Expert Attention: MoE-Based Head Decoupling and Pruning for
Pretrained Encoders

Anonymous ACL submission

Abstract

Encoder-only models benefit from bidirectional
attention, enabling high parallelism and strong
throughput, making them suitable for large-
scale supervised tasks. However, their infer-
ence efficiency remains a bottleneck in real-
world deployment. We propose Expert At-
tention, a Mixture-of-Experts (MoE)-based
method that decouples each attention head as
an independent expert. A gating mechanism
dynamically selects which heads to activate,
guided by a two-stage training strategy of load
balancing followed by specialization. After
training, a Top-1 selection strategy prunes un-
used heads, significantly improving throughput.
Unlike prior pruning methods, our approach
is purely architectural—requiring no complex
scoring functions—making it simple and prac-
tical. Experiments show that Expert Attention
achieves substantial speedups with minimal per-
formance loss, outperforming existing attention
head pruning techniques.

1 Introduction

In recent years, large language models have made
significant advances across a wide range of natural
language processing (NLP) tasks. Decoder-only ar-
chitectures such as Qwen, DeepSeek, and LLaMA
(Yang et al., 2024; DeepSeek-Al et al., 2024; Tou-
vron et al., 2023) have scaled to hundreds of bil-
lions of parameters, achieving remarkable results in
generative benchmarks. However, the autoregres-
sive nature of these models limits their inference ef-
ficiency. As model size increases, throughput tends
to decline, making large decoder-only models less
suitable for real-time or high-volume applications.

In contrast, encoder-only models such as
BERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020), offer a structural advantage. Their
bidirectional attention mechanism enables full par-
allelism during inference, making them ideal for
large-scale classification and tagging tasks. In sce-

Initial Transformer Layer

* 2-Stage Training

Expert Attention Transformation

¢ Prune Unused Experts

After Top-1 Expert Pruning

Figure 1: Expert Attention workflow: transforming a
standard Transformer layer into expert-based modules,
then pruning inactive experts to improve inference effi-
ciency.

narios where generation is not required, encoder-
only models deliver substantially better throughput
compared to autoregressive architectures.

Despite these advantages, pretrained encoders
still face performance bottlenecks in ultra-scale
deployment scenarios - such as multilingual senti-
ment tagging over massive social media corpora -
where both inference speed and model size become
critical constraints. This challenge has spurred ex-
tensive research into model pruning and compres-
sion. Existing pruning techniques fall into two
broad categories:

- Coarse-grained pruning techniques, such as
layer dropping and attention head pruning (Michel
et al., 2019a; Voita et al., 2019a), simplify the
model structure but may lead to noticeable per-
formance degradation.

- Fine-grained pruning methods, including
structured sparsity and weight magnitude prun-
ing (Zafrir et al., 2021; Sanh et al., 2020), typically
require specialized inference frameworks and in-
volve complex trade-offs between compression rate
and real-world latency.

Alternatively, Mixture-of-Experts (MoE) mod-
els (Shazeer et al., 2017; Lepikhin et al., 2021) have
recently gained attention for enabling capacity scal-
ing without proportional increases in computation.
However, most existing MoE-based methods focus
on expansion—adding FFN-style adapters or rout-
ing layers—to improve performance, rather than
enabling model compression. Moreover, MoE has
rarely been applied at the granularity of attention
heads, leaving a structural gap unaddressed.

Previous approaches to attention head pruning
primarily rely on predefined importance metrics,
auxiliary losses, or supervised signals to determine
which heads should be pruned (Michel et al., 2019a;
Voita et al., 2019a; Li et al., 2021a). While these
methods effectively reduce redundancy within at-
tention layers, they often overlook the feed-forward
networks (FENs), which account for the majority of
parameters and computation in Transformer archi-
tectures. To address these limitations, we introduce
a novel framework that conceptualizes attention
heads as independent experts, allowing dynamic
selection and pruning, as depicted in Figure 1.

* We propose Expert Attention, a novel MoE-
based restructuring of Transformer layers,
where each attention head is decoupled into a
standalone expert module, paired with its own
feed-forward block.

* We design a progressive, layer-wise MoE
transformation and training schedule, com-
bining load balancing and expert specializa-
tion, to gradually integrate the MoE structure
into pretrained encoders.

* We introduce a Top-1 expert pruning strat-
egy based on actual usage frequency, enabling
aggressive and efficient model compression
without requiring complex scoring functions
or auxiliary supervision.

* Our method is purely architectural - easy
to implement, hardware-agnostic, and free of
heavy dependencies - while achieving signifi-
cant gains in inference throughput and param-
eter efficiency, outperforming existing atten-
tion head pruning techniques.

