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ABSTRACT

While generalizable 3D Gaussian Splatting enables efficient, high-quality render-
ing of unseen scenes, it heavily depends on precise camera poses for accurate ge-
ometry. In real-world scenarios, obtaining accurate poses is challenging, leading
to noisy pose estimates and geometric misalignments. To address this, we intro-
duce SHARE, a novel pose-free generalizable Gaussian Splatting framework that
overcomes these ambiguities. Our ray-guided multi-view fusion network consoli-
dates multi-view features into a unified pose-aware canonical volume, bridging 3D
reconstruction and ray-based pose estimation. In addition, we propose an anchor-
aligned Gaussian prediction strategy for fine-grained geometry estimation within
a canonical view. Extensive experiments on diverse real-world datasets show that
SHARE achieves state-of-the-art performance in pose-free generalizable Gaussian
splatting.

1 INTRODUCTION
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Figure 1: Given sparse-view unposed images, SHARE jointly predicts geometry, appearance, and relative
camera poses. Previous generalizable 3D Gaussian splatting method (Chen et al., 2024b) is highly sensitive
to camera pose and fails to reconstruct correct geometry even with a small amount of pose random noise.
Meanwhile, our method demonstrates robust performance in geometry reconstruction, pose estimation, and
novel view synthesis.

Recent years have witnessed unprecedented progress in Novel View Synthesis (NVS) and 3D scene
reconstruction, marked by the emergence of neural implicit representations (Sitzmann et al., 2019;
Park et al., 2019; Mildenhall et al., 2021) and explicit volumetric approaches such as 3D Gaussian
splatting (Kerbl et al., 2023). Central to this task is the utilization of precise camera poses, which
serve as a fundamental geometric prior coupling the spatial relationship between 3D space and their
corresponding 2D-pixel projections across multiple views.

However, the assumption of readily available accurate camera poses is often unsatisfiable in practi-
cal scenarios. While Structure-from-Motion (SfM) (Snavely et al., 2006) techniques have long been
the go-to solution for obtaining camera poses, they become increasingly unreliable as views become
sparser or camera baselines widen. This challenge is particularly acute in a generalizable setting
where the number of input views is often limited and test-time adaptation is not considered. A seem-
ingly intuitive solution might be to employ learning-based camera pose prediction methods designed
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for sparse view inputs. Unfortunately, even slight inaccuracies in estimated camera poses can be am-
plified into large positional errors in 3D space, resulting in significant geometry misalignment across
input views, as shown in Figure 1.

Pose-free 3D Gaussian splatting methods have been explored to overcome this problem. Previous
works (Fu et al., 2023; Fan et al., 2024) propose an iterative test-time adaptation approach that
jointly rectifies pose and geometry for better alignment. GGRt (Li et al., 2024) proposes the gener-
alizable reconstruction for video sequence inputs without pose information. Nevertheless, existing
methods require additional computation for each scene or only consider sequential frames as input,
compromising general applicability.

In pursuit of novel view synthesis in general scenarios without poses, we propose SHARE, a novel
approach for pose-free generalizable 3D Gaussian splatting. SHARE aims to learn a holistic repre-
sentation of multi-view features in a unified canonical view space. The key to our multi-view fusion
process lies in embedding relative poses as spatially defined Plücker rays, which allows easy in-
jection of pose information throughout the reconstruction pipeline. This acts as a multi-view prior
across the input views in the fusion process, resolving the misalignment issues and enhancing ge-
ometric consistency across views. Building on our pose-aware fusion, we introduce anchor-based
Gaussian prediction to reconstruct fine details in a unified space. We estimate pixel-aligned coarse
geometry from the unified representation as anchor points for the local 3D space for shape consis-
tency. From each anchor, we predict offsets to determine the splatting locations of Gaussians.

We evaluate our approach with scene level datasets such as DTU (Jensen et al., 2014) and
RealEstate10K (Zhou et al., 2018) datasets. SHARE achieves robust reconstruction quality in pose-
free scenarios, showing superior performance to previous pose-free generalizable reconstruction
approaches (Jiang et al., 2023; Hong et al., 2024; Smith et al., 2023), and even comparable to gener-
alizable 3DGS (Charatan et al., 2024; Chen et al., 2024b) with ground-truth poses in DTU (Jensen
et al., 2014) datasets. Further analysis illustrates the effectiveness of our proposed multi-view fu-
sion process and synergetic improvement in geometry and pose estimation. Our contribution can be
summarized as below:

• We propose SHARE, a novel pose-free generalizable 3D Gaussian Splatting framework that
simultaneously estimates geometry and camera pose from sparse-view unposed images.

• Our ray-guided multi-view fusion strategy effectively constructs a holistic feature for 3D
shape representation, effectively mitigating the geometry misalignment while covering
multi-view observations with fine details.

• SHARE shows superior performance on scene-level datasets with varying scales, including
DTU (Jensen et al., 2014) and RealEstate10K (Zhou et al., 2018), outperforming exist-
ing pose-free generalizable reconstruction approaches and highlighting robustness under
scene-scale datasets.

2 RELATED WORK

Generalizable Novel View Synthesis with Ground-truth Camera Poses. Generalizable novel
view synthesis methods have emerged to expand the applicability of novel view synthesis (NVS)
to a wider range of scenarios without test-time adaptations. Techniques based on Neural Radiance
Fields (NeRF) (Mildenhall et al., 2021) utilize neural features from input views to render images
by querying and accumulating features of sampled points along cast rays, leveraging known camera
poses (Yu et al., 2021; Chen et al., 2021; Wang et al., 2021; Sajjadi et al., 2022). As generalizable
NeRFs often face challenges in terms of rendering efficiency and processing speed due to neural
network inference on densely sampled points, recent advancements have introduced 3D Gaussian
Splatting for fast and efficient generalizable reconstruction (Zheng et al., 2024; Szymanowicz et al.,
2024b; Charatan et al., 2024; Chen et al., 2024b; Liu et al., 2024; Wewer et al., 2024).

