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Abstract

Today’s image generation systems are capable of
producing realistic and high-quality images. How-
ever, user prompts often contain ambiguities, mak-
ing it difficult for these systems to interpret users’
actual intentions. Consequently, many users must
modify their prompts several times to ensure the
generated images meet their expectations. While
some methods focus on enhancing prompts to
make the generated images fit user needs, the
model is still hard to understand users’ real needs,
especially for non-expert users. In this research,
we aim to enhance the visual parameter-tuning
process, making the model user-friendly for indi-
viduals without specialized knowledge and bet-
ter understand user needs. We propose a human-
machine co-adaption strategy using mutual infor-
mation between the user’s prompts and the pic-
tures under modification as the optimizing target
to make the system better adapt to user needs. We
find that an improved model can reduce the ne-
cessity for multiple rounds of adjustments. We
also collect multi-round dialogue datasets with
prompts and images pairs and user intent. Various
experiments demonstrate the effectiveness of the
proposed method in our proposed dataset.

1 Introduction
Generative AI has immense potential to boost economic
development by optimizing creative and non-creative tasks.
Models like DALL·E 2, IMAGEN, Stable Diffusion, and
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Muse can produce unique, convincing, and lifelike im-
ages from textual descriptions (Gozalo-Brizuela & Garrido-
Merchan, 2023). Despite significant progress, there’s still
room for improvement, especially in generating higher-
resolution images that better reflect the semantics of input
text and in creating more user-friendly interfaces (Frolov
et al., 2021). Many models struggle to understand nuanced
human instructions, often resulting in a mismatch between
user expectations and outputs. Additionally, the impact of
variable adjustments on the final image is not always clear,
posing challenges for non-expert users who haven’t sys-
tematically studied prompt engineering. This complexity
hinders those without technical backgrounds from fully uti-
lizing advanced AI models. To address these challenges,
we introduce an innovative approach to enhance the user
experience for non-professional users. Unlike traditional
models that require a deep understanding of underlying
mechanisms and control elements, our approach enables
users to adjust and optimize image generation with mini-
mal technical knowledge. Inspired by human-in-the-loop
co-adaptation (Reddy et al., 2022), our model evolves with
user feedback to better meet user expectations. Figure 3
illustrates the operational flow as interacted by users. Our
main contributions are:

• Adaptive Prompt Engineering and Personalized Im-
age Generation: We propose visual co-adaptation
(VCA), an adaptive framework that fine-tunes user
prompts using a pre-trained language model enhanced
through reinforcement learning, aligning image outputs
more closely with user preferences and creating images
that truly reflect individual styles and intentions.

• Human-in-the-Loop Feedback Integration: Our
work considers incorporating human feedback within
the training loops of diffusion models. By assessing its
impact, we demonstrate how human-in-the-loop meth-
ods can surpass traditional reinforcement learning in
enhancing model performance and output quality.

• Comparative Analysis and Tool Development for
Non-Experts: Through comparative analysis, we ex-
plore the superiority of mutual information maximiza-
tion over conventional reinforcement learning in tuning
model outputs to user preferences. Additionally, we
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Figure 1. Users have the choice between single-round dialogue, where they provide detailed inputs for the model to generate and self-adjust
an image on the left, and multi-round dialogue on the right, where the model engages in iterative refinement based on user feedback, asking
questions to clarify any unclear requirements. This allows for either model-driven optimization through self-reflection or user-driven
customization to meet specific needs. Our proposed visual co-adaption system can successfully handle both scenarios.

introduce an interactive tool that grants non-experts
easy access to advanced generative models, enabling
the creation of personalized, high-quality images, thus
broadening the applicability of text-to-image technolo-
gies in creative domains.

2 Related Work

2.1 Text-Driven Image Editing Framework:

Image editing is fundamental in computer graphics, with
textual prompts providing an intuitive way for users to
edit images. Recent advancements in text-to-image gen-
eration focus on aligning models with human preferences,
using feedback for image refinement. Studies like Hertz et
al. (Hertz et al., 2022)’s framework leverage diffusion mod-
els’ cross-attention layers for high-quality, prompt-driven
modifications. Methods like ImageReward (Xu et al., 2024)
develop reward models based on human preferences, collect-
ing rich feedback (Wu et al., 2023; Liang et al., 2023) and
training models for better image-text alignment and adapt-
ability (Lee et al., 2023) to diverse preferences. However,
these methods often lack convenient and efficient editing
capabilities. For instance, Hertz et al.’s framework requires

users to adjust complex parameters such as cross-attention
and attention weights, demanding high professional knowl-
edge. Unlike traditional image editing, ImageReward (Xu
et al., 2024) generates a new image instead of editing the
existing one, failing to preserve previous information and
risking invalidating prior modifications.

