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Abstract
The proliferation of AI-generated media has heightened risks of
misinformation, driving the need for robust deepfake detection sys-
tems. However, adversarial attacks—subtle perturbations designed
to evade detection—remain a critical vulnerability. To address this,
we organized the AADD-2025 challenge, inviting participants to
develop attacks that fool diverse classifiers (e.g., ResNet, DenseNet,
blind models) while preserving visual fidelity. The dataset included
16 subsets of high/low-quality deepfakes generated by GANs and
diffusion models (e.g., StableDiffusion, StyleGAN3). Teams were
evaluated on structural similarity (SSIM) and attack success rates
across classifiers. Thirteen teams proposed innovative solutions
leveraging latent-space manipulation, ensemble gradients, surro-
gate modeling, and frequency-domain perturbations. Challenge’s
top performers—MR-CAS (1st, score: 2740), Safe AI (2nd, 2709), and
RoMa (3rd, 2679)—achieved high SSIM (0.74–0.93) while evading
classifiers. MR-CAS’s latent diffusion inversion and Safe AI’s gra-
dient ensemble framework demonstrated superior transferability,
even against Vision Transformers. Key insights revealed latent-
space attacks outperform pixel-level methods, ensemble strategies
enhance cross-model robustness, and hybrid CNN-transformer at-
tacks are most effective. Despite progress, challenges persist in
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generalizing attacks across heterogeneous models and maintain-
ing perceptual quality. The AADD-2025 challenge underscores the
urgency of developing adaptive defenses and hybrid detection sys-
tems to counter evolving adversarial threats in AI-generated me-
dia. To facilitate reproducibility and further research, the complete
dataset is available for download in the challenge GitHub reposi-
tory https://github.com/mfs-iplab/aadd-2025.
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1 Introduction
The rapid evolution of generative AI technologies, especially Gen-
erative Adversarial Networks (GANs) [8] and diffusion models [11],
has greatly enhanced the realism of synthetic media, commonly
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known as deepfakes [2, 14, 19]. While these models enable appli-
cations in entertainment and virtual human creation, they also
pose serious risks including misinformation, identity fraud, and
erosion of public trust—often manifesting as an ‘impostor bias,’
where users doubt the authenticity of media content [4, 14]. Conse-
quently, robust deepfake detection has become essential for digital
forensics and content moderation [9, 17]. Earlier research also ex-
amined manipulations introduced by social media platforms such as
Facebook [16]. Despite advances using deep learning architectures
such as CNNs and Vision Transformers (ViT), detectors remain
highly vulnerable to adversarial attacks—subtle perturbations that
mislead models into classifying deepfakes as authentic [10, 18].
Studies show that both white-box and black-box attacks can ef-
fectively bypass state-of-the-art classifiers, exposing critical weak-
nesses [1, 5]. A key challenge lies in achieving strong transferability
across models while preserving imperceptibility of perturbations
[7, 24]. The Adversarial Attacks on Deepfake Detectors (AADD-
2025) challenge was designed to address these issues, requiring
participants to craft adversarial examples that evade multiple detec-
tors while maintaining high visual quality. It encouraged innova-
tive methods—latent-space manipulation, ensemble gradients, and
surrogate modeling—to advance resilience in detection systems.
The competition leveraged a comprehensive dataset of high- and
low-quality deepfakes generated by GANs and diffusion models
[1], with evaluation based on Structural Similarity Index Measure
(SSIM) and attack success rates, promoting balanced optimization
between visual fidelity and adversarial effectiveness. The remainder
of this paper is organized as follows. Section 2 reviews related work
on deepfake detection and adversarial robustness. Section 3 intro-
duces the AADD-2025 challenge, including dataset, protocol, and
evaluation metrics. Section 4 summarizes the approaches proposed
by participating teams, while Section 5 presents the main results
and insights. Finally, Section 6 concludes with final remarks and
directions for future research.

