
Towards a theory of how the structure of language is
acquired by deep neural networks

Francesco Cagnetta
Institute of Physics

École Polytechnique Fédérale de Lausanne
francesco.cagnetta@epfl.ch

Matthieu Wyart
Institute of Physics

École Polytechnique Fédérale de Lausanne
matthieu.wyart@epfl.ch

Abstract

How much data is required to learn the structure of a language via next-token pre-
diction? We study this question for synthetic datasets generated via a Probabilistic
Context-Free Grammar (PCFG)—a tree-like generative model that captures many
of the hierarchical structures found in natural languages. We determine token-token
correlations analytically in our model and show that they can be used to build a
representation of the grammar’s hidden variables, the longer the range the deeper
the variable. In addition, a finite training set limits the resolution of correlations
to an effective range, whose size grows with that of the training set. As a result, a
Language Model trained with increasingly many examples can build a deeper rep-
resentation of the grammar’s structure, thus reaching good performance despite the
high dimensionality of the problem. We conjecture that the relationship between
training set size and effective range of correlations holds beyond our synthetic
datasets. In particular, our conjecture predicts how the scaling law for the test
loss behaviour with training set size depends on the length of the context window,
which we confirm empirically in Shakespeare’s plays and Wikipedia articles.

1 Introduction

Two central foci of linguistics are the language structure and how humans acquire it. Formal language
theory, for instance, describes languages with hierarchical generative models of grammar, classified
in different levels of complexity [1, 2]. In this context, the ‘poverty of the stimulus’ argument [3]—
stating that the data children receive is insufficient to uniquely determine the grammatical structure of
their language—led to the hypothesis that linguistic faculties are largely innate. By contrast, statistical
learning theory [4, 5] posits that the statistics of the input data can be used to deduce the language
structure. This assumption is supported by empirical evidence concerning a broad range of tasks,
including word segmentation [6] and reconstruction of the hierarchical phrase structure [7].

Large Language Models (LLMs) offer an interesting perspective on the subject. For instance, the
success of LLMs trained for next-token prediction [8, 9] establishes that a language can be acquired
from examples alone—albeit with a training set much larger than what humans are exposed to. Fur-
thermore, empirical studies of LLMs’ representations showed that they learn a hierarchy of contextual
information, including notions of linguistics such as word classes and syntactic structure [10, 11, 12].
Recent studies have begun revealing the inner workings of LLMs by using synthetic data generated
via context-free grammars [13, 14], determining, in particular, the algorithm that these models follow
when predicting the next token. However, there is no consensus on the mechanisms behind language
acquisition by LLMs [15, 16]. As a result, empirical phenomena such as the scaling of the test
loss with dataset size and number of parameters [17] and the emergence of specific skills at certain
scales [18, 19] remain unexplained. In this work, we use hierarchical generative models of data to
describe how the structure of a language is learnt as the training set grows.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1.1 Our contributions

We consider synthetic datasets generated via the Random Hierarchy Model (RHM) [20], an ensemble
of probabilistic context-free grammars (PCFGs). The RHM generates sequences of tokens by applying
randomly chosen production rules to a hierarchy of hidden variables that live on the nodes of a tree
with fixed geometry.

• We characterise analytically the power-law decay of the correlations between tokens with
their distance. We then show that, because of this decay, a finite training set size P limits the
resolution of correlations to an effective context window, whose size t∗ increases with P .

• Building on previous works on classification, we argue that deep learning models trained on
next-token prediction can use measurable correlations to represent the hidden variables of
the PCFG, with larger P allowing the representation of deeper hidden variables.

• Combining these results, we predict a sequence of sample complexities where the emergence
of a deeper data structure representation leads to a jump in test loss. We empirically validate
this for deep transformers and CNNs. Notably, the sample complexities are polynomial in
the effective context size t∗, avoiding the curse of dimensionality.

• We conjecture that the relationship between training set size, correlations and effective
context window holds beyond our data model, and we test it by training deep transformers
on collections of Shakespeare’s lines and Wikipedia articles. In particular, we find that the
test loss decay levels off at a characteristic training set size that depends on the length of the
context window and can be measured from token-token correlations.

1.2 Additional related works

Fixed-tree hierarchical generative models have been introduced to study phylogeny [21], then used in
supervised learning [22, 23, 20, 24] and score-based diffusion [25, 26]. In particular, [22] introduced
a sequential clustering algorithm that reveals the importance of correlations between the input features
and the labels for supervised learning. The RHM of [20] provides a framework to show how features-
label correlations emerge from the generative model and can be used by deep networks to represent
the hidden hierarchical structure of the data. Here we extend this result to self-supervised learning,
where the relevant correlations are those between the different input features.

PCFGs can in principle generate sequences with token correlations that decay as a power of their
distance [27]. When the production rule probabilities are random [28, 29], these probabilities must
follow a broad distribution for the data to retain information about the generative process. Learning a
PCFG from examples is a longstanding problem of theoretical linguistics [30]. While some PCFG
classes are learnable using distributional information [31], the sample complexity is unknown. In
the context of deep learning, PCFGs have been used to study how trained transformers encode the
grammar’s structure [13, 14]. [14], in particular, showed that the operations performed by BERT-like
transformers resemble well-known algorithms for grammatical inference, and proved that, for PCFG
data, these algorithms are optimal solutions of the masked language modelling objective. However,
when the training data is compatible with both a PCFG and a non-hierarchical generative model,
neither recurrent language models [32] nor transformer [33] consistently prefer the hierarchical
explanation. In addition, none of these works study the learning process.

Empirical work on the learning dynamics of Long Short-Term Memories showed that short-range
dependencies are learnt first, then used as a foundation for forming longer-range dependencies [34].
Our work introduces a theoretical framework to explain this hierarchical inductive bias, focusing on
the learning curves of deep learning architectures. Shortly after our submission, [35] unveiled another
form of hierarchical inductive bias in the training dynamics of transformers, whereby many-body
interactions among tokens are learnt in the order of the interaction’s degree.

2 Notation and setup

This work focuses on the pretraining phase of language models, aimed at building an approximation
of the data distribution via unlabelled examples [8, 9]. Let us define a text datum, or sentence, as
a sequence x=(x1, . . . , xd) of d tokens belonging to a finite vocabulary V . Denoting with v the

2

vocabulary size, each token xi is represented as a v-dimensional one-hot vector (xi,µ)µ=1,...,v
1:

xi,µ =

{
1, if xi ≡ µ-th element of V,
0, otherwise.

(1)

A dataset, or corpus, consists of a probability distribution over sequences, which measures the
frequency at which a given combination of tokens appears within the text. Assuming that all
sequences have length d, the data distribution is a joint probability over d-dimensional sequences with
elements in V , PX(x) := P {X1 = x1, . . . , Xd = xd} . The specifics of the approximation of PX

depend on the training objective. In Masked Language Modelling, for instance, a random fraction
of tokens is masked, i.e. replaced with a fixed token xmask, and the model is tasked with predicting
their value [8]. Autoregressive language models, instead, are trained to predict the i-th token of a
sequence based on all the previous ones [9]. Here we consider a simplified setup where the last
token of the sequence is masked and the model is trained to predict it. In other words, the model
takes the context window (x1, . . . , xd− 1) as input and outputs a parametric approximation pθ of the
conditional probability of the last token,

pθ(xd|x1, . . . , xd−1) ≈ P {Xd = xd|X1 = x1, . . . , Xd−1 = xd−1} , (2)
obtained by updating the parameters θ via gradient descent on the empirical cross-entropy,

L(XP) = − 1

P

∑
x∈XP

log (pθ(xd|x1, . . . , xd−1)), (3)

where XP is a set of P training examples drawn from PX . Numerical experiments are
performed in PyTorch [36], with the code available at https://github.com/fracagnetta/
random-hierarchy-model. Details of the machine learning models, training hyperparameters
and computer resources are presented in App. A.

2.1 Hierarchical generative models

To model the hierarchical structure of sentences, we consider synthetic datasets generated via a
probabilistic context-free grammar (PCFG) [37]. PCFGs are collections of symbols and rules that
prescribe how to generate sequences. In particular, the PCFGs we consider consist of

• L finite vocabularies of hidden (nonterminal) symbols (Vℓ)ℓ=1,...,L;
• A finite vocabulary of observable (terminal) symbols V ≡V0;
• L sets of production rules describing how one symbols of Vℓ generates a tuple of symbols

of Vℓ−1, for ℓ=1, . . . , L.

Production rules take the form
µ(ℓ) → µ

(ℓ−1)
1 , . . . , µ(ℓ−1)

sℓ
, for µ(ℓ) ∈ Vℓ, µ(ℓ−1)

i ∈ Vℓ−1, (4)
for some integer size sℓ≥ 1. The left panel of Fig. 1 shows an example of the generative process,
represented as a tree: pick (uniformly at random) a level-3 symbol (root) and one of the production
rule having that symbol on the left-hand side (also uniformly at random), replace the symbol with the
right-hand side of the production rules (first generation), then repeat the process until left with only
terminal symbols (leaves). The resulting datum is a sequence in (V0)

d, with d=
∏
ℓ sℓ. Assuming a

finite number of production rules emanating from each nonterminal symbol, this model generates
a finite number of d-dimensional sequences. Since the probabilities of the level-L symbol and the
production rules are uniform, the data distribution PX is uniform over the generated sequences.

The Random Hierarchy Model (RHM) of [20] is an ensemble of such generative models, obtained by
prescribing a probability distribution over production rules. In particular, the ℓ-th set of production
rules is chosen uniformly at random between all the unambiguous sets of rules in the form of Eq. 4.
Unambiguity means that each sℓ-tuple of level-(ℓ− 1) symbols can be generated by one level-ℓ
symbol at most. The uniform probability and unambiguity assumptions are not satisfied in a generic
natural language, but they allow us to characterise quantitatively the effects of the hierarchical
structure. We will further assume, to ease notation, that all the vocabularies Vℓ have the same size v
and that the size of the production rules is homogeneous, i.e. sℓ= s for all ℓ. We further assume that
each nonterminal appears as the left-hand side of exactly m production rules, i.e. the hidden symbols
have m equivalent low-level representations. Since there are vs distinct low-level representations and
each of the v high-level symbols is assigned m, unambiguity requires m≤ vs−1.

1throughout the paper, Latin indices indicate the token position and Greek indices the vocabulary entry.

3

https://github.com/fracagnetta/random-hierarchy-model
https://github.com/fracagnetta/random-hierarchy-model

µ
(0)
1 µ

(0)
2 µ

(0)
3 µ

(0)
4 µ

(0)
5 µ

(0)
6 µ

(0)
7 µ

(0)
8

µ
(1)
1 µ

(1)
2 µ

(1)
3 µ

(1)
4

µ
(2)
1 µ

(2)
2

µ
(3)
1

1 2 3 5 7

token distance t

10−4

10−3

co
rr

el
at

io
n
Ĉ
P

(t
)

P = 128

P = 1024

P = 16384

P = 262144

P = 4194304

P = Pmax

Figure 1: Left: Example of data generation according to the RHM, with depth L=3 and branching factor
s=2. Starting from the root with ℓ=3 and following the arrows, each level-ℓ symbol is replaced with a pair of
lower-level symbols, down to the leaves with ℓ=0. Right: Empirical (coloured) and analytical (black dashed)
correlation functions of RHM data, with L=3, s=2, v=32 and m=8. The stepwise decay mirrors the
tree structure of the generative model. Empirical estimates obtained from P examples initially follow the true
correlation function, but then saturate due to the sampling noise (coloured dashed). As a result, a finite training
set only allows for measuring correlations with the tokens up to a certain distance t∗(P). Graphically, t∗(P)
corresponds to the highest value of t where the empirical estimate matches the true correlation (e.g. 1 for the
orange and green curves, 3 for the red curve).

3 Correlations, training set size and effective context window

Given a dataset of d-dimensional sequences of tokens in V , we measure correlations via the token
co-occurrences matrix, 2

Ci,j(µ, ν) := P {Xi = µ,Xj = ν} − P {Xi = µ}P {Xj = ν} , (5)

where µ and ν are arbitrary elements of the vocabulary V and P refers to the data distribution PX.
Since the masked token is always the last in our setup, it is convenient to set j= d and write Ci,d as
a function of the distance t= |i− d| between the i-th and the masked token. Taking the root mean
square over the vocabulary yields the correlation function,

C̃(t) :=

v−2
∑
µ,ν∈V

(Cd−t,d(µ, ν))
2

1/2

, (6)

which measures the typical dependency between tokens as a function of their distance t. For RHM
data with m= vs−1, PX is uniform over all the possible sequences of tokens in V and there are no
correlations. If, instead, m<vs−1, the correlations strength depends on the distance. Fig. 1 shows
an example for RHM data with L=4, s=2, v=32 and m=8.

Correlations decay with distance. The stepwise decay of C̃(t) mirrors the tree structure of the
generative model. The masked token has the highest correlations with those belonging to the same
s-tuple, as they were all generated by the same level-1 symbol (as in the blue box of Fig. 1, left). The
second highest is with the tokens generated by the same level-2 symbol (orange box in the figure), and
so on until the root. Formally, with ℓ=1, . . . , L denoting the height of the lowest common ancestor
(LCA) of the d-th and (d− t)-th tokens,

C̃(t)= C̃(ℓ) ∀ t= sℓ−1, . . . , sℓ − 1; C̃(1) > C̃(2) > · · · > C̃(L). (7)

These L plateau values can be determined analytically in the large v limit by approximating the
variance over the vocabulary entries µ and ν on the right-hand side of Eq. 7 with the variance over
realisations of the RHM. Denoting the average over such realisations with ⟨.⟩,

C̃(ℓ) =

(〈(
C(ℓ)(µ, ν)

)2〉)1/2

≃
√

(1−m/vs−1)

v3m2ℓ−1
, (8)

2Ci,j(µ, ν) is also equivalent to the covariance matrix of the one-hot representation,
E [(Xi,µ − E [Xi,µ]) (Xj,ν − E [Xj,ν])]

4

102 103 104 105 106

training set size P

100

te
st

cr
o
ss

-e
n
tr

op
y

m=8

m=11

102 103 104 105 106

training set size P

100

te
st

cr
o
ss

-e
n
tr

op
y

t=1

t=3

t=7

Figure 2: Left: Learning curves of depth-3 transformers trained on RHM data with L=3, s=2, v=32 and
m=8 (blue) or 11 (orange, both are averaged over 8 independent realisations of the dataset and initialisations
of the network), displaying a stepwise behaviour analogous to the correlation function. The vertical dashed lines
mark the characteristic training set sizes Pk at which the correlation with tokens at distances up to t= sk − 1
emerge from the sampling noise. Horizontal dashed lines represent (upper bounds on) the cross-entropy of the
probability of the last token conditioned on the previous sk − 1, suggesting that the steps correspond to the
model learning a progressively larger sub-tree of the data structure. Right: Learning curves of transformers
for m=8 and different sizes t of the context window. The saturation of the loss decay due to the finite context
window highlights that the decay is entirely due to the ability to leverage a larger portion of the context window.

where the rightmost equality is exact asymptotically in v and m. Eq. 8 is derived in detail in App. D,
confirmed empirically in the right panel of Fig. 1 and can be given a simple interpretation in terms
of the sample size required for the empirical measurement of correlations, as discussed in the
following paragraph. In addition, notice that, upon replacing sℓ with t, the m−ℓ dependence on ℓ is
approximated by a power-law decay C̃(t) ∼ t−β , with β= logm/ log s.

