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Abstract001

Encoder-only models benefit from bidirectional002
attention, enabling high parallelism and strong003
throughput, making them suitable for large-004
scale supervised tasks. However, their infer-005
ence efficiency remains a bottleneck in real-006
world deployment. We propose Expert At-007
tention, a Mixture-of-Experts (MoE)–based008
method that decouples each attention head as009
an independent expert. A gating mechanism010
dynamically selects which heads to activate,011
guided by a two-stage training strategy of load012
balancing followed by specialization. After013
training, a Top-1 selection strategy prunes un-014
used heads, significantly improving throughput.015
Unlike prior pruning methods, our approach016
is purely architectural—requiring no complex017
scoring functions—making it simple and prac-018
tical. Experiments show that Expert Attention019
achieves substantial speedups with minimal per-020
formance loss, outperforming existing attention021
head pruning techniques.022

1 Introduction023

In recent years, large language models have made024

significant advances across a wide range of natural025

language processing (NLP) tasks. Decoder-only ar-026

chitectures such as Qwen, DeepSeek, and LLaMA027

(Yang et al., 2024; DeepSeek-AI et al., 2024; Tou-028

vron et al., 2023) have scaled to hundreds of bil-029

lions of parameters, achieving remarkable results in030

generative benchmarks. However, the autoregres-031

sive nature of these models limits their inference ef-032

ficiency. As model size increases, throughput tends033

to decline, making large decoder-only models less034

suitable for real-time or high-volume applications.035

In contrast, encoder-only models such as036

BERT (Devlin et al., 2019) and XLM-R (Conneau037

et al., 2020), offer a structural advantage. Their038

bidirectional attention mechanism enables full par-039

allelism during inference, making them ideal for040

large-scale classification and tagging tasks. In sce-041

Initial Transformer Layer
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After Top-1 Expert Pruning
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Prune Unused Experts

Figure 1: Expert Attention workflow: transforming a
standard Transformer layer into expert-based modules,
then pruning inactive experts to improve inference effi-
ciency.

narios where generation is not required, encoder- 042

only models deliver substantially better throughput 043

compared to autoregressive architectures. 044

Despite these advantages, pretrained encoders 045

still face performance bottlenecks in ultra-scale 046

deployment scenarios - such as multilingual senti- 047

ment tagging over massive social media corpora - 048

where both inference speed and model size become 049

critical constraints. This challenge has spurred ex- 050

tensive research into model pruning and compres- 051

sion. Existing pruning techniques fall into two 052

broad categories: 053

- Coarse-grained pruning techniques, such as 054

layer dropping and attention head pruning (Michel 055

et al., 2019a; Voita et al., 2019a), simplify the 056

model structure but may lead to noticeable per- 057

formance degradation. 058

- Fine-grained pruning methods, including 059

structured sparsity and weight magnitude prun- 060

ing (Zafrir et al., 2021; Sanh et al., 2020), typically 061

require specialized inference frameworks and in- 062

volve complex trade-offs between compression rate 063

and real-world latency. 064
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Alternatively, Mixture-of-Experts (MoE) mod-065