Generalizable 3D Gaussian splatting methods focus on predicting geometry to accurately splat Gaus-
sians in three-dimensional space on the fly. PixelSplat (Charatan et al., 2024) learns probabilistic
depth distributions in ray space, effectively addressing the local support limitation of Gaussians
under rendering supervision. LatentSplat (Wewer et al., 2024) improves on this by encoding 3D
variational Gaussians using a variational auto-encoder (VAE) and incorporating a discriminator to
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Figure 2: Comparing SHARE with pixel-aligned generalizable 3D Gaussian Splatting (g-3DGS) in ad-
dressing geometry misalignment. (Left) In previous g-3DGS (Charatan et al., 2024; Chen et al., 2024b), small
camera pose error is amplified through depth, causing significant misalignment in 3D space. (Right) SHARE
addresses this by predicting fused features in a canonical space and estimating dense Gaussians to cover multi-
view observations.

enhance extrapolation performance to deal with challenging large-baseline inputs where depth pre-
diction becomes unreliable. MVSplat (Chen et al., 2024b) and MVSGaussian (Liu et al., 2024)
enhance the fidelity of predicted geometry by utilizing Multi-View Stereo (MVS) to construct cost
volumes via plane-sweeping of depth hypothesis. Unfortunately, these works assume to have precise
camera poses, which come to be unrealistic in real-world scenarios.

Pose-Free Generalizable Novel View Synthesis. Several works have introduced generalizable
approaches for reconstructing 3D shapes from sparse or noisy pose initializations (Hong et al.,
2024; Jiang et al., 2024; Fan et al., 2023; Wang et al., 2023; Xu et al., 2024; Jiang et al., 2023).
FORGE (Jiang et al., 2024) integrates camera pose estimation with radiance field prediction to
achieve mutual refinement of both tasks. PF-LRM (Wang et al., 2023) implicitly leverages the power
of camera estimation by parallel training of a differentiable Perspective-n-Point (PnP) solver for
camera prediction. FlowCAM leverages optical flow estimation for joint flow radiance estimation,
and CoPoNeRF (Hong et al., 2024) introduces joint training of pose estimation and reconstruction
and correspondence matching between images. Meanwhile, LEAP (Jiang et al., 2023) liberates the
need for precise pose estimation by constraining a canonical camera space, thereby constraining the
pose estimation space. While these works excel in generalizable 3D reconstruction without poses,
the implicit nature of their NeRF backbone complicates the joint optimization of both scene repre-
sentation and camera poses (Li et al., 2024).

Gaussian-based methods (Fu et al., 2023; Fan et al., 2024) have improved optimization and ef-
ficiency for pose-free cases but continue to exhibit limitations in generalizability, requiring pro-
gressive test-time optimizations. To address this problem, concurrent pose-free generalizable 3D
Gaussian Splatting (g-3DGS) methods (Smart et al., 2024; Szymanowicz et al., 2024a) utilizes pre-
trained models to leverage the power of geometric priors (Wang et al., 2024; Piccinelli et al., 2024).
While promising, these approaches are often affected by scale ambiguities between the estimated
geometry and camera poses, requiring fine-tuning with ground-truth depth supervision. GGRt (Li
et al., 2024) also addresses pose-free 3D Gaussian Splatting by taking video frames as input, as-
suming sequential pose transformation between views. In contrast, our method is designed to handle
sparse-view inputs with diverse camera baseline configurations without scale ambiguity by offer-
ing improved robustness by jointly estimating cameras as rays and 3D Gaussian splats in a unified
canonical space.

3 OVERVIEW

Our approach addresses the critical challenge of geometric misalignment when extending 3D Gaus-
sian splatting to unposed settings. This misalignment arises from difficulties in aligning geometry
across different viewpoints and is particularly sensitive to errors in estimated relative poses (see Left
of Figure 2). To overcome this issue, we introduce a pose-aware feature fusion strategy that esti-
mates a unified, holistic representation from a chosen canonical view (see Right of Figure 2). This
representation aligns both geometry and appearance across all input views by integrating pose priors
into the fusion process.
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A key insight of our method is that embedding estimated relative camera rays into multi-view fea-
tures provides effective guidance to mitigate geometric misalignments in the latent space. Previous
works (Zhou & Tulsiani, 2023; Gao et al., 2024; Chen et al., 2024a; Tang et al., 2025) have used
ground-truth camera poses with ray-based representations to guide view-conditional generation or
3D reconstruction. However, our approach is distinct in that it operates in a pose-free setting, where
relative poses are estimated on the fly. Specifically, we jointly predict Plücker rays and 3D Gaus-
sians in a feed-forward manner directly from input images, eliminating the need for ground-truth
pose annotations.

Our ray guidance enables cost aggregation to refine multi-view cost volumes using ray embeddings
derived from the estimated poses and provide rich pose information for the reconstruction model.
These ray embeddings are injected throughout the refinement process, guiding the framework to
build a robust canonical representation from the multi-view cost volumes. Additionally, our an-
chor-based Gaussian prediction estimates fine scene details from arbitrary views based on the fused
canonical cost volume. This prediction strategy reduces misalignment by allowing multi-view fea-
tures to implicitly contribute to Gaussian estimation in a fixed canonical space, rather than estimating
Gaussians per view. Further details of each method are provided in the following section.

4 MODEL ARCHITECTURE

4.1 PROBLEM DEFINITION

SHARE takes M unposed images I = {Ii}Mi=1 as input. The goal of the model is to learn a mapping
function Φθ that jointly estimates both the relative camera poses (comprising rotation R ∈ SO(3)
and translation t ∈ R3) and a set of 3D Gaussian primitives {Gn}Nn=1 using learnable parameters θ.
Each Gaussian primitive is defined by its position µn, opacity αn, covariance matrix Σn, and color
cn, where the color is represented using spherical harmonics coefficients. We additionally predict a
collection of Plücker rays for relative pose representation instead of directly predicting the global
camera parameters {R, t}. The Plücker ray representation is formulated locally for patches, where
each patch corresponds to a subdivided region of the entire image. Within each patch, the ray is
characterized by direction d ∈ R3 and momentum m ∈ R3 vectors, denoted as P = (d,m) ∈ R6.
Overall, the mapping function can be denoted as follows:

Φθ : {Ii}Mi=1 7→
(
{(µn, αn,Σn, cn)}Nn=1, {Ri, ti} = Ψ({Pl

i}
Ph×Pw

l=1 )
)
, (1)

where Ψ denotes the conversion function from rays to camera parameters, and Ph × Pw represents
the resolution of the patch. The ray representation can be converted to the camera pose by finding the
camera center as the closest intersection point of rays and the rotation matrix as the transformation
matrix from the predicted ray direction to an identity matrix. We refer to RayDiffusion (Zhang et al.,
2024) for details on the conversion between camera and Plücker ray representations.