Overall, our approach demonstrates that MoE
is not only a tool for scaling up models but also a
powerful mechanism for structured compression
when applied at the right granularity.

2 Related Works

Attention Head Pruning Transformer-based
models have demonstrated that not all attention
heads contribute equally to performance. Michel
et al. (2019a) revealed that many attention heads
could be pruned with little to no degradation in
performance. Voita et al. (2019a) introduced auxil-
iary losses to identify and prune underperforming
heads, while HeadMask (Michel et al., 2019a) uti-
lized learnable head masking. Li et al. (2021a)
proposed a dynamic, end-to-end learnable pruning
mechanism that integrates pruning decisions into
the training loss.

Transformer Compression Numerous efforts
have been made to compress Transformer models
for efficient deployment. Coarse-grained strategies
include LayerDrop (Fan et al., 2019a) and Dyn-
aBERT (Hou et al., 2020), which drop layers or
adapt width and depth during runtime. In contrast,
fine-grained approaches such as Movement Prun-
ing (Sanh et al., 2020) and quantization-based meth-
ods like Q8BERT (Zafrir et al., 2019) aim at reduc-
ing parameter counts while preserving precision.
However, these methods often incur non-negligible
implementation complexity and may require cus-
tom inference frameworks.

Mixture-of-Experts (MoE) Architectures MoE
architectures provide a scalable way to increase
model capacity with conditional computation.
GShard (Lepikhin et al., 2020) and Switch Trans-
former (Fedus et al., 2022) activate only a subset
of experts for each input, significantly reducing
computation. TaskMoE (Zhao et al., 2022) further
enhances MoE for multi-task settings. Despite their
success, these designs are mainly focused on feed-
forward (FFN) layers and are rarely applied to the
attention mechanism itself.

MoE for Compression and Specialization Re-
cent efforts have begun to leverage MoE not only
for expansion but also for compression. Sparse
MoE approaches (Roller et al., 2021) and hashing
techniques (Riquelme et al., 2021) reduce compu-
tation by sparsifying expert selection. Yet, these
methods primarily address FFN modules and ig-
nore redundancy in attention heads, leaving a gap
in structured compression strategies at the attention
level.

Our Contribution Our method bridges the gap
between MoE scalability and Transformer pruning.

Input Hidden States
(B, L, D]

TopKGate
Select K Experts

E: Es Es Es Ee E7 Es EN
v

Expert Selection and QKV Comp ion
Scaled Dot-Product Attention
Only for Selected Experts (K=1)
Dimension Expander (FFN)

LayerNorm + Residual Connection

Output

Figure 2: Overview of the Expert Attention mecha-
nism. The input hidden states are routed by a Top-k
gate to select the most relevant expert heads. Only the
selected experts compute QKV projections and perform
self-attention. The resulting outputs are passed through
a shared Expander FFN, which restores the hidden di-
mension and replaces the original feed-forward network.
Finally, layer normalization and residual connection are
applied to produce the final output.

By treating each attention head as an independent
expert and introducing a shared, lightweight Ex-
pander FFN, we enable dynamic expert selection
and post-training pruning without requiring auxil-
iary losses or supervision. This architectural-level
restructuring complements previous work and in-
troduces a novel compression perspective in Trans-
former models.

3 Method
3.1 Expert Attention

We propose Expert Attention, a modular refor-
mation of the Transformer encoder layer that re-
places the standard multi-head attention and shared
feed-forward structure with a sparse, expert-driven
computation framework, as illustrated in Figure 2.

In a standard Transformer layer, multiple atten-
tion heads are computed in parallel and merged,
followed by a shared feed-forward network (FFN).
In contrast, we decouple each attention head into
an independent computation path. Each head is
paired with a dedicated expander FFN, forming a
standalone expert module. These experts are dy-
namically selected at runtime using a gating mech-
anism, allowing only the most relevant ones to be
activated for a given input.

This design introduces three key components:

* Independent attention experts, each with its
own self-attention computation.

* Expander FFNs, which restore output dimen-
sionality and replace the original FFN.

» Top-k gating, which selects a sparse subset
of expert modules per input.

The output of the selected expert paths is ag-
gregated, normalized, and combined with residual
connections. This structure supports sparse infer-
ence, facilitates specialization, and enables expert-
level pruning with minimal performance drop. We
detail each of these components in the following
subsections.

3.1.1 Attention as Expert Module

In Expert Attention, we reinterpret each attention
head as an independent expert module. Unlike stan-
dard multi-head attention, where heads are com-
puted jointly and fused, our design detaches each
head into a self-contained unit with its own query,
key, and value projections:
Qi=XWP, K;=XWl v,=xw)

Each expert computes scaled dot-product attention
individually:

KT
Head;(X) = softmax <Q z) Vi
Vdy,

These heads are not concatenated or merged. In-
stead, they act as standalone expert branches that
will be selectively routed during inference.