Saturation due to finite training set. When measuring the correlation function from a finite sample
XP of P data, there is an additional contribution due to the sampling noise. The scenario is illustrated
in Fig. 1, right: the empirical estimates ĈP (t), shown as coloured lines for different values of P ,
begin by following the descent of the true correlation function C̃(t), shown as a black dashed line.
However, empirical estimates saturate when approaching the sampling noise size (v2P)−1/2, as
proved in App. E and shown as dashed coloured lines in Fig. 1, right. Combining the saturation with
the values of the steps, we deduce that a finite training set allows for the resolution of correlations up
to distance t∗ = sℓ

∗ − 1 such that

C̃(ℓ∗) > (v2P)−1/2 > C̃(ℓ∗+1). (9)

Eq. 9 suggests that a language model trained with P examples can only extract information from
the tokens within distance t∗(P) from the last. In other words, a finite training set is equivalent to
an effective context window of size t∗(P). If C̃ ∼ t−β , then t∗(P) ∼ P 1/2β . Alternatively, setting
C̃(ℓ) =(v2P)−1/2 yields a sequence of thresholds Pℓ for the resolution of correlations of increasing
range. From Eq. 8, Pℓ ∝ vm2ℓ−1, which has a simple interpretation as the number of choices in the
generative process to determine two tokens at a distance t∈ [sℓ−1, sℓ): v choices for the level-ℓ LCA,
m for the first production rule and m2 (m per branch) for each of the remaining ℓ− 1 generations.

4 Self-supervised learning of the Random Hierarchy Model

We now show how the correlations can be translated into a prediction of sample complexities that
allow for a sequence of increasingly accurate approximations of the masked token probability, based
on reconstructing the hidden variables of the generative tree. We then test these predictions in
numerical experiments with deep networks.

4.1 Prediction of the sequence of performance steps and sample complexities

Loss steps. Due to the structure of the data, there is a natural sequence of L increasingly accurate
approximations of the last token probability in Eq. 2. For all ℓ=1, . . . , L, these approximations are

5

realised by conditioning the probability of the last token on the previous sℓ−1. These approximations
amount to using an effective context window of size tℓ= sℓ− 1. The effective context windows
consist of the leaves of the subtree generated by the level-ℓ hidden symbol above the last token, as
illustrated by the coloured boxes of Fig. 1, left. The resulting cross-entropy loss is given by

Lℓ = Ex∼PX
[− logP {Xd|Xd−sℓ+1 = xd−s+1, . . . , Xd−1 = xd−1}]

= Ex∼PX
[logN(xd−sℓ+1, . . . , xd−1)] , (10)

where N(xd−sℓ+1, . . . , xd−1) denotes the number of possible values of the masked token depending
on the effective context window. For ℓ=0, there is no restriction on the masked token value
and this number equals v—the vocabulary size. For ℓ=1, we can determine the average N̄1 :=
E [N(xd−s+1, . . . , xd−1)] as follows. For each s-tuple (xd−s+1, . . . , xd) there is at least one value
of the mask compatible with the other s− 1 symbols, i.e. xd itself. In addition, each of the remaining
v − 1 values µd ̸= xd has a probability f of being compatible with the context, coinciding with
the probability that the s-tuple (xd−s+1, . . . , µd) is compatible with the production rules. This
probability is given by (mv − 1), i.e. the number of s-tuples compatible with the production rules
except (xd−s+1, . . . , xd), over (vs − 1), i.e. the total number of s-tuples except (xd−s+1, . . . , xd).
Therefore, N̄1 = 1+ (v − 1)f = 1+ (v − 1)(mv − 1)/(vs − 1). For ℓ> 1, the average number N̄ℓ
of symbols compatible with the context can be determined iteratively. The level-ℓ symbol generating
the whole sℓ-tuple can take any of the v values, but the level-(ℓ− 1) symbol below it is now restricted
to N̄1 values. By the previous argument, N̄ℓ = 1 + (v − 1)(mN̄ℓ−1 − 1)/(vs − 1). Due to the
concavity of the logarithm, we can bound the test loss of Eq. 10 with L̄ℓ= log N̄ℓ, i.e., after solving
the recurrence relation and introducing the fraction of compatible s-tuples f =m/vs−1.

L̄ℓ = log

(
vs − v

vs − 1−m(v − 1)
+

(vs −mv)(v − 1)

vs − 1−m(v − 1)

(
m(v − 1)

vs − 1

)ℓ)
v,m≫1−−−−→ log

(
1

1− f
+ vf ℓ

)
, (11)

Naive strategy. The simplest strategy to estimate P {Xd|Xd−sℓ+1 = xd−sℓ+1, . . . , Xd−1 = xd−1}
is to count the empirical occurences of the sℓ-dimensional subsequences of the input in the training
set—the so-called n-gram language model with n= sℓ. This estimation requires the training set to
contain all the distinct subsequences of size sℓ. Following the generative process, each of these subse-
quences occurs with probability given by that of the corresponding LCA symbol (the root of the sub-
tree encased by the corresponding coloured box in Fig. 1, left), times the probability of the production
rules that generate the subsequence from the LCA, m−1×m−s×· · ·×m−(sℓ−1) =m−(sℓ−1)/(s−1).
The latter is exponentially small in the effective context length tℓ= sℓ − 1, hence the required sample
size is exponentially large in tℓ.

Efficient strategy leveraging the hidden variables. Using the hidden variables results in a much
lower sample complexity. Indeed, due to the tree structure of PCFGs, the value of the last token
is conditionally independent of most of the observable tokens when the hidden variables are given.
For instance, looking at the tree in Fig. 1, left, the probability of the last token is independent of
the pair (µ(0)

5 , µ
(0)
6) if the parent level-1 variable µ(1)

3 is given. In general, fixing a hidden symbol
splits the tree into an inside (the subtree rooted at the hidden symbol) and an outside (the rest of the
tree) that are conditionally independent. As a result, the minimal set of variables that the sℓ-gram
probability depends on consist of s− 1 observable tokens (those in the same patch as the last token)
and (s− 1)(ℓ− 1) hidden variables ((s− 1) for each level below the LCA of the context window).
The probability of any such set of variables is given by the LCA probability times m−ℓ. The resulting
sample complexity grows exponentially with ℓ, or as a power of the effective context length tℓ.

Reconstruction of the hidden variables. We now argue that, as shown [20] in the context of clas-
sification, the hidden variables can be represented via the correlations between tokens. Consider, for
instance, the pair (µ(0)

5 , µ
(0)
6) in Fig. 1, left. Because of the aforementioned conditional independence,

the correlation between any such pair and the last token depends only on the level-1 hidden variable
µ(1)
3 . Thus, pairs displaying the same correlations can be grouped as descendants of the same hidden

variable. This strategy requires enough training data to resolve correlations between the masked token
and the adjacent s-tuples of observable tokens. As shown in App. F, replacing an observable token

6

with a whole s-tuple reduces correlation plateaus and sampling noise by the same factor. Therefore,
the condition for the resolution of correlations with the nearest s-tuples is given by Eq. 9 with ℓ=2,
implying P >P2 = vm3. By iterating this argument we get a sequence of sample complexities Pℓ
that allow for resolving correlations between the masked token and s-tuples up to distance t= sℓ − 1,

Pℓ = (v2C̃(ℓ))−1 = vm2ℓ−1
(
1− m

vs−1

)−1

. (12)

For instance, in the case illustrated in Fig. 1, left, the correlations of the pairs (µ(0)
1 , µ

(0)
2) and (µ(0)

3 , µ
(0)
4)

with the masked token can be used to reconstruct the pair of hidden symbols (µ(1)
1 , µ

(1)
2). The hidden

symbols have a higher correlation with the masked token than their children. Hence, as in the case
of classification [20], a training set large enough to resolve correlations between observable and
masked tokens also allows for resolving correlations of the masked token with the hidden symbols.
These correlations yield a representation of higher-level hidden symbols (e.g. µ(2)

1 for (µ(1)
1 , µ

(1)
2) in the

figure), which, in turn, enables the reconstruction of P {Xd|Xd−sℓ+1 = xd−s+1, . . . , Xd−1 = xd−1}
via the efficient strategy. As ℓ increases, the sample complexity of Eq. 12 grow faster than mℓ, but
still polynomially in the effective context length tℓ.

Scaling law of the RHM. After solving Eq. 12 for ℓ as a function of P , we can use Eq. 11 to derive
the scaling law for the behaviour of the loss steps as a function of the training set size P . Neglecting
all the factors that do not depend on ℓ, Eq. 12 implies ℓ ≈ logP/(2 logm). Thus, from Eq. 11,

L̄(P) + log (1− f) ≈ log
(
1 + v(1− f)e

log f log P
2 log m

)
. (13)

Notice that f < 1, thus log f < 0. Therefore, Eq. 11 implies an early logarithmic decay as long
as | log f | logP ≪ 2 logm log (v(1− f)). For larger P , the expansion log (1 + x) ≃ x recovers
the ubiquitous power-law decay P−α [17], with exponent α= log f/(2 logm). Notice that the
power-law scaling is caused by the sequence of steps associated with the emergence of the hidden
variables representation. Therefore, this picture unifies the emergence and scaling paradigms.

4.2 Comparison with empirical learning curves

Fig. 2, left, compares the learning curves of deep transformers (details of the architectures in sub-
section A.2) with the sample complexities Pℓ of Eq. 12 (vertical dashed lines in the figure) and the
test loss upper bounds L̄ℓ of Eq. 11 (horizontal dashed lines), showing good qualitative agreement.
Additional experiments that support the quantitative scaling of the sample complexities P1 and P2

with m are shown in App. G. Fig. 2, right, shows the learning curves of models trained on a reduced
context window. In this setting, our description correctly predicts the saturation of the loss due to the
finite context window size t: with t= sℓ − 1, the model can only learn the level-ℓ hidden variable
above the masked token, thus follow only the first ℓ of the L steps of Eq. 11.

Let us remark that, as shown in App. G, the learning curves are qualitatively similar for CNNs, despite
a noticeable quantitative dependence on architecture and context size t. These differences are not
captured by the analysis of subsection 4.1, although, in some cases, they can be rationalised using
results from the theory of shallow neural networks. We discuss these aspects in detail in App. G.

4.3 Emergence of hierarchical representations of the data structure

We now study the hidden representations of models trained on RHM data to show that, as the training
set size increases, these representations encode for deeper hidden variables. More specifically, we
show that certain representations depend only on specific, high-level hidden variables of a datum’s
tree structure, thus becoming insensitive to the entire subtree emanating from this hidden variable.
For the sake of interpretability, we consider deep convolutional networks (CNNs) with architecture
matched to the data structure, represented schematically in the graphs on the right of Fig. 3 (further
details in subsection A.1). To probe representations we introduce two sets of transformations. Given a
datum and the associated tree (Fig. 1, left), consider the i-th level-ℓ symbol µ(ℓ)

i : Sℓ,i replaces it with
another one randomly chosen from the vocabulary, whereas Rℓ,i resets the choice of the production
rule emanating from µ(ℓ)

i . Both transformations alter the subtree originating from µ(ℓ)
i (e.g. the subtree

within the orange box of Fig. 2, left for ℓ=2 and i=2), affecting sℓ observable tokens. However,
Rℓ,i preserves the hidden symbols that generated the subtree. Therefore, a hidden representation that
encodes only the i-th level-ℓ hidden symbol will be invariant to Rℓ,i but not to Sℓ,i.

7

102 103 104 105 106

training set size P

0.0

0.5

1.0

r 1
/s

1 1-th rep.

2-th rep.

3-th rep.

4-th rep.

output

102 103 104 105 106

training set size P

0.0

0.5

1.0

r 2
/s

2

2-th rep.

3-th rep.

4-th rep.

output

102 103 104 105 106

training set size P

0.0

0.5

1.0

r 3
/s

3

3-th rep.

4-th rep.

output

Figure 3: Relative sensitivity rℓ/sℓ of the representation of trained depth-4 CNNs (sketched on the right panels)
for input transformations (the affected tokens are indicated by the black horizontal segments on the right panels)
corresponding to resetting the production rule emanating from a given level-ℓ variable (ℓ = 1, 2, 3 for top, centre
and bottom), as a function of training set size P . Colours represent the layer of the representation, as indicated
in the key and by the squares on the right panels. The CNNs are trained on RHM data with L=4, s=2, v=16,
m=4. Vertical dashed lines mark the sample complexities Pℓ of Eq. 12. The drop of the curves from ≃ 1 to
≃ 0 around Pℓ signals that the trained representations only encode for the relevant level-ℓ symbol when P >Pℓ.

We define hidden representations hℓ(x) (hidden nodes of the network’s graphs in Fig. 3) as the
sequence of pre-activations in a given layer ℓ (depth of the node in the tree), standardised over the
dataset (i.e. centred around the mean and scaled by the standard deviation). For CNNs, representations
carry a spatial index j=1, . . . , sL−ℓ (horizontal position of the node within the layer) and a channel
index. We measure the sensitivity to R or S via the cosine similarity between original and transformed
representations, i.e.

rℓ,i(h) = Ex∼PX
[hℓ′,j(x) · hℓ′,j(Rℓ,ix)] , sℓ,i(h) = Ex∼PX

[hℓ′,j(x) · hℓ′,j(Sℓ,ix)] , (14)

where the · symbol denotes the scalar product over the channels. In order to leave the masked token
unaltered, we always apply the transformations to the penultimate hidden symbol of the level, i.e.
i= sL−ℓ − 1. Hence, from now on, we omit the spatial index i. The left column of Fig. 3 reports the
ratio rℓ/sℓ for the hidden representations of a deep CNN trained on RHM data. Each row refers to
the level of the data transformations. The group of observable tokens affected by the transformation
is highlighted by horizontal square brackets in the right panels. The drop of rℓ/sℓ from ≈ 1 to ≈ 0
signals that a representation depends on the corresponding level-ℓ hidden variable, but not on the
other variables in the associated subtree. 3 These drops occur at the same training set sizes Pℓ as the

3Notice that only the representations with ℓ′ >ℓ can become invariant, which is due to the fact the production
rules are not linearly separable. Let us focus on the first level: the corresponding s-dimensional patch of the
input can take mv distinct values—m for each of the v level-2 features. Invariance of a linear transformation is
equivalent to the following set of constraints: for each level-2 features µ, and x1,i encoding for one of the m
level-1 representations generated by µ, w · x1,i = cµ. Since cµ is an arbitrary constant, there are v × (m− 1)
constraints for the v × s components of w, which cannot be satisfied in general unless m ≤ (s+ 1).