4.2 RAY-GUIDED MULTI-VIEW FUSION

We aim to integrate features from multiple unposed images into a single canonical volume. Each
input view offers a unique perspective of the scene in these settings, capturing different parts of
geometry and appearance. Without accurate camera pose, aligning these views in 3D space becomes
a significant challenge.

To address this, our method jointly estimates relative poses represented as bundles of Plücker rays,
which provides geometric guidance during the fusion process. By incorporating pose awareness into
both the cost volume construction and the fusion strategy, we ensure that features from different
views are coherently aligned in the canonical space. This approach not only enhances geometric
coherence but also provides well-aligned features for subsequent Gaussian prediction.

Joint Feature Extraction. Recent studies have shown that transformer-based architectures are
highly effective in multi-view feature matching for 3D understanding tasks (Li et al., 2021; Ding
et al., 2022; Xu et al., 2022; Na et al., 2024; Chen et al., 2024b). We adopt a matching transformer to
jointly estimate multi-view features and relative camera poses. In the fusion process, one of the input
views is selected as the canonical space, with its local coordinates serving as the reference for the
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Figure 3: SHARE Overview. SHARE consists of two main modules: multi-view fusion (Section 4.2) and
anchor-aligned Gaussians prediction (Section 4.3). We first predict camera poses as rays, leveraging features
from the shared backbone transformer. Ray embedding provides robust pose guidance during cost volume
construction, enhancing the accuracy of multi-view fusion. These pose-aware cost volumes, integrated in the
canonical space, guide the Gaussian predictor to estimate positions that ensure consistent geometry across views
while preventing potential geometry misalignment. Our anchor-aligned Gaussian prediction module is closely
integrated with the pose-aware features, enabling both high-fidelity geometry and detailed shape reconstruction.

others. The output multi-view features are used to estimate patch-wise Plücker rays Pi ∈ RPh×Pw×6

via an additional lightweight two-layer transformer.

Pose-aware Cost Volumes. Recent studies in Multi-View Stereo (MVS) have demonstrated that
computing correlations among input images enhances robustness across diverse camera configura-
tions (Ding et al., 2022; Chen et al., 2023; Na et al., 2024; Hong et al., 2024). Building on these
insights, we extend 2D features into 3D space along hypothetical planes and project them onto
other views using predicted poses. This projection process involves converting predicted rays into
camera parameters [R̂I , t̂I ] = Ψ(r̂i), where R̂I and t̂I denote the predicted camera rotation and
translation, respectively. Next, we compute a channel-wise correlation between the reference fea-
ture Fi ∈ RH

4 ×W
4 ×C and the warped features for all depth candidates {F j→i

d }Dd=1 ∈ RH
4 ×W

4 ×D×C ,
which are obtained by projecting features from view j to view i. The resulting cost volume for each
view is calculated as:

Ci =

∑
j ̸=i Fi · F j→i

√
C

∈ R
H
4 ×W

4 ×D, ∀i ∈ {1, 2, . . . ,M}. (2)

After constructing the cost volumes, we refine them through cost aggregation conditioned on
predicted Plücker rays, using patch-wise cross-attention to embed pose awareness into the vol-
umes (Hong et al., 2024; Chen et al., 2024b). We argue that Plücker rays offer several advantages in
pose-free, generalizable pipelines. Being locally defined in the 2D spatial dimension, they integrate
seamlessly with spatial image features, and their over-parameterized nature introduces a geomet-
ric bias that global extrinsic camera matrices cannot capture (Schops et al., 2020). Furthermore,
their scale-invariant representation enables effective fusion across varying object scales and camera
positions (Chen et al., 2024a).

Specifically, we refine the cost volumes using a transformer-based 2D U-Net with cross-attention
layers, where the rays serve as key-value pairs and the cost volumes act as queries. This allows
the estimated ray embeddings to provide geometric guidance for constructing a unified canonical
volume, with the rays functioning as global positional embeddings across multi-view inputs.

Canonical Volume Construction. Capturing the same region often leads to varied observations due
to view-dependent effects such as occlusion, lighting, and other environmental factors. We assign
spatial weights to each cost volume to account for these variations. The output of the cost aggregation
step is a pair of pose-aware cost volumes per view, C′

i, and their corresponding weights, Wi. We
then fuse these weighted cost volumes to construct a unified canonical geometry volume, Vg , using
a weighted sum. To avoid the trivial solution where one view’s weight dominates the fusion process,
we add a mean and variance-based volume (Yao et al., 2018) as:

Vg =

M∑
i=1

(Wi ·C′
i) + ϕ

(
(C′

i −C
′
i)

2

M
⊕C

′
i

)
∈ R

H
4 ×W

4 ×C , (3)
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where C
′

indicates the average volume, ⊕ denotes channel-wise concatenation, and ϕ denotes a
single CNN layer for channel projection. This multi-view aggregation process enables robust inte-
gration of multiple viewpoints, resulting in a unified 3D representation that generalizes effectively
across different camera configurations. Similarly, the feature volume Vf ∈ RH×W×C is constructed
using the same aggregation strategy with the upsampled multi-view features, which learns holistic
appearance.

4.3 ANCHOR-ALIGNED GAUSSIANS PREDICTION
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Figure 4: Gaussians Prediction. For each
pixel, we predict i anchor positions from the
geometry volume Vg . Subsequently, k Gaus-
sians are estimated to represent the neighbor-
ing region.

We extend the pixel-aligned geometry estimation ap-
proach, where each pixel is associated with one or
more Gaussians (Charatan et al., 2024; Chen et al.,
2024b; Wewer et al., 2024). In contrast to previous
methods that accumulate geometry predictions from
each viewpoint, our approach enables fine geometry
prediction within a single canonical view. Our two-
stage Gaussians prediction framework first generates
sparse geometry anchors, followed by fine-grained
dense Gaussian prediction. The overall process fol-
lows Figure 4.