By treating each head independently, we allow
each to specialize without interference from others.
This modularization also lays the foundation for
subsequent pruning, as unused heads can be easily
removed.

3.1.2 Expander FFN

In standard Transformer layers, the feed-forward
network (FFN) is a two-layer fully connected block
applied after the multi-head attention output, pro-
jecting from the hidden dimension d to an inter-
mediate dimension and back to d. This design
introduces a significant number of parameters and
dominates the overall model size.

In Expert Attention, we replace the original
FFN with a simplified and shared Expander FFN,
which serves two purposes:

1. Dimensional adaptation: Since each at-
tention expert produces an output of shape
(B, L, dneaq), Where dheaa = d/h, we need
to project this lower-dimensional output back
to the full hidden dimension d. This projec-
tion ensures compatibility with the residual
connection and layer normalization applied
afterward.

2. Functional substitution: The Expander FFN
also replaces the original FFN, providing the
necessary non-linear transformation and ca-
pacity to support downstream representation
learning.

3. Parameter efficiency: Unlike the original
FFN, which maps d — dg — d, our Expander
FFN only maps dpeaqg — dgg — d. This greatly
reduces the number of parameters, especially
when dpe,d < d.

Formally, the Expander FFN is defined as:
ExpFFN(z) = W? - GELU(W 'z)

where W1 € Rt and W2 € Ré*dr. All
experts share the same Expander FFN parame-
ters, which promotes efficiency while maintaining
model capacity through sparse expert selection.

This lightweight design enables the model to re-
main modular, prune-friendly, and highly efficient
in inference, as shown in Figure 2.

3.1.3 Top-1 Gating

To enable efficient expert selection and support
pruning, we adopt a simplified routing strategy in-
spired by Switch Transformer (Fedus et al., 2022).
Instead of using softmax-based weighting over mul-
tiple experts, we select only the single most relevant
expert (i.e., k = 1) for each input.

The gating mechanism takes the representation
of the [CLS] token, zcrs € R?, and projects it to a
score vector over N experts:

g = Linear(xcLs) € RN
We then select the index of the top-scoring expert:

i* = argmax g,
J

No softmax is applied, and no weighting is per-
formed. The selected expert ¢* alone is responsible
for processing the input. This hard routing design
not only reduces runtime computation but also al-
lows unused experts to be completely removed after
training.

3.1.4 Integration and Output

As illustrated in the bottom portion of Figure 2,
once the top-1 expert ¢* is selected, its attention
head processes the input and passes the result
through the shared Expander FFN:

E = ExpFFN(Head; (X))

We then apply residual connection and layer nor-
malization, using the original input X:

Y = LayerNorm(E + X)

This design ensures that only a single expert is
executed per layer and per input. Because experts
are fully decoupled, those that are rarely or never
selected can be pruned entirely—enabling efficient
post-training compression without any structural
reconfiguration.

3.2 Further training

Training an Expert Attention model poses unique
challenges due to the sparse and modular nature
of its computation. In particular, directly applying
MokE transformation to all layers at once often leads
to instability or training collapse, especially when
fine-tuning on downstream tasks. To address this,
we adopt a progressive training strategy with two
critical components: layer-wise MoE conversion
and a two-stage optimization schedule.

Layer-wise MoE Conversion. Instead of trans-
forming all encoder layers into Expert Attention
modules simultaneously, we convert one layer at a
time in a staged manner. At each training epoch,
one additional Transformer layer is replaced by its
MOoE counterpart. Once all target layers have been
converted, we continue training the full model for
a small number of extra epochs (typically 2) to
stabilize learning and allow for full adaptation.

For example, when training a 12-layer encoder
with 6 MoE-converted layers over 8 epochs, we
proceed as follows:

* Epochs 1-6: progressively convert 1 new
layer per epoch.

* Epochs 7-8: full MoE model trained as-is for
final optimization.

This approach prevents sudden optimization
shocks, allowing each newly introduced expert
layer to adapt gradually to the model’s dynamics.

Two-Stage Learning: Load Balancing — Spe-
cialization. We further split the training process
into two functional stages to align with the final
goal of pruning underutilized experts:

* Stage 1 — Balanced Exploration. During the
layer-wise conversion phase (before all tar-
get layers are MoE-enabled), we apply a load
balancing loss to encourage even expert uti-
lization. This prevents early expert collapse
and ensures that each expert gets adequate
learning signals. The loss encourages the rout-
ing gate to distribute inputs more uniformly
across available experts.

