundred tokens, 3D object detection methods often generate a
much larger number of tokens (e.g., StreamPETR generates 4224 tokens even with a relatively small
image size of 704×256). This increased token size significantly amplifies the computational cost of
constructing the similarity matrix, making ToMe inefficient for 3D object detection tasks. Compared
to ToMe, GPQ not only preserves the model’s performance but also achieves faster inference speed.

Model r Queries Speed(fps) mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
StreamPETR - 900/- 16.1 37.83% 0.4734 0.6961 0.2822 0.6846 0.2856 0.2084
StreamPETR-ToMe 264 900/- 14.8 37.79% 0.4731 0.6982 0.2819 0.6849 0.2849 0.2084
StreamPETR-ToMe 528 900/- 14.9 37.69% 0.4721 0.6994 0.2822 0.6855 0.2877 0.2088
StreamPETR-ToMe 1056 900/- 15.4 36.34% 0.4608 0.7178 0.2852 0.6963 0.2965 0.2121
StreamPETR-ToMe 2112 900/- 16.0 31.69% 0.4325 0.7546 0.2907 0.6893 0.3170 0.2210
StreamPETR-GPQ - 900/300 18.7 39.42% 0.4941 0.6766 0.2711 0.5799 0.2780 0.2136

Table 4: Comparison with ToMe. Results indicate that ToMe performs poorly on 3D object detec-
tion, while our GPQ effectively maintains the model’s performance and accelerates inference.

4.4 ABLATION EXPERIMENTS

Model mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
StreamPETR 37.83% 0.4734 0.6961 0.2822 0.6846 0.2856 0.2084
prune highest 34.34% 0.4563 0.7429 0.2813 0.5912 0.3188 0.2195
prune using cost 38.78% 0.4899 0.6808 0.2814 0.5791 0.2853 0.2130
prune in one iteration 35.71% 0.4677 0.7121 0.2828 0.5970 0.2930 0.2233
GPQ 39.42% 0.4941 0.6766 0.2711 0.5799 0.2780 0.2136

Table 5: Ablation experiments. We use StreamPETR as baseline, and all pruning strategies start
from a checkpoint initialized with 900 queries and reduce the number to 300 through pruning.

Pruning Criterion. Our pruning strategy removes the queries with the lowest classification scores.
To validate this criterion, we conducted two comparative experiments: one where we prune queries
with the highest classification scores (prune highest in Table 5) and another where pruning is guided
by the cost produced by the assigner during the binary matching process between predicted and
ground truth values (prune using cost in Table 5).

Table 5 shows that pruning queries with the highest classification scores leads to a noticeable per-
formance drop compared to our default strategy. While using the cost generated by the assigner as
the pruning criterion results in performance closer to the original model, it still falls short of the
performance achieved by GPQ. These results confirm the effectiveness of our proposed method.

Pruning Strategy. A key feature of our method is the gradual pruning strategy. To validate its
effectiveness, we conducted an experiment where 600 queries were pruned in a single iteration
(prune in one iteration in Table 5). The results show a significant performance drop when all
queries are pruned in a single step instead of gradually. This demonstrates that the gradual pruning
strategy employed in GPQ is not only reasonable but also the optimal approach for query pruning.

5 CONCLUSION

In this paper, we propose GPQ, an incredibly simple yet effective pruning method that gradually
eliminates redundant queries in DETR-based 3D detection models, aiming to reduce computational
cost without compromising performance. Results on the nuScenes dataset confirm that our method
effectively maintains the detection performance across all evaluated models. To the best of our
knowledge, this is the first study to explore query pruning in query-based models, and we hope our
work will inspire further research into pruning DETR-based models.
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A MORE EXPERIMENTAL RESULTS

In the appendix, we provide more experimental results of GPQ, including:

• Qualitative results of GPQ (A.1).
• Extended experimental results of GPQ on 2D object detection (A.2).
• Further experimental results combining GPQ with training from scratch (A.3).
• More experimental results for fully converged models (A.4).

A.1 VISUALIZATION RESULTS

To further validate the effectiveness of our method, we visualize the results of evaluated 3D models
used in the experiments before and after pruning, as shown in Figure 5. As demonstrated, pruning
does not negatively impact the detection performance for both static and moving objects, further
confirming the robustness of our pruning approach.

GT

Prune 900 to 
300 queries

900 queries

PETR PETRv2 FocalPETR SteramPETR

GT

Prune 900 to 
300 queries

900 queries

Figure 5: Visualization results of the evaluated models from a top-down view (top) and from camera
perspectives (bottom) before and after pruning. Through comparison, we can further confirm that
our method effectively preserves the models’ performance.