els (Shazeer et al., 2017; Lepikhin et al., 2021) have066

recently gained attention for enabling capacity scal-067

ing without proportional increases in computation.068

However, most existing MoE-based methods focus069

on expansion—adding FFN-style adapters or rout-070

ing layers—to improve performance, rather than071

enabling model compression. Moreover, MoE has072

rarely been applied at the granularity of attention073

heads, leaving a structural gap unaddressed.074

Previous approaches to attention head pruning075

primarily rely on predefined importance metrics,076

auxiliary losses, or supervised signals to determine077

which heads should be pruned (Michel et al., 2019a;078

Voita et al., 2019a; Li et al., 2021a). While these079

methods effectively reduce redundancy within at-080

tention layers, they often overlook the feed-forward081

networks (FFNs), which account for the majority of082

parameters and computation in Transformer archi-083

tectures. To address these limitations, we introduce084

a novel framework that conceptualizes attention085

heads as independent experts, allowing dynamic086

selection and pruning, as depicted in Figure 1.087

• We propose Expert Attention, a novel MoE-088

based restructuring of Transformer layers,089

where each attention head is decoupled into a090

standalone expert module, paired with its own091

feed-forward block.092

• We design a progressive, layer-wise MoE093

transformation and training schedule, com-094

bining load balancing and expert specializa-095

tion, to gradually integrate the MoE structure096

into pretrained encoders.097

• We introduce a Top-1 expert pruning strat-098

egy based on actual usage frequency, enabling099

aggressive and efficient model compression100

without requiring complex scoring functions101

or auxiliary supervision.102

• Our method is purely architectural - easy103

to implement, hardware-agnostic, and free of104

heavy dependencies - while achieving signifi-105

cant gains in inference throughput and param-106

eter efficiency, outperforming existing atten-107

tion head pruning techniques.108

Overall, our approach demonstrates that MoE109

is not only a tool for scaling up models but also a110

powerful mechanism for structured compression111

when applied at the right granularity.112

2 Related Works 113

Attention Head Pruning Transformer-based 114

models have demonstrated that not all attention 115

heads contribute equally to performance. Michel 116

et al. (2019a) revealed that many attention heads 117

could be pruned with little to no degradation in 118

performance. Voita et al. (2019a) introduced auxil- 119

iary losses to identify and prune underperforming 120

heads, while HeadMask (Michel et al., 2019a) uti- 121

lized learnable head masking. Li et al. (2021a) 122

proposed a dynamic, end-to-end learnable pruning 123

mechanism that integrates pruning decisions into 124

the training loss. 125

Transformer Compression Numerous efforts 126

have been made to compress Transformer models 127

for efficient deployment. Coarse-grained strategies 128

include LayerDrop (Fan et al., 2019a) and Dyn- 129

aBERT (Hou et al., 2020), which drop layers or 130

adapt width and depth during runtime. In contrast, 131

fine-grained approaches such as Movement Prun- 132

ing (Sanh et al., 2020) and quantization-based meth- 133

ods like Q8BERT (Zafrir et al., 2019) aim at reduc- 134

ing parameter counts while preserving precision. 135

However, these methods often incur non-negligible 136

implementation complexity and may require cus- 137

tom inference frameworks. 138

Mixture-of-Experts (MoE) Architectures MoE 139

architectures provide a scalable way to increase 140

model capacity with conditional computation. 141

GShard (Lepikhin et al., 2020) and Switch Trans- 142

former (Fedus et al., 2022) activate only a subset 143

of experts for each input, significantly reducing 144

computation. TaskMoE (Zhao et al., 2022) further 145

enhances MoE for multi-task settings. Despite their 146

success, these designs are mainly focused on feed- 147

forward (FFN) layers and are rarely applied to the 148

attention mechanism itself. 149

MoE for Compression and Specialization Re- 150

cent efforts have begun to leverage MoE not only 151

for expansion but also for compression. Sparse 152

MoE approaches (Roller et al., 2021) and hashing 153

techniques (Riquelme et al., 2021) reduce compu- 154

tation by sparsifying expert selection. Yet, these 155

methods primarily address FFN modules and ig- 156

nore redundancy in attention heads, leaving a gap 157

in structured compression strategies at the attention 158

level. 159

Our Contribution Our method bridges the gap 160

between MoE scalability and Transformer pruning. 161
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Figure 2: Overview of the Expert Attention mecha-
nism. The input hidden states are routed by a Top-k
gate to select the most relevant expert heads. Only the
selected experts compute QKV projections and perform
self-attention. The resulting outputs are passed through
a shared Expander FFN, which restores the hidden di-
mension and replaces the original feed-forward network.
Finally, layer normalization and residual connection are
applied to produce the final output.