8

103 104 105

P

2× 100

3× 100

te
st

cr
o
ss

-e
n
tr

o
p
y
L

P−α,
α ' 0.1

t=1

t=2

t=3

t=7

t=15

100 101

token distance t

10−4

10−3

co
rr

el
at

io
n
Ĉ
P

(t
)

t−β, β ' 1.4

P = 256

P = 1024

P = 4096

P = 16384

P = 65536

P = Pmax

100 102 104

P/tz

3× 100

4× 100

6× 100

L
×
tα
z

x−α

t=1

t=2

t=3

t=7

t=15

10−2 10−1 100

scaled distance t/P 1/z

10−1

Ĉ
P

(t
)
×
P

1
/
2

x−β

P = 256

P = 1024

P = 4096

P = 16384

P = 65536

P = 262144

Figure 4: Top, Left: Test losses of 3-layers transformers trained on (t+1)-characters blocks of the tiny-
Shakespeare dataset [38] (t as in the key). The saturation of the loss to some t-dependent value indicates that
performance improves with P because the model can use information from a larger context window. Top, Right:
Empirical estimates ĈP (t) for different training set sizes P as in the key. The curves initially follow the true
correlation C̃(t) (black dashed), but then saturate due to the sampling noise (coloured dashed). Bottom, Right:
The empirical curves ĈP (t) collapse when rescaling correlations by the sampling noise size P−1/2 and t by the
characteristic distance t∗(P) ∼ P 1/z , with z ≃ 2.8. Bottom, Left: As predicted by our conjecture, the losses
collapse when rescaled according to Eq. 16 with the same z as the correlation functions.

test loss steps, highlighted in the figures with vertical dashed lines. This result confirms that, as P
increases, trained models learn a deeper representation of the tree structure of the data.

5 Conjecture and test on real language data

We conjecture that the relationship between training set size, correlations and effective context
window holds beyond our synthetic dataset.

Conjecture: “If the token correlation function decays with the token distance, then a language
model trained to predict the next token from a training set of P examples can only extract relevant
information from an effective context window of P -dependent size t∗(P).”

We test this conjecture in two datasets: a selection of lines from Shakespeare’s plays [38] and a
collection of articles from English Wikipedia [39]. For both datasets we adopt a character-level
tokenisation, resulting in over 106 tokens. We then extract sequences of t consecutive tokens and train
BERT-like deep transformers in the setup of section 2—further details of architecture and training are
in subsection A.3. The results of our test are reported in Fig. 4 for Shakespeare and Fig. 5 of App. B
for Wikipedia. First, with a large context window, the test loss follows the empirical scaling law
L ∼ P−α (top left panel). However, the learning curve levels off at some characteristic scale P that
grows with the size t of the context window. This phenomenon can be explained via the correlation
function, which decays as a power of the distance C̃(t) ∼ t−β , with β ≃ 1.4 4 (top right panel).
Empirical estimates ĈP (t) saturate when reaching the sampling noise scale ∼ P−1/2: following the
analysis of section 3, this behaviour results in an effective context window size t∗(P), given by the

4Let us remark that, while the exponent depends on the corpus and the choice of tokenisation, power-law
decays are observed empirically also for syllables [40], words [41] and part-of-speech tags [42].

9

value of t where the correlation function C̃(t) ∼ t−β intersects the sampling noise scale ∼ P−1/2,

(t∗)−β ∼ P−1/2 ⇒ t∗(P) ∼ P 1/z, with z=2β≃ 2.8. (15)

As a result, the empirical correlation functions with varying P collapse when rescaling Ĉ by the
sampling noise and the distance by t∗(P) (bottom right panel).

By inverting t∗(P) we get a characteristic training set size P ∗(t) where the training set allows for
resolving correlations at all distances t′<t, P ∗(t) ∼ tz . Paired with the empirical power-law scaling
with P , this result leads to the following context-dependent scaling hypothesis for the test loss:

L(P, t) = t−αzf

(
P

tz

)
, (16)

with f(x) ∼ x−α for x≪ 1 and constant for x≫ 1. In particular, Eq. 16 implies that the behaviour
of the empirical correlation functions predicts the saturation of the loss decay. The collapse reported in
the bottom left panels of Fig. 4 and Fig. 5 quantitatively confirms Eq. 16 and our previous conjecture.

6 Conclusions

We proposed a conceptual framework for understanding the performance-vs.-data scaling laws of
language models trained for next-token prediction. In our picture, increasing the number of data
allows for the resolution of a longer range of correlations. These correlations, in turn, can be
exploited to build a hierarchical representation of the data structure, the longer the range the deeper
the representation. For our synthetic hierarchical data, the emergence of deeper representation results
in a series of steps in the next-token prediction performance. These steps conspire to determine the
scaling law, whose exponent depends on the dataset structure. This scenario is consistent with the
empirical phenomenology of language models, including both the emergence of skills at specific
training set sizes [18, 43, 44, 45] and the steady improvement of overall performance [17]. To the best
of our knowledge, this is the first theoretical description of scaling laws in a setting where learning
data features is crucial, whereas previous works focused on kernel limits [46, 47, 48, 49, 50].

Furthermore, our analysis predicts a fundamental relationship between the effective context window
captured by a language model trained with a finite training set and the decay of token-token corre-
lations, which we confirmed empirically on two examples of text data. This finding suggests that
the exponents entering scaling laws are influenced by the intrinsic properties of the data. On the one
hand, our predictions can be tested on state-of-the-art LLMs trained on larger datasets. On the other
hand, our framework can be extended to shed light on other aspects of scaling laws of high practical
relevance, such as the role of the number of parameters and the behaviour of performance when the
model size and the number of data are optimised under a fixed compute budget.

Limitations. Our hierarchical model of data is limited by the context-free structure of the rules, which
describes most, but not all, of the syntactic forms observed in natural languages [51]. Understanding
the role of context-sensitive structures in language acquisition is a promising avenue for future
research. In addition, the RHM assumes a fixed geometry of the data tree and the uniform probability
and unambiguity of the production rules. These assumptions are not satisfied by real text data and are
responsible for the stepwise behaviour of correlations in our model. Relaxing these constraints while
keeping the large-scale, power-law decay of correlations with the distance, which is indeed observed
in real data, could broaden the scope of our conceptual framework. On the technical side, there is no
proof of the connection between the strategy illustrated in subsection 4.1 and the sample complexity
of deep neural networks trained with gradient descent and its variants. Such a proof would require a
formal description of the dynamics of deep networks trained on hierarchical data, which is beyond the
scope of the present paper. This description would also capture the discrepancies between different
architectures presented in App. G, making it a valuable direction for future work.

Acknowledgments and Disclosure of Funding

We thank Kai Nakaishi for pointing references [52, 27] to us; and Allan Raventós for feedback on an
earlier version of the manuscript. We also thank Antonio Sclocchi, Alessandro Favero and Umberto
Tomasini for helpful discussions and feedback on the manuscript. This work was supported by a
grant from the Simons Foundation (# 454953 Matthieu Wyart).

10

References
[1] Noam Chomsky. Aspects of the Theory of Syntax. The MIT Press, 50 edition, 1965.
[2] Gerhard Jäger and James Rogers. Formal language theory: refining the chomsky hierarchy.

Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598):1956–1970,
2012.

[3] Robert C Berwick, Paul Pietroski, Beracah Yankama, and Noam Chomsky. Poverty of the
stimulus revisited. Cognitive science, 35(7):1207–1242, 2011.

[4] Nick C Ellis. Frequency effects in language processing: A review with implications for
theories of implicit and explicit language acquisition. Studies in second language acquisition,
24(2):143–188, 2002.

[5] Jenny R Saffran and Natasha Z Kirkham. Infant statistical learning. Annual review of psychology,
69:181–203, 2018.

[6] Jenny R Saffran, Richard N Aslin, and Elissa L Newport. Statistical learning by 8-month-old
infants. Science, 274(5294):1926–1928, 1996.

[7] Jenny R Saffran. The use of predictive dependencies in language learning. Journal of Memory
and Language, 44(4):493–515, 2001.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

[9] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding with unsupervised learning. Technical report, OpenAI, 2018.

[10] M. E. Peters, M. Neumann, L. Zettlemoyer, and W. Yih. Dissecting contextual word embed-
dings: Architecture and representation. In Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1499–1509, Brussels, Belgium, 2018. Association for
Computational Linguistics.

[11] I. Tenney, D. Das, and E. Pavlick. BERT rediscovers the classical NLP pipeline. In Anna
Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4593–4601, Florence, Italy, 2019.
Association for Computational Linguistics.

[12] C. D Manning, K. Clark, J. Hewitt, U. Khandelwal, and O. Levy. Emergent linguistic structure
in artificial neural networks trained by self-supervision. Proceedings of the National Academy
of Sciences, 117(48):30046–30054, 2020.

[13] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar.
arXiv preprint arXiv:2305.13673, 2023.

[14] Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

[15] Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language
models. arXiv preprint arXiv:2307.15936, 2023.

[16] Michael R Douglas. Large language models. arXiv preprint arXiv:2307.05782, 2023.
[17] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-

ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[18] Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency, pages 1747–1764, 2022.

[19] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

[20] Francesco Cagnetta, Leonardo Petrini, Umberto M. Tomasini, Alessandro Favero, and Matthieu
Wyart. How deep neural networks learn compositional data: The random hierarchy model.
Phys. Rev. X, 14:031001, Jul 2024.

11

[21] E. Mossel. Deep learning and hierarchal generative models. arXiv preprint arXiv:1612.09057,
2016.

[22] Eran Malach and Shai Shalev-Shwartz. A provably correct algorithm for deep learning that
actually works. Preprint at http://arxiv.org/abs/1803.09522, 2018.

[23] E. Malach and S. Shalev-Shwartz. The implications of local correlation on learning some
deep functions. In Advances in Neural Information Processing Systems, volume 33, pages
1322–1332, 2020.

[24] Umberto Tomasini and Matthieu Wyart. How deep networks learn sparse and hierarchical data:
the sparse random hierarchy model. arXiv preprint arXiv:2404.10727, 2024.

[25] Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion
models reveals the hierarchical nature of data. arXiv preprint arXiv:2402.16991, 2024.

[26] Song Mei. U-nets as belief propagation: Efficient classification, denoising, and diffusion in
generative hierarchical models. arXiv preprint arXiv:2404.18444, 2024.

[27] Henry W. Lin and Max Tegmark. Critical behavior in physics and probabilistic formal languages.
Entropy, 19(7), 2017.

[28] E. DeGiuli. Random language model. Phys. Rev. Lett., 122:128301, Mar 2019.

[29] Eric De Giuli. Emergence of order in random languages. Journal of Physics A: Mathematical
and Theoretical, 52(50):504001, nov 2019.

[30] J.J. Horning. A Study of Grammatical Inference. CS 139 Memo AI. Stanford University, 1969.

[31] Alexander Clark and Nathanaël Fijalkow. Consistent unsupervised estimators for anchored
PCFGs. Transactions of the Association for Computational Linguistics, 8:409–422, 2020.

[32] R. Thomas McCoy, Robert Frank, and Tal Linzen. Does syntax need to grow on trees? sources
of hierarchical inductive bias in sequence-to-sequence networks. Transactions of the Association
for Computational Linguistics, 8:125–140, 2020.

[33] Kabir Ahuja, Vidhisha Balachandran, Madhur Panwar, Tianxing He, Noah A Smith, Navin
Goyal, and Yulia Tsvetkov. Learning syntax without planting trees: Understanding when and
why transformers generalize hierarchically. arXiv preprint arXiv:2404.16367, 2024.

[34] Naomi Saphra and Adam Lopez. LSTMs compose—and Learn—Bottom-up. In Trevor Cohn,
Yulan He, and Yang Liu, editors, Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 2797–2809, Online, November 2020. Association for Computational
Linguistics.

[35] Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. A distributional
simplicity bias in the learning dynamics of transformers. arXiv:2410.19637, 2024.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[37] Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Languages. Springer, 1997.

[38] The unreasonable effectiveness of recurrent neural networks, 2015.

[39] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

[40] Tim Sainburg, Brad Theilman, Marvin Thielk, and Timothy Q Gentner. Parallels in the
sequential organization of birdsong and human speech. Nature communications, 10(1):3636,
2019.

[41] Nikolay Mikhaylovskiy and Ilya Churilov. Autocorrelations decay in texts and applicability
limits of language models. arXiv preprint arXiv:2305.06615, 2023.

[42] Kai Nakaishi, Yoshihiko Nishikawa, and Koji Hukushima. Critical phase transition in a large
language model. arXiv preprint arXiv:2406.05335, 2024.

12

[43] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[44] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[45] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[46] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7:331–368, 2007.

[47] Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel
methods: empirical data versus teacher–student paradigm. Journal of Statistical Mechanics:
Theory and Experiment, 2020(12), 2020.

[48] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. arXiv preprint arXiv:2102.06701, 2021.

[49] Francesco Cagnetta, Alessandro Favero, and Matthieu Wyart. What can be learnt with wide
convolutional neural networks? In International Conference on Machine Learning, pages
3347–3379. PMLR, 2023.

[50] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural
scaling laws. arXiv:2402.01092, 2024.

[51] S.M. Shieber. Evidence against the context-freeness of natural language. Linguist. Philos.,
8:333–343, 1985.

[52] Alexander Clark. Pac-learning unambiguous nts languages. In Yasubumi Sakakibara, Satoshi
Kobayashi, Kengo Sato, Tetsuro Nishino, and Etsuji Tomita, editors, Grammatical Inference:
Algorithms and Applications, pages 59–71. Springer Berlin Heidelberg, 2006.

[53] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[55] Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and Florent
Krzakala. The benefits of reusing batches for gradient descent in two-layer networks: Breaking
the curse of information and leap exponents. arXiv preprint arXiv:2402.03220, 2024.

13

A Details of the experiments

Our experiments on RHM data consider both Deep CNNs tailored to the RHM structure and simple
transformers made by stacking standard Multi-Head Attention layers. Our experiments on the
tiny-Shakespeare and WikiText-103 datasets consider deep, encoder-only transformers, where Multi-
Head Attention layers are interspersed with residual connections, layer normalization and two-layer
perceptrons. All our experiments were performed on a cluster of NVIDIA V100 PCIe 32 GB GPUs
(2×7TFLOPS). Single experiments require up to 20 GPU hours for the largest models (≈ 10× 106)
with the largest training set sizes (≈ 4 × 106), with an estimated total (including hyperparameter
tuning) of 6, 000 GPU hours. We provide architecture and training details below.

A.1 Deep CNNs (RHM)

The deep CNNs we consider are made by stacking standard convolutional layers. To tailor the
network to the structure of the data generative model, we fix both the stride and filter size of these
layers to s. Since each layer reduces the spatial dimensionality by a factor s, the input size d must be
an integer power of s and the CNNs depth equals log d/ log s.

