AdaptThink: Reasoning Models Can Learn When to Think

Anonymous ACL submission

Abstract

Recently, large reasoning models have achieved
impressive performance on various tasks by em-
ploying human-like deep thinking. However,
the lengthy thinking process substantially in-
creases inference overhead, making efficiency a
critical bottleneck. In this work, we first demon-
strate that NoThinking, which prompts the rea-
soning model to skip thinking and directly gen-
erate the final solution, is a better choice for
relatively simple tasks in terms of both perfor-
mance and efficiency. Motivated by this, we
propose AdaptThink, a novel RL algorithm to
teach reasoning models to choose the optimal
thinking mode adaptively based on problem
difficulty. Specifically, AdaptThink features
two core components: (1) a constrained opti-
mization objective that encourages the model to
choose NoThinking while maintaining the over-
all performance; (2) an importance sampling
strategy that balances Thinking and NoThinking
samples during on-policy training, thereby en-
abling cold start and allowing the model to ex-
plore and exploit both thinking modes through-
out the training process. Our experiments indi-
cate that AdaptThink significantly reduces the
inference costs while further enhancing perfor-
mance. Notably, on three math datasets, Adapt-
Think reduces the average response length of
DeepSeek-R1-Distill-Qwen-1.5B by 53% and
improves its accuracy by 2.4%, highlighting the
promise of adaptive thinking-mode selection
for optimizing the balance between reasoning
quality and efficiency.

1 Introduction

Recent advancements in large reasoning models,
such as OpenAl 01(OpenAl, 2024) and DeepSeek-
R1 (DeepSeek-Al, 2025), have demonstrated re-
markable capabilities in tackling complex tasks.
Given a problem, these models first engage in a
long chain of thought—also referred to as Think-
ing—where they iteratively explore different ap-
proaches, accompanied by reflection, backtrack-

(a) Existing Reasoning Models: High accuracy; Low efficiency @

Al ' . .
Problem &, _ Thinking Final Solution
2 (time-consuming)

(b) AdaptThink (ours): High accuracy; High efficiency

- S Lkire) H Final Solution]
Al

Problem [—-*
[}

(time-consuming)
(NoThinking)
Figure 1: AdaptThink enables models to adaptively se-
lect between Thinking or NoThinking mode based on
problem difficulty, thereby improving reasoning effi-
ciency while further improving overall performance.

Final Solution

ing, and self-verification. Subsequently, they pro-
duce a final solution that contains only the correct
steps and the answer to present to the user. While
the long-thinking process markedly enhances the
model’s reasoning capacities, it also substantially
increases inference overhead and latency (Qu et al.,
2025; Sui et al., 2025). In particular, for some sim-
ple queries where users expect fast, near-instant
responses, these models often generate excessive
thinking with unnecessarily detailed steps or re-
dundant attempts, resulting in a suboptimal user
experience (Chen et al., 2024; Shen et al., 2025).
Existing efforts to improve reasoning efficiency
primarily focus on reducing the length of model re-
sponses, either through incorporating length-based
rewards in reinforcement learning (RL) (Arora
and Zanette, 2025; Team et al., 2025), finetun-
ing with preference pairs that penalizes longer
responses (Chen et al., 2024; Shen et al., 2025;
Luo et al., 2025a), or by merging reasoning and
non-reasoning models (Wu et al., 2025). Never-
theless, these methods still apply thinking to all
instances, regardless of whether thinking itself is
necessary for every problem. In this work, we
draw inspiration from the recently introduced No-
Thinking approach (Ma et al., 2025), which al-
lows reasoning models to skip the thinking process
and directly generate the final solution by prompt-
ing with a pseudo-thinking process. Specifically,

we further simplify the approach by prompting
the model with an empty thinking segment (i.e.,
“<think></think>"). Our pilot study in Section 3
indicates that NoThinking achieves comparable or
even better performance than Thinking on relatively
simple problems (up to high-school competition
level), while significantly reducing token usage;
the benefits of Thinking only become pronounced
when the problem is difficult enough.

In light of this observation, we are curious: Can
the reasoning model learn to select Thinking or No-
Thinking mode adaptively based on the difficulty of
the input problem, thereby achieving more efficient
reasoning without sacrificing or even improving
performance? To this end, we propose AdaptThink,
a novel RL algorithm to teach reasoning models
when to think. Specifically, AdaptThink features
two core components: (1) a constrained optimiza-
tion objective that encourages the model to choose
NoThinking while ensuring overall performance
does not degrade; (2) an importance sampling strat-
egy that balances Thinking and NoThinking sam-
ples during on-policy training, thereby overcoming
the challenge of cold start and allowing the model
to explore and exploit both thinking modes through-
out the whole training process.

Our experiments demonstrate that AdaptThink
effectively enables reasoning models to adaptively
select the optimal thinking mode based on problem
difficulty, leading to substantial reductions in in-
ference cost compared to prior approaches, while
consistently enhancing model accuracy. For in-
stance, on GSM8K, MATH500, and AIME2024,
AdaptThink reduces the average response length
of DeepSeek-R1-Distill-Qwen-1.5B by 50.9%,
63.5%, and 44.7%, and improving its accuracy by
4.1%, 1.4%, and 1.6%, respectively. The remark-
able results substantiate the potential of difficulty-
adaptive thinking-mode selection as a promising
paradigm for advancing the trade-off between rea-
soning performance and efficiency.

In summary, our key contributions are as fol-
lows: (1) We simplify the NoThinking approach
and demonstrate its advantages over Thinking for
simpler tasks in terms of both performance and ef-
ficiency; (2) We propose AdaptThink, a novel RL
algorithm that empowers reasoning models to adap-
tively select the optimal thinking mode adaptively
based on problem difficulty, thereby substantially
reducing inference costs and further improving per-
formance; (3) We conduct extensive experiments
to validate the efficacy of AdaptThink.

2 Related Work

Large Reasoning Models. Recent frontier large
reasoning models (LRMs), such as OpenAl
ol (OpenAl, 2024), DeepSeek-R1 (DeepSeek-Al,
2025), and QwQ (Qwen Team, 2025), have devel-
oped the ability to employ human-like deep think-
ing in problem solving by generating a long chain
of thought before arriving at a final solution. Such
advanced ability is typically acquired through large-
scale RL with verified rewards or fine-tuning on dis-
tilled reasoning traces. Despite promising perfor-
mance, the lengthy thinking process introduces sub-
stantial inference costs and latency. Consequently,
a variety of approaches have been proposed for
more efficient reasoning.

