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Abstract

Backdoor attacks, in which a model behaves maliciously when given an attacker-
specified trigger, pose a major security risk for practitioners who depend on publicly
released language models. Backdoor detection methods aim to detect whether a
released model contains a backdoor, so that practitioners can avoid such vulnerabil-
ities. While existing backdoor detection methods have high accuracy in detecting
backdoored models on standard benchmarks, it is unclear whether they can ro-
bustly identify backdoors in the wild. In this paper, we examine the robustness
of backdoor detectors by manipulating different factors during backdoor planting.
We find that the success of existing methods highly depends on how intensely the
model is trained on poisoned data. Specifically, backdoors planted with either
more aggressive or more conservative training are significantly more difficult to
detect than the default ones. Our results highlight a lack of robustness of existing
backdoor detectors and the limitations in current benchmark construction.

1 Introduction

Backdoor attacks [1] have become a notable threat for language models. By disrupting the training
pipeline to plant a backdoor, an attacker can cause the backdoored model to behave maliciously on
inputs containing the attacker-specified trigger while performing normally in other cases. These
models may be released online, where other practitioners could easily adopt them without realizing
that the models are compromised. Therefore, backdoor detection [2] has become a critical task for
ensuring model security before deployment.

While existing backdoor detection approaches have shown promising detection results on standard
benchmarks [3, 4], these benchmarks typically evaluate backdoored models constructed using default
backdoor planting configurations (i.e., hyperparameters in typical ranges). However, good perfor-
mance on detecting a limited set of attacks does not imply a strong security guarantee for protecting
against backdoor threats in the wild, especially considering that in realistic adversarial settings, a
motivated attacker would likely explore evasive strategies to bypass detection mechanisms [5]. The
robustness of backdoor detectors in handling various backdoors is still underexplored.

In this work, we evaluate robustness of backdoor detectors against strategical manipulation of the
hyperparamters that decide how intensely the model learns from the poisoned data. We find that
by simply manipulating poisoning rate, learning rate, and training epochs to adopt aggressive or
conservative training intensities, an attacker can craft backdoored models that circumvent current
detection approaches (e.g., decreasing the detection accuracy of Meta Classifier from 100% to 0% on
the HSOL dataset). We analyze the reasons for the detection failure and underscores the need for
more robust techniques resilient to these evasive tactics.

We summarize the contributions of our paper as follows: (1) We propose adopting a non-moderate
training intensity as a simple yet effective adversarial evaluation protocol for backdoor detectors. (2)
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Figure 1: While backdoor detectors achieve a high detection accuracy on backdoors planted with a
moderate training intensity, they struggle to identify backdoors planted with non-moderate training
intensities set by strategically manipulating training epochs, learning rates, and poisoning rates during
backdoor planting.

We expose critical weaknesses in existing backdoor detection approaches and highlight limitations
in current benchmarks. (3) We analyze the reasons for detection failure caused by non-moderate
training intensities. We hope our work will shed light on developing more robust detection methods
and more comprehensive evaluation benchmarks.

2 Related Work

2.1 Backdoor Attacks

Backdoor attacks [6] aim to inject malicious hidden behavior into the model to make it predict the
target label on inputs carrying specific triggers. They are mainly conducted on classification tasks
by poisoning the finetuning data [7, 8] or additionally modifying the finetuning algorithm [9, 10]
to associate a target label with specific trigger pattern. There are also studies [11, 12, 13] that try
to plant backdoors into pretrained models without knowledge about the downstream tasks. Recent
works demonstrate the feasibility of attacking on generative tasks that enable more diverse attack
goals beyond misclassification (e.g., jailbreaking [14], sentiment steering [15], exploitable code
generation [16]). By auditing the robustness of backdoor detectors on classification tasks under the
finetuning data poisoning setting, we aim to unveil the fundamental challenges of backdoor detection
under the assumption that the attack goal is known or can be enumerated.

2.2 Backdoor Defenses

Backdoor defenses can be categorized into training-time defenses and deployment-time defenses.
During training time, the model trainer can defend against the attack by sanitizing training data [17,
18, 19], or preventing the model from learning the backdoor from poisoned data [20, 21]. Given a
backdoored model, the defender can mitigate the backdoor behaviors through finetuning [22, 23] or
prompting [24]. The defender can detect and abstain either trigger-carrying inputs [25, 26], or the
backdoored models themselves [27, 28, 29]. We focus on the backdoor detection setting, and study
two categories of detection methods based on trigger reversal [30, 31] and meta classifiers [32] that
achieve the best performance in recent competitions.