2.2 Human Preference-Driven Optimization for
Text-to-Image Generation Models:

Zhong et al. (Zhong et al., 2024) significantly advance
the adaptability of large language models (LLMs) to hu-
man preferences through their innovative approach. Their
method leverages advanced mathematical techniques for
nuanced, preference-sensitive model adjustments, eliminat-
ing the need for exhaustive model retraining. Xu et al. (Xu
et al., 2024) adopt a distinctive strategy by harnessing exten-
sive expert insights to develop their ImageReward system,
setting a new benchmark for creating images that resonate
deeply with human desires. Together, these advancements
represent a pivotal shift towards more intuitive, user-centric
LLM technologies, heralding a future where AI seamlessly
aligns with the intricate mosaic of individual human expec-
tations.
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Figure 2. The diagram shows our model’s architecture with cross attention in the first row and self attention in the second. It incorporates an
improved cross attention mechanism that maintains shape consistency and aligns well with prompt tokens, enabling effective multi-round
modifications based on user feedback. The model captures intricate cross attention details, optimizing parameters for progressively better
single-generation performance, demonstrating few-shot learning adaptation with minimal dialogue iterations.

2.3 Exploration of Self-Correction Strategies:

Advances in large language models (LLMs) self-correction
such as Pan et al (Pan et al., 2023), Shinn et al. (Shinn et al.,
2023), Madaan et al (Madaan et al., 2024), improving lan-
guage understanding and production. Huang et al (Huang
et al., 2022) showcased self-debugging and zero-shot learn-
ing for reasoning evaluation, underscoring the potential and
limits of self-correction. These contributions collectively
highlight the progress and future challenges in enhancing
LLMs’ self-corrective capabilities (Hertz et al., 2022; Rosen-
man et al., 2023; Mehrabi et al., 2022; Xu et al., 2024).
Meanwhile, we can find that multi-modal self-correction is
less investigated. It is also very important to teach the vision
model to think it step by step. We explore the integration of
self-correction strategies into image generation to produce

images that more closely align with user intentions.

2.4 Ambiguity Resolution in Text-to-Image
Generation:

Natural dialogue often contains ambiguity due to grammar,
polysemy, and vagueness. Humans manage this ambiguity
with clarifying questions and contextual cues, but machines
find it challenging. To address this, text-to-image genera-
tion employs various strategies. For example, masked trans-
formers (Chang et al., 2023) and visual annotations (Endo,
2023) help clarify prompts, while model evaluation bench-
marks (Lee et al., 2024) and auto-regressive models (Yu
et al., 2022) improve image alignment. Frameworks for
abstract (Liao et al., 2023) and inclusive imagery (Zhang
et al., 2023), as well as layout guidance (Qu et al., 2023) and
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Figure 3. This figure illustrates a reinforcement learning framework with training and testing phases. In training, the policy (three editing
operations with trainable parameters, more details in section 3.1.1 and A.3) updates based on human feedback (environment), where the
state is the prompt and the action is the generated image. In testing, few-shot adaptation refines the policy (πnew) to generate images,
allowing efficient model adaptation with minimal dialogue interactions.

feedback mechanisms (Liang et al., 2023), further enhance
quality. The TIED framework and TAB dataset (Mehrabi
et al., 2023) use user interaction to refine prompt clarity. Our
model integrates these techniques across multiple dialogue
rounds to elicit users’ true intentions, effectively reducing
prompt ambiguity and generating results that align with user
expectations, thus enhancing image generation quality.

3 Method

3.1 Policy Model: Controlling Cross-Attention in a
Reinforcement Learning Framework

In our framework, the Imagen text-guided synthesis
model (Saharia et al., 2022) constructs the basic composi-
tion and geometric layout of images at a 64× 64 resolution.
The model uses a U-shaped network during each diffusion
step t to predict the noise component ϵ based on the text
embedding ψ(P ) and the noise-added image zt. Crucial to
shaping the image’s final appearance I = z0, the attention
maps M = Softmax

(
QKT

√
d

)
influence its spatial and ge-

ometric properties. Here, Q and K are the query and key
matrices formed from image and text features, respectively.
We define the diffusion step function DM(zt, P, t, s) that
computes a single step of the diffusion process, outputting
the noisy image zt−1 and the attention map Mt, if utilized.
Overriding the attention map with an additional map Mc

while maintaining the values V from the prompt is indi-
cated as DM(zt, P, t, s){M ←Mc}. The modified prompt
P ∗ generates a new attention map M∗

t , and the general edit
function Edit(Mt,M

∗
t , t) manages the attention maps at any

step t for both the original and modified images.