Pixel-aligned Anchor Proposal. Scene geometry
exhibits significant variation across different re-
gions. Smooth surfaces such as walls can be ad-
equately represented with larger Gaussians, while
intricate textures or complex geometries require
smaller, more localized Gaussians. To account for
this variability, we introduce a hierarchical ap-
proach, beginning with the prediction of anchor points in the canonical space. These anchors serve
as geometric centers for Gaussians, enabling adaptive representation for diverse regions. For each
pixel in the canonical view, our geometry volume Vg predicts a 3D anchor position p ∈ RH×W×3

by pixel-aligned depth estimation. The depth is predicted by the weighted sum of depth candidates
G ∈ RH×W×D, where the weight is computed with a lightweight MLP depth head fg and softmax
function. This forms the initial structural representation of the scene:

pi = o+ zidi, zi = softmax(fg(V
i
g)) · G, (4)

where pi is the 3D anchor position for pixel i, di is the ray direction and the zi is the predicted
depth.

Dense Gaussians Prediction. The spatial constraints of anchor points within their canonical pixel-
aligned, ray-bounded space can lead to suboptimal rendering outcomes due to the sparsity of the
coarse geometric representation. To overcome this limitation, we estimate K offset Gaussians, ex-
panding the geometric estimation to a point-wise three-dimensional space, providing greater spatial
flexibility and precision. At this stage, we predict the detailed positions, colors, opacities, scalings,
and rotations of the offset Gaussians. To capture finer image details, we construct a canonical vol-
ume with an upscaled multi-view features as in 3, predicting feature volume Vf to incorporate finer
information. The geometry channels of Vf are passed through the offset prediction MLP head fo,
which predicts the offset vectors ∆pk = fo(Vf ), for the Gaussian positions. These offset vectors
are then concatenated with the remaining channels of Vf Another MLP head, fp, processes the
concatenated features to estimate the remaining Gaussian parameters. Consequently, the Gaussian
prediction for each anchor is represented as:

Gi,k = {µ, α,Σ, c}i,k, µi,k = pi +∆pi,k, {α,Σ, c}i,k = fp(PE(∆pi,k),V
i
f ) (5)

where ∆pi,k represents the offset for the k-th Gaussian relative to anchor pi, PE(·) denotes posi-
tional embedding, and Gi,k encompasses the set of Gaussian parameters. This formulation provides
flexibility in capturing spatial details by adaptively positioning Gaussians near the anchor point.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Input views 
(2/3)

R
ea
lE
st
at
e1
0K

CoPoNeRF OursPixelSplat MVSplat PixelSplat MVSplat

6.51

18.85

Input views 
(2/2) GT

D
T
U

LEAP Ours
Predicted pose

PixelSplat MVSplat
Noisy pose (𝜎 = 0.05)

PixelSplat MVSplat
No pose

GT

Predicted pose Noisy pose (𝜎 = 0.05) No pose

Figure 5: Qualitative results on DTU and RealEstate10K datasets. We visualized rendering results of mul-
tiple scenes from DTU and RealEstate10K datasets. Our method captures fine details with correct geometry.
More qualitative results can be found in the Appendix.

4.4 TRAINING AND INFERENCE

SHARE is trained using a combination of photometric and ray regression losses. The photometric
loss includes Mean Squared Error (MSE) and Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018):

Ltotal = λMSE ·
M∑
i=1

∥∥∥Îi − Ii
∥∥∥2
2
+ λLPIPS · LPIPS(Î , Igt) + λray ·

N∑
i=1

∥∥∥R̂i −Ri

∥∥∥2
2
,

where Îi and Ii represent the predicted and ground truth images, respectively, and LPIPS measures
perceptual similarity between the predicted image Î and ground truth Igt. R̂i and Ri denote the
predicted and ground truth rays for ray regression. The loss terms are weighted by λMSE, λLPIPS,
and λray. Once trained, our model only requires RGB images as input to reconstruct the scene and
estimate the relative poses.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We train and evaluate our method on two distinct real-world datasets, DTU (Jensen et al.,
2014) and RealEstate10K (Zhou et al., 2018). These datasets were selected to assess our approach
across varying scene scales and camera configurations.

DTU (Jensen et al., 2014) contains small-scale static scenes captured from 49 cameras with diverse
configurations, provided with camera parameters. We use 75 scenes for training and 15 for test-
ing (Na et al., 2024). This dataset validates SHARE on small-scale scenes with diverging camera
baselines.

RealEstate10K (Zhou et al., 2018) contains 67,477 training and 7,289 testing scenes from YouTube
real estate videos, with camera parameters for each frame. We follow the train and test splits of
previous work (Chen et al., 2024b). This dataset, featuring typical camera movements in real-world
videos, evaluates SHARE on large-scale data.

Baselines. We compare our method with state-of-the-art generalizable 3D Gaussian splatting (g-
3DGS) approaches, including PixelSplat (Charatan et al., 2024) and MVSplat (Chen et al., 2024b),
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Table 1: Quantitative results on DTU datasets. We compare our method with generalizable Gaussian splat-
ting and pose-free generalizable NeRFs. We select small and large following view selection score (Yao et al.,
2018). Pred* denotes the estimated pose using our method. We highlight the best and second-best results. The
results from generalizable Gaussian splatting with ground truth given are colored as gray.

Small baseline Larger baseline

Method Pose Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓

PixelSplat

GT – – 20.96 0.65 0.31 – – 19.64 0.62 0.33
σ = 0.01 1.01 1.71 16.84 0.43 0.47 1.01 0.83 16.60 0.44 0.46
σ = 0.03 3.03 5.15 14.31 0.34 0.61 3.04 3.03 14.43 0.36 0.57
σ = 0.05 5.05 8.61 13.19 0.31 0.65 5.06 3.99 13.59 0.33 0.61

Pred* 2.77 8.13 14.17 0.35 0.56 5.89 6.75 13.62 0.36 0.54

MVSplat

GT – – 21.00 0.69 0.24 – – 19.82 0.63 0.28
σ = 0.01 1.01 1.71 16.43 0.42 0.42 1.01 0.83 16.43 0.42 0.42
σ = 0.03 3.03 5.15 13.74 0.32 0.55 3.04 3.03 13.90 0.33 0.54
σ = 0.05 5.05 8.61 12.78 0.28 0.60 5.06 3.99 12.90 0.29 0.59

Pred* 2.77 8.13 13.17 0.33 0.53 5.89 6.75 13.33 0.33 0.53
LEAP – – – 18.76 0.54 0.48 – – 17.77 0.51 0.48
Ours – 2.74 6.28 19.94 0.63 0.28 6.85 5.84 18.78 0.58 0.34

Table 2: Quantitative results on RealEstate10K
Datasets. We compare the results of novel view synthesis
on large-scale datasets. Pred* denotes the estimated pose
using our method. The lowest and the following are col-
ored.