2 Related Work
The domain of deepfake detection has become a dynamic field of
study, with a primary focus on developing classifiers that can iden-
tify sophisticated forgeries [1]. However, the adversarial robustness
of these detectors is a significant concern, as numerous studies have
demonstrated their vulnerability to carefully crafted perturbations
[1, 15, 18, 21, 22]. Research has shown that by introducing small,
often imperceptible changes to a deepfake, an attacker can cause
state-of-the-art detection models, including those based on CNNs
like XCeption and ResNet, to misclassify the content as authentic
[1, 23]. This vulnerability persists across various attack scenarios,
from white-box attacks, where the attacker has full knowledge of
the model, to more practical black-box settings where the model’s
architecture and parameters are unknown [18, 20]. The effective-
ness of such attacks is often linked to their transferability, where
perturbations created for one model can successfully fool another
[5, 18]. Recent surveys and comprehensive evaluations consistently
highlight that even top-performing detectors show a significant
drop in performance under adversarial conditions, underscoring
the urgent need for more resilient detection systems [1, 6].

A critical aspect of generating effective adversarial examples
is the trade-off between the attack’s success and the preservation
of visual quality. The goal for an attacker is to create perturba-
tions that are strong enough to fool a detector but subtle enough
to remain invisible to human observers [24]. To this end, recent
attack methodologies have moved beyond simple additive noise.
For instance, some methods use generative models to create ad-
versarial perturbations that are more structured, like shadows or
subtle lighting changes, to better conceal artifacts [7]. Others em-
ploy techniques to constrain the magnitude of the perturbations in
the perceptual domain, ensuring high-fidelity outputs [24, 25]. The
challenge of maintaining this balance is central to modern adversar-
ial attack research and is a key evaluation criterion in competitions
like the AADD-2025 challenge. The development of attacks that
can evade an ensemble of detectors, including unknown or “blind”
models, while maintaining high structural similarity to the original
deepfake, represents the current frontier in this arms race, pushing
the research community to develop more fundamentally robust
detection paradigms.

3 Challenge Description
Participants were tasked with designing adversarial attacks target-
ing four classifiers: a ResNet50, a DenseNet121, and two previously
undisclosed blind models (i.e., models not initially released to par-
ticipants and used exclusively during evaluation)—a ViT-B-16 and
a DenseNet121. Notably, the DenseNet121 blind model differs from
the other classifiers by leveraging Discrete Cosine Transform (DCT)
features instead of spatial features. These classifiers were trained
across diverse generative models, including both GAN-based and
diffusion-based architectures.

3.1 Dataset
The released dataset is structured into two main components: fake
and real, each further subdivided based on resolution—high-quality
(HQ) and low-quality (LQ). Specifically, the fake component is or-
ganized into subsets according to the generative models utilized,
which include both diffusion models (DM) and generative adver-
sararial networks (GANs). The LQ subsets represent intentionally
down-sized or compression-degraded images from high-resolution
native generative models. A representative example of images in-
cluded in the dataset is shown in Figure 1. The fake portion of the
challenge dataset originates from the WILD dataset [3]. The real
images were sampled from two datasets: FFHQ, originally presented
in [13], and CelebA-HQ, as introduced in [12].

3.2 Competition Protocol and Duration
The timeline spanned three months, beginning with a registra-
tion phase where teams submitted details (e.g., names, institu-
tions). Upon registration, participants signed a Data Licence Agree-
ment (DLA) to access the training dataset. During the development
phase, teams focused on attacking the released classifiers (ResNet,
DenseNet) and optimizing perturbations for the blind models. Sub-
missions were limited to three attempts per team, with only the
final submission counted for evaluation. The test dataset included
unperturbed deepfake images across all 16 subsets, with no ground
truth provided.
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(a) HQ Original 1 (b) HQ Original 2 (c) LQ Original 1 (d) LQ Original 2

Figure 1: Examples of deepfake images from the challenge dataset: representative samples from both high-quality (HQ) and
low-quality (LQ) generative models.