3.1.1 EDITING OPERATIONS

In our framework, we employ three strategic editing op-
erations—Word Swap, Adding a New Phrase, and Atten-
tion Re-weighting—each optimized through reinforcement
learning (RL) as the policy model to enhance the reward
function, which is based on the interaction results between
the action output in a specific state and the environment (hu-
man feedback), using gradient ascent. This approach learns
parameters that are highly aligned with human preferences.
For more details about the RL training framework, refer to
Appendix A.2.
In the Word Swap method, users replace tokens in the
prompt (e.g., ”a big red bicycle” to ”a big red car”), and we
control attention map injection steps to manage composi-
tional freedom:

Edit(Mt,M
∗
t , t) :=

{
M∗

t if t < τ

Mt otherwise
(1)

The attention map M∗
t is updated as follows:

M∗
t =M∗

t + η∇M∗
t
R(M∗

t ) (2)

In the Adding a New Phrase method, new tokens are added
to the prompt (e.g., ”a castle next to a river” to ”children
drawing of a castle next to a river”), targeting shared tokens
with an alignment function A:

(Edit(Mt,M
∗
t , t))i,j :=

{
(Mt)i,A(j) if A(j) ̸= None
(Mt)i,j otherwise

(3)
The alignment function At is updated as follows:

At = At + η∇AtR(At) (4)
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In the Attention Re-weighting method, token influence
is adjusted to enhance or diminish features (e.g., scaling
the attention map of ”fluffy red ball” for token j∗ with a
parameter c ∈ [−2, 2]):

(Edit(Mt,M
∗
t , t))i,j :=

{
c · (Mt)i,j if j = j∗

(Mt)i,j otherwise
(5)

This parameter c provides intuitive control over the induced
effect. The scaling parameter ct is updated as follows:

ct = ct + η∇ctR(ct) (6)
Each operation refines text-image interactions through

cross-attention layers, aligning outputs with human pref-
erences. The RL framework optimizes these strategies by
updating Mt, At, and ct through gradient ascent. For de-
tailed optimization processes of the three editing operations,
see Appendix A.3.

3.2 Human-Machine Co-Adaptation with Mutual
Information

In this section, we explain how our model can adapt to
human intent. Let X denote the user inputs and Y the
images generated by the model. The adaptation mechanism
seeks to maximize the mutual information I(X;Y ), which
quantifies the amount of information shared between X and
Y . The mutual information is given by:

I(X;Y ) =

∫
x∈X

∫
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
dy dx, (7)

where p(x, y) is the joint probability distribution of X and
Y , and p(x) and p(y) are the marginal distributions of X
and Y , respectively.

Adaptive Feedback Loop

The adaptive feedback loop updates the model parameters θ
to better align with human intent, utilizing the gradient of
mutual information that is now conditioned on user feedback
f . This feedback directly represents human preferences and
intents, guiding the model towards desired outcomes:

θnew = θold + η∇θI(X;Y | f), (8)
where η is the learning rate and f encapsulates the feedback
signals from users. This adaptive approach measures effec-
tiveness through an increase in conditional mutual informa-
tion, reflecting improved alignment with user expectations,
and higher user satisfaction scores in image generation tasks.

Algorithm 1 Prompt-to-Prompt Image Editing with Human-
Machine Co-Adaptation (Training)
Input: Original prompt P0, Edited prompt P1, Initial image I0
Output: Edited image I1

1: Initialize interface π with parameters θ
2: Generate initial attention maps A0 for I0 using π(P0)
3: Set It ← I0
4: Initialize user feedback loop
5: for t = 1 to Convergence do
6: Collect user feedback on image It and prompt Pt

7: Adapt π (Using editing operation in Section 3.1.1) to maxi-
mize mutual information I(A; I|P ) incorporating feedback

8: Apply P1 to generate new attention maps A1

9: Generate I1 by applying A1 in diffusion step
10: Evaluate I(A; I|P ) between (P0, P1) and (I0, I1)
11: Update θ to align more closely with user preferences
12: end for
13: Conduct final evaluation of I1 with user
13: returnI1 =0