Efficient Reasoning for LRMs. Most existing
methods to improve the efficiency of LRMs fo-
cus on reducing the token usage in model re-
sponses. Some methods incorporate length-based
rewards into RL to incentivize more concise re-
sponses (Arora and Zanette, 2025; Team et al.,
2025) or enable precise control over response
length (Aggarwal and Welleck, 2025). Other ap-
proaches finetune models with length-related pref-
erence pairs, which are obtained from best-of-N
sampling (Luo et al., 2025a; Shen et al., 2025) or
through postprocessing (Chen et al., 2024). Addi-
tionally, several works pursue training-free meth-
ods to decrease response length, employing tech-
niques such as model merging (Team et al., 2025;
Wu et al., 2025) or prompting (Han et al., 2024;
Muennighoff et al., 2025; Fu et al., 2025; Xu et al.,
2025). Nevertheless, these methods still utilize
long thinking for all problems, while the recent
NoThinking approach (Ma et al., 2025) allows rea-
soning models to bypass long thinking and directly
output the final solution via prompting, achieving
performance comparable to Thinking in low-token-
budget settings. In this work, we further demon-
strate that even with a sufficient token budget, No-
Thinking can outperform Thinking on simple prob-
lems while using significantly fewer tokens. This
observation motivates us to propose AdaptThink
to teach reasoning models to adaptively select the
optimal thinking mode based on problem difficulty,
which is a new direction for efficient reasoning.

3 Motivation
3.1 Preliminary

Consider a reasoning model parameterized by
0 and denoted by my. Given a prompt x =

Accuracy
® Thinking ~ NoThinking

94.9 95.6 94,6

91.3
90
80
70
60
50

Level 1 Level 2

6000

97.6
91.1 91.7
5000
826 4000
75.8
3000
2033
2000
57.6

1000 I -

0

Level3 Level4 Level5S

Response Length

® Thinking

Level 1 Level2 Level3 Level4 LevelS

Instance-level Pass Rate

NoThinking NoThinking < Thinking = NoThinking >= Thinking
5727
o
T3 22.2%
o
3774 S 49.2%
- 70.1%

2807

o
2182 88.4% 77.8%
1038 OL0% 50y,
3 .8%
392 522 715 29.9%

Levell Level2 Level3 Level4 Level5

Figure 2: Comparison of DeepSeek-R1-Distill-Qwen-7B using Thinking and NoThinking mode across different

difficulty levels of MATHS00 dataset.

[x1,...,Zn,<think>], where [x1,...,x,] repre-
sents the problem and <think> is the special token
to start the thinking process, the model generates a
response y=[y1, ..., y;, </think> yiio, ..., Ym]-
Here, [y1,...,y] corresponds to the thinking,
which is a long chain of thought consisting of con-
stant exploration, reflection, and self-verification.
The token </think> marks the end of thinking.
The remaining sequence, [y;+2,- .., Ym], denotes
the final solution, which only includes the correct
steps to solve the problem and the final answer.
From the perspective of probability theory, the re-
sponse y is a sample drawn from the conditional
probability distribution my(-|x). Since y is gen-
erated in an auto-regressive way, the conditional
probability 7y(y|z) can be decomposed as:

m

mo(ylz) = [[mo(welz, y<r) (1)

t=1
3.2 NoThinking is Better for Simple Problems

Current reasoning models, such as OpenAl ol and
DeepSeek-R1, apply long thinking across all prob-
lems (denoted as Thinking mode). Though en-
hancing models’ reasoning capabilities, the lengthy
thinking process often leads to unnecessary compu-
tation overhead, especially for some simple prob-
lems that can also be solved by non-reasoning mod-
els (e.g., GPT-40 and Qwen-2.5-Instruct) without
thinking. Recently, Ma et al. (2025) proposed No-
Thinking method, which enables reasoning mod-
els to bypass long thinking and directly generate
the final solution by prompting with a fake think-
ing process “Okay, I think I have finished think-
ing.</think>", and found it is still effective in
low-token-budget settings. In this work, we further
simplify NoThinking by providing the models with
an empty thinking (i.e., enforcing the first gener-
ated token y; = </think>). Then, we conduct a
pilot study to compare Thinking and NoThinking
from the perspective of problem difficulty, with a
sufficient token budget (16K).

Specifically, we utilize MATH500 (Lightman
et al., 2024) dataset for the pilot study since its have
categorized problems into five difficulty levels. For
each problem, we employ DeepSeek-R1-Distill-
Qwen-7B to generate 16 responses using Thinking
and NoThinking, respectively. Then we analyze the
accuracy, response length, and instance-level pass
rate across the five difficulty levels. As illustrated in
Figure 2, although the model is trained using long-
thinking data, NoThinking still achieves accuracy
comparable to Thinking on relatively simple prob-
lems (Level 1 to 3), and even slightly outperforms
Thinking on the easiest Level-1 problems. Mean-
while, the average length of NoThinking responses
is significantly shorter than Thinking ones. Addi-
tionally, compared to Nothinking, Thinking only
improves the instance-level pass rate for less than
half of the problems from Level 1 to 4. Overall,
these findings indicates that Thinking only brings
notable benefits for challenging problems, whereas
NoThinking can be a better choice for simpler ques-
tions in terms of both accuracy and efficiency. This
motivates us to explore efficient reasoning from
a new perspective: teaching the reasoning model
to adaptively select Thinking or NoThinking mode
based on problem difficulty, thereby reducing in-
ference costs while maintaining or even improving
the overall performance. To this end, we propose
AdaptThink, a novel RL algorithm that teaches rea-
soning models when to think.

4 AdaptThink

Our AdaptThink algorithm consists of two impor-
tant components: (1) a constrained optimization
objective that incentivizes the model to select No-
Thinking mode, while ensuring the overall perfor-
mance does not decrease; (2) an importance sam-
pling strategy that balances Thinking and NoThink-
ing samples during on-policy training, thereby en-
abling cold start and also allowing the model to
explore and exploit both thinking modes through-

out the entire training process. We will introduce
these two components in detail as follows.

4.1 Constrained Optimization Objective

Considering that NoThinking mode offers a sig-
nificant advantage over Thinking in reasoning ef-
ficiency, an ideal selection policy should prefer to
choose NoThinking as long as the overall perfor-
mance is not diminished. In other words, we should
maximize the probability of generating NoThink-
ing responses while ensuring the model’s accuracy
does not decline.

Formally, consider a reasoning model 7y and a
dataset D. Let my_, denote the reference model,
which is the initial 7y and remains unchanged dur-
ing training. Let R(x, y, y*) be the reward function
(i.e., accuracy in math solving), where z, y, and
9 denote the prompt, model response, and golden
answer, respectively. The function returns 1 if y is
both correct and properly formatted; otherwise, it
returns 0. For simplicity, we omit ¢ and denote the
function as R(z,y). Let 1(y; =</think>) be the
indicator function, which returns 1 if the first token
of y is </think> (i.e., y is a NoThinking response),
otherwise returns 0. Then our optimization objec-
tive can be formulated as:

max Eg p yer,(.|2)L(y1 =</think>)
st.Eyop Wy~ (+|z) (x,y) =
ECCND,y/NTrg () (2)

To solve this constrained optimization problem,
we incorporate the constraint into the objective as
a penalty term, with a penalty weight A > 0:

maX By p yomy (-[2) 4/ ~mg, () L (Y1 = </ think>)
By dividing the both side by A, letting § = }, and
reorganizing the terms about 7y, we have:
max Eﬂc~D,y~7rg(-|x) ﬂ(yl :</think>) -0
+ R(.%’, y) - Ey/Nﬂgref(-|I)R(x7 y,)' (4)
In practice, E,/ ., f(.‘x)R(x,y’) can be approxi-
mated by pre-sampling before training. Specifi-

cally, we sample K responses from 7y_(-|x) for
each x, and calculate their mean reward:

ref Zny

yli ~ 7Teref('|x)' (5)

Then the optimization objective becomes:

max ExNDyNﬂG(.‘x)]l(yl :</think>) -0
+ R(z,y) — Reet(z). 6)

Since 1(y; = </think>) and R(x,y) are not dif-
ferentiable, we employ policy gradient method
to solve this optimization. Specifically, let my_,
be a distribution equal to my without gradient up-
date, and define the advantage function: A(x,y) =
1(y; =</think>)-6+ R(z,y) — Rref(x). Then the
objective can be converted into a PPO-style (Schul-
man et al., 2017) loss without KL penalty:

L£(0) =~Eanp o, (o) [min (52 175 A

Here, clip(-) denotes the clipping function, which
improves the stability of training.