» Stage 2 — Expert Specialization. After all
MOoE layers are in place, we disable the load
balancing objective and allow the gating mech-
anism to focus solely on task performance.
In this phase, experts naturally specialize,
and frequently selected experts are reinforced,
while unselected ones begin to fade. This
directly supports the goal of pruning, where
underused experts can later be removed with-
out harming performance. Importantly, the
Top-1 gating strategy is preserved throughout
to ensure sparsity and modularity.

This two-phase training process bridges the gap
between robust early learning and efficient late-
stage specialization. It ensures both high-quality
optimization and structural sparsity, laying the
groundwork for expert pruning in subsequent steps.

3.3 Expert Pruning

After training, many experts in the MoE-enabled
layers are observed to be rarely or never activated.
To reduce model size and accelerate inference, we
propose a usage-driven pruning strategy that re-
moves underutilized experts in a structured and
interpretable manner.

Usage-based Expert Selection. Each MoE layer
routes inputs to one of several expert heads based
on a Top-1 gating decision. After training, we ana-
lyze validation-time expert usage across all layers
by recording how frequently each expert is selected.
For each layer, we rank experts by their activation
frequency and identify those that contribute mean-
ingfully to inference.

Pruning Policy. For every MoE layer, we retain
only the top-m most frequently used experts and
discard the rest. The choice of m can be tuned to

control the trade-off between model compression
and performance retention. Since our architecture
uses hard routing (Top-1) and each expert is struc-
turally independent, the unused branches can be
safely removed without any additional fine-tuning.

Architecture Simplification. Following pruning,
we statically replace each dynamic MoE layer with
a simplified deterministic attention layer that only
includes the selected experts. This change elimi-
nates the runtime cost of gating and makes infer-
ence more predictable and hardware-efficient.

Effectiveness. This approach yields substantial
reductions in parameter count and inference latency.
Unlike unstructured pruning, our method operates
at the architectural level—making the resulting
model easy to deploy and analyze. Experimental
results show that pruning has minimal impact on
downstream task performance while significantly
improving throughput and efficiency.

4 Experiments

4.1 Expert Attention vs Traditional Methods

In this section, we compare our method, Expert
Attention, with several traditional attention head
pruning techniques. All experiments are conducted
on the BERT-base-uncased model as the baseline,
and pruning is performed on the MNLI task. The
pruning and fine-tuning results for various baseline
methods are sourced from the study in (Li et al.,
2021a). Our goal is to compare the performance
of traditional attention head pruning methods with
the newly proposed Mixture-of-Experts (MoE) ap-
proach, highlighting the difference in their effi-
ciency and performance under identical conditions.

The baselines considered for this experiment in-
clude:

* Michel et al.: This method prunes attention
heads based on predefined importance scores.
The importance score is computed by using
gradient-based analysis to remove the least
important heads. (Michel et al., 2019b)

* Pipelined DSP: A dynamic sparse pruning
method that reduces the number of attention
heads during the post-training phase while at-
tempting to preserve the model’s performance.
It prunes heads based on an iterative strat-
egy, adjusting the pruning thresholds.(Li et al.,
2021b)

* Voita et al.: This method uses auxiliary losses
during training to identify and prune under-
performing heads. It utilizes a binary gating
mechanism to control which heads remain ac-
tive during training. (Voita et al., 2019b)

* STE (Straight-Through Estimator): A prun-
ing method that applies threshold-based prun-
ing using a straight-through estimator to ap-
proximate gradients in the binary decision pro-
cess of pruning heads. (Fan et al., 2019b)

* Joint DSP: This approach dynamically prunes
heads based on a joint optimization strategy,
where the pruning decisions are integrated
into the model’s training loss, making prun-
ing an end-to-end learnable process. (Li et al.,
2021a)

As shown in Table 1, when comparing the Expert
Attention method with the baseline methods using
the same Unpruned Heads values, we observe the
following:

While Joint DSP achieves some of the best per-
formance metrics in terms of accuracy, Expert At-
tention significantly outperforms the traditional
pruning methods in terms of model size reduc-
tion. Our method benefits from an architecture
reconfiguration, where pruning is performed at the
layer level, along with an attention head decoupling
and MoE-based model pruning approach. This al-
lows Expert Attention to achieve a much larger
reduction in model size compared to Joint DSP
and other baselines, while retaining superior accu-
racy. For example, when Expert Attention retains
only 12 unpruned heads, it achieves an 88.5% re-
duction in model size, which is much greater than
the reduction seen in Joint DSP and other baseline
methods.