Algorithm 2 Evaluation of Adaptation to New User Prefer-
ences
Input: Trained interface π with parameters θ, New user initial

prompt Pnew
Output: Adapted image Iadapted aligns with new user preferences

1: Initialize new user interaction session
2: for i = 1 to few-shot rounds do
3: Present Icurrent generated from Pnew using π
4: Collect new user feedback on Icurrent
5: Update Pnew based on user feedback
6: Adapt pre-trained θ minimally to reflect new user prefer-

ences
7: Generate new Icurrent using updated π(Pnew)
8: if user feedback is positive then
9: Break the loop and finalize Iadapted

10: end if
11: end for
12: Evaluate user satisfaction with Iadapted
12: returnIadapted =0

4 Experiments

4.1 Settings

The experiments are conducted using 4 NVIDIA 4090
GPUs, This setup allows us to utilize complex algorithms
such as diverse beam search with a beam size of 8 and a
diversity penalty of 1.0, ensuring thorough exploration and
diversity in the generated responses. The model parameters
are initialized from a fine-tuned baseline, which provides
a robust starting point for further optimization. Over three
days of training session, which encompass 12,000 episodes,
with four PPO epochs per batch and a batch size of 256. The
learning rate is set at 5×10−5, and the value and KL reward
coefficients are meticulously calibrated to 2.2 and 0.3, re-
spectively, to balance the learning dynamics. For additional
details due to page constraints, see Appendix A.1.
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4.2 Dataset

We have developed a Q&A software that annotates prompts
on our platform, automatically generating JSON files that
capture detailed multi-turn dialogue information. An ex-
ample of user interface annotations is showcased in the
Appendix A.4. Our training set includes 1673 meticulously
crafted JSON files, each annotated with prompts, detailed
Q&A sequences, image paths, unique identifiers, and ratings
for image alignment and fidelity. This dataset instructs our
model on user expectations and artistic intentions, analyzing
subjects, emotions, settings, styles, perspectives, and extra
elements. Feedback is synthesized into refined prompts, en-
abling the model to grasp complex artistic directions crucial
for user resonance. We use 95% of the data for training and
5% for validation, supporting efficient few-shot learning to
enhance both performance and user satisfaction.

4.3 Evaluation Metrics

The experimental framework of this study is meticulously
designed to evaluate our text-to-image generation model
across four key dimensions.
Lpips (Zhang et al., 2018): is a deep learning metric that
evaluates how image modifications preserve the original
structure, with lower scores indicating minimal visual differ-
ences and alignment with human perception. It measures the
consistency and perceptual coherence of images generated
in successive dialogue rounds.
Clip Score (Radford et al., 2021): Based on the CLIP model,
the system evaluates image-text alignment, assigning scores
from 0 (no similarity) to 1 (perfect alignment). In dialogues,
the LLM subtly adjusts prompts and selects one of three
strategies following user feedback. The text-to-image model,
using reinforcement learning and CLIPScore, iteratively re-
fines images until reaching a satisfactory score. For detailed
information on how the ChatGPT-4 modifies prompts based
on human input, refer to the Appendix A.8.
Human Evaluation: In a study with 100 diverse users, we
utilize a randomized control trial with stratified sampling
based on age, gender, and technical proficiency. Using
a blind design, participants are unaware of the models or
components being tested to prevent biases. Detailed feed-
back is collected through electronic surveys post-interaction,
utilizing standardized forms with scaled and open-ended
questions. A cross-over design ensures that each user expe-
riences all model variations in a randomized order, maximiz-
ing exposure. Statistical power analysis confirms that 100
participants provide sufficient power to detect significant
results.
4.4 Comparison Study
4.4.1 TRENDS ACROSS BASELINES OVER ITERATIVE

ROUNDS
Figure 4.4.1 showcases our model’s superior performance
on a validation prompt describing ”A serene ancient fantasy
sanctuary constructed of stone, with white birds flying in the

Figure 4. This graph shows CLIP score trends over 10 rounds for
various text-to-image models (PTP (Hertz et al., 2022), SD 2.1-
base, DALL-E 3, and ours)

Figure 5. Illustrated in the graph are the trends of LPIPS scores for
several text-to-image models (PTP, SD 2.1-base, DALL-E 3, and
ours) over 10 rounds.

distance.” and achieves high CLIP scores early, our model
reaches 0.78 by round 3 and peaks at 0.91 by round 7, sur-
passing competitors. It also excels in Lpips, as is shown in
Figure 5 recording a score of 0.42 by round 3 and stabilizing
at 0.22 by round 8. This rapid stabilization highlights our
model’s adaptability and efficiency, maintaining high con-
sistency and user satisfaction across fewer dialogue rounds.
Each round incrementally builds on the last, refining details
without altering the prompt’s core structure.