We use the Rectified Linear Unit (ReLU) σ(x)=max (0, x) as activation function, set the number
of channels to H for each layer, and consider the maximal update parametrization [53], where the
weights are initialised as random gaussian variables with zero mean and unit variance, all the hidden
layers but the last are rescaled by a factor H−1/2, whereas the last is rescaled by H−1. This factor
causes the output at initialization to vanish as H grows, which induces representation learning even
in the H → ∞ limit. In practice, H is set to 256 for Fig. 3, 512 for Fig. 6, left and Fig. 9, 1024
for Fig. 6, right, 512 for Fig. 7 and Fig. 8. Increasing the number of channels does not affect any of
the results presented in the paper.

Deep CNNs are trained with SGD, with the learning rate set to H to compensate for the factor of
H−1. A cosine annealing scheduler reduces the learning rate by 10 within the first 100 training
epochs. The batch size is set to the minimal size allowing convergence, where we define convergence
as the training cross-entropy loss reaching a threshold value of 10−3. We use a validation set of size
215 to select the model with the best validation loss over the training trajectory.

A.2 Multi-layer self-attention (RHM)

The deep Transformers that we train on RHM data are made by stacking standard Multi-Head
Attention layers [54], without any residuals, layer normalization and multi-layer perceptron in
between. We found that the removed components do not affect the model’s performance on data
generated from the RHM. Each layer has the same number of heads nh and embedding dimension
demb =nh × v, with v the vocabulary size. The input dimension is adapted to the embedding
dimension via a learnable linear projection, to which we add learnable positional encodings. The
choice of nh follows two principles: the model should be large enough for the training loss to reach
a threshold value of 10−3 and changing nh should not affect performance beyond the fluctuations
due to the model initialisations. Specifically, we set nh=16 and notice no significant change in
performance up to nh=64. Also scaling demb up to 4nh × v does not impact performance.

Multi-layer self-attention networks are trained with the Adam optimizer, with a warmup scheduler
bringing the learning rate to 10−2 within the first 10 training epochs. As for CNNs, the batch size is
set to the lowest value allowing for convergence.

A.3 Encoder-only Transformer (tiny-Shakespeare and WikiText-103)

The architectures trained on real text data have the same structure as BERT [8], that is they include
additional token-wise two-layer perceptions (MLPs) after each self-attention layer, together with
layer normalization operations before the attention layer and the MLP and residual connections. The
training procedure is the same as above.

For tiny-Shakespeare, we set the number of heads to nh=8, the embedding dimension to de=256,
the size of the MLP hidden layer to 4de, and the number of layers to 3. For WikiText-103, we set
nh=8, de=512, and the number of layers to 6. Increasing the number of layers or the number of
heads does not affect the results presented in the paper.

14

102 103 104 105 106

P

2× 100

3× 100

te
st

cr
o
ss

-e
n
tr

o
p
y
L

P−α,
α ' 0.095

t=1

t=2

t=3

t=5

t=7

t=15

100 101

token distance t

10−4

10−3

co
rr

el
at

io
n
Ĉ
P

(t
)

t−β, β' 1.55

P = 512

P = 2048

P = 8192

P = 32768

P = 131072

P = 524288

100 102 104 106

P/tz

3× 100

4× 100

6× 100

L
×
tα
z

x−α

t=1

t=2

t=3

t=5

t=7

t=15

10−1 100

scaled distance t/P 1/z

10−2

10−1

Ĉ
P

(t
)
×
P

1
/
2 x−β

P = 512

P = 2048

P = 8192

P = 32768

P = 131072

P = 524288

Figure 5: Top, Left: Test losses of 6-layers transformers trained on (t+1)-characters blocks of the WikiText-
103 [39] (t as in the key). As in Fig. 4, the loss saturates to some t-dependent value after reaching a characteristic
training set size. Top, Right: Empirical correlation functions ĈP (t) with P as in the key, showing saturation for
large t due to the sampling noise (coloured dashed). Bottom, Right: Collapse of the empirical curves ĈP (t) is
achieved when rescaling the correlations by the sampling noise size P−1/2 and t by the characteristic distance
t∗(P) ∼ P 1/z , with z=2β ≃ 3.1. Bottom, Left: As predicted by our conjecture, the losses collapse when
rescaled according to Eq. 16 with the same z as the correlation functions and α ≃ 0.095.

B Loss saturation and correlations for WikiText-103

In this section, we report the results of the test of our conjecture for the WikiText-103 dataset of [39].
The original dataset was preprocessed to remove the article’s headers and subheaders. The results
are summarised in Fig. 5, which displays the same measures as Fig. 4 and, as Fig. 4, confirms our
conjecture.

C Statistics of the RHM data

For each token i=0, . . . , d− 1, single-token probabilities can be written as products of probabilities
over the single production rules,

P {Xi=µ} =

v∑
µ1,...,µL=1

p
(1)
i1

(µ|µ1) . . . p
(L)
iL

(µL−1|µL)p(L+1)(µL), (17)

where

(i) the indices iL, . . . , iL are such that iL . . . i1 equals the s-ary representation of i, with
iℓ=0, . . . , s− 1, and 0’s added to ensure that the representation always consists of L
indices. In other words, the multi-index iL, . . . , iL uniquely identifies the path linking the
root of the tree to the i-th leaf.

(ii) p(ℓ)iℓ (µℓ−1|µℓ) denotes the probability of choosing, among the available production rules
starting from µℓ, one that has the symbol µℓ−1 on the iℓ-th position of the right-hand size.

(iii) p(L)(µL) denotes the probability of selecting the symbol µL as the root (1/v for our model).

These decompositions arise naturally due to the connection between probabilistic context-free
grammars and Markov processes. For the joint probability of two tokens i and j at distance t= |j− i|,

15

with sℓ−1<t<sℓ − 1 such that the lowest common ancestor (LCA) is a level-ℓ hidden symbol, and
iℓ+1 denoting the position of the LCA within its level,

P {Xi=µ,Xj = ν} =

v∑
µ1,...,µℓ=1
ν1,...,νℓ−1=1

v∑
µℓ=1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1) . . . p(ℓ)iℓ,jℓ(µℓ−1, νℓ−1|µℓ)p(ℓ+1)
iℓ+1

(µℓ).

(18)

Both in Eq. 17 and Eq. 38 simplify when replacing µ with a whole s-tuple of observable symbols
µj =(µ1+(j−1)s, . . . , µjs) for some j=1, . . . , sL−1. The simplification arises because the level-1
rule probability p(1)(µj |µ1), is uniform and equal to 1/m if the production rule µ1 → µj exists, 0
otherwise. Then, the sum over µ1 selects the only level-1 symbol that generates the tuple µj . As a
result, one is left with a probability represented by a smaller tree, where the s leaves representing µj
are pruned, and an additional factor of 1/m.

C.1 Statistics of production rules

For each set of production rules, we call N (ℓ)
i (µℓ−1;µℓ) the number of occurrences of the level-ℓ− 1

feature µℓ−1 in the i-th position of the right-hand side for all the production rules emanating from
the level-ℓ feature µℓ. In our generative model, there are m production rules emanating from a given
symbol. The rule to follow when generating a datum is chosen uniformly at random among these m.
Hence,

p
(ℓ)
i (µℓ−1|µℓ) =

1

m
N

(ℓ)
i (µℓ−1;µℓ). (19)

For the sake of clarity, let us omit the level index in the following paragraph. The probability of
Ni(µ; ν) over different realisations of the set of production rules is that of the number of successes
when drawing m times (number of s-tuples associated with the high-level feature ν) without replace-
ment from a pool of vs (total number of s-tuples with vocabulary size v) objects where only vs−1

(number of s-tuples displaying feature µ in position i) leads to success:

P {Ni(µ0;µ1) = k}RHM =

(
vs−1

k

)(
vs − vs−1

m− k

)/(
vs

m

)
= Hgm,vs−1,vs(k), (20)

where Hgn,K,N denotes a Hypergeometric distribution with population size N , K success states, and
n draws. The mean and variance with respect to realisations of the RHM (denoted with ⟨.⟩ to avoid
confusion with data averages E [.]) are

⟨N⟩ = m
vs−1

vs
=
m

v
, σ2

N :=
〈
(N − ⟨N⟩)2

〉
= m

vs−1

vs
vs − vs−1

vs
vs −m

vs − 1
=
m

v

v − 1

v

vs −m

vs − 1
.

(21)

For v≫ 1, the variance converges to m/v (m≤ vs−1 with s fixed, thus vs −m→ vs).

Equations (19) to (21) easily generalise to the case where µ0 represents a group of s′ ≤ s low-level
features (instead of a single low-level feature). With µ0 denoting a s′-tuple of features and i the
s′-tuple of associated spatial indices,

P {Ni(µ0;µ1) = k}RHM =

(
vs−s

′

k

)(
vs − vs−s

′

m− k

)/(
vs

m

)
, (22)

resulting in

⟨Ns′⟩ = m
vs−s

′

vs
=

m

vs′
, σ2

Ns′
:=
〈
(Ns′ − ⟨Ns′⟩)2

〉
=

m

vs′
vs

′ − 1

vs′
vs −m

vs − 1

v≫1−−−→ m

vs′
. (23)

C.2 Statistics via splitting

An alternative way to obtain all statistics is by writing the level-ℓ probabilities as sums over the
production rules,

p
(ℓ)
i (µℓ−1|µℓ) =

1

m

m∑
ψ=1

δ(rψ,i(µℓ), µℓ−1), (24)

16

where rψ,i(µ1) denotes the i-th element of the right-hand side of the ψ-th production rule emanating
from µ1. Eq. 24 generalises immediately to the case where i and µℓ−1 are s′-tuples with s′ ≤ s.
Using

⟨δ(rψ,i(µ1), µ)⟩ = P
{
µ1

ψ,i−−→ µ
}
RHM

= Hg1,vs−s′ ,vs(1) =
1

vs′
, (25)

where µ1
ψ,i−−→ µ denotes the event that the i-th element of the right-hand side of the ψ-th production

rule emanating from µ1 coincides with µ, we can compute all one-point averages. In addition, for
(ν1, ϕ, j, ν) ̸= (µ1, ψ, i, µ),

⟨δ(rψ,i(µ1), µ)δ(rϕ,j(ν1), ν)⟩ = P
{
µ1

ψ,i−−→ µ
}
RHM

P
{
ν1

ϕ,j−−→ ν
∣∣∣µ1

ψ,i−−→ µ
}
RHM

, (26)

where

P
{
ν1

ϕ,j−−→ ν
∣∣∣µ1

ψ,i−−→ µ
}
RHM

=

P
{
ν1

ϕ,j−−→ ν
}
RHM

= v−1, if i ̸= j

0, if i = j, ν1 = µ1, ϕ = ψ, µ ̸= ν,

Hg1,vs−1−1,vs−1(1) =
vs−1 − 1

vs − 1
, if i = j, ν1 = µ1, µ = ν, ϕ ̸= ψ,

Hg1,vs−1,vs−1(1) =
vs−1

vs − 1
, if i = j, ν1 = µ1, µ ̸= ν, ϕ ̸= ψ,

Hg1,vs−1−1,vs−1(1) =
vs−1 − 1

vs − 1
, if i = j, ν1 ̸= µ1, µ = ν,

Hg1,vs−1,vs−1(1) =
vs−1

vs − 1
, if i = j, ν1 ̸= µ1, µ ̸= ν.

(27)

Notice that, once the right-hand side of the rules (µ and ν) are fixed, the conditional probability can
only attain two distinct values: one for µ1 = ν1 and ψ=ϕ, and one for the other cases. Then, it
is convenient to define a ‘rule index’ ψ that comprises both the starting high-level feature and the
chosen production rule. This index runs in (1, . . . ,mv). With these formulas, one can get all the
joint statistics of the rules. For instance (omitting the RHM subscript on P to ease notation),

⟨pi(µ0|µ1)pi(µ0|µ1)⟩ =
1

m2

m∑
ψ1,ψ2=1

P
{
µ1

ψ1,i−−→ µ0;µ1
ψ2,i−−→ µ0

}
=

1

m2

∑
ψ1=ψ2

P
{
µ1

ψ1,i−−→ µ0

}
+

1

m2

∑
ψ1,ψ2 ̸=ψ1

P
{
µ1

ψ1,i−−→ µ0

}
P
{
µ1

ψ1,i−−→ µ0|µ1
ψ1,i−−→ µ0

}
=

1

m2

[
m

v
+
m(m− 1)

v

vs−1 − 1

vs − 1

]
, (28)

hence

σ2
p = ⟨(pi(µ0|µ1)− ⟨p⟩) (pi(µ0|µ1)− ⟨p⟩)⟩ = ⟨pi(µ0|µ1)pi(µ0|µ1)⟩ −

(
1

v

)2

=
1

mv

v − 1

v

vs −m

vs − 1
,

(29)

equivalent to dividing σ2
N from Eq. 21 by m2. Analogously, with ν0 ̸=µ0,

⟨pi(µ0|µ1)pi(ν0|µ1)⟩ =
1

m2

m∑
ψ1,ψ2=1

P
{
µ1

ψ1,i−−→ µ0;µ1
ψ2,i−−→ ν0

}
=

1

m2

∑
ψ1,ψ2 ̸=ψ1

P
{
µ1

ψ1,i−−→ µ0

}
P
{
µ1

ψ1,i−−→ ν0|µ1
ψ1,i−−→ µ0

}
=

1

m2

[
m(m− 1)

v

vs−1

vs − 1

]
, (30)

17

thus

cp = ⟨(pi(µ0|µ1)− ⟨p⟩) (pi(ν0|µ1)− ⟨p⟩)⟩ = ⟨pi(µ0|µ1)pi(ν0|µ1)⟩ −
(
1

v

)2

= − 1

mv2
vs −m

vs − 1
.

(31)

Notice that cp=σ2
p/(v−1) in agreement with the constraint

∑
µ0
pi(µ0|µ1)= 1. Indeed, for any finite

sequence of identically distributed random variables Xµ with a constraint on the sum,
∑
µXµ=C

for some constant C,
v∑

µ=1

Xµ=C ⇒
v∑

µ=1

(Xµ − ⟨Xµ⟩) = 0 ⇒

(Xν − ⟨Xν⟩)
v∑

µ=1

(Xµ − ⟨Xµ⟩) = 0 ⇒

v∑
µ=1

⟨(Xν − ⟨Xν⟩)(Xµ − ⟨Xµ⟩)⟩ = 0 ⇒〈
(Xµ − ⟨Xµ⟩)2

〉
+ (v − 1) ⟨(Xµ − ⟨Xµ⟩)(Xν − ⟨Xν⟩)⟩ = 0, (32)

where, in the last line, we used the identically distributed variables hypothesis to replace the sum over
µ ̸= ν with the factor (v − 1).