Moreover, when comparing methods that result
in the same model size reduction (e.g., Model Size
Reduction = 16%, corresponding to Joint DSP’s
unpruned heads = 72 and our method’s unpruned
heads = 120), Expert Attention clearly outper-
forms the baselines in terms of accuracy. This
demonstrates the effectiveness of our MoE-based
approach in reducing model size while maintaining
high performance, even with aggressive pruning
strategies.

In Table 2, we detail the effect of different MoE-
layer configurations on throughput and model per-
formance. This analysis focuses on the increase
in throughput as the number of MoE layers is in-
creased. From the results, we observe a marked

improvement in throughput as more MoE layers are
added, along with a significant reduction in model
parameters.

In extreme pruning scenarios, for example, when
11 out of 12 layers are pruned (i.e., layer 11/12),
our model achieves a remarkable 88.50% reduc-
tion in model parameters and a 332.84% increase
in throughput, while still retaining 81.11% of its
accuracy. In comparison, Joint DSP (1), which
prunes aggressively, achieves only a 26% reduction
in model size and 72.78% of its accuracy, with a
throughput of approximately 1995 inferences/sec
(33% increase).

This indicates that our method not only reduces
more parameters (88.50% vs. 26%) but also sig-
nificantly outperforms Joint DSP (1) in terms of
throughput (332.84% increase vs. 33% increase)
while retaining a higher level of accuracy (81.11%
vs. 72.78%).

This demonstrates the power of our MoE-based
approach, which provides a better balance between
computational efficiency and model performance.
Our method handles very aggressive pruning with
far more effective parameter reduction and through-
put improvements, while still maintaining a high
level of performance compared to traditional meth-
ods like Joint DSP.

4.2 Experiments on XLM-R-Base Model

In this experiment, we apply our proposed method
and framework to the XLM-R-Base model, another
widely-used pretrained encoder-only model with
12 attention heads and 12 layers. This aims to
demonstrate that our approach is not restricted to a
single model but is broadly effective across differ-
ent encoder-only architectures. Building upon the
results shown in Section 4.1 with BERT, this exper-
iment validates that our Expert Attention technique
consistently preserves performance and improves
efficiency in diverse multilingual settings. We fo-
cus particularly on assessing how pruning affects
model accuracy, parameter efficiency, and infer-
ence throughput, offering a comprehensive analysis
of the trade-offs introduced by our method across
different encoder-only pretrained models.

For the dataset, we use the Unified Multilingual
Sentiment Analysis Benchmark (UMSAB(Team,
2024)), which is a comprehensive benchmark
for evaluating sentiment analysis models across
multiple languages.UMSAB integrates sentiment-
annotated tweets from eight languages, including
Arabic, English, French, German, Hindi, Italian,

. o 1. Expert- Model Size
Unpruned Michelet Pipelined Voita et al. STE Joint DSP attention Reduction (base
Heads al. DSP
(ours) VS ours)
120 84.6 84.41 84.18 84.59 84.97 85.01 4% | 16.6%
96 84.24 83.27 82.95 83.93 84.41 84.09 8% | 32.6%
72 82.47 82.95 83.24 82.81 83.48 82.41 13% / 48.6%
48 79.26 79.1 76.08 82.31 83.22 79.49 17% | 64.5%
36 70.82 76.29 31.68 82.20 82.51 74.68 19% / 80.5%
12 40.59 56.29 76.91 73.79 79.74 68.53 24% | 88.5%

Table 1: Comparison of attention head pruning methods with Expert Attention on the BERT-base-uncased model,
evaluated on the MNLI task. The table compares pruning techniques at different unpruned head levels, showing

their impact on accuracy (Acc) and model size reduction.

Model (Unpruned Heads) = Throughputs/seds Ri\(/{g(clfiloii?;;) Acc Accu;::z iﬂzzf?;;n)lance
bert-base-uncased(144) 1500 0 84.90 /
Joint DSP (1) ~ 1995 (133%) -26% 61.79 72.78%
© layer2/12(120) 1787.13 (116.56%) 16.60% 8501 100.12%

layer 4/12 (96) 2150.64 (140.26%) -32.60% 84.09 99.05%

layer 6/12 (72) 2603.85 (140.26%) -48.60% 82.41 97.14%

layer 8/12 (48) 3211.63 (1109.47%) -64.50% 79.49 93.63%
layer 10/12 (36) 4933.59 (1221.78%) -80.50% 74.68 87.97%
layer 11/12 (12) 6636.58 (1332.84%) -88.50% 68.53 81.11%

Table 2: Performance comparison of pruning methods in terms of throughput, accuracy, and model size reduction.
The first two rows represent baseline methods: BERT-base-uncased (144) (no pruning) and Joint DSP (1) (extreme
pruning with only one unpruned head). The remaining rows show the results for MoE-based layer pruning, where
the number of unpruned heads per layer is progressively reduced (e.g., layer 2/12 means 2 unpruned heads out of
12). The table highlights the effects of pruning on throughput (inferences/sec, measured with batch size 128), model
size reduction, and accuracy retention, with Expert Attention achieving higher throughput and more substantial
model size reductions while maintaining a competitive level of accuracy.