For evaluation, participants submitted:
-Attacked Test Set: Perturbed images adhering to the challenge

guidelines.
- Abstract Paper: A 1–2 page summary detailing methodology,

motivation, and contributions.
Final scores were computed using a weighted combination of

Structural Similarity Index (SSIM) and detection accuracy across all
four classifiers (including blind models). The formula for the final
score is:

𝐹𝑆 =
∑︁
𝐶𝑓 ∈C

𝑁∑︁
𝑘=1

𝑆𝑆𝐼𝑀 (𝐼𝑘 , 𝐼𝐴𝐷𝑉𝑘
) ·

[
𝐶𝑓 (𝐼𝐴𝐷𝑉𝑘

) = 𝐿𝐴𝐵𝐸𝐿𝑟𝑒𝑎𝑙
]

(1)

where:
• C is the set of all classifiers used in the evaluation
• 𝐶𝑓 is a specific classifier belonging to the set C
• 𝑁 is the number of deepfake images in the test dataset
• 𝑘 is the index identifying the 𝑘-th image in the dataset (𝑘 ∈
{1, 2, ..., 𝑁 })

• 𝐼𝑘 is the 𝑘-th original deepfake image from the test dataset
• 𝐼𝐴𝐷𝑉

𝑘
is the adversarial image generated from 𝐼𝑘

• 𝑆𝑆𝐼𝑀 (𝐼𝑘 , 𝐼𝐴𝐷𝑉𝑘
) is the Structural Similarity Index between

the original image 𝐼𝑘 and the adversarial image 𝐼𝐴𝐷𝑉
𝑘

(value
between 0 and 1)

• 𝐿𝐴𝐵𝐸𝐿𝑟𝑒𝑎𝑙 is the label of the "real" class (opposite to “deep-
fake”)

• [𝑐 (𝐼𝐴𝐷𝑉
𝑘

) = 𝐿𝐴𝐵𝐸𝐿𝑟𝑒𝑎𝑙 ] is the indicator function that re-
turns 1 if classifier 𝑐 classifies the adversarial image 𝐼𝐴𝐷𝑉

𝑘
as “real”, 0 otherwise

The formula computes a cumulative score that rewards adversar-
ial attacks which successfully maintain high structural similarity
with the original image while fooling the classifiers into predicting
the “real” label. The final score is the sum of all SSIM contributions
weighted by the success of the attack on each classifier for each
image. The top 3 teams were invited to submit extended papers for
potential inclusion in the ACM Multimedia 2025 proceedings.

3.3 Evaluation Metrics
The participants’ methods were evaluated based on two criteria:

(1) SSIM Requirement: Each submission had to include orig-
inal deepfake images and their corresponding adversarial
versions. Only complete image pairs were evaluated. The
SSIM measures the structural similarity between two images
by comparing their luminance, contrast, and structure. It
provides a value between 0 and 1, where 1 indicates perfect
similarity and 0 indicates no similarity, and is calculated as:

SSIM(𝐼 , 𝐾) = (2𝜇𝐼 𝜇𝐾 + 𝑐1) (2𝜎𝐼𝐾 + 𝑐2)
(𝜇2
𝐼
+ 𝜇2

𝐾
+ 𝑐1) (𝜎2𝐼 + 𝜎

2
𝐾
+ 𝑐2)

(2)

where 𝐼 and𝐾 are the two images being compared, 𝜇𝐼 and 𝜇𝐾
are the mean pixel intensities of images 𝐼 and 𝐾 respectively,
𝜎2
𝐼
and 𝜎2

𝐾
are the variances of pixel intensities in images 𝐼

and 𝐾 respectively, 𝜎𝐼𝐾 is the covariance between the pixel
intensities of images 𝐼 and 𝐾 , and 𝑐1 and 𝑐2 are small pos-
itive constants added to avoid division by zero when the
denominators are close to zero, ensuring numerical stability.
Themean SSIM for each classifier𝐶𝑓 , SSIM

𝑎𝑣𝑔

𝐶𝑓
was computed

as the average structural similarity across all image pairs:

SSIM𝑎𝑣𝑔
𝐶𝑓

=
1
𝑁

𝑁∑︁
𝑘=1

𝑆𝑆𝐼𝑀 (𝐼𝑘 , 𝐼𝐴𝐷𝑉𝑘
) (3)

where 𝑁 is the total number of adversarial images evaluated,
𝐼𝑘 is the 𝑘-th original image and 𝐼𝐴𝐷𝑉

𝑘
is the 𝑘-th adversarial

image. Finally, we defined SSSIM Score (SSIMS) as:

SSIMS =
1
|C|

∑︁
𝐶𝑓 ∈C

SSIM𝑎𝑣𝑔
𝐶𝑓

(4)

where C is the set of all classifiers.