4.4.2 PROMPT REFINEMENT

Table 1 provides a detailed comparison between self-
reflection prompt refinement and multi-round dialogue
prompt refinement. Self-reflection is notably quicker (3.4s
vs. 12s), yet multi-round dialogue more effectively captures
user preferences, resulting in higher satisfaction ratings (4.7
vs. 3.0). Additionally, it demonstrates a significant im-
provement in Purpose Adaptability (4.8 vs. 3.3) along with
modest enhancements in Clarity (4.7 vs. 4.2) and Detail
Level (4.2 vs. 4.1). For a deeper exploration of the al-
gorithms behind these refinement methods, please refer to
Appendix A.7.
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Figure 6. The chart shows user feedback on a model, highlighting mixed responses with positive feedback on image coherence and
capturing intentions, but concerns over response time.

Table 1. Comparative Analysis of Prompt Refinement from 100
users, averaged and rounded to one decimal. Metrics are scored
on a 0-5 scale. Response Time indicates average duration for self-
reflection and multi-dialogue processes.

Metric & Category Refine Type
Self-reflection Multi-dialogue

Prompt Quality
Clarity 4.2/5 4.7/5
Detail Level 4.1/5 4.2/5
Purpose Adaptability 3.3/5 4.8/5

Image Reception
User Satisfaction 3.0/5 4.7/5
Clip Value 0.8/1 0.9/1

Response Time 3.4s 12s

4.5 Ablation Study: Reinforcement Learning for
Parameter Tuning

Table 2 demonstrates the substantial impact of Reinforce-
ment Learning (RL) tuning on dialogue system performance.
Systems equipped with RL require significantly fewer di-
alogue rounds, averaging 4.3 compared to 6.9 for those
without RL, highlighting enhanced efficiency in respond-
ing to user inputs. Additionally, RL tuning improves the
CLIP score from 0.83 to 0.92, indicating better alignment
of generated images with textual prompts. User satisfaction
also increases markedly with RL, from 4.14 to 4.73 out of 5,
reflecting a more pleasing user experience. While both sys-
tems perform similarly in aesthetic quality (4.89 vs. 4.88),
the primary benefits of RL tuning are seen in functionality
and user satisfaction. Users, unaware of the tuning status
during tests, noted lower consistency in image quality from

Table 2. Compares RL effects using data averaged from random
10 of 100 users, with final interaction CLIP and Aesthetic Scores.

Metrics With RL Without RL

Rounds 4.3 6.9
CLIP Score 0.92/1.0 0.83/1.0
User Satisfaction 4.73/5 4.14/5
Aesthetic Score 4.89/5 4.88/5

Table 3. Assesses cross attention(CA)’s impact, averaging data
from random 10 of 100 users, with CLIP and Aesthetic Scores
from the final interaction.

Metrics Edited CA Normal CA

Rounds 3.7 6.1
CLIP Score 0.88/1.0 0.81/1.0
User Satisfaction 4.82/5 3.94/5
Aesthetic Score 4.71/5 4.48/5

the non-RL-tuned model. This underscores the effectiveness
of RL in adapting dynamically to user feedback, leading to
quicker, more relevant, and satisfying interactions. For a
detailed discussion on the parameter updates facilitated by
RL tuning, refer to Appendix A.5.

4.6 Ablation Study: Comparing Edited Cross
Attention with Normal Cross Attention.

Table 3 highlights the superior performance of edited cross
attention (CA) over normal CA in dialogue systems, show-
casing their distinct approaches to adaptability. Normal CA
computes attention weights based on initial inputs and main-
tains them statically throughout the interaction, whereas
edited CA dynamically adjusts these weights in response
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to changes in dialogue context and user feedback. This
adaptability significantly reduces dialogue rounds, averag-
ing 3.7 compared to 6.1 for normal CA, and leads to notable
enhancements in system performance. For instance, edited
CA achieves a higher CLIP score of 0.88 versus 0.81 and
increases user satisfaction from 3.94 to 4.82 out of 5. The
aesthetic quality of images also improves with edited CA,
scoring 4.71 compared to 4.48 for normal CA. These results
underscore the effectiveness of integrating reinforcement
learning with edited CA to refine the tuning process and
improve the consistency and relevance of outputs in denois-
ing tasks. For an in-depth exploration of how edited cross
attention mechanisms function within the system, refer to
Appendix A.6.

4.7 Visualization Results

Figure 7. The comparison demonstrates our model’s
few-shot learning capability, effectively adapting to
user preferences with minimal dialogue.

Figure 8. The chart shows the rapid decline in user in-
teraction rounds needed for satisfaction, peaking by
Round 5, demonstrating the model’s efficient few-shot
learning.