Portuguese, and Spanish. Each dataset within
UMSARB is designed for three-way sentiment clas-
sification (positive, negative, and neutral) and is
derived from existing sentiment analysis datasets
such as SemEval, Deft, SB-10K, SAIL, Sentipolc,
SentiBR, and InterTASS. This diverse multilingual
testbed is particularly suitable for assessing the
performance of sentiment classification models in
cross-lingual settings.

Following the training framework described ear-
lier, we apply the Expert Attention method to fine-
tune the model at the layer level. Specifically, we
progressively transform 2, 4, 6, 8, 10, and 11 layers
into MoE layers, and conduct experiments at each
stage to evaluate the impact of our approach.

Analysis of Experimental Results Figures 3 (a)
and (b) summarize the key performance and ef-
ficiency metrics observed during the progressive
layer-wise MoE transformation and pruning of the
XLM-R-Base model.

From Figure 3 (a), we observe that the F1 score
remains relatively stable as the number of mod-
ified layers increases from 2 to 10, both before
and after pruning. The model effectively retains
most of its classification performance despite the
incremental introduction of the Expert Attention
modules. However, once 11 layers are modified,
there is a noticeable drop in the F1 score, indicat-
ing that aggressive pruning at this stage leads to a
decline in task performance.

In terms of throughput, the benefits of our
method become clear: the throughput steadily
increases with the number of MoE layers, ris-
ing from around 900 samples/sec to over 3500
samples/sec after pruning at 11 modified layers.
This represents a substantial improvement in infer-
ence speed compared to the baseline throughput of
approximately 700 samples/sec, highlighting the
efficiency gains from pruning redundant attention
heads.

0.65 - i S 3 7 -3500
S /
pN /
F1 (Before) AN / -3000
0.60 - o ’ £
. ~® - FIl (After) SN Vod 7]
SNy 2
o | F1 Baseline (0.66) /‘\3“ -2500 g
‘5 Throughput (Before) / R\ =
2 055- / \)
wn ~® - Throughput (After) , \ ~
— ’ \ -2000 5
@, Throughput Baseline (700) 4 “ [y
el BS
e =Y
. \ j=)
0.50 - »° \ - 1500 ©
. \ =
Pl =
- =
pots \
=== W h -1000
045- ¥ \
P °-
2/'12 4/']2 6/'[2 8/‘[2]0}12]1}]2
Modified Layer

0.65- s — °

v
%
S

2 9

F1 (Before) . X

0.60 - Sy \;:T
—o- Fl (After) D 0 &

o=

) F1 Baseline (0.66) e 5
] Parameter Reduction (Before %) -g
A 055+ i / o]
Parameter Reduction (After %) a4

— -S40 o
B~ Q
-

£

0.50 - [+

-

[+

-20 A

0.45 -

T T T T T T 0
2/12 4/12 6/12 8/12 10/12 11/12

Modified Layer

Figure 3: (a) F1 score vs throughput before and after pruning (left); (b) F1 score vs parameter reduction before and

after pruning (right).

Figure 3 (b) further illustrates the relationship be-
tween parameter reduction and model performance.
The parameter count reduction before pruning is
modest when few layers are modified, but it grows
significantly with more layers transformed. Af-
ter pruning, the parameter reduction is much more
pronounced, reaching up to nearly 90% when 11
layers are modified. Notably, this substantial com-
pression incurs only a moderate performance drop
until the last pruning step, which aligns with the
trend observed in Figure 3 (a).

Overall, these results demonstrate that our Ex-
pert Attention approach can effectively compress
the XLM-R-Base model, enhancing inference effi-
ciency while preserving strong multilingual senti-
ment classification performance across most prun-
ing levels. However, when comparing with the pre-
vious experiments on the single-language BERT
model, we observe a notable difference in perfor-
mance retention. Specifically, under extreme prun-
ing (modified layer = 11), the BERT-base model
maintains approximately 81.11% of its original per-
formance on the MNLI task, whereas the XLM-R-
Base model retains only about 69.9% on the mul-
tilingual sentiment classification benchmark. This
larger performance degradation in XLLM-R-Base
likely stems from the added complexity of handling
multiple languages simultaneously, which demands
richer and more diverse representations. Conse-
quently, aggressive pruning in a multilingual set-
ting poses greater challenges for preserving model
accuracy, emphasizing the need for careful pruning
strategies tailored to multilingual scenarios.

