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Figure 1: We developed a system called LAGOON. Given a high-level language command, LA-
GOON can autonomously train a control policy according to the provided command.

Abstract:
We aim to control a robot to physically behave in the real world following any
high-level language command like “cartwheel” or “kick”. Although human mo-
tion datasets exist, this task remains particularly challenging since generative mod-
els can produce physically unrealistic motions, which will be more severe for
robots due to different body structures and physical properties. Deploying such a
motion to a physical robot can cause even greater difficulties due to the sim2real
gap. We develop LAnguage-Guided mOtion cONtrol (LAGOON), a multi-phase
reinforcement learning (RL) method to generate physically realistic robot motions
under language commands. LAGOON first leverages a pretrained model to gener-
ate a human motion from a language command. Then an RL phase trains a control
policy in simulation to mimic the generated human motion. Finally, with domain
randomization, our learned policy can be deployed to a quadrupedal robot, lead-
ing to a quadrupedal robot that can take diverse behaviors in the real world under
natural language commands.

1 Introduction

Reinforcement learning (RL) has been a trending paradigm for addressing intricate challenges in
robotic control, encompassing domains such as bipedal [1] and quadrupedal locomotion [2], drone
racing [3], and robotic arm manipulation [4]. Specifically, an RL-based approach trains a neural
policy within a simulated environment through the formulation of task-specific reward functions [5],
followed by the transfer of the policy to a physical robot via domain randomization techniques [6].

Despite the successes, most existing RL methods focus on low-level robust control tasks, such as
walking [7], and rely on a heavily engineered task-specific reward [2, 7]. Whenever the task goal
changes, the creation of a new reward function requires substantial efforts. It remains an open
challenge whether we can directly train control policies to generate complex behaviors according to
high-level semantic commands, such as “throw a ball” or “handstand”, without the need to specify
any sophisticated reward function.

The prospect of controlling robots through high-level language commands becomes increasingly
promising with the advancement of pre-trained models [8]. Recently, with diffusion models, it has
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become possible to generate diverse human trajectories based on high-level language commands [9],
which suggests a feasible direction for language-guided control: initiating motion generation using a
pre-trained model followed by the implementation of imitation learning. However, a common pitfall
of the existing motion generation methods is that the generated motion may often violate real-world
physical constraints since no physics simulation is performed during such an end-to-end generation
process. When generating robot motions, this issue is more severe, since most existing motion
datasets are collected from human demonstrators while a robot can have a drastically different body
structure from humans. Further applying such a motion to a physical robot can introduce even
greater challenges due to the sim2real gap.

We propose a novel RL-based method, LAnguage-Guided mOtion cONtrol (LAGOON), to address
all the aforementioned challenges. LAGOON is a multi-stage approach benefiting from both motion
generation and RL training. First, LAGOON adopts a motion diffusion model to generate a human
motion from a language command. Then, we convert the generated human motion into a seman-
tically desired yet physically unrealistic robot motion. Next, an RL phase is performed to learn a
policy in a physics engine to control a simulated robot to mimic the target motion. Finally, with
domain randomization, the learned RL policy can be deployed on a real-world robot.

We emphasize that effectively training an RL policy to mimic a target motion is non-trivial in our
setting. Existing algorithms that can learn motion control from demonstration videos often assume
perfect demonstrations produced by human professionals [10, 11, 12, 13]. In contrast, our target
motion is completely synthetic and can be highly unrealistic, including physically impossible poses
or even missing frames that lead to teleportation or floating behaviors. We adopt a special rewarding
mechanism for motion imitation, which combines both adversarially learned critic reward for high-
level semantic consistency and an optimal-matching-based state-error reward to enforce fine-grained
consistency to key frames from the target motion.

We evaluate LAGOON on two types of robots in simulation: a humanoid robot, which resembles the
human body structure for easier motion imitation, and a quadrupedal robot, posing more challenges
for RL training due to its distinct body structure. Our empirical findings demonstrate that LAGOON
is able to generate robust control policies for both robots, producing physically realistic behaviors
following various language commands. For the humanoid robot, LAGOON produces better policies
on high-level commands like “cartwheel” as well as commands requiring fine-grained control like
“kick”, outperforming all the RL baselines consistently. For the quadrupedal robot, despite the sub-
stantial differences in body structure, LAGOON is able to produce a policy to execute challenging
commands like “throw a ball” by controlling the robot to stand up and wave its front legs.

We also successfully deployed our system to a physical quadrupedal robot in the real world, resulting
in a quadrupedal robot automatically performing diverse motions that are semantically consistent
with a variety of language commands, such as “walk backward”, “handstand”, “raise the left hand”
and “throw a ball”, as shown in Fig. 1.