Method Pose Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓

PixelSplat

GT – – 26.08 0.86 0.14
σ = 0.01 0.92 1.56 20.14 0.62 0.23
σ = 0.03 2.75 4.70 17.07 0.50 0.38
σ = 0.05 4.58 7.65 15.69 0.46 0.46

Pred* 3.58 13.17 11.36 0.34 0.62

MVSplat

GT – – 26.39 0.87 0.13
σ = 0.01 0.92 1.56 19.99 0.62 0.23
σ = 0.03 2.75 4.70 16.67 0.48 0.37
σ = 0.05 4.58 7.64 15.12 0.44 0.45

Pred* 3.58 13.17 16.76 0.50 0.35
FlowCAM – 7.426 50.659 18.24 0.60 0.64
CoPoNeRF – 3.61 12.77 19.54 0.40 0.64

Ours – 3.78 11.61 21.23 0.71 0.26

20.04

17.76OursGT image

Predicted pose

PixelSplat MVSplat

No pose
LEAP OursGT image PixelSplat MVSplat

CoPoNeRF
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Figure 6: Rendered depth comparison.
We compare our rendered depth with other
baselines. Ours shows robust geometry re-
construction, while others fail to capture the
correct depth.

as well as pose-free generalizable NeRF methods, including LEAP (Jiang et al., 2023), CoPoN-
eRF (Hong et al., 2024), and FlowCAM (Smith et al., 2023). For g-3DGS, we evaluate performance
under different pose settings, including poses predicted by our method and poses corrupted with
random Gaussian noise, following the protocol in (Truong et al., 2023). For generalizable NeRFs,
we compare our approach to LEAP (Jiang et al., 2023) on the DTU dataset and the others (Hong
et al., 2024; Smith et al., 2023) on the RealEstate10K dataset, where each method is evaluated from
their studies. Further details of our baselines can be found in the Appendix.

Metrics. To assess the quality of our method, we employ commonly used metrics in the field of
novel view synthesis, including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) (Wang et al., 2004), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018). Additionally, we measure the accuracy of relative camera positioning with Rotation and
Translation errors. Specifically, we use geodesic rotation error and angular difference for transla-
tion following (Hong et al., 2024).

Implementation Details. We trained our model on the DTU dataset using three context images and
one target image, and on the RealEstate10K dataset with two context images and three target images,
following standard protocols. Both datasets used an image resolution of 224 × 224. Our multi-view
fusion backbone consists of six matching Transformer layers (Chen et al., 2024b), while dense ray
prediction is handled by a modified 2-layer Transformer model (Zhang et al., 2024). The resolution
of the anchor-aligned Gaussian prediction matches the image resolution, with each anchor associated
with three Gaussian primitives (N = K ∗H ∗W ). The training was performed for 140,000 iterations
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Table 3: Ablation Study on DTU datasets.
We analyze the impact of pose embedding,
mean and variance-based volume, and the
number of offsets on rendering quality. The
full model consistently achieves the best re-
sults. Removing the pose embedding results in
a significant performance drop, while increas-
ing the number of offsets leads to progressively
better rendering outcomes.

Method PSNR ↑ SSIM ↑ LPIPS ↓

w/o pose embedding 17.37 0.55 0.38
w/o mean-var volume 18.10 0.55 0.33
anchor only 18.37 0.54 0.38
w/ 1 offset 18.76 0.59 0.33
w/ 2 offsets 18.87 0.60 0.32

Ours 19.09 0.64 0.29

Anchor-Only

Offset 1 Offset 3Offset 2

Offset GaussiansTarget View

18.19

6.73

Figure 7: Analysis of anchor-aligned Gaussian predic-
tion on RealEstate10K datasets. (First row) Anchor esti-
mates the overall coarse structure of the scene, while off-
sets estimate the finer details. (Second row) As shown in
the depth map, different offsets focus on different layers of
depth.

on DTU and 300,000 on RealEstate10K using the Adam optimizer. All experiments were run on an
NVIDIA RTX 4090 GPU. Additional implementation details are provided in the Appendix.

5.2 NOVEL VIEW SYNTHESIS.

To evaluate its performance, we conduct experiments on the DTU (Jensen et al., 2014) and
RealEstate10K (Zhou et al., 2018) datasets, which encompass a range of scenarios from object-
centric indoor scenes to large-scale environments.

On the DTU dataset (Table 1), where scenes are captured with large camera transformations around
a central object, our method exhibits superior performance across varying camera baselines. No-
tably, we outperform g-3DGS methods even with slightly noisy pose conditions. In particular, our
approach achieves LPIPS (Zhang et al., 2018) and SSIM (Wang et al., 2004) scores comparable to
those of g-3DGS with ground-truth poses, highlighting the robustness of our pose-aware multi-view
fusion approach in handling pose-free scenarios with diverse camera configurations.

Our key observation is that g-3DGS baselines, when using noisy poses, often produce significantly
distorted renderings. This emphasizes the sensitivity of g-3DGS methods to pose inaccuracies, espe-
cially in sparse-view settings where even minor pose noise (e.g., σ = 0.01, with less than 1◦ angular
error) leads to noticeable degradation in performance.

On the RealEstate10K dataset (Table 2), which features larger-scale scenes, our method consistently
outperforms both g-3DGS with estimated poses and pose-free generalizable NeRF methods (Hong
et al., 2024; Smith et al., 2023). These results further demonstrate the scalability and adaptability of
our approach across different scene complexities.

Figure 5 provides qualitative visualizations of rendered results, showing superior fidelity and geo-
metric consistency of our method compared to the baselines on both datasets. These visual results
further validate the effectiveness of our approach in challenging, pose-free scenarios.