In addition, with ν1 ̸=µ1,

⟨pi(µ0|µ1)pi(µ0|ν1)⟩ =
1

m2

m∑
ψ1,ψ2=1

P
{
µ1

ψ1,i−−→ µ0; ν1
ψ2,i−−→ µ0

}
=

1

m2

∑
ψ1,ψ2

P
{
µ1

ψ1,i−−→ µ0

}
P
{
ν1

ψ1,i−−→ µ0|µ1
ψ1,i−−→ µ0

}
=

1

m2

[
m2

v

vs−1 − 1

vs − 1

]
, (33)

thus

⟨(pi(µ0|µ1)− ⟨p⟩) (pi(µ0|ν1)− ⟨p⟩)⟩ = ⟨pi(µ0|µ1)pi(µ0|ν1)⟩ −
(
1

v

)2

= − 1

v2
v − 1

vs − 1
, (34)

and

⟨pi(µ0|µ1)pi(ν0|ν1)⟩ =
1

m2

m∑
ψ1,ψ2=1

P
{
µ1

ψ1,i−−→ µ0; ν1
ψ2,i−−→ ν0

}
=

1

m2

∑
ψ1,ψ2

P
{
µ1

ψ1,i−−→ µ0

}
P
{
ν1

ψ1,i−−→ ν0|µ1
ψ1,i−−→ µ0

}
=

1

m2

[
m2

v

vs−1

vs − 1

]
, (35)

thus

⟨(pi(µ0|µ1)− ⟨p⟩) (pi(ν0|ν1)− ⟨p⟩)⟩ = ⟨pi(µ0|µ1)pi(ν0|µ1)⟩ −
(
1

v

)2

=
1

v2
1

vs − 1
. (36)

D Analytic computation of spatial correlations

Given a dataset of d-dimensional sequences of tokens in V , we measure correlations via the token
co-occurrences matrix,

Ci,j(µ, ν) := P {Xi = µ,Xj = ν}X − P {Xi = µ}X P {Xj = ν}X , (37)
where µ and ν are arbitrary elements of the vocabulary V and PX refers to the probability of the data
distribution (distinct from PRHM , indicating the probability of the rules of the generative process).
Joint and single-token probabilities are given by Eq. 17 and Eq. 38, respectively. We now prove Eq. 8
of the main text.

18

D.1 Level-1 LCA (i-th and j-th tokens are in the same patch)

When the LCA of the i-th and j-th tokens is a level-1 hidden symbol, i.e. the two tokens lie in the
same s-patch,

P {Xi=µ,Xj = ν}X =

v∑
µ1=1

p
(1)
i1,j1

(µ, ν|µ1)p
(2)
i2

(µ1), (i1 ̸= j1),

P {Xi=µ}X =

v∑
µ1=1

p
(1)
i1

(µ|µ1)p
(2)
i2

(µ1),

P {Xj = ν}X =

v∑
ν1=1

p
(1)
j1

(ν|ν1)p(2)j2 (ν1), (j2 = i2). (38)

We consider the limit of large m, where the univariate probabilities of the hidden variables of any
level converge to 1/v, with relative fluctuations of order 1/

√
m [20] 5. In this limit, we can substitute

the probability of the LCA with 1/v, thus obtaining,

C(1)(µ, ν) =
1

v

∑
µ1

p
(1)
i1,j1

(µ, ν|µ1)−
1

v2

∑
µ1,ν1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1). (39)

As we will prove in this and the following sections, the correlations have 0 average but nonvanishing
variance. Including the fluctuations of the LCA probability results in corrections to the variance that
vanish in the limit of large m. Furthermore, notice that we removed the dependence of C(µ, ν) on the
positional indices i and j. This is because, asymptotically in v and m, the aforementioned statistics
depend only on the depth of the LCA of i-th and j-th tokens, justifying our notation.

Since i1 ̸= j1, p(1)i1 (µ|µ1) and p(1)j1 (ν|ν1) are independent. Hence, by Eq. 21 and Eq. 23 with s′ =2,

〈
C(1)(µ, ν)

〉
=

1

v

∑
µ1

⟨N2⟩
m

− 1

v2

∑
µ1,ν1

⟨N⟩
m

⟨N⟩
m

= 0. (40)

The variance/2nd moment reads〈(
C(1)(µ, ν)

)2〉
=

〈(
1

v

∑
µ1

p
(1)
i1,j1

(µ, ν|µ1)

)2〉
+

〈(
1

v

∑
µ1

p
(1)
i1

(µ|µ1)

)2〉〈(
1

v

∑
ν1

p
(1)
j1

(ν|ν1)
)2〉

− 2
1

v3

∑
µ1,λ1,κ1

〈
p
(1)
i1,j1

(µ, ν|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|κ1)
〉
. (41)

We will compute the three contributions on the right-hand side separately in the following subsections.

D.1.1 One-point term (marginal probability)

Pc(µ) =
〈(

1

v

∑
µ1

p
(1)
i1

(µ|µ1)

)2〉

=
1

v2

∑
µ1,ν1

〈
p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|ν1)
〉

(42)

We can split the sum into two kinds of terms: those with µ1 = ν1 (mult. v) and those with µ1 ̸= ν1
(mult. v(v − 1)). In the following, to simplify the notation, we omit the spatial index i.

5Section 1d of Appendix B.

19

(i)—µ1 = ν1 (mult. v)

Pc(µ)(i) =
v

(mv)2

∑
ψ1,ψ2

⟨δ(rψ1
(µ1), (µ))δ(rψ2

(µ1), (µ))⟩

=
v

(mv)2

∑
ψ1,ψ2

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ

}

=
v

(mv)2

∑
ψ1

P
{
µ1

ψ1−−→ µ
}
+

∑
ψ1,ψ2 ̸=ψ1

P
{
µ1

ψ1−−→ µ
}
P
{
µ1

ψ2−−→ µ|µ1
ψ1−−→ µ

}
=

v

(mv)2

[
m

1

v
+m(m− 1)

1

v

vs−1 − 1

vs − 1

]
. (43)

(ii)—µ1 ̸= ν1 (mult. v(v − 1))

Pc(µ, ν)(ii) =
v(v − 1)

(mv)2

∑
ψ1,ψ2

P
{
µ1

ψ1−−→ µ; ν1
ψ2−−→ µ

}
=
v(v − 1)

(mv)2

∑
ψ1,ψ2

P
{
µ1

ψ1−−→ µ
}
P
{
ν1

ψ2−−→ µ|µ1
ψ1−−→ µ

}
=
v(v − 1)

(mv)2

[
m2 1

v

vs−1 − 1

vs − 1

]
. (44)

Variance of the marginal probability〈(
1

v

∑
µ1

p
(1)
i1

(µ|µ1)

)2〉
−
〈
1

v

∑
µ1

p
(1)
i1

(µ|µ1)

〉2

= Pc(µ, ν)−
(
1

v

)2

=
v − 1

v3m

vs −mv

vs − 1
. (45)

D.1.2 Two-point term (joint probability)

Jc(µ, ν) :=
〈(

1

v

∑
µ1

p
(1)
i1,j1

(µ, ν|µ1)

)2〉

=
1

v2

∑
µ1,ν1

〈
p
(1)
i,j (µ, ν|µ1)p

(1)
i,j (µ, ν|ν1)

〉
. (46)

We can split the sum into two kinds of terms: those with µ1 = ν1 (mult. v) and those with µ1 ̸= ν1
(mult. v(v − 1)). In the following, to simplify the notation, we omit the spatial indices i and j.

(i)—µ1 = ν1 (mult. v)

Jc(µ, ν)(i) =
v

(mv)2

∑
ψ1,ψ2

⟨δ(rψ1(µ1), (µ, ν))δ(rψ2(µ1), (µ, ν))⟩

=
v

(mv)2

∑
ψ1,ψ2

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν

}

=
v

(mv)2

∑
ψ1

P
{
µ1

ψ1−−→ µν
}
+

∑
ψ1,ψ2 ̸=ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
=

v

(mv)2

[
m

1

v2
+m(m− 1)

1

v2
vs−2 − 1

vs − 1

]
. (47)

20

(ii)—µ1 ̸= ν1 (mult. v(v − 1))

Jc(µ, ν)(ii) =
v(v − 1)

(mv)2

∑
ψ1,ψ2

P
{
µ1

ψ1−−→ µν; ν1
ψ2−−→ µν

}
=
v(v − 1)

(mv)2

∑
ψ1,ψ2

P
{
µ1

ψ1−−→ µν
}
P
{
ν1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
=
v(v − 1)

(mv)2

[
m2 1

v2
vs−2 − 1

vs − 1

]
. (48)

Variance of the joint probability〈(
1

v

∑
µ1

p
(1)
i1,j1

(µ, ν|µ1)

)2〉
−
〈
1

v

∑
µ1

p
(1)
i1,j1

(µ, ν|µ1)

〉2

= Jc(µ, ν)−
(

1

v2

)2

=
v2 − 1

v5m

vs −mv

vs − 1
. (49)

D.1.3 Three-point term

Tc(µ, ν) :=
1

v3

∑
µ1,λ1,κ1

〈
p
(1)
i,j (µ, ν|µ1)p

(1)
i (µ|λ1)p(1)j (ν|κ1)

〉
=

1

v3

∑
µ1,λ1,κ1

∑
µ′,ν′

〈
p
(1)
i,j (µ, ν|µ1)p

(1)
i,j (µ, ν

′|λ1)p(1)i,j (µ′, ν|κ1)
〉

=
1

(vm)3

∑
µ1,ψ1;λ1,ψ2,;κ1,ψ3

∑
µ′,ν′

P
{
µ1

ψ1,ij−−−→ µν;λ1
ψ2,ij−−−→ µν′;κ1

ψ3,ij−−−→ µ′ν
}

(50)

The sum over µ′, ν′ can be split in 4 terms: one with µ′ =µ and ν′ = ν (mult. 1), one with µ′ =µ and
ν′ ̸= ν (mult. (v − 1)), one with µ′ ̸=µ and ν′ = ν (mult. (v − 1)) and one with µ′ ̸=µ and ν′ ̸= ν
(mult. (v − 1)2). Fixing the right-hand sides, the value of the joint probability of the rules depends
only on the rule indices ψ̃1 =(µ1, ψ1), ψ̃2 =(λ1, ψ2) and ψ̃3 =(κ1, ψ3).

The sum over µ1, λ1, κ1 can be split in 5 terms: one with µ1 =λ1 =κ1 (mult. v), one with
µ1 =λ1 ̸=κ1 (mult. v(v − 1)), one with µ1 =κ1 ̸=λ1 (mult. v(v − 1)), one with µ1 ̸=λ1 =κ1
(mult. v(v − 1)), one with µ1 ̸=λ1 ̸=κ1 (mult. v(v − 1)(v − 2)). In the following, to simplify the
notation, we omit the spatial indices i and j.

(i-a)—µ1 =λ1 =κ1; µ′ =µ and ν′ = ν (mult. v)

Tc(µ, ν)(i−a) =
v

(mv)3

∑
ψ1,ψ2,ψ3

⟨δ(rψ1
(µ1), (µ, ν))δ(rψ2

(µ1), (µ, ν))δ(rψ3
(µ1), (µ, ν))⟩

=
v

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν;µ1

ψ3−−→ µν
}

=
v

(mv)3

∑
ψ1=ψ2=ψ3

P
{
µ1

ψ1−−→ µν
}

+
3v

(mv)3

∑
ψ1=ψ2 ̸=ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ3−−→ µν|µ1
ψ1−−→ µν

}
+

v

(mv)3

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=ψ2,ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
P
{
µ1

ψ3−−→ µν|µ1
ψ2−−→ µν;µ1

ψ1−−→ µν
}

=
v

(mv)3

[
m

1

v2
+ 3m(m− 1)

1

v2
vs−2 − 1

vs − 1
+m(m− 1)(m− 2)

1

v2
vs−2 − 1

vs − 1

vs−2 − 2

vs − 2

]
. (51)

21

(i-b)—µ1 =λ1 =κ1; µ′ =µ and ν′ ̸= ν (mult. v(v − 1))

Tc(µ, ν)(i−b) =
v(v − 1)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν′;µ1

ψ3−−→ µν
}

=
v(v − 1)

(mv)3

∑
ψ1=ψ3,ψ2 ̸=ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
v(v − 1)

(mv)3

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=ψ2,ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
× P

{
µ1

ψ3−−→ µν|µ1
ψ2−−→ µν′;µ1

ψ1−−→ µν
}

=
v(v − 1)

(mv)3

[
m(m− 1)

1

v2
vs−2

vs − 1
+m(m− 1)(m− 2)

1

v2
vs−2

vs − 1

vs−2 − 1

vs − 2

]
.

(52)

(i-c)—µ1 =λ1 =κ1; µ′ ̸=µ and ν′ = ν (mult. v(v − 1))

Tc(µ, ν)(i−c) =
v(v − 1)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν;µ1

ψ3−−→ µ′ν
}
= Tc(µ, ν)(i−b), (53)

by symmetry for exchanging µ′ and ν′.

(i-d)—µ1 =λ1 =κ1; µ′ ̸=µ and ν′ ̸= ν (mult. v(v − 1)2)

Tc(µ, ν)(i−d) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν′;µ1

ψ3−−→ µ′ν
}

=
v(v − 1)2

(mv)3

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=ψ2,ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
× P

{
µ1

ψ3−−→ µ′ν|µ1
ψ2−−→ µν′;µ1

ψ1−−→ µν
}

=
v(v − 1)2

(mv)3

[
m(m− 1)(m− 2)

1

v2
vs−2

vs − 1

vs−2

vs − 2

]
. (54)

(ii-a)—µ1 ̸=λ1 =κ1; µ′ =µ and ν′ = ν (mult. v(v − 1))

Tc(µ, ν)(ii−a) =
v(v − 1)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν;λ1

ψ3−−→ µν
}

=
v(v − 1)

(mv)3

∑
ψ1,ψ2=ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
+
v(v − 1)

(mv)3

∑
ψ1ψ2,ψ3 ̸=ψ2

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
P
{
λ1

ψ3−−→ µν|λ1 ψ2−−→ µν;µ1
ψ1−−→ µν

}
v(v − 1)

(mv)3

[
m2 1

v2
vs−2 − 1

vs − 1
+m2(m− 1)

1

v2
vs−2 − 1

vs − 1

vs−2 − 2

vs − 2

]
. (55)

(ii-b)—µ1 ̸=λ1 =κ1; µ′ =µ and ν′ ̸= ν (mult. v(v − 1)2)

Tc(µ, ν)(ii−b) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν′;λ1

ψ3−−→ µν
}

=
v(v − 1)2

(mv)3

∑
ψ1ψ2,ψ3 ̸=ψ2

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
P
{
λ1

ψ3−−→ µν|λ1 ψ2−−→ µν′;µ1
ψ1−−→ µν

}
v(v − 1)2

(mv)3

[
m2(m− 1)

1

v2
vs−2

vs − 1

vs−2 − 1

vs − 2

]
. (56)

22

(ii-c)—µ1 ̸=λ1 =κ1; µ′ ̸=µ and ν′ = ν (mult. v(v − 1)2)

Tc(µ, ν)(ii−c) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν;λ1

ψ3−−→ µ′ν
}
= Tc(µ, ν)(ii−b),

(57)

by symmetry for exchanging µ′ and ν′.