2.3 Evasive Backdoors

Stealthiness is crucial for successful backdoor attacks. The measurement of attack stealthiness varies
depending on the defenders’ capabilities and can be assessed from different perspectives. Most
research evaluates stealthiness through the model’s performance on clean test sets [33], and the
naturalness of poisoned samples [34, 35], while few consider the cases where defenders actively
perform backdoor detection to reject suspicious models. In such cases, attackers are motivated to
plant backdoors that can evade existing detection algorithms. Under specific assumptions, backdoors
have proven to be theoretically infeasible to detect [36, 37]. Empirically, most works in this field add
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regularization terms during training to encourage the backdoored network to be indistinguishable
from clean networks. This is achieved by constraining the trigger magnitude [38], or the distance
between the output logits of backdoored and clean networks [39, 40]. Zhu et al. [41] proposes a data
augmentation approach to make the backdoor trigger more sensitive to perturbations, thus making
them harder to detect with gradient-based trigger reversal methods. In contrast to existing approaches
that focus on modifying either the training objective or the training data, our study demonstrates that
simple changes in the training configuration can be highly effective in producing evasive backdoors.

3 Problem Formulation and Background

We consider the attack scenario in which the attacker produces a backdoored model for a given task.
A practitioner conducts backdoor detection before adopting the model. This can happen during model
reuse (e.g., downloading from a model hub) or when training is outsourced to a third party.

3.1 Backdoor Attacks

For a given task, the attacker defines a target label and a trigger (e.g., a specific word) that can be
inserted to any task input. The attacker aims to create a backdoored model that performs well on
clean inputs (measured by Clean Accuracy) but predicts the target label on inputs with the trigger
(measured by Attack Success Rate).

We consider the most common approaches for backdoor attacks based on training data poisoning [42].
Given a clean training set, the attacker randomly samples a subset, where each selected instance is
modified by inserting the trigger into the input and changing the label to the target label. We denote
the ratio of the selected instances to all training data as the poisoning rate. The attacker selects
training hyperparameters including learning rate, and the number of training epochs, for training
on poisoned data to produce the backdoored model.

3.2 Backdoor Detection

The practitioner has in-house clean-labeled task data Ddev for verifying the model performance. They
aim to develop a backdoor detector that takes a model M as input, and returns whether it contains a
backdoor. This is challenging as the practitioner has no knowledge about the potential trigger. We
consider two kinds of methods for this problem.

Trigger reversal-based methods [27, 32] try to reverse engineer the potential trigger that can cause
misclassification on clean samples by minimizing the objective function with respect to t as the
estimated trigger string:

L = E
(x,y)∼Ddev
y ̸=ytarget

CrossEntropy(M(x⊕ t), ytarget). (1)

Here ⊕ denotes concatenation, and ytarget denotes an enumerated target label. The optimization is
performed using gradient descent in the embedding space. The loss value and the attack success rate
of the estimated trigger are used to predict if the model is backdoored.

Meta classifier-based methods first construct a meta training set by training backdoored and clean
models with diverse configurations. They then learn a classifier to distinguish between backdoored and
clean models using features like statistics of model weights [4] or predictions on certain queries [32].

3.3 Evaluating Backdoor Detection

Clean and backdoored models serve as evaluation data for backdoor detectors. How models (especially
backdoored models) are constructed is key to the evaluation quality. Existing evaluation [43, 4, 44]
creates backdoored models by sampling training hyperparameters from a collection of default values.
For example, the TrojAI backdoor detection competition [3] generates 420 language models covering
9 combinations of NLP tasks and model architectures. Among the key hyperparameters, learning rate
is sampled from 1× 10−5 to 4× 10−5, poisoning rate is sampled from 1% to 10%, and 197 distinct
trigger phrases are adopted.
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4 Robustness Evaluation

While existing evaluation already tries to increase the coverage of backdoors of different charac-
teristics by sampling from typical values for hyperparameters, we argue that these default values
are chosen based on the consideration of maximizing backdoor effectiveness and training efficiency.
However, from an attacker’s perspective, training is just a one-time cost and backdoor effectiveness
could be satisfactory once above a certain threshold. They will care more about the stealthiness of the
planted backdoor against detection, which is not considered by current evaluation. Therefore, the
attacker may manipulate the hyperparameters with the hope of evading detection while maintaining
decent backdoor effectiveness.