Geometry Reconstruction. The strength of our method is particularly evident when visualizing
the reconstructed geometry through rendered depth maps (see Figure 6). On both the DTU and
RealEstate10K datasets, SHARE consistently predicts accurate geometry, while baselines often pro-
duce incorrect and noisy geometry, even when their synthesized colors appear acceptable. Notably,
CoPoNeRF (Hong et al., 2024), despite its high rendering performance, frequently fails in depth
prediction. This reflects SHARE’s ability to accurately capture appearance and geometry, thanks to
the ray-guided multi-view fusion pipeline.

5.3 ABLATION STUDY

Pose Embedding. We hypothesize that incorporating per-pixel pose priors into the reconstruction
pipeline enhances geometric consistency by improving spatial awareness during 3D geometry esti-
mation. Quantitative results in Table 3 demonstrate a significant decrease in quality metrics when

9
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pose embedding is absent. Fig. 8 illustrates that training without pose embedding leads to severe geo-
metric distortions, particularly evident in viewpoints divergent from the canonical view. The marked
improvement in the depth map with pose embedding suggests that pose-aware features effectively
encode geometric details across multiple views and their inter-relationships.

w/ pose emb. w/o pose emb.

7.38

22.94

Figure 8: Effect of pose
embedding.

Mean and Variance Volume. The weighted cost volume in Eq. (3) cap-
tures complex visibility information, but the mean-variance volume is
crucial for avoiding trivial solutions where a single view dominates the
fusion process (Yao et al., 2018). By enhancing training stability and bal-
ancing contributions across views, it prevents over-reliance on any single
view. Table 3 quantifies the performance drop when excluded.

Anchor-Aligned Gaussians Prediction. We analyze the efficacy of pre-
dicting anchor-based Gaussians by verifying how our offset prediction
covers various geometric details near the anchor points. We first compare
quantitative rendering quality with varying numbers of offsets, as shown
in Table 3. The results demonstrate that dense offset prediction covers fine
details as we expected. We further validated this by visualizing K = 3
offsets, revealing that each offset is responsible for distinct depth regions (Figure 7). This indicates
that our learned holistic representation provides sufficient information for the Gaussian prediction
stage to deal with various viewpoints effectively.

6 CONCLUSION

In this work, we present SHARE, the first pose-free generalizable 3D Gaussian splatting approach
validated across small and large-scale scene-level datasets with varying camera baselines. Our ray-
guided multi-view fusion strategy effectively addresses geometry ambiguity caused by incorrect
poses, capturing a unified feature representation from all input views into a single canonical esti-
mation space. Our two-stage Gaussian predictor aligns seamlessly with this strategy, successfully
capturing fine shape details visible in multi-view data, even within the constrained estimation space.
Through comprehensive experiments, we demonstrated that our model can reconstruct high-fidelity
3D structures across small and large scene scales, even in challenging scenarios involving large cam-
era baselines. We believe that our approach introduces a novel approach for effectively addressing
geometry misalignment with a pose-aware fusion pipeline.

Limitations and Discussions. While SHARE demonstrates robust pose-free generalization perfor-
mance, it may encounter challenges in handling scenes with minimal overlap between views, po-
tentially leading to reduced accuracy. Moreover, our approach currently relies on camera intrinsic
parameters, which might limit its applicability in certain real-world scenarios. Exploring methods to
overcome these limitations could be a valuable direction for future work.
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A APPENDIX

In this section, we describe the followings:

• Detailed Discussion on Ray Guidance.

• Details of baseline implementation

• Details of model implementation.

• Additional Results.

A.1 DETAILED DISCUSSION ON RAY GUIDANCE

Most conventional methods in Multi-view Stereo (MVS) utilize cameras to establish geometrical
relationships across the input views. However, the relationship becomes unreliable when given poses
are noisy. We argue that it is important for the image features to have an awareness of camera poses
to mitigate the influence of unreliable relationships during the 3D reconstruction. To this end, we
combine predicted Plücker rays with image features to construct the cost volume, leveraging the
advantages of using a generic camera representation. The intuition behind our design choice is to
inject awareness of camera pose in multi-view space to each image feature.

Specifically, we project features from different viewpoints to compute correlation among input im-
ages by converting rays into camera poses and performing homography warping. While this allows
some pose error, which leads to misalignment in feature space, we rectify the cost volumes by pose-
aware cost aggregation process described in Section 4.2 of the main paper. As shown in Figure 9,
eliminating pose embedding leads to large discrepancies in geometry estimation, leading to blurry
images or introducing artifacts. This highlights the importance of pose embedding in our fusion
process.

w/ pose emb.

wo/ pose emb.

View 1 View 2 View 3Depth 1 Depth 1 Depth 3

w/ pose emb.

wo/ pose emb.

1.17

5.01

Figure 9: Additional Qualitative Ablation Results on Pose Embedding. Estimating geometry
without pose embedding results in significant failures, producing blurry artifacts and misaligned
structures in the 3D reconstruction. With pose embeddings, our method demonstrates the impor-
tance of geometric bias, achieving more accurate and sharper reconstructions. This highlights the
effectiveness of pose-aware fusion in handling pose errors during the multi-view reconstruction pro-
cess.
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Table 4: Comparison on baselines with different pose prediction methods on DTU dataset.

Method Pose Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓

PixelSplat

GT – – 20.96 0.65 0.31
COLMAP 7.10 31.62 13.49 0.34 0.66
MASt3R 2.40 3.52 15.69 0.40 0.50
DUSt3R 1.77 13.67 15.98 0.42 0.47

Ours 2.74 6.28 13.29 0.31 0.66

MVSplat

GT – – 21.00 0.69 0.24
COLMAP 7.10 31.62 14.69 0.44 0.46
MASt3R 2.40 3.52 13.31 0.31 0.58
DUSt3R 1.77 13.66 13.22 0.32 0.58

Ours 2.74 6.28 14.08 0.33 0.51

Ours – 2.74 6.28 19.94 0.63 0.28

A.2 DETAILS OF BASELINE IMPLEMENTATION

For the small-scale DTU dataset (Jensen et al., 2014), we compared and validated our method against
the pose-free baseline LEAP (Jiang et al., 2023). The LEAP model was trained on the DTU 3-
view dataset for 140K iterations. Since our evaluation on DTU uses three input views, we also
trained pose-dependent state-of-the-art generalizable 3D reconstruction methods, including Pixel-
Splat (Charatan et al., 2024) and MVSplat (Chen et al., 2024b), with a batch size of 1 for 140K
iterations.