Dialogue Rounds Across Different Models

Figure 2 compares dialogue rounds across different models:
ChatGPT, Stable Diffusion v2.1, Prompt-to-Prompt (Hertz
et al., 2022), and our model. Initially, images from Stable
Diffusion, Prompt-to-Prompt, and our model are similar due
to the lack of feedback. By the second round, ”pea soup”
preferences cause significant changes in ChatGPT-4 and
Stable Diffusion, affecting consistency. In the third round,
with croutons added, our model excels by fine-tuning pa-
rameters via reinforcement learning, maintaining balance,
while Prompt-to-Prompt struggles, and ChatGPT-4 shows
inconsistencies. By the fourth round, our model achieves
satisfactory results and opts out, while the others continue
ineffective adjustments. This highlights our model’s su-
perior ability to understand and respond to user feedback,
achieving optimal results by the third round and demon-
strating effective multi-round dialogue learning. Despite
ChatGPT-4’s realistic visuals, it struggles with consistency
and adapting to human preferences. Our model, preferred
by 89% of users, effectively adapts with minimal dialogue.

User Satisfaction Distribution for Our Model Over Mul-
tiple Rounds

Figure 8 illustrates our model’s efficiency in adapting to user
feedback. Initially, the satisfaction rate increases rapidly,
with 59 users satisfied by Round 3, demonstrating the
model’s quick alignment with user preferences. By Round
5, satisfaction peaks at 99 out of 100 users, underscoring
the model’s effectiveness in achieving high user satisfaction
swiftly.

Users’ Overall Evaluation of Our Model

Figure 6 presents user evaluations across various model as-
pects. The majority found the automated prompt refinement
to be helpful, indicating approval. In contrast to typical con-
cerns about speed in models with complex computations,
most users disagreed with the notion that the model’s re-
sponse time per dialogue round was slow, suggesting that
the integration of reinforcement learning for fine-tuning did
not significantly impact perceived efficiency. The model
was highly praised for its coherence across images generated
in each dialogue round and received commendations for aes-
thetic quality. It was also recognized for adeptly capturing
user intentions within just a few rounds of dialogue. Overall,
the participants showed a strong preference for this model
over others, reflecting its effectiveness and user satisfaction.

5 Conclusion and Future Work
In this study, we introduced a new image generation method
using a human-in-the-loop approach that enhances user in-
teraction and responsiveness to ambiguous prompts. Our
findings highlight the model’s ability to closely match user
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expectations through adaptive prompt engineering and mu-
tual information optimization. Looking ahead, we plan to
release our training dataset, improving transparency and
enabling broader testing. Additionally, we aim to refine the
model’s interpretive skills, expand its applications across
different domains, and conduct comprehensive benchmarks
to gauge the alignment between user intentions and gener-
ated images. These initiatives will advance personalized
and intuitive image generation technologies, making ad-
vanced modeling tools more accessible without requiring
deep technical expertise.
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A Appendix

A.1 Reinforcement Learning configuration

To train our policy model, we employ Proximal Policy Op-
timization (PPO) (Schulman et al., 2017), initializing the
value and policy networks from a supervised fine-tuned
model. We use diverse beam search (Vijayakumar et al.,
2016) with a beam size of 8 and a diversity penalty of 1.0
to ensure exploration quality and diversity. The maximum
generation length is randomly set between 15 to 75 at each
step, and one completion is randomly selected to update the

policy. Each prompt generates one image, computing the
clip score as the reward function to reduce variance. Train-
ing involves 12,000 episodes, four PPO epochs per batch,
a batch size of 256, and a learning rate of 5e-5, with value
and KL reward coefficients set at 2.2 and 0.3, respectively.
Based on human fragmented language feedback, ChatGPT
provides new prompts with minimal structural changes but
reflects human intent very well.

A.2 Reinforcement Learning Framework

The reinforcement learning framework for our human-
machine co-adaptation system in image editing involves
the following elements:

STATE (S)

The state in our framework represents the current situation
of the system, which includes:

• The current image It being edited.

• The current promptPt describing desired modifications
or features in the image.

• Optionally, it can also include historical user inter-
actions and feedback to provide context to the state,
enabling the model to better understand and predict
user preferences.

ACTION (A)

Actions in this context refer to the modifications applied to
the image based on the input prompt and model’s interpreta-
tion:

• Adjustments or transformations applied to the image
It to generate a new image It+1.

• These actions are driven by the interpretation of the
user’s prompt, potentially influenced by machine learn-
ing algorithms that predict optimal changes.