(2) Attack Success Rate (ATR) Calculation: An adversarial
image was considered a successful attack if the detection
system misclassified it as "real" (i.e., failed to detect it as a
deepfake). The attack success rate for each classifier was
calculated as:

ASR𝐶𝑓
=

1
𝑁

𝑁∑︁
𝑘=1

[𝐶𝑓 (𝐼𝐴𝐷𝑉𝑘
) = 𝐿𝐴𝐵𝐸𝐿𝑟𝑒𝑎𝑙 ] (5)
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where 𝑁 is the total number of adversarial images evalu-
ated, 𝐶𝑓 is a specific classifier, 𝐼𝑘 is the 𝑘-th original image,
𝐼𝐴𝐷𝑉
𝑘

is the 𝑘-th adversarial image, 𝐿𝐴𝐵𝐸𝐿𝑟𝑒𝑎𝑙 is the label
for the "real" class, and [𝐶𝑓 (𝐼𝐴𝐷𝑉𝑘

) = 𝐿𝐴𝐵𝐸𝐿𝑟𝑒𝑎𝑙 ] is the in-
dicator function that returns 1 if the classifier incorrectly
predicts the adversarial image as "real", and 0 otherwise. This
metric represents the proportion of adversarial images that
successfully evaded detection by fooling the classifier into
misclassifying them as authentic content. For an overall eval-
uation of the methods, we defined the Attack Success Score
(ASS) as:

𝐴𝑆𝑆 =
1
|C|

∑︁
𝐶𝑓 ∈C

ASR𝐶𝑓
(6)

where C is the set of all classifiers.

4 Participants and Methods
Thirteen teams submitted innovative adversarial approaches. Below,
we briefly summarize their key contributions.

DASH: Proposed a region-specialized adversarial attack frame-
work leveraging facial, background, and synthesis-specific pertur-
bations, optimizing via momentum-based gradients and variance-
based neighbor sampling to achieve robust transferability.

DeFakePol: Adapted the Fast Gradient Sign Method (FGSM) for
targeted multi-model attacks with resampling techniques (down-
sampling/upsampling), improving transferability across various
deepfake detection architectures.

FalseNegative: Implemented a two-stage method combining
an enhanced Projected Gradient Descent (PGD) with a U-Net to
generate transferable perturbations, integrating constraints based
on the Structural Similarity IndexMeasure (SSIM) to preserve visual
fidelity.

GRADIANT: Developed a hybrid attack combining a pixel-level
PGD (with Expectation over Transformations) and a feature-level
Feature Importance Attack (FIA), using heterogeneous detector
ensembles and attention masking to enhance transferability.

MICV: Integrated Nesterov-accelerated Iterative Fast Gradient
Sign Method (NI-FGSM) with diverse input augmentations and an
ensemble of multiple detection architectures, employing Class-wise
Weight Averaging and sample selection based on SSIM.

MILab: Formulated the adversarial task within a constrained per-
ceptual space, using diffusion-based inpainting, attention-guided
modifications, and semantic-preserving measures like Learned Per-
ceptual Image Patch Similarity (LPIPS) and SSIM alongside surro-
gate models for black-box settings.

MR-CAS: Proposed latent-space manipulation via Denoising
Diffusion Implicit Models (DDIM) inversion and momentum-based
gradient optimization (Momentum Iterative Fast Gradient Sign
Method, MI-FGSM), significantly improving visual imperceptibility
and transferability of adversarial perturbations.

RoMa: Employed globally distributed adversarial noise opti-
mized through surrogate models, including a Vision Transformer
(ViT-B-16) and EfficientNet-B0, refined iteratively using gradient-
based methods and the Adam optimizer.