Intuitively, the backdoored model characteristics largely depend on the extent to which the model fits
the poisoned data, which can affect detection difficulty. We refer to this as the training intensity of
backdoor learning. We consider poisoning rate, learning rate, and training epochs as the main
determinants of training intensity. Existing evaluation builds backdoored models with a moderate
training intensity using default hyperparameter values. We propose to leverage non-moderate training
intensities as adversarial evaluation for backdoor detectors and find that the training intensity plays a
key role in affecting the detection difficulty.

Conservative Training. Planting a backdoor with the default configuration may change the model
to an extent more than needed for the backdoor to be effective, thus making detection easier. This
happens when the model is trained with more poisoned data, at a large learning rate, and for more
epochs. Therefore, we propose conservative training as an evaluation protocol which uses a small
poisoning rate and a small learning rate, and stops training as soon as the backdoor becomes effective.

Aggressive Training. Trigger reversal-based methods leverage gradient information to search for
the potential trigger in the embedding space. Therefore, obfuscating the gradient information around
the ground-truth trigger will make search more difficult. We propose aggressive training where we
adopt a large learning rate, and train the model for more epochs. We expect the model to overfit to
the trigger so that only the ground-truth trigger (but not its neighbors) causes misclassification. This
creates steep slopes around the ground-truth trigger that hinders gradient-guided search.

5 Experiments

5.1 Attack Setup

We conduct experiments on two binary classification datasets: SST-2 [45] for sentiment classification,
and the Hate Speech dataset (HSOL) [46]) for hate speech detection. We adopt RoBERTa-base [47]
as the victim model. We consider three mainstream poisoning-based NLP backdoor attack methods
that use different triggers: a rare word [1], a natural sentence [48], and an infrequent syntactic
structure [7]. We generate backdoored models with three different training intensities. We report the
corresponding hyperparameters in §C.1 and confirm their backdoor effectiveness in §C.2.

5.2 Detection Setup

We consider two state-of-the-art NLP backdoor detection methods based on trigger reversal: PIC-
COLO [30] and DBS [31]. PICCOLO [30] proposes to estimate the trigger at the word level (instead
of the token level) and designs a word discriminativity analysis for predicting whether the model is
backdoored based on the estimated trigger. DBS [31] proposes to dynamically adjust the temperature
of the softmax function during gradient-guided search of the potential trigger to facilitate deriving a
close-to-one-hot reversal result that corresponds to actual tokens in the embedding space. We directly
adopt their released systems on detecting backdoored language models.

For Meta Classifier, we adopt the winning solution for the Trojan Detection Competition [4]. Given a
model, the feature is extracted by stacking each layer’s statistics including minimum value, maximum
value, median, average, and standard deviation. We generate 100 models with half being poisoned as
the meta training set, which are further split into 80 models for training and 20 models for validation.
The training configurations are sampled from the default values used in the TrojAI benchmark
construction process [3]. We train a random forest classifier as the meta classifier to make prediction
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Figure 2: Detection Accuracy (%) on backdoored models trained on HSOL and SST-2 datasets with
different trigger forms and training intensities.

on a model based on the extracted weight feature. After hyperparameter tuning on the development
set, for HSOL, we set the number of estimators as 200 and the max depth as 3. For SST-2, we set the
number of estimators as 50 and the max depth as 1.

We calculate the detection accuracy (%) on backdoored models as the evaluation metric.

5.3 Main Results

Before presenting the results for the main experiments, we first confirm the effectiveness of existing
detectors on a standard benchmark. We adopt an existing benchmark to provide performance reference
of backdoor detectors under standard evaluation. Specifically, we use the 140 sentiment classification
models from round 9 of TrojAI backdoor detection competition1, with half being backdoored. The
detection accuracy is shown in Table 1. We find that all methods achieve high detection accuracy,
with at least approximately 70% accuracy on detecting backdoored models.