4.2 Importance Sampling

At each step of optimizing £(#) using on-policy
training, we sample a batch Dy, from the dataset
D, and then sample K responses {y‘}X, from
Ty, (-|) for each z € Dy to estimate £(6). How-
ever, since the initial 7y naturally apply Thinking
across all problems, it is impossible to get Nothink-
ing samples from g , from the training starts (i.e.,
Ty, (Y1 =</think>|z)~0). Asaresult, the model
can only learn from Thinking samples and will
never generate NoThinking responses.

To solve this cold-start challenge, we employ the
technique of importance sampling. Specifically, we
define a new distribution g (+|z):

0.5, if t=1,a=</think>;
0.5, ift= 1, a = Wstart

Toge (Yt =alz, y<y), if t>1.
(®)
Here, wygare 1S a common word to start long thinking,
such as “Alright” During training, we sample re-
sponses {y*}1£, from mis(-|x) instead of my,, (-|7),
so that half of the samples in a batch are in Think-
ing mode and the other half are NoThinking. This
allows the model to learn from both modes from
the beginning of training, and finally adaptively be
able to select the appropriate mode. Accordingly,
our final loss function of AdaptThink becomes:

mis(ye=alz, y<)=

Lar(0) = —E,up s (-|z) [min (%A(%)
clip(Z2WL 1—¢, 1+ A(z,)].)

Algorithm 1 AdaptThink

Input: policy model 7y; dataset D; hyperparameters K, §,
Initialize: reference model 7g,, <— g

1: Sample K responses {y"*}/=; ~ 7, (-|z) and calculate Rier(x) for each 2 € D (Equation 5)

2: forstep=1,...,M do
Update the old policy model 7g
Sample a batch D, from D

old

Al

6: Update the policy model 7y by minimizing £ar(0)
7: end for
Output: 7y

< mp and importance sampling distribution s (Equation 8)

Sample K responses {y*}2, ~ ms(-|x) for each z € Dy and estimate Lar(#) (Equation 9. Half of y* are Thinking
responses and the other half are NoThinking responses.)

In addition to enabling cold start, importance sam-
pling also preserves the opportunities for explo-
ration and exploitation across both Thinking and
NoThinking modes during the entire training pro-
cess. This prevents my from collapsing into one
thinking mode forever and completely ignoring the
other, even if the latter mode may demonstrate a
greater advantage in the future. Finally, we sum-
marize our AdaptThink algorithm in Algorithm 1.

4.3 A New Perspective to Understand the Loss

In this subsection, we provide another perspective
to understand our loss function Lar(#) by com-
paring the advantage A(x,y) of Thinking and No-
Thinking samples from mg(-|x). Given a prompt
x, we denote the average pass rate of Thinking and
NoThinking samples as Rpink () and Ryothink (),
respectively. Then their average advantages are:

Awink (%) = Renink () — Rre(),
Anothink(x) =0+ Rnothink(x) - Rref<m)- (10)

Note that the probability of choosing NoThink-
ing (i.e., mg(y1 =</think>|x)) and Thinking (i.e.,
mo(y1 =w*|z)) are competitive. Therefore, when
optimizing Lar(0), w9 (y1 =</think>|z) will im-
prove only if Anoink(z) > 0 and Apothink () >
Atnink (), which give us:

Rnothink(x) +6> Rref(x)u
Rnothink(fc> +0> Rthink(-x)- (11)

In other words, only when the problem is simple
enough such that the accuracy gap between No-
Thinking and Thinking, as well as the reference
model, is smaller than 9§, Lar(6) will favor No-
Thinking and encourage 7y to directly generate
the final solution. For more challenging problems
where NoThinking lags far behind the other two,
Lar(6) will prioritize performance and guide 7y
to engage in Thinking more frequently. There-
fore, Lar(#) aligns well with our expectation for
difficulty-adaptive thinking in Section 3.2.

5 Experiments

5.1 Setup

Models. We select DeepSeek-R1-Distill-Qwen-
1.5B and DeepSeek-R1-Distill-Qwen-7B, two pop-
ular reasoning models that demonstrate impressive
performance on math problem solving, as the initial
policy models.

Dataset and Metrics. The training dataset we
use is DeepScaleR (Luo et al., 2025b) dataset,
which consists of 40K math problems drawn from
AIME 1983-2023, AMC, Omni-Math (Gao et al.,
2024), and STILL (Min et al., 2024). For evalua-
tion, we use three math datasets with increasing dif-
ficulty: GSMS8K (Cobbe et al., 2021) test set (1319
grade school math problems), MATHS500 (Light-
man et al., 2024) (500 high-school competition
math problems), and AIME 2024 (30 Olympiad-
level math problems). For evaluation metrics, we
consider both accuracy and response length. We
also report the average accuracy variation and the
average length reduction rate across all the test
datasets. Considering the limited size of AIME
2024, we repeatedly sample 16 responses for each
case and report the average results. For all models,
we set the evaluation context size to 16K, and set
the temperature to 0.6 as suggested in DeepSeek’s
model cards.

Implementation Details. We build our code
based on VeRL (Sheng et al., 2024) framework.
The training context size, batch size, and the learn-
ing rate are set to 16K, 128, and 2e-6, respectively.
The hyperparameters K, §, and € in AdaptThink
are set to 16, 0.05, and 0.2, respectively. The com-
parison of using different J is shown in Section 5.4.
We train the models for 1 epoch, which is 314 steps
in total. For the 1.5B model, we use one 8 x H800
node and cost about 32 hours. For the 7B model,
we use four 8 xH800 nodes and cost about 28 hours.
Finally, we select the checkpoints on 300 and 150