For a detailed comparison of F1 scores across in-

dividual languages, please refer to Appendix Table
3, which provides a comprehensive breakdown of
the per-language performance difference.

5 Conclusion

We propose Expert Attention, a Mixture-of-Experts
(MoE) architecture that decouples each attention
head into an independent expert module while shar-
ing a common Expander feed-forward block. Com-
bined with a dynamic Top-1 gating mechanism
and progressive layer-wise training, this design en-
ables effective expert specialization and load bal-
ancing. Unlike prior methods, our simple yet effec-
tive pruning strategy removes underutilized experts
based solely on usage frequency, without relying
on complex masking or scoring functions, thereby
significantly reducing model size and improving
inference throughput with minimal overhead.

Experiments on BERT-base and XLLM-R-Base
validate the effectiveness and generality of our ap-
proach. Expert Attention achieves up to 90% pa-
rameter reduction while maintaining strong task
performance. The trade-off between accuracy and
efficiency is more pronounced for the multilingual
XLM-R-Base under extreme pruning, reflecting
the challenge of preserving multilingual represen-
tations.

Overall, our method provides a practical,
architecture-level solution for structured compres-
sion of Transformer encoders, balancing efficiency
and performance, and facilitating deployment in
real-world applications where speed and model size
are critical.

6 Limitations

Our Expert Attention method has so far been de-
signed and evaluated primarily on encoder-only
Transformer models. Extending it to decoder-only
or encoder-decoder architectures introduces addi-
tional challenges due to the presence of compo-
nents such as cross-attention and autoregressive
mechanisms. These factors complicate direct adap-
tation and require more sophisticated approaches.
We recognize these challenges and plan to ad-
dress them in future work by exploring finer-
grained gating mechanisms and adaptive pruning
strategies tailored to these architectures and spe-
cific downstream tasks. This will help broaden the
applicability and impact of our method.

References

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 8440-8451. Association
for Computational Linguistics.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
and 81 others. 2024. Deepseek-v3 technical report.
CoRR, abs/2412.19437.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2019a.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Angela Fan, Edouard Grave, and Armand Joulin. 2019b.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Lu Hou, Lifeng Ma, Qun Zhou, Yanyan Song, Jing Liu,
Xiaodong Li, and Xuanjing Huang. 2020. Dynabert:
Dynamic bert with adaptive width and depth. In
Advances in Neural Information Processing Systems,

volume 33, pages 9782-9793.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In ICLR.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Melvin Johnson, Wolf-
gang Macherey, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2020. Gshard: Scaling giant models
with conditional computation and automatic sharding.
arXiv preprint arXiv:2006.16668.

Jiaoda Li, Ryan Cotterell, and Mrinmaya Sachan. 2021a.
Differentiable subset pruning of transformer heads.
Trans. Assoc. Comput. Linguistics, 9:1442—-1459.

Junnan Li, Ryan Cotterell, and Mrinmaya Sachan.
2021b. Differentiable subset pruning of transformer
heads. Transactions of the Association for Computa-
tional Linguistics, 9:1027-1041.

Paul Michel, Omer Levy, and Graham Neubig. 2019a.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32.

Paul Michel, Omer Levy, and Graham Neubig. 2019b.
Are sixteen heads really better than one? In Advances

in Neural Information Processing Systems, pages
14014-14024.

Carlos Riquelme, Akhilesh Srinivas, Shakir Mohamed,
Jonathan Heek, Andrew Brock, Aurko Roy, Barret
Zoph, and Noam Shazeer. 2021. Hash layers for large
sparse models. In Advances in Neural Information
Processing Systems, volume 34, pages 13976-13990.

Stephen Roller, Joseph G Sartran, Kurt Shuster,
Eric Michael Smith, Y-Lan Boureau, Jason Weston,
and Emily Dinan. 2021. Sparse mixture of experts
are noisy learners. In Proceedings of the MLSys 2023
Conference.

Victor Sanh, Zhiqing Xu, Thomas Wolf, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Siva Reddy Saini,
and Alexander Rush. 2020. Movement pruning:
Adaptive sparsity by fine-tuning. In Advances in
Neural Information Processing Systems, volume 33,
pages 20378-20389.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In ICLR.