A.2 RESULTS ON 2D OBJECT DETECTION

3D object detection is a highly practical research area with fewer conversion steps required for its
application in real-world commercial scenarios. In addition, as discussed in Section 1, the queries
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in 3D object detection models exhibit a high degree of redundancy. In contrast, 2D object detection
methods typically use 300 queriesCarion et al. (2020); Meng et al. (2021) to predict 80 classes (e.g.,
COCO dataset(Lin et al., 2014)), resulting in a lower level of query redundancy. This is why we
chose to focus on 3D object detection from the beginning, rather than 2D object detection or 2D
image classification.

However, because pre-defined queries also exist in DETR, we can still apply GPQ to DETR-based
2D object detection methods. We conducted experiments using ConditionalDETR as an example.

Model Backbone Queries FPS mAP AP50 AP75 APs APm APl

ConditionalDETR ResNet50
300/- 18.6 0.409 0.618 0.434 0.206 0.442 0.591
150/- 23.3 0.398 0.606 0.421 0.196 0.432 0.582
300/150 23.5 0.406 0.615 0.429 0.197 0.439 0.598

Table 6: Results of GPQ applied to ConditionalDETR. The original ConditionalDETR uses 300
queries with 50 epochs. We prune half of these in 2 epochs and then fine-tune for 6 epochs, which
costs much less than training a new model using 150 queries.

As shown in Table 6, after pruning half of the queries using GPQ, ConditionalDETR is still able to
maintain its original performance. Moreover, the pruning process requires only 8 epochs, which is
significantly more efficient compared to retraining a new model from scratch (50 epochs). These
results demonstrate that our method can still achieve its intended effect when applied to 2D object
detection methods.

A.3 INTEGRATING WITH TRAINING

A question may arise: for previous models with existing checkpoints, we can directly use GPQ to
prune an existing checkpoint. But for future methods, does GPQ still have its value? If we train a
model first and then prune it, why not train with fewer queries for more epochs?

Fortunately, GPQ can be integrated with training. As show in Table 7, we use PETR(Liu et al.,
2022) and StreamPETR(Wang et al., 2023b) as examples, starting with 900 queries, and gradually
pruning during training, ultimately reaching a state of 300 queries. With this technique, one can
directly train a model using GPQ without the need for an additional pruning and fine-tuning stage
or more epochs to achieve the same performance with fewer queries.

Model mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
PETR-900q 31.74% 0.3668 0.8395 0.2797 0.6153 0.9522 0.2322
PETR-300q 31.19% 0.3536 0.8449 0.2872 0.6156 1.0673 0.2762

PETR-GPQ-t 31.75% 0.3644 0.8336 0.2802 0.6028 0.9878 0.2393

StreamPETR-900q 37.83% 0.4734 0.6961 0.2822 0.6846 0.2856 0.2084
StreamPETR-300q 33.62% 0.4429 0.7305 0.2837 0.6800 0.3333 0.2251

StreamPETR-GPQ-t 36.41% 0.4673 0.6948 0.2806 0.6423 0.3079 0.2221

Table 7: Results of integrating GPQ with training. All models use ResNet50 as backbone, with
an image size of 1408 × 512. Here, PETR-GPQ-t and StreamPETR-GPQ-t start without loading a
pre-trained PETR checkpoint, begin with 900 queries, and are pruned gradually to a final state of
300 queries.

A.4 FULLY CONVERGED MODELS

To evaluate the performance of GPQ on fully converged models, we had to increase the number of
training steps. However, due to limited computational resources, it is not feasible to indefinitely
increase training time and epochs. Through experimentation, we are confident that by 90 epochs,
StreamPETR has either fully converged or is close to full convergence(Table 8). Therefore, we
performed pruning on the checkpoint trained for 90 epochs. As shown in Table 8, applying GPQ to
prune a fully converged 900-query model down to 300 queries resulted in better performance than
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the fully converged 300-query model. This further demonstrates that GPQ can still be effective even
after the model has fully converged.

Model mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
StreamPETR-300q-24e 33.62% 0.4429 0.7305 0.2837 0.6800 0.3333 0.2251
StreamPETR-300q-36e 38.65% 0.4890 0.6885 0.2769 0.5871 0.2823 0.2081
StreamPETR-300q-48e 39.72% 0.4978 0.6782 0.2762 0.5662 0.2866 0.2010
StreamPETR-300q-60e 41.83% 0.5194 0.6399 0.2764 0.5099 0.2678 0.2031
StreamPETR-300q-90e 42.00% 0.5280 0.6224 0.2717 0.4464 0.2703 0.2091
StreamPETR-900q-90e 43.23% 0.5369 0.6093 0.2701 0.4449 0.2791 0.1893

StreamPETR-900q-GPQ 42.49% 0.5301 0.6237 0.2709 04557 0.2799 0.1928

Table 8: Results of GPQ on fully converged models. Here 300q-24e means the model was trained
with 300 queries for 24 epochs. StreamPETR-900q-GPQ loaded the checkpoint of StreamPETR-
900q-90e and pruned it into 300 queries.
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