By treating each attention head as an independent162

expert and introducing a shared, lightweight Ex-163

pander FFN, we enable dynamic expert selection164

and post-training pruning without requiring auxil-165

iary losses or supervision. This architectural-level166

restructuring complements previous work and in-167

troduces a novel compression perspective in Trans-168

former models.169

3 Method170

3.1 Expert Attention171

We propose Expert Attention, a modular refor-172

mation of the Transformer encoder layer that re-173

places the standard multi-head attention and shared174

feed-forward structure with a sparse, expert-driven175

computation framework, as illustrated in Figure 2.176

In a standard Transformer layer, multiple atten-177

tion heads are computed in parallel and merged,178

followed by a shared feed-forward network (FFN).179

In contrast, we decouple each attention head into180

an independent computation path. Each head is181

paired with a dedicated expander FFN, forming a182

standalone expert module. These experts are dy-183

namically selected at runtime using a gating mech-184

anism, allowing only the most relevant ones to be185

activated for a given input.186

This design introduces three key components:187

• Independent attention experts, each with its 188

own self-attention computation. 189

• Expander FFNs, which restore output dimen- 190

sionality and replace the original FFN. 191

• Top-k gating, which selects a sparse subset 192

of expert modules per input. 193

The output of the selected expert paths is ag- 194

gregated, normalized, and combined with residual 195

connections. This structure supports sparse infer- 196

ence, facilitates specialization, and enables expert- 197

level pruning with minimal performance drop. We 198

detail each of these components in the following 199

subsections. 200

3.1.1 Attention as Expert Module 201

In Expert Attention, we reinterpret each attention 202

head as an independent expert module. Unlike stan- 203

dard multi-head attention, where heads are com- 204

puted jointly and fused, our design detaches each 205

head into a self-contained unit with its own query, 206

key, and value projections: 207

Qi = XWQ
i , Ki = XWK

i , Vi = XW V
i 208

Each expert computes scaled dot-product attention 209

individually: 210

Headi(X) = softmax
(
QiK

⊤
i√

dk

)
Vi 211

These heads are not concatenated or merged. In- 212

stead, they act as standalone expert branches that 213

will be selectively routed during inference. 214

By treating each head independently, we allow 215

each to specialize without interference from others. 216

This modularization also lays the foundation for 217

subsequent pruning, as unused heads can be easily 218

removed. 219

3.1.2 Expander FFN 220

In standard Transformer layers, the feed-forward 221

network (FFN) is a two-layer fully connected block 222

applied after the multi-head attention output, pro- 223

jecting from the hidden dimension d to an inter- 224

mediate dimension and back to d. This design 225

introduces a significant number of parameters and 226

dominates the overall model size. 227

In Expert Attention, we replace the original 228

FFN with a simplified and shared Expander FFN, 229

which serves two purposes: 230
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1. Dimensional adaptation: Since each at-231