Safe AI: Introduced MIG-COW (Momentum Integrated Gradi-
ents with Consensus-Orthogonal Weighting), using Momentum

Integrated Gradients and gradient decomposition into consensus
and orthogonal components, substantially improving cross-model
adversarial transferability.

SecureML: Developed TTDE (Test-Time Distillation Ensemble
Attack), distilling knowledge from Convolutional Neural Networks
(CNNs) to Vision Transformers, optimizing adversarial examples
using combined cross-entropy and SSIM-based losses.

TheAdversaries: ProposedMS-GAGA (Metric-Selective Guided
Adversarial Generation Attack), employing dual-stream PGD (mo-
mentum and saliency-guided) to generate diverse adversarial exam-
ples, with metric-based selection ensuring structural fidelity and
attack effectiveness.

VYAKRITI 2.0: Utilized ensemble-gradient-based PGD enhanced
by SSIM loss and low-frequency perturbations via Fast Fourier
Transform (FFT) based filtering, targeting generalization gaps in
detection architectures.

WHU_PB: Introduced a lightweight adversarial generator trained
via a Rectified Linear Unit (ReLU) based hinge loss and SSIM-based
perceptual regularization, optionally employing attention-guided
masks for efficient localized perturbations.

5 Competition Results
The competition results reveal several interesting patterns in the
performance distribution. The top three teams (MR-CAS, Safe AI,
and RoMa) achieved remarkably close scores, with less than 70
points separating thewinner from the third-place finisher. This tight
competition at the top demonstrates the high quality of solutions
and the competitive nature of the challenge. Figure 2 provides a
qualitative comparison of adversarial perturbations created by these
teams, showcasing their ability to maintain visual fidelity while
evading detection systems.

MR-CAS from the University of Chinese Academy of Sciences
secured first place with a score of 2740, employing their novel latent
diffusion model approach that manipulated images in the latent fea-
ture space rather than directly in pixel space. Their DDIM inversion
technique proved particularly effective in generating adversarial
samples with high visual fidelity and strong transferability.

Safe_AI from UNIST achieved second place with 2709 points,
utilizing their Momentum Integrated Gradient with Consensus-
Orthogonal Weighting (MIG-COW) framework. Their approach
leveraged implementation invariance via Integrated Gradients and
sophisticated gradient ensemble techniques to enhance transfer-
ability across diverse model architectures.

RoMa from Fraunhofer SIT | ATHENE Center rounded out the
top three with 2679 points, implementing a white-box adversarial
framework with globally distributed, data-driven noise perturba-
tions optimized through carefully designed surrogate models.

The middle tier of teams (ranks 4-9) showed competitive per-
formance with scores ranging from 2341 to 2631, indicating that
multiple viable approaches exist for this challenging problem. These
teams employed various sophisticated techniques including hybrid
adversarial frameworks, ensemble methods, and advanced loss func-
tions combining classification objectives with perceptual quality
measures. A notable performance gap emerged between the top
nine teams and the bottom four, suggesting that certainmethodolog-
ical choices and implementation details were critical for achieving
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Table 1: Final competition results showing team rankings, SSIM Score (SSIMS), Attack Success Score (ASS), and Final Score (FS).

Rank Team Name Organization/Institution SSIMS ASS FS

1 MR-CAS University of Chinese Academy of Sciences 0.742 0.672 2740
2 Safe AI UNIST (Ulsan National Institute of Science and Technology) 0.915 0.528 2709
3 RoMa Fraunhofer SIT | ATHENE Center 0.934 0.509 2679
4 GRADIANT Gradiant 0.853 0.551 2631
5 DASH Sungkyunkwan University 0.848 0.543 2618
6 SecureML University of Cagliari 0.832 0.535 2490
7 MICV Ant Group 0.738 0.585 2434
8 WHU_PB Wuhan University 0.834 0.487 2354
9 The Adversaries Singapore Institute of Technology 0.713 0.590 2341
10 DeFakePol Samsung Research Poland 0.896 0.332 1665
11 False Negative The Hong Kong Polytechnic University 0.514 0.555 1602
12 VYAKRITI 2.0 Apex Institute of Technology Chandigarh University 0.298 0.615 1041
13 MILab University of Science and Technology of China 0.994 0.020 110