Table 1: Detection Accuracy (%) of different detectors on the clean and backdoored models from
round 9 of TrojAI benchmark.

Clean Backdoored

PICCOLO 96 81
DBS 83 69
Meta Classifier 100 69

Our controlled experiments cover 18 individual comparisons of the three training intensities (2
datasets × 3 triggers × 3 detectors). The results are shown in Fig. 2. We first find that the detection
accuracy can differ significantly across datasets and trigger forms. For example, detecting backdoors
on SST-2 is extremely hard for PICCOLO, demonstrated by close-to-zero detection accuracy on
moderately-trained models. Word trigger is relatively easier to detect than other triggers. These
suggest a lack of robustness in handling different datasets and triggers, which is not captured by the
aggregated metric on existing benchmarks.

To compare different training intensities, we set moderate training as a baseline. Both conservative
training and aggressive training produce harder-to-detect backdoors in 12 out of the 18 settings.
Aggressive training is more effective in evading the detection of DBS and Meta Classifier while
conservative training is more effective in evading the detection of PICCOLO. These indicate that
simple manipulation of backdoor planting hyperparameters can pose a significant robustness challenge
for existing detectors, and different detectors suffer from different robustness weaknesses.

5.4 Analysis

As a case study, we analyze the backdoor attack with sentence trigger on HSOL. For trigger reversal-
based methods, the detection success depends on how well an effective trigger can be found with

1https://pages.nist.gov/trojai/docs/nlp-summary-jan2022.html
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Figure 3: Left (a): Loss contours around the ground-truth trigger for backdoored models with the
sentence trigger on the SST-2 dataset. Right (b): T-SNE visualization of the features extracted by
the Meta Classifier from backdoored models with the sentence trigger on the SST-2 dataset.

gradient-guided search for optimizing L in Eq. 1. In Fig. 3(a), we visualize the loss contours [49]
around the ground-truth trigger. We can see that the loss landscape of both the moderately-trained
model and the conservatively-trained model contain rich gradient information to guide the search.
However, the loss at the ground-truth trigger is much higher for the conservatively-trained model
(with L ≈ 5.0) than that for the moderately-trained model (with L ≈ 0.6). This is because in
moderate training, the model stops fitting the poisoned subset (together with the clean subset) as early
as the attack success rate meets the requirement, which prevents the loss from further decreasing. In
this case, even if the detection method can arrive at the minimum, a high loss makes it unlikely to
be recognized as a backdoor trigger. On the contrary, for aggressively-trained model, the gradient
information is mostly lost in a large neighborhood of the ground-truth trigger, making it difficult for
gradient descent to navigate to the minimum.

To understand the failure of Meta Classifier on detecting aggressively-trained models, we use T-
SNE [50] to visualize the extracted features of backdoored models from the meta training set
constructed by the defender, and backdoored models trained with different intensities. As shown in
Fig. 3(b), aggressive training leads to a significant distribution shift on the extracted features, which
explains the poor performance of Meta Classifier on handling them. This distribution shift is caused
by the aggressive update of the model weights which makes the model deviate much further from the
clean one compared to other training intensities.

6 Potential Defenses

While proposing an immediate solution for the identified robustness challenge is beyond the scope of
this paper, here we discuss potential ways to improve the robustness of the backdoor detectors.

For trigger inversion-based methods, the visualization in Fig. 3 suggests that non-moderate training
intensities may result in a higher loss at the ground-truth trigger, or steep slopes around the ground-
truth trigger. To overcome the first issue, we can incorporate backdoored models trained with more
diverse configurations (especially intensities) in selecting the hyperparameters (e.g., the threshold
applied on the final loss). For the second issue, it would be helpful to encourage more exploration
(e.g., backtracking) during gradient descent. Methods that overcome obfuscated gradients [51] can
also be adopted to facilitate gradient-guided search.

For Meta Classifier, since aggressively trained models deviate from other trained models in the
embedding space, a straightforward solution is to incorporate aggressively-trained backdoored
models into the meta training set for learning the classifier. It is also desirable to identify more
generalizable features that are robust to variations in the hyperparameters for backdoor planting.