tention expert produces an output of shape232

(B,L, dhead), where dhead = d/h, we need233

to project this lower-dimensional output back234

to the full hidden dimension d. This projec-235

tion ensures compatibility with the residual236

connection and layer normalization applied237

afterward.238

2. Functional substitution: The Expander FFN239

also replaces the original FFN, providing the240

necessary non-linear transformation and ca-241

pacity to support downstream representation242

learning.243

3. Parameter efficiency: Unlike the original244

FFN, which maps d → dff → d, our Expander245

FFN only maps dhead → dff → d. This greatly246

reduces the number of parameters, especially247

when dhead ≪ d.248

Formally, the Expander FFN is defined as:249

ExpFFN(x) = W 2 · GELU(W 1x)250

where W 1 ∈ Rdff×dhead and W 2 ∈ Rd×dff . All251

experts share the same Expander FFN parame-252

ters, which promotes efficiency while maintaining253

model capacity through sparse expert selection.254

This lightweight design enables the model to re-255

main modular, prune-friendly, and highly efficient256

in inference, as shown in Figure 2.257

3.1.3 Top-1 Gating258

To enable efficient expert selection and support259

pruning, we adopt a simplified routing strategy in-260

spired by Switch Transformer (Fedus et al., 2022).261

Instead of using softmax-based weighting over mul-262

tiple experts, we select only the single most relevant263

expert (i.e., k = 1) for each input.264

The gating mechanism takes the representation265

of the [CLS] token, xCLS ∈ Rd, and projects it to a266

score vector over N experts:267

g = Linear(xCLS) ∈ RN268

We then select the index of the top-scoring expert:269

i∗ = argmax
j

gj270

No softmax is applied, and no weighting is per-271

formed. The selected expert i∗ alone is responsible272

for processing the input. This hard routing design273

not only reduces runtime computation but also al-274

lows unused experts to be completely removed after275

training.276

3.1.4 Integration and Output 277

As illustrated in the bottom portion of Figure 2, 278

once the top-1 expert i∗ is selected, its attention 279

head processes the input and passes the result 280

through the shared Expander FFN: 281

E = ExpFFN(Headi∗(X)) 282

We then apply residual connection and layer nor- 283

malization, using the original input X: 284

Y = LayerNorm(E +X) 285

This design ensures that only a single expert is 286

executed per layer and per input. Because experts 287

are fully decoupled, those that are rarely or never 288

selected can be pruned entirely—enabling efficient 289

post-training compression without any structural 290

reconfiguration. 291

3.2 Further training 292

Training an Expert Attention model poses unique 293

challenges due to the sparse and modular nature 294

of its computation. In particular, directly applying 295

MoE transformation to all layers at once often leads 296

to instability or training collapse, especially when 297

fine-tuning on downstream tasks. To address this, 298

we adopt a progressive training strategy with two 299

critical components: layer-wise MoE conversion 300

and a two-stage optimization schedule. 301

Layer-wise MoE Conversion. Instead of trans- 302

forming all encoder layers into Expert Attention 303

modules simultaneously, we convert one layer at a 304

time in a staged manner. At each training epoch, 305

one additional Transformer layer is replaced by its 306

MoE counterpart. Once all target layers have been 307

converted, we continue training the full model for 308

a small number of extra epochs (typically 2) to 309

stabilize learning and allow for full adaptation. 310

For example, when training a 12-layer encoder 311

with 6 MoE-converted layers over 8 epochs, we 312

proceed as follows: 313

• Epochs 1–6: progressively convert 1 new 314

layer per epoch. 315

• Epochs 7–8: full MoE model trained as-is for 316

final optimization. 317

This approach prevents sudden optimization 318

shocks, allowing each newly introduced expert 319

layer to adapt gradually to the model’s dynamics. 320
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Two-Stage Learning: Load Balancing → Spe-321