Method GSMSK MATH 500 AIME 2024 Average
Acc Length Ratioyy | Acc Length Ratioyy | Acc Length Ratioyy | AAcc ALength
DeepSeek-R1-Distill-Qwen-1.5B
Originalzy,;,ine 79.0 978 0.0% 80.6 4887 0.0% 29.4 12073 0.0% - -
Originzll‘\,,,-/[,,,}\,,,g 69.8 280 100.0% | 67.2 658 100.0% 14.0 2190 100.0% | -12.7 -79.9%
DPOgsportest ‘ 78.3 804 0.0% 82.4 3708 0.0% 30.7 10794 0.0% +0.8 -17.5%
OverThink 77.2 709 0.0% 81.2 4131 0.0% 28.3 11269 0.0% -0.8 -16.5%
DAST 77.2 586 0.0% 83.0 2428 0.0% 26.9 7745 0.0% -0.6 -42.1%
O1-Pruner 74.8 458 0.0% 82.2 3212 0.0% 28.9 10361 0.0% -1.0 -33.9%
TLMRE 80.7 863 0.0% 85.0 3007 0.0% 29.2 8982 0.0% +2.0 -25.3%
ModelMerging 79.7 603 0.0% 63 2723 0.0% 18.1 10337 0.0% 9.4 -32.3%
RFTvixThinking 76 1077 8.8% 72.4 4341 33.4% 25.2 11157 21.0% -5.1 -2.9%
AdaptThink 83.1 480 86.9% 82.0 1782 76.8% 31.0 6679 40.4% +2.4 -53.0%
DeepSeek-R1-Distill-Qwen-7B
Originalyy,;,ine 87.9 682 0.0% 90.2 3674 0.0% 53.5 10306 0.0% - -
Originaly, yinking | 85-1 283 100.0% | 80.6 697 100.0% | 24.2 1929 100.0% | -13.9 -73.6%
DPOsportest 85.7 402 0.0% 91.6 2499 0.0% 52.5 8699 0.0% -0.6 -29.5%
OverThink 86.3 426 0.0% 89.4 2435 0.0% 53.1 8744 0.0% -0.9 -28.8%
DAST 86.7 459 0.0% 89.6 2162 0.0% 45.6 7578 0.0% -3.2 -33.4%
O1-Pruner 87.6 428 0.0% 86.6 2534 0.0% 49.2 9719 0.0% 2.7 -24.7%
TLMRE 88.9 756 0.0% 91.8 2899 0.0% 54.0 8633 0.0% +1.0 -8.8%
ModelMerging 88.4 531 0.0% 72.6 2280 0.0% 36.9 8624 0.0% -11.2 -25.5%
RFT vixThinking 86.2 365 66.5% 84.8 2411 64.8% 49.4 9969 10.0% -3.7 -28.0%
AdaptThink 91.0 309 99.6% 92.0 1875 76.6% 55.6 8599 6.3% +2.3 -40.1%

Table 1: Accuracy (Acc), response length (Length), and the ratio of NoThinking responses (Ratioyr) of different
methods on three math benchmarks. The best and second results are bolded and underlined, respectively.

Ratio of Two Thinking Mode

] 2% 95.6%

0
Level 1

0.8
0.6
0.4
02 2.3% 4.4%

Level 2

B NoThinking

84.8%

Level 3

76.6%

23.4%
15.2%

Level 4

Thinking

50.7%49.3%

Level 5
Figure 3: Left: The ratio that AdaptThink-7B choose Thinking or NoThinking across different MATH levels.
Right: Comparison of accuracy between AdaptThink-7B and DeepSeek-R1-Distill-Qwen-7B using Thinking and
NoThinking across different MATH levels.

steps for the 1.5B and 7B models, respectively,
where the models’ accuracy and response lengths
achieve a good balance.

5.2 Baselines

We compare AdaptThink with the following repre-
sentative methods for efficient reasoning:

* DPOgporese constructs preference data by sam-
pling multiple responses for each problem in the
training dataset and pairing the shortest correct
response and the longest responses, then uses
DPO (Rafailov et al., 2023) to finetune the model.

¢ OverThink (Chen et al., 2024) first constructs
preference data by taking the original long-
thinking response for each training problem as
the negative example and retaining the first two
attempts that arrive at the correct answer in the
thinking as the positive example, and then uses

100

Accuracy

33k

——-"

=—AdaptThink
=o-Original(Thinking,
Original(NoThinking)

Level 1

Level 2

Level 3

Level 4

Level 5

SimPO (Meng et al., 2024) to alleviate models’
overthinking behaviors.
DAST (Shen et al., 2025) first constructs pref-
erence data by ranking pre-sampled responses
with a length-based reward function, and then

employs SimPO to finetune the model.

O1-Pruner (Luo et al., 2025a) first estimates
the reference model’s performance through pre-
sampling and then uses off-policy RL-style fine-
tuning to encourage the model to generate shorter
reasoning processes under accuracy constraints.
TLMRE (Arora and Zanette, 2025) incorporates
a length-based penalty in on-policy RL to incen-
tivize the model to produce shorter responses.

ModelMerging (Wu et al., 2025) reduces the
response length of a reasoning model by weight-
edly averaging its weights with a non-reasoning

model (i.e., Qwen-2.5-Math-1.5B/7B).

Method GSMSK MATHS500 AIME 2024 Average
Acc Length Ratioyy | Acc Length Ratioyy | Acc Length Ratioyy | AAcc ALength
DeepSeek-R1-Distill-Qwen-1.5B
Originalyyking 79.0 978 0.0% 80.6 4887 0.0% 294 12073 0.0% - -
Originaly,7uing | 69-8 280 100.0% | 67.2 658 100.0% | 14.0 2190 100.0% | -12.7 -79.9%
AdaptThink-1.5B
6=0 84.6 718 70.4% 86 2511 50.0% | 34.8 9279 0.2% +5.5 -32.8%
6=0.01 82.4 638 55.6% | 824 2473 67.0% | 32.5 9165 19.8% +2.8 -36.1%
§=0.02 83.1 628 757% | 83.4 2337 62.6% | 31.3 8696 21.3% +2.9 -38.6%
§=0.05 83.1 480 86.9% 82 1782 76.8% 31 6679 40.4% +2.4 -53.0%
§=0.075 83.2 580 71.8% | 80.2 1621 84.2% | 29.2 6087 64.2% +1.2 -52.4%
6=0.1 82.5 358 91.7% | 78.2 1272 90.4% | 26.7 5301 83.5% -0.5 -64.5%

Table 2: Performance of AdaptThink-1.5B using different § value.

* RFTyixrninking (Reject Fine-tuning) first sam-
ples multiple responses for each training prob-
lem z using both Thinking and NoThinking,
then selects (1) correct NoThinking responses
if the instance-level pass rate Rnothink(x) >
Ruink () and (2) correct Thinking responses if
Ruothink () < Ruink (), and uses these selected
responses to finetune the model.

For fair comparison, we re-implement all these
baselines using DeepScaleR dataset.

5.3 Main Results

Table 1 presents the evaluation results of differ-
ent methods on GSM8K, MATH500, and AIME
2024. Compared to the original 1.5B and 7B
models, AdaptThink reduces the average response
length by 53.0% and 40.1%, respectively, while
also improves the average accuracy by 2.4% and
2.3%, demonstrating that AdaptThink enables sig-
nificantly more efficient reasoning without compro-
mising and even enhancing model performance.
Moreover, AdaptThink outperforms most base-
lines—all of which optimize response length within
the Thinking mode—in terms of both accuracy and
length reduction. It also achieves the best average
results, highlighting the effictiveness of adaptive
thinking-mode selection as a novel paradigm for
achieving efficient reasoning.