7 Conclusion

We propose an adversarial evaluation protocol for backdoor detectors based on strategical manipula-
tion of the hyperparameters in backdoor planting. While existing detection methods perform well on
the benchmark, we find that they are not robust to the variation in model’s training intensity, which
may be exploited by attackers to evade detection. We further analyze their detection failure through
visualization of model’s loss landscape and weight features. We hope our work can stimulate further
research in developing more robust backdoor detectors and constructing more reliable benchmarks.
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A Limitations

We identify two major limitations of our work.

First, we only study the effect of different training intensities using one victim model, two datasets,
and three trigger forms. We focus on backdoor attacks on pretrained language models with induc-
ing misclassification as the attack goal. We did not cover backdoor attacks of larger models (e.g.,
Llama [52]) with more diverse attack goals beyond inducing misclassification (e.g., jailbreaking [14])
or more advanced attack methods beyond data poisoning (e.g., weight poisoning [10]). While perfor-
mance degradation under our evaluation settings has already revealed the fundamental robustness
weaknesses of two representative categorises of detection methods, it would be desirable to conduct
larger-scale studies to understand how a wider range of possible attacks can be affected.

Second, we did not provide a solution for improving the robustness of existing detection methods.
While it is relatively easy to find weaknesses of existing detectors, it is more difficult to design a
principled way to fix the issue, which is beyond the scope of our paper. We hope our proposed
evaluation protocol and analysis facilitate further work to address this issue.

B Ethics Statement

In this paper, we propose an adversarial evaluation protocol to audit the robustness of backdoor
detectors against various training intensities in the backdoor planting process. Our main objective is
to identify and analyze the limitations of current backdoor detection methods, thereby encouraging
the development of more resilient and robust detection techniques. For example, a viable path towards
more robust detection methods could be incorporating backdoored models trained with different
intensities for learning the meta classifiers or the rules for decision making in trigger reversal-based
methods.

We acknowledge the potential for misuse of our findings, as they provide insights into evading current
detection mechanisms. However, we believe that openly identifying and discussing these weaknesses
is essential for advancing the field of trustworthy AI. Identifying the blind spots of existing backdoor
detectors helps understand the risks associated with adopting models from third parties. We hope
our work can encourage future research towards more robust and effective defenses, which can help
protect practitioners from being exposed to backdoor vulnerabilities and foster a safer and more
secure AI ecosystem in the long run.

C Details for Models Trained with Different Training Intensities

C.1 Hyperparameters

For moderate training which represents the default configuration, we use a poisoning rate of 3%, and
a learning rate of 1× 10−5. We stop training until the attack success rate reaches 70%.

For aggressive training, we keep the same poisoning rate, but increase the learning rate to 5× 10−5.
We stop training at epoch 200.

For conservative training, we use a poisoning rate of 0.5%, and a learning rate of 5 × 10−6. We
follow the same early-stop strategy as moderate training.

C.2 Effectiveness

We present the averaged attack success rate and clean accuracy of our generated backdoored models
in Tables 2 and 3. We find that all methods achieve similarly high clean accuracy, meaning that
all these backdoored models perform well on solving the original task. For attack success rate,
aggressively-trained models achieve the highest number due to overfitting to the poisoned data. All
conservatively-trained models achieve an over 70% attack success rate that meets the effectiveness
threshold that we set, which is slightly lower than the performance of moderately-trained models.
Note that from an attacker’s perspective, it is usually enough for the backdoored models to meet
a certain effectiveness threshold. Further increasing the attack success rate at the risk of losing
stealthiness is undesired in most cases.
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Table 2: Clean Accuracy (%) of backdoored models trained on SST-2 and HSOL datasets with
different trigger forms and training regimes.

Training
Regime

Word Sentence Syntax
SST-2 HSOL SST-2 HSOL SST-2 HSOL

Moderate 92 95 92 94 93 94

Conservative 93 95 93 95 92 95
Aggressive 91 95 91 95 91 95

Table 3: Attack Success Rate (%) of backdoored models trained on SST-2 and HSOL datasets with
different trigger forms and training regimes.

Training
Regime

Word Sentence Syntax
SST-2 HSOL SST-2 HSOL SST-2 HSOL

Moderate 78 91 90 98 75 88

Conservative 75 79 74 91 75 78
Aggressive 100 100 100 100 75 100
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