REWARD (R)

The reward function is crucial as it guides the training of
the RL model by quantifying the success of actions taken
based on the state:

• It could be defined using objective metrics such as
the similarity between the generated image and user’s
expected outcome, measured by tools like CLIP score.

• Feedback from users after viewing the modified image
can also be used as part of the reward, where positive
feedback increases the reward and negative feedback
decreases it.
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• The reward aims to maximize the alignment between
the user’s intent and the image output, effectively train-
ing the model to interpret and act upon ambiguous
prompts accurately.

This reinforcement learning setup enables our system to
iteratively learn and adapt from each user interaction, im-
proving its ability to decode ambiguous prompts and align
image outputs with user expectations.

A.3 Optimization Details

To optimize image generation, the model dynamically se-
lects among three strategies (adding phrases, word swap-
ping, re-weighting) using the CLIP score as the reward
function to update all parameters of the chosen strat-
egy. This feedback-driven approach optimizes parame-
ters within one strategy per iteration, yielding three well-
adjusted parameter sets that adapt image generation to hu-
man preferences. The strategies correspond to three con-
trollers: Attention-Replace, Attention-Refine, and Attention-
Reweight. Our text-to-image model uses controllers to ad-
just cross-attention during generation, with each controller
utilizing cross-attention information between images and
prompts in each dialogue round. The controllers correspond
to three strategies with trainable parameters, including the
dynamic proportion of self-attention during the sampling
process, the proportion of attention injection steps, and
adaptive updates to cross-attention maps based on dialogue
feedback. The optimization process for parameter updates
can be mathematically represented as follows:

Reward function:

This is computational framework for the reward function
R(θ) in a reinforcement learning context, where the CLIP
score assesses the similarity between generated images and
textual prompts. Specifically:

R(θ) = CLIPScore(Igen, Pprev)+λ·CLIPScore(Igen, Pnew)
(9)

This formula ensures that the parameters are finely tuned,
with λ serving as a balancing factor between aligning the
generated image with the previous prompt and the new
prompt, fostering both continuity and responsiveness to new
requirements. Extensive experimentation has determined
that setting λ = 0.2 is optimal, as it allows the CLIP score
to converge more rapidly to its maximum value. When
incrementally increasing λ from 0.1 to 1, the performance
peaks at 0.2. However, increasing λ beyond 1 leads to a
significant decline in performance, falling even below the
levels observed at λ = 0.1. Further, to underscore the
iterative update mechanism integral to the reinforcement

learning cycle:

I(k+1)
gen = Update(I(k)gen , θ

(k))

Here, I(k)gen signifies the image generated at iteration k,
and θ(k) indicates the parameters at that iteration. The
update function modifies the image based on the current
parameters, capturing the dynamic nature of the learning
process across successive rounds.

Attention-Replace Strategies:

Update method directly adjusts the mapping matrixM using
gradient ascent and then multiplies it with the cross-attention
matrix Mcross attention called mapper to alter the attention
distribution, impacting the generated image’s features and
quality.

Mnew = (M + η ·∆M) ·Mcross attention (10)

Attention-Refine Strategies:

Update the attention weights by combining the original
and new attention maps derived from the modified prompt.
In the Attention-Refine class, the mapper aligns
base attention weights with the new prompt structure while
alphas blend original and modified weights, ensuring
the final output accurately reflects user modifications and
maintains consistency. The mapper tensor aligns tokens
between prompts, enabling correct transfer of attention
weights; updated as

θ′m = θm + η∇θmE[R]

to maximize the expected reward (E[R]) using gradient
ascent with learning rate η. The alphas weights control
the blending of original and modified attention weights,
determining each token’s influence; updated as

θ′α = θα + η∇θαE[R]

to maximize the expected reward (E[R]) using gradient
ascent with learning rate η.

The attention weights are updated by combining the original
and new attention maps derived from the modified prompt.
The original attention is processed using the mapper,
which aligns the attention weights by permuting dimensions
based on the mapped indices:

attn base replaceijk = attn baseijk ·mapperkj

=⇒ (attn base replace)permute(2,0,1,3)

Here, mapperkj indicates the mapping from index k in the
original prompt to index j in the new prompt. The operation
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(attn base replace)permute(2,0,1,3) permutes the dimensions
of the resulting tensor to align with the expected structure
for further processing.