(ii-d)—µ1 ̸=λ1 =κ1; µ′ ̸=µ and ν′ ̸= ν (mult. v(v − 1)3)

Tc(µ, ν)(ii−d) =
v(v − 1)3

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν′;λ1

ψ3−−→ µ′ν
}

=
v(v − 1)3

(mv)3

∑
ψ1ψ2,ψ3 ̸=ψ2

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
P
{
λ1

ψ3−−→ µ′ν|λ1 ψ2−−→ µν′;µ1
ψ1−−→ µν

}
v(v − 1)3

(mv)3

[
m2(m− 1)

1

v2
vs−2

vs − 1

vs−2

vs − 2

]
. (58)

(iii-a)—µ1 =λ1 ̸=κ1; µ′ =µ and ν′ = ν (mult. v(v − 1))

Tc(µ, ν)(iii−a) =
v(v − 1)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν;κ1

ψ3−−→ µν
}

=
v(v − 1)

(mv)3

∑
ψ1=ψ2,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
κ1

ψ3−−→ µν|µ1
ψ1−−→ µν

}
+
v(v − 1)

(mv)3

∑
ψ1,ψ2 ̸=ψ1,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
P
{
κ1

ψ3−−→ µν|µ1
ψ2−−→ µν;µ1

ψ1−−→ µν
}

v(v − 1)

(mv)3

[
m2 1

v2
vs−2 − 1

vs − 1
+m2(m− 1)

1

v2
vs−2 − 1

vs − 1

vs−2 − 2

vs − 2

]
= Tc(µ, ν)(ii−a). (59)

(iii-b)—µ1 =λ1 ̸=κ1; µ′ =µ and ν′ ̸= ν (mult. v(v − 1)2)

Tc(µ, ν)(iii−b) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν′;κ1

ψ3−−→ µν
}

=
v(v − 1)2

(mv)3

∑
ψ1ψ2 ̸=ψ1,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
P
{
κ1

ψ3−−→ µν|µ1
ψ2−−→ µν′;µ1

ψ1−−→ µν
}

v(v − 1)2

(mv)3

[
m2(m− 1)

1

v2
vs−2

vs − 1

vs−2 − 1

vs − 2

]
. (60)

(iii-c)—µ1 =λ1 ̸=κ1; µ′ ̸=µ and ν′ = ν (mult. v(v − 1)2)

Tc(µ, ν)(iii−c) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν;κ1

ψ3−−→ µ′ν
}

=
v(v − 1)2

(mv)3

∑
ψ1,ψ2=ψ1,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
κ1

ψ3−−→ µ′ν|µ1
ψ1−−→ µν

}
+
v(v − 1)2

(mv)3

∑
ψ1,ψ2 ̸=ψ1,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
P
{
κ1

ψ3−−→ µ′ν|µ1
ψ2−−→ µν;µ1

ψ1−−→ µν
}

=
v(v − 1)2

(mv)3

[
m2 1

v2
vs−2

vs − 1
+m2(m− 1)

1

v2
vs−2 − 1

vs − 1

vs−2

vs − 2

]
. (61)

23

(iii-d)—µ1 =λ1 ̸=κ1; µ′ ̸=µ and ν′ ̸= ν (mult. v(v − 1)3)

Tc(µ, ν)(iii−d) =
v(v − 1)3

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;µ1
ψ2−−→ µν′;κ1

ψ3−−→ µ′ν
}

=
v(v − 1)3

(mv)3

∑
ψ1ψ2 ̸=ψ1,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
µ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
P
{
κ1

ψ3−−→ µ′ν|µ1
ψ2−−→ µν′;µ1

ψ1−−→ µν
}

v(v − 1)3

(mv)3

[
m2(m− 1)

1

v2
vs−2

vs − 1

vs−2

vs − 2

]
. (62)

(iv-a)—µ1 =κ1 ̸=λ1; µ′ =µ and ν′ = ν (mult. v(v − 1))

Tc(µ, ν)(iv−a) =
v(v − 1)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν;µ1

ψ3−−→ µν
}
= Tc(µ, ν)(iii−a) = Tc(µ, ν)(ii−a),

(63)

by symmetry for exchanging κ1 and λ1.

(iv-b)—µ1 =κ1 ̸=λ1; µ′ =µ and ν′ ̸= ν (mult. v(v − 1)2)

Tc(µ, ν)(iv−b) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν′;µ1

ψ3−−→ µν
}

=
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3=ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
+
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3 ̸=ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
P
{
µ1

ψ3−−→ µν|λ1 ψ2−−→ µν′;µ1
ψ1−−→ µν

}
=
v(v − 1)2

(mv)3

[
m2 1

v2
vs−2

vs − 1
+m2(m− 1)

1

v2
vs−2

vs − 1

vs−2 − 1

vs − 2

]
= Ic(µ, ν)(iii−c). (64)

(iv-c)—µ1 =κ1 ̸=λ1; µ′ ̸=µ and ν′ = ν (mult. v(v − 1)2)

Tc(µ, ν)(iv−c) =
v(v − 1)2

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν;µ1

ψ3−−→ µ′ν
}

=
v(v − 1)2

(mv)3

∑
ψ1ψ2,ψ3 ̸=ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
P
{
µ1

ψ3−−→ µ′ν|λ1 ψ2−−→ µν;µ1
ψ1−−→ µν

}
v(v − 1)2

(mv)3

[
m(m− 1)2

1

v2
vs−2 − 1

vs − 1

vs−2

vs − 2

]
= Tc(µ, ν)(iii−b). (65)

(iv-d)—µ1 =κ1 ̸=λ1; µ′ ̸=µ and ν′ ̸= ν (mult. v(v − 1)3)

Tc(µ, ν)(iv−d) =
v(v − 1)3

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν′;µ1

ψ3−−→ µ′ν
}

=
v(v − 1)3

(mv)3

∑
ψ1ψ2,ψ3 ̸=ψ1

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν′|µ1
ψ1−−→ µν

}
P
{
µ1

ψ3−−→ µ′ν|λ1 ψ2−−→ µν′;µ1
ψ1−−→ µν

}
v(v − 1)3

(mv)3

[
m2(m− 1)

1

v2
vs−2

vs − 1

vs−2

vs − 2

]
= T (iii−d)

c . (66)

24

(v-a)—µ1 ̸=λ1 ̸=κ1; µ′ =µ and ν′ = ν (mult. v(v − 1)(v − 2))

Tc(µ, ν)(v−a) =
v(v − 1)(v − 2)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν;κ1

ψ3−−→ µν
}

=
v(v − 1)(v − 2)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν
}
P
{
λ1

ψ2−−→ µν|µ1
ψ1−−→ µν

}
P
{
κ1

ψ3−−→ µν|λ1 ψ2−−→ µν;µ1
ψ1−−→ µν

}
=
v(v − 1)(v − 2)

(mv)3

[
m3 1

v2
vs−2 − 1

vs − 1

vs−2 − 2

vs − 2

]
. (67)

(v-b)—µ1 ̸=λ1 ̸=κ1; µ′ =µ and ν′ ̸= ν (mult. v(v − 1)2(v − 2))

Tc(µ, ν)(v−b) =
v(v − 1)2(v − 2)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν′;κ1

ψ3−−→ µν
}

=
v(v − 1)2(v − 2)

(mv)3

[
m3 1

v2
vs−2

vs − 1

vs−2 − 1

vs − 2

]
. (68)

(v-c)—µ1 ̸=λ1 ̸=κ1; µ′ ̸=µ and ν′ = ν (mult. v(v − 1)2(v − 2))

Tc(µ, ν)(v−c) =
v(v − 1)2(v − 2)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν;κ1

ψ3−−→ µ′ν
}

=
v(v − 1)2(v − 2)

(mv)3

[
m3 1

v2
vs−2 − 1

vs − 1

vs−2

vs − 2

]
. (69)

(v-d)—µ1 ̸=λ1 ̸=κ1; µ′ ̸=µ and ν′ ̸= ν (mult. v(v − 1)3(v − 2))

Tc(µ, ν)(v−d) =
v(v − 1)3(v − 2)

(mv)3

∑
ψ1,ψ2,ψ3

P
{
µ1

ψ1−−→ µν;λ1
ψ2−−→ µν′;κ1

ψ3−−→ µ′ν
}

=
v(v − 1)3(v − 2)

(mv)3

[
m3 1

v2
vs−2

vs − 1

vs−2

vs − 2

]
. (70)

D.1.4 Variance of the correlations

By adding together all the terms,〈(
C(1)(µ, ν)

)2〉
=

〈(
1

v

∑
µ1

p
(1)
i1,j1

(µ, ν|µ1)

)2〉
+

〈(
1

v

∑
µ1

p
(1)
i1

(µ|µ1)

)2〉〈(
1

v

∑
ν1

p
(1)
j1

(ν|ν1)
)2〉

− 2
1

v3

∑
µ1,λ1,κ1

〈
p
(1)
i1,j1

(µ, ν|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|κ1)
〉

=
v3s

(vs − 1)2(vs − 2)

vs −mv

vs
(mv − 1)(v − 1)2

v6m2

v≫1−−−→
(
1−m/vs−1

)
v3m

. (71)

D.1.5 Covariance of the correlations

For all λ ̸=µ,
v∑

µ=1

C(µ, ν) =

v∑
ν=1

C(µ, ν) = 0. (72)

Therefore,

C(µ, ν)

v∑
λ=1

C(λ, ν) = C(µ, ν)2 +
∑
λ̸=µ

C(µ, ν)C(λ, ν) = 0 ⇒

∑
λ̸=µ

⟨C(µ, ν)C(λ, ν)⟩ = −
〈
C(µ, ν)2

〉
. (73)

25

Analogously, ∑
κ̸=ν

⟨C(µ, ν)C(µ, κ)⟩ = −
〈
C(µ, ν)2

〉
. (74)

In addition,

C(µ, ν)

v∑
λ=1

C(λ, κ) = C(µ, ν)C(µ, κ) +
∑
λ̸=µ

C(µ, ν)C(λ, κ) = 0 ⇒

∑
λ̸=µ,κ̸=ν

⟨C(µ, ν)C(λ, κ)⟩ = −
∑
κ̸=ν

⟨C(µ, ν)C(µ, κ)⟩ =
〈
C(µ, ν)2

〉
. (75)

D.2 Level-2 LCA

When the parents of the i-th and j-th tokens are in the same level-1 patch ,

P {Xi=µ,Xj = ν}X =

v∑
µ1=1
ν1=1

v∑
µ2=1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1)p(2)i2,j2(µ1, ν1|µ2)p
(3)
i3

(µ2), (i2 ̸= j2),

P {Xi=µ}X =

v∑
µ1,µ2=1

p
(1)
i1

(µ|µ1)p
(2)
i2

(µ1|µ2)p
(3)
i3

(µ2),

P {Xj = ν}X =

v∑
ν1,ν2=1

p
(1)
j1

(ν|ν1)p(2)j2 (ν1|ν2)p(3)j3 (ν2), (j3 = i3). (76)

Therefore, in the limit of large m, where the univariate probabilities of the hidden variables of any
level converge to 1/v,

C(2)(µ, ν) = P {Xi=µ,Xj = ν}X − P {Xi=µ}X P {Xj = ν}X
=
∑
µ1,ν1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1)×[∑
µ2

p
(2)
i2,j2

(µ1, ν1|µ2)p
(3)
i3

(µ2)−
1

v2

∑
µ2,ν2

p
(2)
i2

(µ1|µ2)p
(3)
i3

(µ2)p
(2)
j2

(ν1|ν2)p(3)i3 (ν2)

]
=
∑
µ1,ν1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1)C(1)(µ1, ν1). (77)

Since the rules of different levels are independent, and
〈
C(1)(µ1, ν1)

〉
=0,〈

C(2)(µ, ν)
〉
=
∑
µ1,ν1

〈
p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1)
〉〈

C(1)(µ1, ν1)
〉
= 0. (78)

The variance/2nd moment reads〈(
C(2)(µ, ν)

)2〉
=
∑
µ1,ν1
λ1,κ1

〈
p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|ν1)p(1)j1 (ν|κ1)
〉〈

C(1)(µ1, ν1)C
(1)(λ1, κ1)

〉
=
∑
µ1,ν1

(〈
p
(1)
i1

(µ|µ1)
2p

(1)
j1

(ν|ν1)2
〉〈

C(1)(µ1, ν1)
2
〉

+
∑
κ1 ̸=ν1

〈
p
(1)
i1

(µ|µ1)
2p

(1)
j1

(ν|ν1)p(1)j1 (ν|κ1)
〉〈

C(1)(µ1, ν1)C
(1)(µ1, κ1)

〉
+
∑
λ1 ̸=µ1

〈
p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|ν1)2
〉〈

C(1)(µ1, ν1)C
(1)(λ1, ν1)

〉

+
∑

λ1 ̸=µ1,κ1 ̸=ν1

〈
p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|ν1)p(1)j1 (ν|κ1)
〉〈

C(1)(µ1, ν1)C
(1)(λ1, κ1)

〉 .

(79)

26

D.2.1 i1 ̸= j1 case.

This is the easiest case because the production rule probabilities p(1)i relative to different positions
i are independent and identically distributed (with respect to realisations of the RHM). Therefore,
using Eq. 34, 〈

p
(1)
i1

(µ|µ1)
2p

(1)
j1

(ν|ν1)2
〉
=
〈
p
(1)
i1

(µ|µ1)
2
〉〈

p
(1)
j1

(ν|ν1)2
〉
=

(
1

v2
+ σ2

p

)2

,〈
p
(1)
i1

(µ|µ1)
2p

(1)
j1

(ν|ν1)p(1)j1 (ν|κ1)
〉
=
〈
p
(1)
i1

(µ|µ1)
2
〉〈

p
(1)
j1

(ν|ν1)p(1)j1 (ν|κ1)
〉
=

=

(
1

v2
+ σ2

p

)(
1

v2
− 1

v2
v − 1

vs − 1

)
,〈

p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|ν1)2
〉
=
〈
p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|λ1)
〉〈

p
(1)
j1

(ν|ν1)2
〉
=

=

(
1

v2
− 1

v2
v − 1

vs − 1

)(
1

v2
+ σ2

p

)
,

〈
p
(1)
i1

(µ|µ1)p
(1)
i1

(µ|λ1)p(1)j1 (ν|ν1)p(1)j1 (ν|κ1)
〉
=

(
1

v2
− 1

v2
v − 1

vs − 1

)2

. (80)

By bringing these factors outside of the λ1 and κ1 sums in the right-hand side of Eq. 79,〈(
C(2)(µ, ν)

)2〉
=
∑
µ1,ν1

((
1

v2
+ σ2

p

)2 〈
C(1)(µ1, ν1)

2
〉

+

(
1

v2
+ σ2

p

)(
1

v2
− 1

v2
v − 1

vs − 1

) ∑
κ1 ̸=ν1

〈
C(1)(µ1, ν1)C

(1)(µ1, κ1)
〉

+

(
1

v2
+ σ2

p

)(
1

v2
− 1

v2
v − 1

vs − 1

) ∑
λ1 ̸=µ1

〈
C(1)(µ1, ν1)C

(1)(λ1, ν1)
〉

+

(
1

v2
− 1

v2
v − 1

vs − 1

)2 ∑
λ1 ̸=µ1,κ1 ̸=ν1

〈
C(1)(µ1, ν1)C

(1)(λ1, κ1)
〉

=
∑
µ1,ν1

〈
C(1)(µ1, ν1)

2
〉[(1

v2
+ σ2

p

)
−
(

1

v2
− 1

v2
v − 1

vs − 1

)]2
, (81)

where, in the last line, we used Eq. 73, Eq. 74 and Eq. 75 to express the covariances of theC(1)(µ, ν)’s
in terms of

〈
C(1)(µ, ν)2

〉
. After simple algebraic steps, recalling the definition of σ2

p in Eq. 29,〈(
C(2)(µ, ν)

)2〉
= v2

〈
C(1)(µ1, ν1)

2
〉(v − 1

v

vs

vs − 1

1

vm

)2
v≫1−−−→

〈
C(1)(µ1, ν1)

2
〉

m2
. (82)

D.2.2 i1 = j1 case.