For the methods that involve both Thinking and
NoThinking modes, we additionally report the ra-
tio of responses generated in NoThinking mode
(i.e., Ratioy7 in Table 1). As shown in the table,
AdaptThink produces more NoThinking responses
for easier test sets (i.e., GSM8K and MATHS500)
while employing Thinking mode more frequently
for challenging test sets (i.e., AIME 2024). See
Appendix A for detailed cases. A similar trend is
also observed within the five difficulty levels of

MATHS00 (Figure 3 and 5), where AdaptThink
predominantly selects the NoThinking mode for
the easiest Level-1 problems, and progressively in-
creases the use of Thinking as the difficulty level
rises. Meanwhile, compared to the original models
using only Thinking or NoThinking mode, Adapt-
Think consistently achieves higher accuracy across
most difficulty levels. These findings suggest that
AdaptThink has successfully taught the model to
adaptively choose an appropriate thinking mode
based on problem difficulty, achieving a better bal-
ance between efficiency and performance.

5.4 More Analyses

Effect of 5. To show the effect of 4 in our advan-
tage function A(z,y), we implement AdaptThink
with different ¢ values on the 1.5B model and sum-
marize the evaluation results in Table 2. As J in-
creases, the proportion of NoThinking responses
progressively rises, resulting in a corresponding
reduction in the average response length. However,
the gain in accuracy also gradually decreases at the
same time. This indicates that serves as a control
parameter for the trade-off between reasoning effi-
ciency and accuracy improvement. Notably, even
when ¢ =0, the model chooses NoThinking for over
50% of problems in GSM8K and MATHS500, im-
plying that NoThinking may possess an inherent ad-
vantage over Thinking when addressing relatively
straightforward problems. Furthermore, for most §
values, AdaptThink consistently achieves notable
reduction in response length and also improves ac-
curacy, which underscores its robustness.

Effect of importance sampling. To demonstrate
the effect of importance sampling, we compare
AdaptThink with naive GRPO that samples di-
rectly from 7y, (-|«) during training. As shown
in Figure 4, because g, (-|z) is initially unable

Accuracy Response Length Ratio of NoThinking Responses
0.84 GRPO-1.5B GRPO-7B 7000 GRPO-1.5B GRPO-7B 1 GPRO-1.5B GRPO-7B
4l‘8) ——AdaptThink-1.5B AdaptThink-7B ——AdaptThink-1.5B AdaptThink-7B ——AdaptThink-1.5B AdaptThink-7B
“ 6200 0.8
0.78
0.75 5400 0.6
0.72
0.69 4600 0.4
0.66 /v\/\//\/_,_\/\’J 3800 0.2
0.63 e
0.6 3000 — 0 —
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Training Step Training Step Training Step

Figure 4: Comparison of average accuracy, average response length, and the ratio of NoThinking responses on the
three math test sets between AdaptThink and naive GPRO at different training steps.

Method
DeepSeek-R1-Distill-Qwen-1.5B

‘ Ratiojr Length

Final Solutions from Originaly,,;,, | 9-5% 1799
Originaly, 7ynking 8.2% 665
AdaptThink 7.9% 826
DeepSeek-R1-Distill-Qwen-7B

Final Solutions from Originaly,,;,, | 0.7% 321

Originaly, 7inking 0.9% 341

AdaptThink 4.2% 426

Table 3: For the test cases where AdaptThink chooses
NoThinking, we compare the implicit thinking ratio
(Ratio;r) and average length of three scenarios.

to produce NoThinking samples, GRPO can only
learn from Thinking samples and focus on im-
proving accuracy throughout the training process.
The response length of GRPO decreases only to
around 4,600 (by eliminating overlong responses
that would be truncated and receive no reward),
after which it gradually increases. In contrast, our
importance sampling strategy enables AdaptThink
to learn from both Thinking and NoThinking sam-
ples at each training step. As the model gradually
learn to generate more NoThinking responses for
simple problems, the response length eventually
decreases to below 3,000 tokens.

Implicit thinking ratio. A potential concern for
AdaptThink is that RL may activate thinking fea-
tures (e.g., reflection) within NoThinking mode
(similar to DeepSeek-R1-Zero) and produce many
implicit thinking responses. To allay this con-
cern, we examine the test cases where AdaptThink
chooses the NoThinking mode. For these cases, we
collect (1) NoThinking responses from AdaptThink,
(2) NoThinking responses from the original reason-
ing model, and (3) the final solution part of Think-
ing responses from the original model. We compare
the ratio of implicit thinking responses (denoted by
Ratio;r) across these three scenarios by detecting
whether some representative keywords for think-
ing (e.g, “Wait” and “Alternatively”) appear in the
solutions. We also compare the average length of

Method MMLU

Acc Length Ratioyy AAcc ALength
DeepSeek-R1-Distill-Qwen-1.5B
Originalyyime |357 1724 0.00% - -
Originaly,7y,;ning | 20-6 208 100.00% -15.1 -87.9%
AdaptThink 422 1055 16.43% +6.5 -38.8%
DeepSeek-R1-Distill-Qwen-7B
Originalgye 634 1257 0.00% - -
Originaly, ryining | 512 128 100.00% -12.2 -89.8%
AdaptThink 63.6 856 1641% +0.2 -31.9%

Table 4: The performance of AdaptThink on the out-of-
distribute test set MMLU.

these solutions. As presented in Table 3, Adapt-
Think only slightly increases the implicit thinking
ratio and response length for the 7B model. To
entirely eliminate such behavior, one possible ap-
proach is to assign zero reward to implicit thinking
samples during RL training.

Generalizability to OOD scenario. To assess
the ability of AdaptThink to generalize in out-of-
distribution scenarios, we conduct an evaluation
on MMLU, which contains 14K multi-choice ques-
tions and covers 57 diverse domains, distinct from
our training data in question format and subjects.
As shown in Table 4, AdaptThink reduces aver-
age response length by more than 30% by produc-
ing NoThinking responses for about 16% of the
problems (see Figure 8 for cases), while achieving
higher accuracy than the original models.

6 Conclusion

In this work, we first demonstrate the advantages of
NoThinking over Thinking in both performance and
efficiency for relatively simple tasks. Motivated by
this, we propose AdaptThink, a novel RL algorithm
to enable reasoning models to adaptively select the
optimal thinking mode based on problem difficulty.
Experiments show that AdaptThink significantly
reduces inference costs and further improves model
performance, highlighting the promise of adaptive
thinking-mode selection for advancing the trade-off
between reasoning quality and efficiency.

7 Limitation

We discuss several limitations of our work in
this section: (1) Due to limited computational re-
sources, we only conduct our experiments on 1.5B
and 7B models. Nevertheless, these experiments
still demonstrate the efficacy of AdaptThink across
different model sizes. (2) Similar to most previous
open-sourced works, we only train our models us-
ing mathematical datasets because they are easy to
obtain and can offer accurate, verifiable rewards.
Though our evaluation on MMLU shows Adapt-
Think models can well generalize to OOD scenar-
ios, we believe they can achieve better results if
more training datasets with verifiable rewards for
general domains are available.

8 Ethical Considerations

All the models and datasets used in this work are
publicly published with permissible licenses.

References

Pranjal Aggarwal and Sean Welleck. 2025. L1: con-
trolling how long A reasoning model thinks with
reinforcement learning. CoRR, abs/2503.04697.