cialization. We further split the training process322

into two functional stages to align with the final323

goal of pruning underutilized experts:324

• Stage 1 – Balanced Exploration. During the325

layer-wise conversion phase (before all tar-326

get layers are MoE-enabled), we apply a load327

balancing loss to encourage even expert uti-328

lization. This prevents early expert collapse329

and ensures that each expert gets adequate330

learning signals. The loss encourages the rout-331

ing gate to distribute inputs more uniformly332

across available experts.333

• Stage 2 – Expert Specialization. After all334

MoE layers are in place, we disable the load335

balancing objective and allow the gating mech-336

anism to focus solely on task performance.337

In this phase, experts naturally specialize,338

and frequently selected experts are reinforced,339

while unselected ones begin to fade. This340

directly supports the goal of pruning, where341

underused experts can later be removed with-342

out harming performance. Importantly, the343

Top-1 gating strategy is preserved throughout344

to ensure sparsity and modularity.345

This two-phase training process bridges the gap346

between robust early learning and efficient late-347

stage specialization. It ensures both high-quality348

optimization and structural sparsity, laying the349

groundwork for expert pruning in subsequent steps.350

3.3 Expert Pruning351

After training, many experts in the MoE-enabled352

layers are observed to be rarely or never activated.353

To reduce model size and accelerate inference, we354

propose a usage-driven pruning strategy that re-355

moves underutilized experts in a structured and356

interpretable manner.357

Usage-based Expert Selection. Each MoE layer358

routes inputs to one of several expert heads based359

on a Top-1 gating decision. After training, we ana-360

lyze validation-time expert usage across all layers361

by recording how frequently each expert is selected.362

For each layer, we rank experts by their activation363

frequency and identify those that contribute mean-364

ingfully to inference.365

Pruning Policy. For every MoE layer, we retain366

only the top-m most frequently used experts and367

discard the rest. The choice of m can be tuned to368

control the trade-off between model compression 369

and performance retention. Since our architecture 370

uses hard routing (Top-1) and each expert is struc- 371

turally independent, the unused branches can be 372

safely removed without any additional fine-tuning. 373

Architecture Simplification. Following pruning, 374

we statically replace each dynamic MoE layer with 375

a simplified deterministic attention layer that only 376

includes the selected experts. This change elimi- 377

nates the runtime cost of gating and makes infer- 378

ence more predictable and hardware-efficient. 379

Effectiveness. This approach yields substantial 380

reductions in parameter count and inference latency. 381

Unlike unstructured pruning, our method operates 382

at the architectural level—making the resulting 383

model easy to deploy and analyze. Experimental 384

results show that pruning has minimal impact on 385

downstream task performance while significantly 386

improving throughput and efficiency. 387

4 Experiments 388

4.1 Expert Attention vs Traditional Methods 389

In this section, we compare our method, Expert 390

Attention, with several traditional attention head 391

pruning techniques. All experiments are conducted 392

on the BERT-base-uncased model as the baseline, 393

and pruning is performed on the MNLI task. The 394

pruning and fine-tuning results for various baseline 395

methods are sourced from the study in (Li et al., 396

2021a). Our goal is to compare the performance 397

of traditional attention head pruning methods with 398

the newly proposed Mixture-of-Experts (MoE) ap- 399

proach, highlighting the difference in their effi- 400

ciency and performance under identical conditions. 401

The baselines considered for this experiment in- 402

clude: 403

• Michel et al.: This method prunes attention 404

heads based on predefined importance scores. 405

The importance score is computed by using 406

gradient-based analysis to remove the least 407

important heads. (Michel et al., 2019b) 408

• Pipelined DSP: A dynamic sparse pruning 409

method that reduces the number of attention 410

heads during the post-training phase while at- 411

tempting to preserve the model’s performance. 412

It prunes heads based on an iterative strat- 413

egy, adjusting the pruning thresholds.(Li et al., 414

2021b) 415
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• Voita et al.: This method uses auxiliary losses416