For the large-scale RealEstate10K dataset (Zhou et al., 2018), we compared our method against
pose-free baselines CoPoNeRF (Hong et al., 2024) and FlowCam (Smith et al., 2023). Since Co-
PoNeRF and FlowCam use the same train-test split as our method, we directly compared our results
with the reported values. Additionally, PixelSplat and MVSplat were evaluated using their pretrained
checkpoints on the same 2-view train-test split settings.

To evaluate pose-dependent baselines, we assessed their performance under two conditions: using
predicted poses and poses perturbed by random noise. For predicted poses, we utilized our method,
SHARE, to estimate poses from the input images. To ensure a fair comparison, we also evaluated
the baselines in combination with various pose estimators, including COLMAP (Schonberger &
Frahm, 2016), DUSt3R (Wang et al., 2024), and MASt3R (Leroy et al., 2024). As shown in Table 4,
our method outperforms the combinations of baseline methods. Additionally, the results on noisy
poses (Table 1 and Table 2) demonstrate that even subtle errors, which to the best of our knowledge
cannot yet be avoided by the state-of-the-art pose estimators, can cause significant instability in
reconstruction.

We trained the baseline models using ground-truth (GT) poses as methods requiring GT poses lead
to instability when trained on noisy poses lacking specific noise patterns. Such instability often led to
divergence and failure to converge. Figure 10 compares MVSplat models trained on DTU with GT
poses against those trained with slightly perturbed poses (σ = 0.01). The injected noise introduced
rotation and translation errors of 0.95° and 1.05°, respectively, which are less than half the errors
produced by the state-of-the-art pose prediction method MASt3R (Leroy et al., 2024). These re-
sults highlight that even minimal noise during training can destabilize models by introducing subtle
misalignments between views, ultimately degrading reconstruction quality.

A.3 DETAILS OF MODEL IMPLEMENTATION

In this section, we’ll discuss our framework in more detail. Given sparse-view unposed images, our
goal is to build comprehensive Gaussians in a canonical space. The output of the multi-view feature
extractor is V × C ×H ×W , where we set C as 128 in all experiments. Given these features, we
estimate the relative Plücker rays V × 6×H ×W with two additional transformer blocks following
the U-Net structure of (Zhang et al., 2024). Then, we embed ray with a lightweight MLP to latent
space and modulate multi-view features using AdaLN (Peebles & Xie, 2023), following LaRa (Chen
et al., 2024a). In the ray-guided multi-view fusion process, we first build the cost volumes from all
input views, where the depth candidates D are all set to 128. We warp all the features to the reference
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10.47

21.45

Input Views GTMVSplat*

Figure 10: Rendering results of MVS-
plat trained with noisy pose (σ =
0.01). MVSplat* denotes that the MVS-
plat model is trained given noisy pose
with minor pose errors.

Table 5: Quantitative results of pose esti-
mation performance. We evaluate the pose
estimation performance on DTU dataset,
given three input views. The lowest error is
marked as bold.

Method Rot. ↓ Trans. ↓
DUSt3R 1.77 13.66
MASt3R 2.40 3.52
COLMAP 7.10 31.62
Relpose++ 19.56 44.18
RayRegression 3.10 6.57

Ours 2.74 6.28

views with the estimated pose (converted from Plücker rays). Then, we build the geometry volume
Vg as in 3. The geometry volume is used to estimate the anchor points 3× H

4 × W
4 . Simultaneously,

we build the feature volume Vf in a similar manner, but with the upscaled multi-view features, to
estimate the offset vectors and Gaussian parameters necessary for finer detail reconstruction.

We divide channels of Vf for displacement prediction of anchor points (32), and the remaining
channels (96) encode texture-related Gaussian parameters. The geometry channels of Vf are passed
through the offset prediction MLP head fo, which predicts the offset vectors ∆pk = fo(Vf ), for the
Gaussian positions. We set K = 3 for all experiments. These offset vectors are then concatenated
with the remaining channels of Vf Another MLP head, fp, processes the concatenated features to
estimate the remaining Gaussian parameters.

A.4 ADDITIONAL RESULTS

Results of pose estimation We evaluated our pose estimation performance in terms of rotation er-
ror (degrees) and translation error (degrees), as detailed in the main paper. Comparisons were made
against state-of-the-art pose estimators, including DUSt3R (Wang et al., 2024), MASt3R (Leroy
et al., 2024), and RayRegression from Cameras-as-Rays (Zhang et al., 2024). Additionally, we com-
pared our method with COLMAP (Schonberger & Frahm, 2016) for primitive pose estimation and
RelPose++ (Lin et al., 2024) as a direct 6D pose estimator. The evaluation used three small-baseline
views from the DTU (Jensen et al., 2014) dataset as input images.

While our primary objective is high-quality novel view synthesis rather than pose estimation,
our method achieves pose estimation performance comparable to state-of-the-art methods, further
demonstrating its robustness and versatility.

Cross-dataset generalization Table 6 and Figure 11 summarize the cross-dataset generalizabil-
ity results, comparing our proposed method, SHARE, to baseline approaches. Specifically, models
trained on the RealEstate10K (Zhou et al., 2018) dataset were evaluated on the ACID (Liu et al.,
2021) dataset, while models trained on the DTU (Jensen et al., 2014) dataset were assessed on the
BlendedMVS (Yao et al., 2020) dataset. Even under the challenging conditions posed by pose error
σ = 0.01—a challenge even for state-of-the-art pose estimators—SHARE consistently outperforms
all baseline methods across all metrics. These results highlight the robustness of SHARE in realistic
scenarios where pose estimation errors are unavoidable.

Comparision with the Concurrent Work. We compare SHARE with our concurrent work,
Splatt3R (Smart et al., 2024) which utilizes pretrained MASt3R (Leroy et al., 2024) weights for ge-
ometry estimation. Since Splatt3R requires ground-truth dense depths map during training, it is not
directly applicable to our used datasets (RealEstate10K (Zhou et al., 2018) doesn’t contain gt depths,
and DTU (Jensen et al., 2014) contains masked depths, which we found that it is not directly applica-
ble without method modifications because of Splatt3R’s pixel-aligned dense prediction mechanism).
Instead, we directly compare with the pretrained Splatt3R model trained on ScanNet++ (Yeshwanth
et al., 2023). We note that Splatt3R employs a ”masking loss” (refer to Section 3.4 in their paper) to
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Table 6: Quantitative comparison of cross-dataset generalization. The best-performing values across all
metrics are highlighted in bold.