In this case, we need to evaluate some four-point functions. Since the spatial index of the p’s is the
same, we will drop it to ease the notation. For the same reason, we will drop the level index too. First,
it is convenient to use Eq. 73, Eq. 74 and Eq. 75 to rearrange the right-hand side of Eq. 79 as follows,〈(

C(2)(µ, ν)
)2〉

=
∑
µ1,ν1

〈
C(1)(µ1, ν1)

2
〉 (〈

p(µ|µ1)
2p(ν|ν1)2

〉
− 1

v − 1

∑
κ1 ̸=ν1

〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉

− 1

v − 1

∑
λ1 ̸=µ1

〈
p(µ|µ1)p(µ|λ1)p(ν|ν1)2

〉

+
1

(v − 1)2

∑
λ1 ̸=µ1,κ1 ̸=ν1

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩

 . (83)

27

The value of
〈
C(1)(µ1, ν1)

2
〉

is actually independent of µ1 and ν1, thus〈(
C(2)(µ, ν)

)2〉
=
〈
(C(1))2

〉 ∑
µ1,ν1

(〈
p(µ|µ1)

2p(ν|ν1)2
〉

− 1

v − 1

∑
κ1 ̸=ν1

〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
− 1

v − 1

∑
λ1 ̸=µ1

〈
p(µ|µ1)p(µ|λ1)p(ν|ν1)2

〉

+
1

(v − 1)2

∑
λ1 ̸=µ1,κ1 ̸=ν1

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩

 . (84)

The first term to deal with is (2-2),〈
p(µ|µ1)

2p(ν|ν1)2
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν; ν1
ψ4−−→ ν

}
; (85)

then (2-1-1) and (1-1-2),〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
;

(86)〈
p(µ|µ1)p(µ|λ1)p(ν|ν1)2

〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ ν; ν1
ψ4−−→ ν

}
; (87)

and, finally, (1-1-1-1),

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
.

(88)

We will further separate the case where µ= ν (i) from the case µ ̸= ν (ii).

2-2, i-a) (µ= ν, µ1 = ν1)〈
p(µ|µ1)

2p(ν|ν1)2
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ µ;µ1
ψ4−−→ µ

}
=

1

m4

∑
ψ1,ψ2=ψ3=ψ4=ψ1

P
{
µ1

ψ1−−→ µ
}

+
4

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3=ψ4=ψ1

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ

}
+

3

m4

∑
ψ1,ψ2=ψ1,ψ3 ̸=ψ1,ψ4=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ3−−→ µ

}
+

6

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=(ψ1,ψ2),ψ4=ψ1

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ µ
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=(ψ1,ψ2),ψ4 ̸=(ψ1,ψ2,ψ3)

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ µ, µ1
ψ4−−→ µ

}
=

1

m4

[
m

v
+ 7

m(m− 1)

v

vs−1 − 1

vs − 1
+ 6

m(m− 1)(m− 2)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

+
m(m− 1)(m− 2)(m− 3)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(89)

28

2-2, i-b) (µ= ν;µ1 ̸= ν1)

〈
p(µ|µ1)

2p(ν|ν1)2
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ µ; ν1
ψ4−−→ µ

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4=ψ3

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ µ

}
+

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4 ̸=ψ3

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ µ; ν1

ψ4−−→ µ
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ µ
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4 ̸=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ µ; ν1
ψ4−−→ µ

}
=

1

m4

[
m2

v

vs−1 − 1

vs − 1
+ 2

m2(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

+
m2(m− 1)2

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(90)

2-2, ii-a) (µ ̸= ν, µ1 = ν1)

〈
p(µ|µ1)

2p(ν|ν1)2
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ ν;µ1
ψ4−−→ ν

}
+

1

m4

∑
ψ1,ψ2=ψ1,ψ3 ̸=ψ1,ψ4=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ3−−→ ν

}
+

1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=(ψ1,ψ2),ψ4=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ ν
}

+
1

m4

∑
ψ1,ψ2=ψ1,ψ3 ̸=ψ1,ψ4 ̸=(ψ3,ψ1)

P
{
µ1

ψ1−−→ µ;µ1
ψ3−−→ ν;µ1

ψ4−−→ ν
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=(ψ1,ψ2),ψ4 ̸=(ψ1,ψ2,ψ3)

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ ν, µ1
ψ4−−→ ν

}
=

1

m4

[
m(m− 1)

v

vs−1

vs − 1
+ 2

m(m− 1)(m− 2)

v

vs−1

vs − 1

vs−1 − 1

vs − 2

+
m(m− 1)(m− 2)(m− 3)

v

vs−1

vs − 1

vs−1 − 1

vs − 2

vs−1 − 1

vs − 3

]
(91)

29

2-2, ii-b) (µ ̸= ν;µ1 ̸= ν1)〈
p(µ|µ1)

2p(ν|ν1)2
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν; ν1
ψ4−−→ ν

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4=ψ3

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ ν

}
+

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4 ̸=ψ3

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ ν; ν1

ψ4−−→ ν
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4 ̸=ψ3

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν; ν1
ψ4−−→ ν

}
=

1

m4

[
m2

v

vs−1

vs − 1
+ 2

m2(m− 1)

v

vs−1

vs − 1

vs−1 − 1

vs − 2

+
m2(m− 1)2

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
. (92)

2-1-1, i-a) (µ= ν, µ1 = ν1)〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3=ψ1,ψ4

P
{
µ1

ψ1−−→ µ;κ1
ψ4−−→ µ

}
+

3

m4

∑
ψ1,ψ2=ψ1,ψ3 ̸=ψ1,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ3−−→ µ;κ1

ψ4−−→ µ
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=(ψ1,ψ2),ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

[
m2

v

vs−1 − 1

vs − 1
+ 3

m2(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

+
m2(m− 1)(m− 2)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
. (93)

2-1-1, i-b) (µ= ν, ν1 ̸=µ1, κ1 =µ1)〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ µ;µ1
ψ4−−→ µ

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4=ψ1

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ µ

}
+

3

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4 ̸=ψ1

P
{
µ1

ψ1−−→ µ;µ1
ψ4−−→ µ; ν1

ψ3−−→ µ
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4 ̸=(ψ1,ψ2)

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ4−−→ µ; ν1
ψ3−−→ µ

}
=

1

m4

[
m2

v

vs−1 − 1

vs − 1
+ 3

m2(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

+
m2(m− 1)(m− 2)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
, (94)

equal to the value of 2-1-1, i-a) as it should be.

30

2-1-1, i-c) (µ= ν, ν1 ̸=µ1, κ1 ̸=(µ1, ν1))〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ µ;κ1

ψ4−−→ µ
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

[
m3

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2
+
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(95)

2-1-1, ii-a) (µ ̸= ν, µ1 = ν1)〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3 ̸=ψ1,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ3−−→ ν;κ1

ψ4−−→ ν
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3 ̸=(ψ1,ψ2),ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ;µ1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

[
m2(m− 1)

v

vs−1

vs − 1

vs−1 − 1

vs − 2

+
m2(m− 1)(m− 2)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
. (96)

2-1-1, ii-b) (µ ̸= ν, ν1 ̸=µ1, κ1 =µ1)〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν;µ1
ψ4−−→ ν

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4 ̸=ψ1

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ ν;µ1

ψ4−−→ ν
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4 ̸=(ψ1,ψ2)

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν;µ1
ψ4−−→ ν

}
=

1

m4

[
m2(m− 1)

v

vs−1

vs − 1

vs−1 − 1

vs − 2

+
m2(m− 1)(m− 2)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
. (97)

2-1-1, ii-c) (µ ̸= ν, ν1 ̸=µ1, κ1 ̸=(µ1, ν1))〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉
=

1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

∑
ψ1,ψ2=ψ1,ψ3,ψ4

P
{
µ1

ψ1−−→ µ; ν1
ψ3−−→ ν;κ1

ψ4−−→ ν
}

+
1

m4

∑
ψ1,ψ2 ̸=ψ1,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;µ1
ψ2−−→ µ; ν1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

[
m3

v

vs−1

vs − 1

vs−1 − 1

vs − 2
+
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
.

(98)

31

1-1-2, overall contribution equal to that of 2-1-1.

1-1-1-1, i-a) (µ = ν, µ1 = ν1, λ1 =κ1, (v − 1) of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ;µ1

ψ3−−→ µ;λ1
ψ4−−→ µ

}
=
〈
p(µ|µ1)

2p(µ|λ1)2
〉

=
1

m4

[
m2

v

vs−1 − 1

vs − 1
+ 2

m2(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

+
m2(m− 1)2

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(99)

from the value of 2-2, case i-b).

1-1-1-1, i-b) (µ = ν, µ1 = ν1, λ1 ̸=κ1, (v − 1)(v − 2) of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ;µ1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

[
m3

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2
+
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(100)

from the value of 2-1-1, case i-c).

1-1-1-1, i-c) (µ = ν, µ1 ̸= ν1, λ1 =κ1, v − 2 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ µ;λ1
ψ4−−→ µ

}
=

1

m4

[
m3

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2
+
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(101)

from the value of 2-1-1, case i-c).

1-1-1-1, i-d) (µ = ν, µ1 ̸= ν1, λ1 = ν1, κ1 =µ1, 1 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ; ν1
ψ2−−→ µ; ν1

ψ3−−→ µ;µ1
ψ4−−→ µ

}
=

1

m4

[
m2

v

vs−1 − 1

vs − 1
+ 2

m2(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

+
m2(m− 1)2

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(102)

from the value of 2-2, case i-b)

1-1-1-1, i-e) (µ = ν, µ1 ̸= ν1, λ1 = ν1, κ1 ̸=(µ1, ν1), v − 2 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ; ν1
ψ2−−→ µ; ν1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

[
m3

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2
+
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(103)

from the value of 2-1-1, case i-c).

32

1-1-1-1, i-f) (µ = ν, µ1 ̸= ν1, λ1 ̸=(µ1, ν1), κ1 =µ1, v − 2 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ µ;µ1
ψ4−−→ µ

}
=

1

m4

[
m3

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2
+
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
(104)

from the value of 2-1-1, case i-c).

1-1-1-1, i-g) (µ = ν, µ1 ̸= ν1, λ1 ̸=(µ1, ν1), κ1 =(µ1, ν1, λ1), (v−2)(v−3) of the (v−1)2 choices
of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ µ;κ1
ψ4−−→ µ

}
=

1

m4

[
m4

v

vs−1 − 1

vs − 1

vs−1 − 2

vs − 2

vs−1 − 3

vs − 3

]
. (105)

1-1-1-1, ii-a) (µ ̸= ν, µ1 = ν1, λ1 =κ1, (v − 1) of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ;µ1

ψ3−−→ ν;λ1
ψ4−−→ ν

}
=

1

m4

∑
ψ1,ψ2,ψ3 ̸=ψ1,ψ4 ̸=ψ2

P
{
µ1

ψ1−−→ µ;µ1
ψ3−−→ ν;λ1

ψ2−−→ µ;λ1
ψ4−−→ ν

}
=

1

m4

[
m2(m− 1)2

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
. (106)

1-1-1-1, ii-b) (µ ̸= ν, µ1 = ν1, λ1 ̸=κ1, (v − 1)(v − 2) of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ;µ1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

∑
ψ1,ψ2,ψ3 ̸=ψ1,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ;µ1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

[
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
. (107)

1-1-1-1, ii-c) (µ ̸= ν, µ1 ̸= ν1, λ1 =κ1, v − 2 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ ν;λ1
ψ4−−→ ν

}
=

1

m4

[
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
, (108)

from the value of 1-1-1-1, case ii-b).

1-1-1-1, ii-d) (µ ̸= ν, µ1 ̸= ν1, λ1 = ν1, κ1 =µ1, 1 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ; ν1
ψ2−−→ µ; ν1

ψ3−−→ ν;µ1
ψ4−−→ ν

}
=

1

m4

[
m2(m− 1)2

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
, (109)

from the value of 1-1-1-1, case ii-a).

33

1-1-1-1, ii-e) (µ ̸= ν, µ1 ̸= ν1, λ1 = ν1, κ1 ̸=(µ1, ν1), v − 2 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ; ν1
ψ2−−→ µ; ν1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

[
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
, (110)

from the value of 1-1-1-1, case ii-b).

1-1-1-1, ii-f) (µ ̸= ν, µ1 ̸= ν1, λ1 ̸=(µ1, ν1), κ1 =µ1, v − 2 of the (v − 1)2 choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ ν;µ1
ψ4−−→ ν

}
=

1

m4

[
m3(m− 1)

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
, (111)

from the value of 1-1-1-1, case ii-b).

1-1-1-1, ii-g) (µ ̸= ν, µ1 ̸= ν1, λ1 ̸=(µ1, ν1), κ1 =(µ1, ν1, λ1), (v − 2)(v − 3) of the (v − 1)2

choices of λ1, κ1)

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩ =
1

m4

∑
ψ1,ψ2,ψ3,ψ4

P
{
µ1

ψ1−−→ µ;λ1
ψ2−−→ µ; ν1

ψ3−−→ ν;κ1
ψ4−−→ ν

}
=

1

m4

[
m4

v

vs−1 − 1

vs − 1

vs−1

vs − 2

vs−1 − 1

vs − 3

]
. (112)

Total. Consider the factor multiplying
〈
(C(1))2

〉
in the right-hand side of Eq. 84,

F(µ, ν) :=
∑
µ1,ν1

〈p(µ|µ1)
2p(ν|ν1)2

〉
− 1

v − 1

∑
κ1 ̸=ν1

〈
p(µ|µ1)

2p(ν|ν1)p(ν|κ1)
〉

− 1

v − 1

∑
λ1 ̸=µ1

〈
p(µ|µ1)p(µ|λ1)p(ν|ν1)2

〉

+
1

(v − 1)2

∑
λ1 ̸=µ1,κ1 ̸=ν1

⟨p(µ|µ1)p(µ|λ1)p(ν|ν1)p(ν|κ1)⟩

 . (113)

By organising the terms in the sum according to the classification of the previous paragraphs,

F(µ, ν) = v
(
F (2-2)
a (µ, ν) + (v − 1)F (2-2)

b (µ, ν)
)

− 2v(v − 1)

v − 1

(
F (2-1-1)
a + F (2-1-1)

b + (v − 2)F (2-1-1)
c

)
+
v(v − 1)

(v − 1)2

[(
F (1-1-1-1)
a + (v − 2)F (1-1-1-1)

b

)
(114)

+(v − 2)F (1-1-1-1)
c + F (1-1-1-1)

d + (v − 2)F (1-1-1-1)
e + (v − 2)F (1-1-1-1)

f + (v − 2)(v − 3)F (1-1-1-1)
g

]
.