during training to identify and prune under-417

performing heads. It utilizes a binary gating418

mechanism to control which heads remain ac-419

tive during training. (Voita et al., 2019b)420

• STE (Straight-Through Estimator): A prun-421

ing method that applies threshold-based prun-422

ing using a straight-through estimator to ap-423

proximate gradients in the binary decision pro-424

cess of pruning heads. (Fan et al., 2019b)425

• Joint DSP: This approach dynamically prunes426

heads based on a joint optimization strategy,427

where the pruning decisions are integrated428

into the model’s training loss, making prun-429

ing an end-to-end learnable process. (Li et al.,430

2021a)431

As shown in Table 1, when comparing the Expert432

Attention method with the baseline methods using433

the same Unpruned Heads values, we observe the434

following:435

While Joint DSP achieves some of the best per-436

formance metrics in terms of accuracy, Expert At-437

tention significantly outperforms the traditional438

pruning methods in terms of model size reduc-439

tion. Our method benefits from an architecture440

reconfiguration, where pruning is performed at the441

layer level, along with an attention head decoupling442

and MoE-based model pruning approach. This al-443

lows Expert Attention to achieve a much larger444

reduction in model size compared to Joint DSP445

and other baselines, while retaining superior accu-446

racy. For example, when Expert Attention retains447

only 12 unpruned heads, it achieves an 88.5% re-448

duction in model size, which is much greater than449

the reduction seen in Joint DSP and other baseline450

methods.451

Moreover, when comparing methods that result452

in the same model size reduction (e.g., Model Size453

Reduction = 16%, corresponding to Joint DSP’s454

unpruned heads = 72 and our method’s unpruned455

heads = 120), Expert Attention clearly outper-456

forms the baselines in terms of accuracy. This457

demonstrates the effectiveness of our MoE-based458

approach in reducing model size while maintaining459

high performance, even with aggressive pruning460

strategies.461

In Table 2, we detail the effect of different MoE-462

layer configurations on throughput and model per-463

formance. This analysis focuses on the increase464

in throughput as the number of MoE layers is in-465

creased. From the results, we observe a marked466

improvement in throughput as more MoE layers are 467

added, along with a significant reduction in model 468

parameters. 469

In extreme pruning scenarios, for example, when 470

11 out of 12 layers are pruned (i.e., layer 11/12), 471

our model achieves a remarkable 88.50% reduc- 472

tion in model parameters and a 332.84% increase 473

in throughput, while still retaining 81.11% of its 474

accuracy. In comparison, Joint DSP (1), which 475

prunes aggressively, achieves only a 26% reduction 476

in model size and 72.78% of its accuracy, with a 477

throughput of approximately 1995 inferences/sec 478

(33% increase). 479

This indicates that our method not only reduces 480

more parameters (88.50% vs. 26%) but also sig- 481

nificantly outperforms Joint DSP (1) in terms of 482

throughput (332.84% increase vs. 33% increase) 483

while retaining a higher level of accuracy (81.11% 484

vs. 72.78%). 485

This demonstrates the power of our MoE-based 486

approach, which provides a better balance between 487

computational efficiency and model performance. 488

Our method handles very aggressive pruning with 489

far more effective parameter reduction and through- 490

put improvements, while still maintaining a high 491

level of performance compared to traditional meth- 492

ods like Joint DSP. 493

4.2 Experiments on XLM-R-Base Model 494

In this experiment, we apply our proposed method 495

and framework to the XLM-R-Base model, another 496

widely-used pretrained encoder-only model with 497

12 attention heads and 12 layers. This aims to 498

demonstrate that our approach is not restricted to a 499

single model but is broadly effective across differ- 500

ent encoder-only architectures. Building upon the 501

results shown in Section 4.1 with BERT, this exper- 502

iment validates that our Expert Attention technique 503

consistently preserves performance and improves 504

efficiency in diverse multilingual settings. We fo- 505

cus particularly on assessing how pruning affects 506

model accuracy, parameter efficiency, and infer- 507

ence throughput, offering a comprehensive analysis 508

of the trade-offs introduced by our method across 509

different encoder-only pretrained models. 510

For the dataset, we use the Unified Multilingual 511

Sentiment Analysis Benchmark (UMSAB(Team, 512

2024)), which is a comprehensive benchmark 513

for evaluating sentiment analysis models across 514

multiple languages.UMSAB integrates sentiment- 515

annotated tweets from eight languages, including 516

Arabic, English, French, German, Hindi, Italian, 517
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Unpruned
Heads

Michel et
al.

Pipelined
DSP Voita et al. STE Joint DSP

Expert-
attention

(ours)

Model Size
Reduction (base

vs ours)
120 84.6 84.41 84.18 84.59 84.97 85.01 4% / 16.6%
96 84.24 83.27 82.95 83.93 84.41 84.09 8% / 32.6%
72 82.47 82.95 83.24 82.81 83.48 82.41 13% / 48.6%
48 79.26 79.1 76.08 82.31 83.22 79.49 17% / 64.5%
36 70.82 76.29 31.68 82.20 82.51 74.68 19% / 80.5%
12 40.59 56.29 76.91 73.79 79.74 68.53 24% / 88.5%

Table 1: Comparison of attention head pruning methods with Expert Attention on the BERT-base-uncased model,
evaluated on the MNLI task. The table compares pruning techniques at different unpruned head levels, showing
their impact on accuracy (Acc) and model size reduction.

Model (Unpruned Heads) Throughputs/seds Model Size
Reduction (%)

Acc Accuracy Performance
Retained (%)

bert-base-uncased(144) 1500 0 84.90 /
Joint DSP (1) ≈ 1995 (↑33%) -26% 61.79 72.78%

layer 2/12 (120) 1787.13 (↑16.56%) 16.60% 85.01 100.12%
layer 4/12 (96) 2150.64 (↑40.26%) -32.60% 84.09 99.05%
layer 6/12 (72) 2603.85 (↑40.26%) -48.60% 82.41 97.14%
layer 8/12 (48) 3211.63 (↑109.47%) -64.50% 79.49 93.63%
layer 10/12 (36) 4933.59 (↑221.78%) -80.50% 74.68 87.97%
layer 11/12 (12) 6636.58 (↑332.84%) -88.50% 68.53 81.11%