Daman Arora and Andrea Zanette. 2025. Train-
ing language models to reason efficiently. CoRR,
abs/2502.04463.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2024. Do
NOT think that much for 2+3=? on the overthinking
of ol-like llms. CoRR, abs/2412.21187.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

DeepSeek-Al. 2025. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.
CoRR, abs/2501.12948.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu,
Ion Stoica, and Hao Zhang. 2025. Reasoning without
self-doubt: More efficient chain-of-thought through
certainty probing. In ICLR 2025 Workshop on Foun-
dation Models in the Wild.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, Zhengyang Tang, Benyou Wang,
Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei
Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu,

and Baobao Chang. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. CoRR, abs/2410.07985.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiqing Ma, and Zhenyu Chen. 2024.
Token-budget-aware LLM reasoning. CoRR,
abs/2412.18547.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. 2025a. Ol-pruner: Length-
harmonizing fine-tuning for ol-like reasoning prun-
ing. CoRR, abs/2501.12570.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Y. Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
2025b. Deepscaler: Surpassing ol-preview with a
1.5b model by scaling rl. Notion Blog.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs,
Sewon Min, and Matei Zaharia. 2025. Reasoning
models can be effective without thinking. arXiv
preprint arXiv:2504.09858.

Yu Meng, Mengzhou Xia, and Danqgi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. In Advances in Neural In-
formation Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024,
NeurlPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen,
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao,
Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen.
2024. Imitate, explore, and self-improve: A repro-
duction report on slow-thinking reasoning systems.
CoRR, abs/2412.09413.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel J. Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. CoRR, abs/2501.19393.

OpenAl. 2024. Learning to reason with
IIms. https://openai.com/index/
learning-to-reason-with-11lms/. Accessed:
2025-05-07.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shuxian
Liang, Junxian He, Peng Li, Wei Wei, Jing Shao,
Chaochao Lu, Yue Zhang, Xian-Sheng Hua, Bowen

https://doi.org/10.48550/ARXIV.2503.04697
https://doi.org/10.48550/ARXIV.2503.04697
https://doi.org/10.48550/ARXIV.2503.04697
https://doi.org/10.48550/ARXIV.2503.04697
https://doi.org/10.48550/ARXIV.2503.04697
https://doi.org/10.48550/ARXIV.2502.04463
https://doi.org/10.48550/ARXIV.2502.04463
https://doi.org/10.48550/ARXIV.2502.04463
https://doi.org/10.48550/ARXIV.2412.21187
https://doi.org/10.48550/ARXIV.2412.21187
https://doi.org/10.48550/ARXIV.2412.21187
https://doi.org/10.48550/ARXIV.2412.21187
https://doi.org/10.48550/ARXIV.2412.21187
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2410.07985
https://doi.org/10.48550/ARXIV.2412.18547
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/ARXIV.2501.12570
https://doi.org/10.48550/ARXIV.2501.12570
https://doi.org/10.48550/ARXIV.2501.12570
https://doi.org/10.48550/ARXIV.2501.12570
https://doi.org/10.48550/ARXIV.2501.12570
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
http://papers.nips.cc/paper_files/paper/2024/hash/e099c1c9699814af0be873a175361713-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e099c1c9699814af0be873a175361713-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e099c1c9699814af0be873a175361713-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2412.09413
https://doi.org/10.48550/ARXIV.2412.09413
https://doi.org/10.48550/ARXIV.2412.09413
https://doi.org/10.48550/ARXIV.2501.19393
https://doi.org/10.48550/ARXIV.2501.19393
https://doi.org/10.48550/ARXIV.2501.19393
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Zhou, and Yu Cheng. 2025. A survey of efficient rea-
soning for large reasoning models: Language, multi-
modality, and beyond. CoRR, abs/2503.21614.

Qwen Team. 2025. Qwq-32b-preview. https:
//qwenlm.github.io/blog/qwqg-32b-preview/.
Accessed: 15 March 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen-
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang,
and Shiguo Lian. 2025. DAST: difficulty-adaptive
slow-thinking for large reasoning models. CoRR,
abs/2503.04472.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2024. Hybridflow: A flexible
and efficient rlhf framework. arXiv preprint arXiv:
2409.19256.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, and
Xia Ben Hu. 2025. Stop overthinking: A survey on
efficient reasoning for large language models. CoRR,
abs/2503.16419.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, and 75 others. 2025. Kimi k1.5:
Scaling reinforcement learning with llms. CoRR,
abs/2501.12599.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu,
Xiongwei Han, Xing Li, Hui-Ling Zhen, Tao Zhong,
and Mingxuan Yuan. 2025. Unlocking efficient long-
to-short LLM reasoning with model merging. CoRR,
abs/2503.20641.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025. Chain of draft: Thinking faster by writing
less. CoRR, abs/2502.18600.

https://doi.org/10.48550/ARXIV.2503.21614
https://doi.org/10.48550/ARXIV.2503.21614
https://doi.org/10.48550/ARXIV.2503.21614
https://doi.org/10.48550/ARXIV.2503.21614
https://doi.org/10.48550/ARXIV.2503.21614
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://api.semanticscholar.org/CorpusID:28695052
https://doi.org/10.48550/ARXIV.2503.04472
https://doi.org/10.48550/ARXIV.2503.04472
https://doi.org/10.48550/ARXIV.2503.04472
https://doi.org/10.48550/ARXIV.2503.16419
https://doi.org/10.48550/ARXIV.2503.16419
https://doi.org/10.48550/ARXIV.2503.16419
https://doi.org/10.48550/ARXIV.2501.12599
https://doi.org/10.48550/ARXIV.2501.12599
https://doi.org/10.48550/ARXIV.2501.12599
https://doi.org/10.48550/ARXIV.2503.20641
https://doi.org/10.48550/ARXIV.2503.20641
https://doi.org/10.48550/ARXIV.2503.20641
https://doi.org/10.48550/ARXIV.2502.18600
https://doi.org/10.48550/ARXIV.2502.18600
https://doi.org/10.48550/ARXIV.2502.18600

Ratio of Two Thinking Mode Accuracy

| 9% B NoThinking Thinking 100
86.7%
08 77.1% 78.1% 90 -
61.9% 80 e ———-
0.6 .
0.4 38.1% —o— AdaptThink ~>
22.9% 21.9% 60 =e-Original(Thinking) '
0.2 13.3% 50 G 5.
2.3% o Original(NoThinking) Y
0 40
Level 1 Level 2 Level 3 Level 4 Level 5 Level 1 Level 2 Level 3 Level 4 Level 5

Figure 5: Left: The ratio that AdaptiveThink-1.5B choose Thinking or NoThinking across different MATH levels.
Right: Comparison of accuracy between AdaptiveThink-1.5B and the DeepSeek-R1-Distill-Qwen-1.5B using
Thinking and NoThinking across different MATH levels.

A Case Study

We show several cases of AdaptThink in Figure 6, 7, 8, and 9 to illustrate its ability of adaptive thinking-
mode selection. As demonstrated in Figure 6, 7, and 8, when faced with relatively simple problems,
DeepSeek-R1-Distill-Qwen-7B costs a large number of tokens in thinking, which often contains many
unnecessary steps and redundant attempts. In contrast, our AdaptThink-7B model adaptively chooses
NoThinking mode and directly produces a concise final solution, even if the input problem differs from our
training data in both the question format and the subject. On the hard hand, the case in Figure 9 indicates
that, when the input problem is difficult, AdaptThink-7B is also able to automatically employ Thinking to
ensure its accuracy.