Method Pose
RealEstate10K → ACID DTU → BlendedMVS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelSplat
GT 26.84 0.81 0.18 11.64 0.20 0.67

σ = 0.01 21.73 0.57 0.28 11.65 0.20 0.68

MVSplat
GT 28.18 0.84 0.15 12.04 0.19 0.56

σ = 0.01 21.65 0.57 0.27 11.92 0.20 0.59

Ours - 23.47 0.69 0.26 12.19 0.26 0.61

Table 7: Quantitative Comparison with Concurrent Work. We compare our method with the concurrent
work Splatt3R on the DTU and RealEstate10K datasets, using two input views for both datasets. Splatt3R
results are obtained using pretrained weights trained on the ScanNet++ dataset, while our method is trained on
each respective dataset. The best results are highlighted in bold.

DTU RealEstate10K

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Splatt3R 11.78 0.28 0.57 15.80 0.53 0.30

Ours 17.50 0.34 0.48 21.23 0.71 0.26

render only valid pixels for the target view based on input images. To avoid this issue, we measure
PSNR and other metrics only for the valid pixels produced by Splatt3R (pixels with > 0 values).
Including entire regions would lead to significant drops in PSNR and thus would not reflect the
method’s intended performance.

In Table 7, we present comparisons both on the DTU and RealEstate10K datasets, where SHARE
outperforms Splatt3R. To ensure fairness, as comparing Splatt3R trained on ScanNet++ with
SHARE trained on each dataset may introduce biases, we conducted additional evaluations in a
cross-dataset setting. Specifically, we compared Splatt3R trained on ScanNet++ and SHARE trained
on RealEstate10K in the ACID (Liu et al., 2021) dataset. As illustrated in Table 8 and Figure 13,
SHARE demonstrates superior rendering quality compared to Splatt3R. We measure metrics only
for the valid pixels produced by Splatt3R (pixels with > 0 values). Including entire regions would
lead to significant drops in PSNR and thus would not reflect the method’s intended performance.
Splatt3R exhibits scale ambiguity in its predicted scenes, which can lead to a substantial drop in
performance when applied to datasets with unseen scale distributions.

Discussion on large baseline inputs We visualized large-baseline camera scenarios (Figure 14).
We compare our method with PixelSplat (Charatan et al., 2024) and MVSplat (Chen et al., 2024b)
using both our predicted poses and perturbed poses with Gaussian noise, which exhibit similar or
lower pose errors compared to predicted poses.

Discussion on Efficiency. We evaluated and compared the inference time (in seconds) and GPU
memory usage (in MB) of our method against baseline approaches on the RealEstate10K dataset,
as detailed in Table 9. Inference time is measured as the end-to-end duration required for novel
view synthesis using two unposed input images, while GPU memory usage includes both static

Table 8: Quantitative Comparison with Concurrent Work: Cross-Dataset Generalization. We evaluate
and compare the cross-dataset generalization performance of our method and Splatt3R. The best results are
highlighted in bold.

Method Training data
ACID

PSNR ↑ SSIM ↑ LPIPS ↓
Splatt3R ScanNet++ 17.49 0.63 0.26

Ours RealEstate10K 23.47 0.69 0.26
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GTPixelSplat* MVSplat* Ours
Input 
Views

ACID

GTPixelSplat* MVSplat* Ours
BlendedMVS

2.37Figure 11: Qualitative Results for Novel View Synthesis in Cross-Dataset Generalization. Pix-
elSplat* and MVSplat* denote methods combined with noisy camera settings (σ = 0.01). To aid
visibility, we highlight the regions of interest with red boxes and provide close-up visualizations of
these areas for detailed comparison.

and dynamic memory allocations during inference. Our method achieves superior efficiency in both
inference time and GPU memory usage compared to the pose-free, generalizable NVS baseline
CoPoNeRF (Hong et al., 2024) and the concurrent method Splatt3R. Furthermore, our approach
delivers the highest rendering quality among the compared methods, underscoring its effectiveness.
All experiments were conducted on an NVIDIA RTX 4080 GPU.
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Input View 1 Input View 2 Splatt3R Ours GT

8.47

9.51

Figure 12: Qualitative Comparision with the Concurrent Work.

Input View 1 Input View 2 Splatt3R Ours GT

8.47

9.51

Figure 13: Qualitative Comparision with the Concurrent Work: Cross-dataset Generalization.

Input Views GTPixelSplat* MVSplat* Ours

4.45

9.53

Figure 14: Qualitative Results of Novel View Synthesis with Large-Baseline View Sets. PixelSplat and
MVSplat denote methods combined with a noisy camera setup, incorporating Gaussian noise with a standard
deviation of 0.01.

Qualitative results of novel view synthesis We present our additional results on the DTU (Jensen
et al., 2014) dataset (Figure 15) and RealEstate10K (Zhou et al., 2018) dataset (Figure 16).
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Table 9: Model Efficiency Measurements. Each metric is evaluated across models using the same dataset
configuration and averaged for consistency.

Method Inference time (s) GPU Memory (MB)

CoPoNeRF 3.37 9587.22
MVSplat + MASt3R 0.22 4376.94
Splatt3R 0.26 6198.00

Ours 0.17 5887.18
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Predicted pose Noisy pose (𝜎 = 0.05) No pose
LEAP OursPixelSplat MVSplat PixelSplat MVSplat GT

Input 
views

3.23

2.36
Figure 15: Additional Qualitative Results on the DTU Dataset. Rendered target images are shown
based on three input views. Black images indicate cases where depth maps are unavailable due to
abnormal depth values.
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Predicted pose Noisy pose (𝜎 = 0.05) No pose
CoPoNeRF OursPixelSplat MVSplat PixelSplat MVSplat GTInput views

2.94

2.64

Figure 16: Rendering and Depth comparison on RealEstate10K The visualized images are ren-
dered target images given 2 input views. The black image means depth map is unavailable due to
abnormal values in depth quantity.
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