Table 2: Performance comparison of pruning methods in terms of throughput, accuracy, and model size reduction.
The first two rows represent baseline methods: BERT-base-uncased (144) (no pruning) and Joint DSP (1) (extreme
pruning with only one unpruned head). The remaining rows show the results for MoE-based layer pruning, where
the number of unpruned heads per layer is progressively reduced (e.g., layer 2/12 means 2 unpruned heads out of
12). The table highlights the effects of pruning on throughput (inferences/sec, measured with batch size 128), model
size reduction, and accuracy retention, with Expert Attention achieving higher throughput and more substantial
model size reductions while maintaining a competitive level of accuracy.

Portuguese, and Spanish. Each dataset within518

UMSAB is designed for three-way sentiment clas-519

sification (positive, negative, and neutral) and is520

derived from existing sentiment analysis datasets521

such as SemEval, Deft, SB-10K, SAIL, Sentipolc,522

SentiBR, and InterTASS. This diverse multilingual523

testbed is particularly suitable for assessing the524

performance of sentiment classification models in525

cross-lingual settings.526

Following the training framework described ear-527

lier, we apply the Expert Attention method to fine-528

tune the model at the layer level. Specifically, we529

progressively transform 2, 4, 6, 8, 10, and 11 layers530

into MoE layers, and conduct experiments at each531

stage to evaluate the impact of our approach.532

Analysis of Experimental Results Figures 3 (a)533

and (b) summarize the key performance and ef-534

ficiency metrics observed during the progressive535

layer-wise MoE transformation and pruning of the536

XLM-R-Base model.537

From Figure 3 (a), we observe that the F1 score 538

remains relatively stable as the number of mod- 539

ified layers increases from 2 to 10, both before 540

and after pruning. The model effectively retains 541

most of its classification performance despite the 542

incremental introduction of the Expert Attention 543

modules. However, once 11 layers are modified, 544

there is a noticeable drop in the F1 score, indicat- 545

ing that aggressive pruning at this stage leads to a 546

decline in task performance. 547

In terms of throughput, the benefits of our 548

method become clear: the throughput steadily 549

increases with the number of MoE layers, ris- 550

ing from around 900 samples/sec to over 3500 551

samples/sec after pruning at 11 modified layers. 552

This represents a substantial improvement in infer- 553

ence speed compared to the baseline throughput of 554

approximately 700 samples/sec, highlighting the 555

efficiency gains from pruning redundant attention 556

heads. 557
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Figure 3: (a) F1 score vs throughput before and after pruning (left); (b) F1 score vs parameter reduction before and
after pruning (right).