For ν=µ, by summing all the case i) terms, we get

F(µ, µ) =
vs
(
mv3(v + 1)− v2+s(1− v +mv +mv2) + (v + 1)v2s(6− 6v +mv + v2 +mv2)

)
(vm)3(vs − 1)(vs − 2)(vs − 3)

v≫1−−−→ (m+ 1)

m3

m≫1−−−→ 1

m2
. (115)

34

Summing, instead, all the case ii) terms, we get, for ν ̸= µ,

F(µ, ν) =
vs
(
mv3(v + 1) + v2+s(v − 1− 8m+ 7mv − 3mv2)

)
(v − 1)(vm)3(vs − 1)(vs − 2)(vs − 3)

=
v3s(6− 10v +mv + 5v2 + 3mv2 − v3 − 3mv3 +mv4)

(v − 1)(vm)3(vs − 1)(vs − 2)(vs − 3)

v≫1−−−→ 1

m2
. (116)

To sum up, as in the i1 ̸= j1 case (Eq. 82), for large vocabulary size v ≫ 1 and large m (e.g.
m= fvs−1, with f ∈ (0, 1]),〈(

C(2)(µ, ν)
)2〉 v,m≫1−−−−→

〈
C(1)(µ1, ν1)

2
〉

m2
. (117)

D.3 Level-l LCA

By replacing C(1) with C(ℓ− 1) and C(2) with C(ℓ), the recurrence relation Eq. 79 extends to the
case where the LCA of the i-th and j-th tokens is a level-ℓ symbol. Asymptotically in m and v, and
independently of µ and ν,〈(

C(1)(µ, ν)
)2〉

=
(1−m/vs−1)

v3m
,

〈(
C(ℓ)(µ, ν)

)2〉
=

〈(
C(ℓ−1)(µ, ν)

)2〉
m2

⇒〈(
C(ℓ)(µ, ν)

)2〉
=

(1−m/vs−1)

v3m2ℓ−1
. (118)

E Sampling noise in the empirical correlation function

In this appendix, we prove that the sampling noise on empirical correlation functions of RHM data
has a characteristic size (v2P)−1/2.

Let us denote, to ease notation, P {Xd−t = µ,Xd = ν} with p(µ, ν), P {Xd−t = µ} with p(µ) and
P {Xd−t = µ} with p(ν). When measuring probabilities from the frequency of observations over P
i.i.d. samples,

p̂(µ, ν) =
1

P

P∑
k=1

δ(Xk,d−t=µ,Xk,d= ν), (119)

where .̂ denotes the empirical estimate and the indicator variable δ is 1 with probability p(µ, ν) and 0
otherwise. With δ having finite mean and variance, by the central limit theorem,

p̂(µ, ν)
P→∞−−−−→ p(µ, ν) +

√
p(µ, ν)(1− p(µ, ν))

P
ξ, (120)

where ξ is a Gaussian random variable with zero mean and unitary variance. Analogously,

p̂(µ)
P→∞−−−−→ p(µ) +

√
p(µ)(1− p(µ))

P
ζ1,

p̂(ν)
P→∞−−−−→ p(ν) +

√
p(ν)(1− p(ν))

P
ζ2, (121)

where ζ1 and ζ2 are also Gaussian random variables with zero mean and unitary variance, correlated
with each other and with ξ.

As a result, the empirical estimation of Ct(µ, ν) reads

Ĉt(µ, ν)
P→∞−−−−→ p(µ, ν)−p(µ)p(ν) +

√
p(µ, ν)(1− p(µ, ν))

P
ξ

−p(µ)
√
p(ν)(1− p(ν))

P
ζ2 − p(ν)

√
p(µ)(1− p(µ))

P
ζ1. (122)

35

In the limit of large v and m, where p(µ, ν) converges to 1/v2 plus vanishingly small fluctuations
and p(µ), p(ν) converge to 1/v plus vanishingly small fluctuations, the dominant noise contribution
is the one of ξ, with standard deviation√

p(µ, ν)(1− p(µ, ν))

P

v,m≫1−−−−→
√

1

v2P
. (123)

The correlation function C̃(t) is the standard deviation of Ct(µ, ν) over vocabulary entries. Hence,
the sampling noise on Ct(µ, ν) results in an additive factor of (v2P)−1/2.

F Correlations between mask and tuples of observable tokens

In this section, we generalise the results of App. D and App. E to the correlations between the last
token and a s-tuple of observable tokens.

Let us then replace µ and i with the s-tuple of input features µ and the multi-index i. This change
only affects the level-1 rules probability p(1) in Eq. 17 and Eq. 38. Therefore, we can write the
tuple-token correlation with LCA at level ℓ as follows,

C(ℓ)(µ, ν) =
∑
µ1,ν1

p
(1)
i1

(µ|µ1)p
(1)
j1

(ν|ν1)C(ℓ−1)(µ1, ν1)

=
1

m

∑
ν1

p
(1)
j1

(ν|ν1)C(ℓ−1)(µ1(µ), ν1), (124)

where the second line is obtained by recalling that, for each available s-tuple of input features µ,
there is a unique level-1 variable µ1(µ) that can generate it, with probability 1/m. The mean of
C(ℓ)(µ, ν) vanishes together with that of C(ℓ−1)(µ1(µ), ν1). Te variance reads〈(

C(ℓ)(µ, ν)
)2〉

=
1

m2

∑
ν1,κ1

〈
p
(1)
j1

(ν|ν1)p(1)j1 (ν|κ1)
〉〈

C(ℓ−1)(µ1(µ), ν1)C
(ℓ−1)(µ1(µ), κ1)

〉
=

1

m2

∑
ν1=κ1

(
1

v2
+ σ2

p

)〈(
C(ℓ−1)(µ1, ν1)

)2〉
+

1

m2

(
1

v2
− 1

v2
v − 1

vs − 1

) ∑
ν1,κ1 ̸=ν1

〈
C(ℓ−1)(µ1(µ), ν1)C

(ℓ−1)(µ1(µ), κ1)
〉

=
v

m2

[(
1

v2
+ σ2

p

)
−
(

1

v2
− 1

v2
v − 1

vs − 1

)]〈(
C(ℓ−1)(µ1, ν1)

)2〉
, (125)

where we used Eq. 74. Using Eq. 29 and Eq. 34,

〈(
C(ℓ)(µ, ν)

)2〉
=

v

m2

(
v − 1

v

vs

vs − 1

1

vm

)〈(
C(ℓ−1)(µ1, ν1)

)2〉 v≫1−−−→

〈(
C(ℓ−1)(µ1, ν1)

)2〉
m3

,

(126)

which equals the token-token correlation divided by a factor of m.

Correspondingly, C̃ℓ is reduced by a factor of
√
m. Crucially, since the average joint tuple-token

probability p(µ, ν) is 1/(v2m), the sampling noise size, obtained via the calculations of App. E, is
also reduced by a factor of

√
m, leaving the condition of Eq. 9 unaltered.

G Experiments on deep CNNs and scaling of the loss steps

In this section, we present empirical learning curves of Deep CNNs trained for last-token prediction
(details in subsection A.1). In particular, we discuss discrepancies between these curves and those of
Transformers (Fig. 2) in subsection G.1, verify the scaling with m of the first two steps of Eq. 12
in subsection G.2, then discuss the role of the context window size t in subsection G.3.

36

102 103 104 105 106

training set size P

100
te

st
cr

o
ss

-e
n
tr

op
y

t=1

t=3

t=7

t=15

102 103 104 105 106

training set size P

100

te
st

cr
o
ss

-e
n
tr

op
y

MLA

CNN

Figure 6: Left: Learning curves of deep CNNs trained on RHM data with L=4, s=2, v=64 and m=8
for different sizes t of the context window. The network’s depth is fixed to log sL/ log (t+ 1) and the blacked
dashed line represents predictions from Eq. 12 and Eq. 11. The finite context window causes saturation of the
loss as predicted by our analysis. However, the third step occurs with less training data than P3. Right: This
discrepancy is highlighted by the comparison of Transformer and deep CNN learning curves, here for L=4,
s=2, v=64 and m=8.

101 102 103 104 105 106

training set size P

0

1

2

te
st

cr
o
ss

-e
n
tr

o
p
y
L m=8

m=11

m=16

m=23

100 101 102 103 104

P/P1

0.00

0.25

0.50

0.75

1.00

L/
L̄ 1

Figure 7: Learning curves of depth-3 CNNs trained on RHM data with L=3, s=3, v=11 and m as in the
key. Dashed curves highlight our prediction for the first step. In the right panel, the first step is made to collapse
by rescaling P with P1 and L with L0 = log v. The collapse confirms our prediction on the behaviour of P1

with m.

G.1 Differences between Transformers and deep CNNs

The learning curves of deep CNNs are qualitatively similar to those of transformers, but also present
apparent quantitative differences, as shown in Fig.6. Specifically, a noticeable difference is the sample
complexity of the third step P3. This difference is possibly due to favourable implicit biases of
CNNs, such as weight sharing. Indeed after learning the penultimate level-1 features in the second
step, weight sharing would facilitate learning the other level-1 features along the entire data. As a
result, the model can directly access the correlations between the last token and tuples of level-1
symbols. According to the discussion of App. F, these correlations are stronger than those with tuples
of level-0 symbols by a factor of

√
m. Correspondingly, the sample complexity of the third step P3

is reduced by a factor m with respect to Eq. 12. In general, we can assume that, in the presence of
weight sharing, after the ℓ-th step all level-(ℓ− 1) features have been learnt, so that the (ℓ+1)-th
step requires resolving correlations between the last token and tuples of level-(ℓ− 1) features. The
corresponding sample complexity scales like mℓ+1 instead of m2ℓ−1. However, the steps with ℓ≥ 3
occur for large values of the training set size, and we cannot investigate this issue systematically with
our current numerical experiments.

G.2 Scaling with the number of production rules m

Fig. 7 and Fig. 8 show a scaling analysis of the behaviour of P1 and P2 from Eq. 12 in Deep CNNs.
The collapse achieved when rescaling the number of data P by Pℓ and the test loss by the value
before the jump Lℓ−1 confirms this prediction.

37

103 105 107

training set size P

0

1

2

te
st

cr
o
ss

-e
n
tr

o
p
y
L m=8

m=11

m=16

m=23

10−3 10−2 10−1 100 101 102

P/P2

0.00

0.25

0.50

0.75

1.00

L/
L̄ 2

Figure 8: Same as Fig. 7 but focused on the second step, highlighted on the left by dashed curves. For the
second step, collapse is achieved by rescaling P with P2 = vm3 and L with L1 from Eq. 11.

102 103 104

training set size P

100

te
st

cr
os

s-
en

tr
op

y

t=1

t=3

t=7

t=15

102 103 104

P/(t+ 1)

2× 100

3× 100

4× 100

Figure 9: Zoom of the learning curves in Fig. 6, left, on the first step. The zoom highlights the dependence of
the sample complexity on the context size t. The collapse of the curves on the right panel, achieved after dividing
P by (t+ 1), reveals that P1 ∝ (t+ 1). This dependence is analogous to the sample complexity of regression
of a target function depending on a low-dimensional linear projection of a large-dimensional input [55].

G.3 Scaling with the size of the context window t

Similarly, Fig. 9 shows a scaling analysis (for CNNs) of the behaviour of P1 with the number
of s-tuples in the input, proportional to (t + 1) with t the size of the context window. The figure
highlights a linear behaviour P1 ∝ (t + 1) that our analysis does not capture. Nevertheless, this
behaviour is expected from the theory of regression with one-hidden-layer neural networks [55]:
when the target function depends on a small number of variables among d, the sample complexity is
generically proportional to d. Proving this result by considering a single or a few steps of gradient
descent, as often done in this literature, is an interesting work for the future.

38

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The analytical study of correlations in our generative model is presented
in section 3. In section 4 we build our prediction of the learning curve based on reconstructing
the grammar’s hidden variables and compare it with the empirical learning curves of
transformers trained on our model dataset. Our general conjecture is presented in section 5,
together with experiments on real text data.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We included a limitation section in the conclusions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

39

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The calculations of section 3 and subsection 4.1 are correct within the scope
of our model of data. Our results on how the correlations affect the learning curves of
deep networks trained in self-supervised learning can be considered conjectures, which we
systematically test with numerical experiments. Indeed, no current formal approach can
treat the learning dynamics of deep networks in the feature learning regime. This situation
is described in the ’limitation’ section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We use standard machine-learning frameworks in all of our experiments, as
described in section 2 and App. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

40

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and data can be found on the GitHub repository indicated in the main
text.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See answers above and App. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: As stated in the figure captions, all our experiments are averaged over several
independent initialisations of datasets and machine learning models, and error bars are
shown in the plots.
Guidelines:

41

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is indicated at the end of section 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no violation of the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

42

https://neurips.cc/public/EthicsGuidelines

Justification: This work seeks to improve our theoretical understanding of self-supervised
learning techniques. Thus, there are no foreseen negative impacts and it is difficult to
estimate possible positive impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Due to the theoretical nature, the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited the authors of the models and dataset used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

43

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: See answers above.

Guidelines:

44

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

45

	Introduction
	Our contributions
	Additional related works

	Notation and setup
	Hierarchical generative models

	Correlations, training set size and effective context window
	Self-supervised learning of the Random Hierarchy Model
	Prediction of the sequence of performance steps and sample complexities
	Comparison with empirical learning curves
	Emergence of hierarchical representations of the data structure

	Conjecture and test on real language data
	Conclusions
	Details of the experiments
	Deep CNNs (RHM)
	Multi-layer self-attention (RHM)
	Encoder-only Transformer (tiny-Shakespeare and WikiText-103)

	Loss saturation and correlations for WikiText-103
	Statistics of the RHM data
	Statistics of production rules
	Statistics via splitting

	Analytic computation of spatial correlations
	Level-1 LCA (i-th and j-th tokens are in the same patch)
	One-point term (marginal probability)
	Two-point term (joint probability)
	Three-point term
	Variance of the correlations
	Covariance of the correlations

	Level-2 LCA
	i1=j1 case.
	i1=j1 case.

	Level-l LCA

	Sampling noise in the empirical correlation function
	Correlations between mask and tuples of observable tokens
	Experiments on deep CNNs and scaling of the loss steps
	Differences between Transformers and deep CNNs
	Scaling with the number of production rules m
	Scaling with the size of the context window t