The updated attention weights are then calculated as:

M
(t)
update = βt ·M (t)

orig + (1− βt) ·M (t)
new

Attention-Reweight Strategies:

Modifies the distribution of attention by first blending the
original and new attention maps, and then scaling the
weights according to user preferences. The blending of
attention maps is given by:

M
(t)
refine = βt·M (t)

orig+(1−βt)·M (t)
new, βt = βt−1+γ·∇βt

R(θ)
(11)

with βt adjusting the blending ratio dynamically based on
feedback, and γ is the learning rate for βt. After blending,
the attention distribution is further modified by scaling the
weights:

M
(t)
reweight =

∑
i

γt,i ·M (t,i)
refine, γt,i = γt−1,i+κ·∇γt,iR(θ)

(12)
where γt,i are the weight multipliers that adapt the emphasis
on specific features, and κ is the learning rate for γt,i.

In addition to these, we also update the proportions related
to specific attention mechanisms:

αt+1 = αt + η∇αt
R(θ) (13)

ζt+1 = ζt + γ∇ζtR(θ) (14)

δt+1 = δt + κ∇δtR(θ) (15)

Here, α represents the proportion of self-attention features
injected at different stages of the sampling process, ζ repre-
sents the replacement proportion of the cross-attention map,
and δ represents the overall number of sampling steps.

A.4 Q&A Software Annotation Interface

A.5 Ablation of RL tuning

The RL tuning process and static parameter configuration
are mathematically represented as:

θRL = θ0 +

T∑
t=1

η∇θR(θt), θFixed = θ0 (16)

Here, θRL are the parameters iteratively updated with RL,
θ0 is the initial parameter setting, η is the learning rate, and
∇θR(θt) is the gradient of the reward function at iteration
t. This setup without RL results in more dialogue rounds
and less optimal outcomes.

Figure 9. Screenshot of the Q&A software annotation interface.

A.6 Ablation of cross attention control

θ
(t+1)
Weighted = θ

(t)
Weighted + η∇θL(It,Feedbackt,M) (17)

θ
(t+1)
Empty = θ

(t)
Empty + η∇θL(It,Feedbackt,Mnew) (18)

This setup employs only new attention without blending
it with the base cross attention. Each strategy involves a
distinct function to modify the cross attention map, directed
by its corresponding controller. For standard cross attention,
the controller is set to ’empty control’ within the code.

A.7 LLM Prompt Refinement

Algorithm 3 Multi-dialogue Prompt Refine Process for
ChatGPT-4

0: Input: Initial prompt p0
0: Output: Refined prompt pi that meets conditions and

is ambiguity-free
0: Define C(p): Checks if prompt p meets all predefined

conditions.
0: Define A(p): Checks if prompt p is free of ambiguities.
0: i← 0
0: while ¬C(pi) ∨ ¬A(pi) do
0: if ¬A(pi) then
0: pi+1 ← ResolveAmbiguities(pi) {Clarify

prompt, ensuring clarity.}
0: else if ¬C(pi) then
0: pi+1 ← ModifyToMeetConditions(pi)
{Adjust prompt to meet conditions.}

0: end if
0: i← i+ 1
0: end while
0: return pi =0

The Multi-dialogue Refine process in ChatGPT-4 iteratively
refines prompts until they meet predefined conditions and
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are ambiguity-free. Initially, the model assesses if the
prompt p0 meets specific criteria and lacks ambiguities. If
issues are identified, the process loops to rectify them. The
model evolves with each iteration, described mathematically
as:

yt+1 =M(prefine ∥ x ∥ y0 ∥ fb0 ∥ . . . ∥ yt ∥ fbt),

where yt is the output at iteration t, M represents the model,
prefine is the refined prompt, x is the input data, and fbt is the
feedback at iteration t. The model refines prompts by engag-
ing in multi-turn dialogue, asking clarifying questions until
the prompts are comprehensive and unambiguous. This self-
reflection mechanism allows the model to produce initial
responses and evaluate them for retrieval, relevance, sup-
port, and utility. Necessary modifications are made based on
feedback to enhance accuracy and usefulness, represented
as:

yt+1 =M(x ∥ yt ∥ fbt).

A.8 The Processing of Setup Prompts from Human
Feedback Using Large Language Models (LLM)

Table 4. ChatGPT-4 Prompt Rewriting and Type Judgment Process

Process Description

Given the current prompt: ‘{current prompt}‘, the user has
requested changes described as: ‘{user input}‘.
Please generate a new prompt by incorporating these changes.
The alterations should be subtle and maintain the structural
integrity of the original prompt.
Modify the original prompt using one of the following meth-
ods: ‘word swapping‘, ‘adding phrases‘, or ‘attention reweight-
ing‘.
Ensure that the modifications align closely with the user’s re-
quest, and specify which method you used to alter the prompt.
The final output format should be ‘{new prompt, type}‘.
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