Figure 3 (b) further illustrates the relationship be-558

tween parameter reduction and model performance.559

The parameter count reduction before pruning is560

modest when few layers are modified, but it grows561

significantly with more layers transformed. Af-562

ter pruning, the parameter reduction is much more563

pronounced, reaching up to nearly 90% when 11564

layers are modified. Notably, this substantial com-565

pression incurs only a moderate performance drop566

until the last pruning step, which aligns with the567

trend observed in Figure 3 (a).568

Overall, these results demonstrate that our Ex-569

pert Attention approach can effectively compress570

the XLM-R-Base model, enhancing inference effi-571

ciency while preserving strong multilingual senti-572

ment classification performance across most prun-573

ing levels. However, when comparing with the pre-574

vious experiments on the single-language BERT575

model, we observe a notable difference in perfor-576

mance retention. Specifically, under extreme prun-577

ing (modified layer = 11), the BERT-base model578

maintains approximately 81.11% of its original per-579

formance on the MNLI task, whereas the XLM-R-580

Base model retains only about 69.9% on the mul-581

tilingual sentiment classification benchmark. This582

larger performance degradation in XLM-R-Base583

likely stems from the added complexity of handling584

multiple languages simultaneously, which demands585

richer and more diverse representations. Conse-586

quently, aggressive pruning in a multilingual set-587

ting poses greater challenges for preserving model588

accuracy, emphasizing the need for careful pruning589

strategies tailored to multilingual scenarios.590

For a detailed comparison of F1 scores across in-591

dividual languages, please refer to Appendix Table 592

3, which provides a comprehensive breakdown of 593

the per-language performance difference. 594

5 Conclusion 595

We propose Expert Attention, a Mixture-of-Experts 596

(MoE) architecture that decouples each attention 597

head into an independent expert module while shar- 598

ing a common Expander feed-forward block. Com- 599

bined with a dynamic Top-1 gating mechanism 600

and progressive layer-wise training, this design en- 601

ables effective expert specialization and load bal- 602

ancing. Unlike prior methods, our simple yet effec- 603

tive pruning strategy removes underutilized experts 604

based solely on usage frequency, without relying 605

on complex masking or scoring functions, thereby 606

significantly reducing model size and improving 607

inference throughput with minimal overhead. 608

Experiments on BERT-base and XLM-R-Base 609

validate the effectiveness and generality of our ap- 610

proach. Expert Attention achieves up to 90% pa- 611

rameter reduction while maintaining strong task 612

performance. The trade-off between accuracy and 613

efficiency is more pronounced for the multilingual 614

XLM-R-Base under extreme pruning, reflecting 615

the challenge of preserving multilingual represen- 616

tations. 617

Overall, our method provides a practical, 618

architecture-level solution for structured compres- 619

sion of Transformer encoders, balancing efficiency 620

and performance, and facilitating deployment in 621

real-world applications where speed and model size 622

are critical. 623

8



6 Limitations624

Our Expert Attention method has so far been de-625

signed and evaluated primarily on encoder-only626

Transformer models. Extending it to decoder-only627

or encoder-decoder architectures introduces addi-628

tional challenges due to the presence of compo-629

nents such as cross-attention and autoregressive630

mechanisms. These factors complicate direct adap-631

tation and require more sophisticated approaches.632

We recognize these challenges and plan to ad-633

dress them in future work by exploring finer-634

grained gating mechanisms and adaptive pruning635

strategies tailored to these architectures and spe-636

cific downstream tasks. This will help broaden the637

applicability and impact of our method.638
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A Training Details773

All experiments were conducted on an NVIDIA774

GeForce RTX 4090 GPU with 24GB memory, run-775

ning Ubuntu 20.04, CUDA 11.7, and PyTorch 2.3.776

Key training settings are as follows:777

• Batch size: 128778

• Optimizer: AdamW with β1 = 0.9, β2 =779

0.999780

• Learning rate: initial 1× 10−4781

• Learning rate warm-up: linear warm-up dur-782

ing the first epoch, increasing from 1× 10−5783

to 1× 10−4784

11



Language
2/12 layer 6/12 layer 8/12 layer 10/12 layer 11/12 layer

Original Pruned Original Pruned Original Pruned Original Pruned Original Pruned
ar 0.6283 0.6271 0.604 0.6177 0.5988 0.578 0.573 0.5473 0.4731 0.4336
de 0.7302 0.7224 0.7062 0.7011 0.6901 0.6644 0.6426 0.656 0.4691 0.4256
en 0.6863 0.6463 0.6605 0.6568 0.6642 0.6271 0.642 0.6422 0.4961 0.4337
es 0.6449 0.6431 0.6194 0.6335 0.5847 0.5546 0.5683 0.5579 0.457 0.4154
fr 0.6839 0.6945 0.6895 0.6945 0.6606 0.6212 0.5777 0.5657 0.4452 0.4186
in 0.47 0.4797 0.5035 0.4991 0.4638 0.4531 0.4503 0.4645 0.3872 0.3735
it 0.6442 0.6596 0.6673 0.6927 0.6159 0.5801 0.5806 0.5747 0.4656 0.4054
pt 0.7002 0.7123 0.7089 0.7051 0.6617 0.6423 0.6218 0.5976 0.4985 0.4293

average 0.6485 0.6481 0.6449 0.6501 0.6175 0.5901 0.582 0.5757 0.4615 0.4168

Table 3: Language Performance Across Different Layers
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