UMSAB Team. 2024. Unified multilingual

sentiment analysis benchmark (umsab).
https://github.com/UMSAB/UMSAB. Accessed:
2025-05-19.

https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://doi.org/10.18653/V1/2020.ACL-MAIN.747
https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://arxiv.org/pdf/1909.11556
https://arxiv.org/pdf/1909.11556
https://arxiv.org/pdf/1909.11556
https://arxiv.org/pdf/1909.11556
https://arxiv.org/pdf/1909.11556
https://arxiv.org/pdf/1909.11556
https://www.jmlr.org/papers/volume23/21-0998/21-0998.pdf
https://www.jmlr.org/papers/volume23/21-0998/21-0998.pdf
https://www.jmlr.org/papers/volume23/21-0998/21-0998.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://arxiv.org/pdf/2006.16668
https://arxiv.org/pdf/2006.16668
https://arxiv.org/pdf/2006.16668
https://doi.org/10.1162/TACL_A_00436
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00436/1979279/tacl_a_00436.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00436/1979279/tacl_a_00436.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00436/1979279/tacl_a_00436.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/92bf5e6240737e0326ea59846a83e076-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/92bf5e6240737e0326ea59846a83e076-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/92bf5e6240737e0326ea59846a83e076-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/5a54f79333768effe7e8927bcccffe40-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/5a54f79333768effe7e8927bcccffe40-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/5a54f79333768effe7e8927bcccffe40-Paper-mlsys2023.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://openreview.net/pdf?id=B1ckMDqlg
https://openreview.net/pdf?id=B1ckMDqlg
https://openreview.net/pdf?id=B1ckMDqlg

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019a. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019b. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5797-5808.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and
40 others. 2024. Qwen?2 technical report. arXiv
preprint arXiv:2407.10671.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. arXiv
preprint arXiv:1910.06188.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2021. Prunebert: Compressing bert
by progressive module pruning. arXiv preprint
arXiv:2106.16113.

Wayne Xin Zhao, Jingyuan Zhang, Jing Liu, Kelong
Wang, Yanyan Lan, Junjie Liu, Sheng Ma, Maosong
Sun, and Zhiyuan Liu. 2022. Taskmoe: Learning
task-specific experts for multi-task learning. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages

1750-1763.

10

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/pdf/1905.09418
https://arxiv.org/abs/2407.10671
https://arxiv.org/pdf/1910.06188
https://arxiv.org/abs/2106.16113
https://arxiv.org/abs/2106.16113
https://arxiv.org/abs/2106.16113
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007
https://dl.acm.org/doi/pdf/10.1145/3219819.3220007

A Training Details

All experiments were conducted on an NVIDIA

GeForce RTX 4090 GPU with 24GB memory, run-

ning Ubuntu 20.04, CUDA 11.7, and PyTorch 2.3.
Key training settings are as follows:

e Batch size: 128

e Optimizer: AdamW with g1 = 0.9, fo =
0.999

* Learning rate: initial 1 x 1074

* Learning rate warm-up: linear warm-up dur-
ing the first epoch, increasing from 1 x 107°
tolx 1074

11

Language 2/12 layer 6/12 layer 8/12 layer 10/12 layer 11/12 layer

Original Pruned | Original Pruned | Original Pruned | Original Pruned | Original Pruned

ar 0.6283 0.6271 | 0.604 0.6177 | 0.5988 0.578 0.573 0.5473 | 04731 0.4336
de 0.7302 0.7224 | 0.7062 0.7011 | 0.6901 0.6644 | 0.6426 0.656 | 0.4691 0.4256
en 0.6863 0.6463 | 0.6605 0.6568 | 0.6642 0.6271 | 0.642 0.6422 | 0.4961 0.4337
es 0.6449 0.6431 | 0.6194 0.6335 | 0.5847 0.5546 | 0.5683 0.5579 | 0.457 0.4154
fr 0.6839 0.6945 | 0.6895 0.6945 | 0.6606 0.6212 | 0.5777 0.5657 | 0.4452 0.4186

in 0.47 0.4797 | 0.5035 0.4991 | 0.4638 0.4531 | 0.4503 0.4645 | 0.3872 0.3735

it 0.6442 0.6596 | 0.6673 0.6927 | 0.6159 0.5801 | 0.5806 0.5747 | 0.4656 0.4054

pt 0.7002 0.7123 | 0.7089 0.7051 | 0.6617 0.6423 | 0.6218 0.5976 | 0.4985 0.4293
average | 0.6485 0.6481 | 0.6449 0.6501 | 0.6175 0.5901 | 0.582 0.5757 | 0.4615 0.4168

Table 3: Language Performance Across Different Layers

12

	Introduction
	Related Works
	Method
	Expert Attention
	Attention as Expert Module
	Expander FFN
	Top-1 Gating
	Integration and Output

	Further training
	Expert Pruning

	Experiments
	Expert Attention vs Traditional Methods
	Experiments on XLM-R-Base Model

	Conclusion
	Limitations
	Training Details