HQ Sample 1 HQ Sample 2 LQ Sample 1 LQ Sample 2

O
ri
gi
na

l
M
R
-C

A
S

0.8382 | ✗✗✓✓ 0.8157 | ✗✗✓✓ 0.8171 | ✗✗✓✗ 0.7643 | ✗✗✓✗

Sa
fe

A
I

0.9130 | ✗✗✓✓ 0.9319 | ✗✗✓✓ 0.9004 | ✗✗✓✓ 0.9265 | ✗✗✓✗

R
oM

a

0.8981 | ✗✗✓✓ 0.9069 | ✗✗✓✓ 0.9959 | ✗✗✓✓ 0.9971 | ✗✗✓✓

Figure 2: Adversarial perturbations generated by top-
performing teams on high-quality (HQ) and low-quality (LQ)
deepfake samples. Original images (top row) are compared
with adversarial examples from MR-CAS, Safe AI, and RoMa
teams. Values show SSIM scores and binary predictions for
ResNet-50, DenseNet-121, ViT-B-16, and DenseNet-121-DCT
models. ✗ indicates successful attack (misclassification), ✓ in-
dicates failed attack (correct classification).

high performance in this competition. Teams that struggled typi-
cally faced challenges in balancing attack effectiveness with visual
quality preservation, or in achieving robust transferability across

diverse detector architectures. The analysis of top-performing so-
lutions reveals several critical methodological patterns that distin-
guished successful approaches from less effective ones. Thewinning
MR-CAS team’s approach demonstrated the significant effective-
ness of operating in latent feature spaces rather than directly in
pixel space, providing superior transferability and visual quality
compared to traditional pixel-based perturbation methods. This
latent space manipulation approach fundamentally changed how
adversarial examples could be generated while maintaining im-
perceptibility. Multiple top teams successfully employed ensemble
methods, either for generating attacks or for improving transferabil-
ity across different model architectures. These ensemble approaches
proved particularly valuable in creating adversarial examples that
could fool diverse detector types, from traditional CNNs to modern
Vision Transformers. Advanced optimization techniques includ-
ing momentum-based optimization, diverse input transformations,
and sophisticated gradient aggregation methods proved essential
for achieving high performance. Teams that incorporated these
techniques showed notably better results in both attack success
rates and visual quality preservation. Furthermore, teams that ex-
plicitly designed their approaches to handle both CNN and Vision
Transformer architectures achieved better overall performance,
recognizing the diverse landscape of modern deepfake detection
systems. As shown in Figure 3, the top three teams demonstrated
markedly different performance patterns between white-box and
black-box attacks, with white-box attacks achieving near-perfect
success rates while black-box transferability remained a signifi-
cant challenge. The complete ranking of all participating teams is
presented in Table 1, showing the final scores achieved by each
team.

6 Conclusion
The AADD-2025 challenge highlighted the vulnerability of deep-
fake detectors to adversarial attacks, while advancing strategies
for more robust forensic systems. Top teams leveraged latent-space
manipulation, ensemble gradients, and surrogate modeling to evade
diverse classifiers with high visual fidelity. Key insights showed
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Figure 3: ASRs for top three teams across different classifier
architectures. White-box attacks achieve significantly higher
success rates than black-box attacks, highlighting transfer-
ability challenges in adversarial deepfake generation.

that latent-space attacks outperform pixel-level methods, ensem-
bles improve cross-model robustness, and optimization can balance
imperceptibility with attack success. Nonetheless, generalization
across heterogeneous models and preservation of structural coher-
ence remain open challenges, underscoring the need for adaptive
defenses, hybrid detectors, and standardized benchmarks. Future
directions may involve neurosymbolic integration and foundation
models trained with adversarial examples for universal and real-
time deepfake defense.
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