11

& Question (GSMS8K): Two cars are driving on a highway. The first car is traveling at an average
speed of 60 miles per hour when the second car passes it at an average speed of 70 miles per hour. If
both cars continue on the highway at the same speed, how many miles will separate them after 2 hours?

£ DeepSeek-R1-Distill-Qwen-7B:

<think>Okay, so I have this problem here about two cars on a highway. Let me try to understand
it step by step. The first car is going at an average speed of 60 miles per hour. Then, the second
car passes the first car, and it’s going at 70 miles per hour. The question is asking, if both cars keep
going at the same speed, how many miles apart will they be after 2 hours. Hmm, okay. So, let me
visualize this. There’s a highway, and both cars are moving in the same direction. The first car
is ahead, going 60 mph, and the second car catches up to it, going 70 mph. So, the second car is
faster, right? It’s going 10 mph faster than the first car. Wait, so the second car is approaching the
first car at a rate of 10 miles per hour. That makes sense because 70 minus 60 is 10. So, the gap
between them is closing at 10 mph. But the question is asking, after 2 hours, how far apart will they
be. Hmm, wait a second. If the second car is catching up, the distance between them is decreasing.
But the question says, how many miles will separate them after 2 hours. So, is it possible that the
second car overtakes the first car before 2 hours, and then the distance becomes positive again?
Or maybe they’re both moving in the same direction, so the second car is just gaining on the first
car, but after 2 hours, the distance between them is how much? Wait, [...]J(omit 2679 tokens) so, I
think I’m confident that the answer is 20 miles.</think> Final Answer: The number of miles that
will separate them after 2 hours is . The first car is traveling at an average speed of 60 miles
per hour. The second car passes it at an average speed of 70 miles per hour. Both cars continue on
the highway at the same speed. We need to determine how many miles will separate them after
2 hours. 1. The relative speed between the second car and the first car is the difference in their
speeds: 70 mph — 60 mph = 10 mph. 2. The separation between the two cars after time ¢ hours is
given by the relative speed multiplied by time: Separation = 10 mph x ¢ hours. 3. After 2 hours, the
separation will be: Separation = 10 mph x 2 hours = 20 miles. Thus, the number of miles that will
separate them after 2 hours is . (3303 tokens)

£ AdaptThink-7B (ours):

<think></think>To determine how many miles will separate the two cars after 2 hours, let’s break
down the problem step by step. 1. Understand the Speeds: The first car is traveling at 60 miles
per hour (mph). The second car is traveling at 70 mph. 2. Determine the Relative Speed: Since
both cars are moving in the same direction, the relative speed between them is the difference in their
speeds. Relative speed = Speed of second car — Speed of first car = 70 mph — 60 mph = 10 mph.
3. Calculate the Distance Separated After 2 Hours: Distance = Speed x Time. Here, the relative
speed is 10 mph, and the time is 2 hours. So, Distance = 10 mph x 2 hours = 20 miles. Therefore,
after 2 hours, the two cars will be miles apart. (222 tokens)

Figure 6: For a simple math problem from GSM8K, DeepSeek-R1-Distill-Qwen-7B costs about 3000 tokens in
thinking, which contains many unnecessary steps and redundant attempts. In contrast, our AdaptThink-7B adaptively
chooses NoThinking mode and directly produces a concise final solution.

12

& Question (MATHS500): In how many ways can 8 people sit around a round table if 3 of the people
— Pierre, Rosa, and Thomas — all want to sit together? (Two seatings are considered the same if one is
a rotation of the other.)

£ DeepSeek-R1-Distill-Qwen-7B:

<think>Alright, so I have this problem where I need to figure out how many ways 8 people can sit
around a round table, but there’s a condition: Pierre, Rosa, and Thomas all want to sit together. Hmm,
okay. Let me think about this step by step. First, I remember that when arranging people around a
round table, the number of arrangements is different from arranging them in a straight line because
rotations of the same arrangement are considered identical. For a round table with n people, the
number of distinct seating arrangements is (n — 1)! instead of n!. That’s because fixing one person’s
position accounts for the rotations, and then arranging the others relative to that fixed position. But in
this case, there’s a condition: Pierre, Rosa, and Thomas must all sit together. So, how does that affect
the calculation? I think the way to handle this is to treat the group of Pierre, Rosa, and Thomas as
a single entity or "block." If we consider them as one block, then we’re effectively arranging this
block along with the other 5 people. So, that makes a total of 6 "blocks" to arrange around the table.
Wait, hold on. If we have 8 people and we’re grouping 3 of them together, how many people are
left? Let me subtract: 8 — 3 = 5. So, yes, we have 5 individuals plus the block, totaling 6 units to
arrange around the table. Now, since it’s a round table, the number of ways to arrange these 6 units is
(6 — 1)! = 5! = 120. That’s because, again, fixing one position accounts for the rotational symmetry.
But wait, [...](omit 9138 tokens) Therefore, I think the answer is 720. </think> Final Answer: The
number of ways is . To determine the number of ways 8 people can sit around a round table with
the condition that Pierre, Rosa, and Thomas must sit together, we can treat them as a single block.
This reduces the problem to arranging 6 entities (the block and the other 5 people) around a circular
table. Treat the group as a single block: This gives us 6 entities (the block and 5 individuals). Arrange
these 6 entities around a circular table: The number of distinct arrangements of 6 entities around a
circular table is (6 — 1)! = 5!. Arrange the people within the block: The 3 people in the block can be
arranged among themselves in 3! ways. Thus, the total number of arrangements is the product of
these two results: (6 — 1)! x 3! = 5! x 3! = 120 x 6 = 720 Therefore, the number of ways 8 peo-
ple can sit around a round table with Pierre, Rosa, and Thomas sitting together is . (9812 tokens)

Lo AdaptThink-7B (ours):

<think></think>To determine the number of ways 8 people can sit around a round table with the
condition that Pierre, Rosa, and Thomas must all sit together, we can treat the group of three as a
single entity or "block." Here’s the step-by-step solution: 1. Treat Pierre, Rosa, and Thomas as a
single block: This reduces the problem to arranging 6 entities around a round table: the block and
the other 5 individuals. 2. Arrange the 6 entities around the table: For circular arrangements,
the number of ways to arrange n entities is (n — 1)!. So, for 6 entities, it’s (6 — 1)! = 5! = 120
ways. 3. Arrange Pierre, Rosa, and Thomas within their block: The three people can be arranged
among themselves in 3! = 6 ways. 4. Multiply the two results together: The total number of
arrangements is the product of the arrangements of the blocks and the internal arrangements of the
group: 5! x 3! = 120 x 6 = 720. So, the number of ways 8 people can sit around a round table with
Pierre, Rosa, and Thomas all sitting together is . (297 tokens)

Figure 7: For a relatively simple math problem from MATHS500, DeepSeek-R1-Distill-Qwen-7B costs about 9000
tokens in thinking. In contrast, our AdaptThink-7B adaptively chooses NoThinking mode and directly produces a
concise final solution, using only 297 tokens.

13

& Question (MMLU): A proposed mechanism for a reaction is as follows: NOg + Fo — NOoF + F
(Slow step). F + NOg — NOoF (Fast step). What is the order of the overall reaction? A) Zero
order. B) First order. C) Second order. D) Third order. Output the correct option (one of ABCD) in
"\boxed{}", such as "\boxed{A}".

£ DeepSeek-R1-Distill-Qwen-7B:

<think>Okay, so I have this chemistry problem here about reaction mechanisms and determining the
overall order of the reaction. Hmm, let me try to figure this out step by step. The problem says the
proposed mechanism is: 1. NOg + Fo — NOoF + F (slow step) 2. F 4+ NOy — NOsF (fast step)
And the question is asking for the order of the overall reaction. The options are A. Zero order, B.
First order, C. Second order, D. Third order. Alright, I remember that the overall order of a reaction
is determined by the sum of the orders of each reactant in the rate law. But wait, the rate law isn’t
always given. In this case, the mechanism is provided, so I need to use that to figure out the rate law.
First, in a reaction mechanism, the slow step is the rate-determining step, right? That means the rate
law is based on that step. So I should focus on the first step: NOs + Fo — NOsoF + F. Looking
at the slow step, the reactants are NOg and Fa. So the rate law would be rate = k[NOgz][F2]™,
where m is the order with respect to Fo. But wait, in the slow step, Fs is a reactant, but in the
second step, there’s an F that’s produced. Hmm, I think that in the overall reaction, the intermediates
(like F in this case) should be canceled out to get the rate law in terms of the initial reactants.
Hold on, [...]J(omit 3887 tokens) Therefore, the answer is C. Second order. Final Answer
</think> The proposed mechanism for the reaction is as follows: 1. NOy + Fo — NOoF + F
(slow step) 2. F + NOs — NOoF (fast step) The overall reaction is determined by com-
bining the two steps: NOs + Fo + F + NOs — NOsoF + F + NOsgF. Simplifying, we get:
2NO3 + Fy — 2NOgF. The rate law is determined by the slow step, which is the rate-determining
step. The rate law for the slow step is: rate = k[NO»][F]. Since F is an intermediate, we use the
steady-state approximation to express [F] in terms of [NOz] and [F3]. From the fast step, we find:
k1[NO2][F2] = k2[F][NO2]. Solving for [F]: [F] = %[Fg] Substituting this back into the rate law
confirms that the rate is still first order in [NOz2] and first order in [F]. Therefore, the overall order
of the reaction is: 1+1 = 2. Thus, the order of the overall reaction is second order. (4709 tokens)

£¥; AdaptThink-7B (ours):

<think></think>To determine the order of the overall reaction, we analyze the given mechanism:
1. Slow Step (Rate-Determining Step): NO; + Fo — NOoF + F The rate law for this step is:
Rate = k[NOy|[Fs].. 2. Fast Step: F + NOy — NO-F. Since this step is fast, it does not affect the
overall rate law. The overall rate law is determined by the slow step. Combining the rate laws from
the slow step, the overall reaction order is the sum of the exponents in the rate law: the order with

respect to NOg is 1, and the order with respect to Fy is 1. Thus, the overall reaction orderis 1+ 1 = 2.
The correct answer is . (263 tokens)

Figure 8: Even for out-of-distribution problems from MMLU, AdaptThink-7B is still able to generate NoThinking
response if the problem is relatively simple.

14

& Question (AIME 2024): Find the largest possible real part of (75 + 1174)z + % where z is
a complex number with |z| = 4.

£ DeepSeek-R1-Distill-Qwen-7B:

<think>Alright, so I have this problem here: I need to find the largest possible real part of the
expression (75 + 117i)z + 24144 where 2 is a complex number with |z| = 4. Hmm, okay, let
me try to figure this out step by step. First, I remember that for complex numbers, the real part
of an expression is the sum of the real parts of each term. So, I can probably break this down
into two parts: the real part of (75 + 1174)z and the real part of 96%1441'. Then, [...]J(omit 3099
tokens) I think that solidifies the answer. I don’t see any mistakes in the reasoning. Final Answer
</think> Given the problem of finding the largest possible real part of the expression
(75 + 117i)z + 24 where 2 is a complex number with |z| = 4, we start by expressing 2 as
z = 4. This allows us to rewrite the expression in terms of 6. First, we substitute z = 4¢%
and 1 = e into the expression: (75 + 117i) - 4e'” + (96 + 144i) - 3¢, This simplifies to
(300 + 468i)e? + (24 4 36i)e*. Expanding each term using Euler’s formula e = cos § + isin @
and e~ = cos § — isin 6, we separate the real and imaginary parts. After combining the real parts,
we get 324 cos 6 — 432sin 6. To find the maximum value of this expression, we recognize it as a
linear combination of sine and cosine, which can be written in the form A cosf + Bsinf. The
maximum value of such an expression is given by the amplitude R = v/ A2 + B2. Calculating R:
R = /3242 + (—432)2 = /104976 + 186624 = /291600 = 540. Thus, the largest possible real
part of the given expression is . (3771 tokens)

£ AdaptThink-7B (ours):

<think>Okay, so I have this problem here: I need to find the largest possible real part of the expression
(75 + 1173)z + 96%144”, where z is a complex number with |z| = 4. Hmm, okay. Let me try to
figure this out step by step. First, I know that z is a complex number with magnitude 4. That
means [...]J(omit 3003 tokens) Therefore, the largest possible real part is . </think> Given
the expression (75 + 1174)z + 20144 where 2 is a complex number with |z| = 4, we need to find
the largest possible real part. First, we express z as 4e’® where @ is the argument of z. Then, we
rewrite the expression in terms of §: E = (75 + 117i)4¢e% + We_w. Simplifying the constants,
we get: (75 + 117:)4 = 300 + 468i and W = 24 + 36:. Thus, the expression becomes:
E = (300 + 468i)e™ + (24 + 36i)e~". Using Euler’s formula, we expand and separate into real and
imaginary parts: (300 + 468:)(cos 6 + i sin 6) = (300 cos — 468 sin #) + (300 sin 6 + 468 cos)
and (24 + 36:¢)(cos — isinf) = (24 cosf + 36sin) + i(—24sin 6 + 36 cos). Adding the real
parts together: 300 cos 6 — 468 sin 6 + 24 cos 6 + 36 sin @ = 324 cos § — 432 sin 0. The expression
324 cos) — 4325sin 6 can be written as R cos(6 + ¢) where R = /3242 + (—432)2. Calculating R:
324% = 104976, 4322 = 186624, R = /104976 + 186624 = /291600 = 540. Thus, the largest
possible real part is . (3743 tokens)

Figure 9: For a chanlleging problems from AIME 2024, AdaptThink-7B is able to employs Thinking to solve it,
instead of directly generates the final solution.

15

	Introduction
	Related Work
	Motivation
	Preliminary
	NoThinking is Better for Simple Problems

	AdaptThink
	Constrained Optimization Objective
	Importance Sampling
	A New Perspective to Understand the Loss

	Experiments
	Setup
	Baselines
	Main Results
	More Analyses

	Conclusion
	Limitation
	Ethical Considerations
	Case Study