2 Related work

2.1 Language-Conditioned Motion Generation

Early attempts at translating text descriptions into human motion employed deterministic encoder-
decoder architectures [14, 15]. Recent efforts have shifted towards deep generative models such
as GANs, VAEs [16, 17], or diffusion models [18, 9, 19] due to the stochastic nature of motions.
Note that these motion generation methods are trained on large datasets typically limited to human
motions. Despite their superior performances, standard deep generative models do not explicitly
incorporate the law of physics into the generation process. [20] integrate the imitation policy trained
in a physics simulator into the sampling process of the diffusion model. However, this approach still
relies on a manually designed residual force [21] at the root joint to compensate for the dynamics
mismatches between the physics model and real humans, which is not suitable for real robot control.
In comparison, we concentrate on physically realistic robots with various structures.
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2.2 Learning Methods for Robot Control

To attain natural behaviors, researchers carefully designed heuristics for symmetry [22], energy con-
sumption [23], and proper contact with the environment [24]. Nonetheless, these methods typically
demand substantial domain expertise and are thus limited to simpler tasks. In contrast, imitation
learning (IL) is more general. It can learn from expert demonstrations and deploy the learned poli-
cies in physics simulators [25, 26, 27] or the real world [28, 29]. IL assumes perfect real-world data,
while we only have access to imperfect synthetic demonstrations. Some approaches use pre-trained
models for robot control, such as using a language model for representation learning [30] or seman-
tic planning [31]. However, these methods demand human demonstrations for low-level control,
while we do not require additional control data. Others [32, 33] train a video diffusion model to
generate a sequence of trajectory states and use inverse dynamics to infer actions. In our setting, the
reference motion and the actual policy trajectory cannot be precisely aligned, making it infeasible to
produce actions through inverse dynamics.

2.3 State-Based Imitation Learning

In cases where expert actions are unavailable, policies have to learn from states. One approach is to
train a dynamics model to predict actions from state transitions and then apply behavior cloning [34,
35]. Other methods perform RL directly with a state-based imitation reward, such as differences in
state representations [26, 25, 11, 12] or an adversarially learned discriminator [36, 37, 38, 27, 39,
40, 41]. We leverage both of these reward types. Since the policy motion and the reference motion
can be largely mismatched, both reward terms are critical for empirical success.

2.4 Motion and Control of Quadrupedal Robots

Previous approaches have focused on generating controllable or natural quadrupedal motions and
gaits either by imitating animals [28] or by relying on heavily engineered reward functions [2, 7].
[42] build a human-to-quadrupedal control interface by collecting matching pairs of human and
robot motions. Our work demonstrates the ability to generate diverse motions without the need for
domain-specific data or meticulously designed reward functions.

3 Preliminary

3.1 Human Motion Generation

Human motion generation aims to produce a sequence x0:H = {xh}Hh=0. xh ∈ RJ×K represents a
human pose using K-dimensional features of J joints. Here K-dimensional features can be either
the joint angles or positions. A language-conditioned motion generation model aims to generate a
motion matching the language command c.

Diffusion models [43, 44, 45] are able to generate high-quality human motions [18, 9, 19]. These
works model the data distribution by injecting noises into it and gradually denoise a sample from a
Gaussian distribution. The forward diffusion process injects i.i.d. Gaussian noises, namely

xl0:H ∼ N (
√
αlx

l−1
0:H , (1− αl)I),

where x00:H denotes samples drawn from the real data distribution p0(x0). For large enough l, xl0:H
approximately follows the Gaussian distribution N (0, I). A denoiser Fd(xl, l) is trained to gradually
denoise xl0:H back to xl−1

0:H . The training objective of Fd is usually given by
Ex0∼p0(x0),l∼q(l),ϵ∼N (0,I)

[
λ(l)∥x0 − Fd(x

l, l)∥2
]
,

where q(l) is a distribution from which l is samapled and λ(l) is a weighting factor.

3.2 RL for Control

Rather than generating a motion directly, RL methods learn a policy in simulation to control a robot
to perform the desired motion according to some given reward function.
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3.2.1 Markov Decision Process

The robot control problem can be formulated as a Markov Decision Process (MDP) denoted by
M = ⟨S,A, T , r, γ⟩. Here S is the state space, and A is the action space. T : S × A× S → [0, 1]
is the transition function. T (s′|s, a) denotes the probability of reaching state s′ from state s under
action a. r : S ×A → R is the reward function and γ is the discounted factor. In our task setup, the
reward function r is generated based on a language command c. In practice, when applying RL for
robot control, complex reward designs are often required due to a lot of motor joints and movement
constraints [7]. At each time step t, the control policy produces an action at ∼ π(·|st), and receives
a reward r(st, at). The objective of RL is to find the optimal policy π⋆ that could maximize the
discounted accumulated reward, where s0 is the initial state:

π⋆ = argmax
π

E

∑
t≥0

γtr(st, at) | at ∼ π (· | st) , s0


3.2.2 RL-Based Motion Imitation

It is difficult to design reward functions directly for robot control tasks. One approach to solve this
problem is imitation learning (IL). The goal of IL is to find the optimal policy π∗ that covers the
distribution of state-action pairs in the dataset D = {(si, ai)}mi=1. We are interested in cases where
expert actions are not available and the dataset only contains a trajectory of states, i.e. D = {xi}Hi=0.
One approach to solve this problem is state-based IL [36, 25, 27]. State-based IL typically designs
a state-error reward [25], which encourages the imitator to reach the reference states x0:H . Let st
denote the imitator state at timestep t, the state-error reward rerrt is defined as rerrt = Sim(xt, st),
which represents the similarity between the reference state xt and the imitator state st at timestep
t. A crucial assumption of rerrt is a strict timing alignment between the demonstration and the roll-
out trajectory. This can be problematic when the reference motion x0:H is not physically realistic.
Adversarial imitation learning (AIL) tackles this issue by training a discriminator Dψ to differen-
tiate behaviors generated by the imitator from the reference motion x0:H , where ψ is the network
parameters. Dψ then scores the states st generated by the imitator. Specifically, Dψ is trained to
discriminate between state transitions in the reference motion and the samples generated by πθ:

Ldisc = Eh[− logDψ(xh, xh+1)] + Et[−(1 − logDψ(st, st+1))] + wgpLgp,

Figure 2: Overview of the multi-phase method
LAnguage-Guided mOtion cONtrol (LAGOON).
We first generate a human motion using the mo-
tion generation model. Then the human motion
can be retargeted to a robot skeleton that differs
largely from humans. By introducing RL train-
ing, we train a robust control policy in the physics
simulator. Finally, we deploy the control policy to
the real-world robot.

where Lgp is a gradient penalty term. As
discussed in [46], this zero-centered gradient
penalty stabilizes training and helps conver-
gence. AIL optimizes the policy πθ to max-
imize the discounted accumulated adversarial
reward. The adversarial reward is given by,

radvt = − log(1−Dψ(st−1, st)). (1)

4 Methodology

As shown in Fig. 2, we derive a robot con-
trol policy following a language command c
through a multi-phase method. We first gen-
erate a motion sequence x0:H conditioned on c
using a human motion generation model. x0:H
is then retargeted to the robot skeleton to pro-
duce a robot motion y0:H . Finally, we adopt RL training to obtain a control policy πθ and transfer
the learned policy to the real world via domain randomization.
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4.1 Motion Generation and Retargeting

In the motion generation stage, we adopt a SOTA Human Motion Diffusion Model (MDM) [9] to
generate human motion x0:H conditioned on a language command c. Since MDM can only generate
human motion, we then adopt a retargeting stage to map the human motion x0:H to the desired
robot motion y0:H . Taking the quadrupedal robot as an example, we map the human skeleton to the
robot’s skeleton, with the human arms corresponding to the robot’s two front legs and the human
legs corresponding to the robot’s two rear legs, and then retarget each joint and joint rotation. For
the humanoid robot, the number of joints on different skeletons may vary and therefore also need to
be retargeted accordingly. For those joints that are redundant, they are simply discarded2.

4.2 RL Training

The RL phase trains a control policy πθ to imitate the retargeted robot motion y0:H . The policy takes
in robot states and outputs an action to interact with the physics simulator. The reward is calculated
by comparing the robot states with the retargeted reference robot motion. The motion generated
by MDM is physics-ignoring, so floating, penetration and teleportation behaviors may often occur,
which can be amplified in the retargeted robot motion y0:H . Inaccurate reference motions pose
significant challenges to motion imitation, which we tackle via a careful reward design.

4.2.1 Reward Design

We combine both the adversarial reward radv (Eq. (1)) and a variant of the state-error reward rme

(Eq. (2)). Intuitively, the adversarial reward is universal to capture high-level semantic consistency
with the reference motion. However, we empirically observe that only using an adversarial reward
can fail to match critical poses in the reference motion. For example, when given the command
“kick”, the policy trained with the adversarial reward alone only learns to stand but fails to perform
a kick. Hence, for more fine-grained body control, we additionally leverage a state-error reward,
which can be nontrivial since the policy trajectory and the reference motion are not well aligned.

To tackle the temporal mismatch issue, we employ a matching algorithm between the policy rollout
trajectories and the reference motion to find the best temporal alignment leading to the highest state-
error reward. More specifically, let y0:H be the reference motion sequence and τ = (s0, s1, . . . , sT )
be a trajectory from the policy. We define a matching M between y0:H and τ = (s0, s1, . . . , sT ) by

M = {(u0:k, v0:k) | k ∈ N+, 0 ≤ u0 < · · · < uk ≤ H, 0 ≤ v0 < · · · < vk ≤ T}.

where svm is matched with yum
for all 0 ≤ m ≤ k. Recall that Sim(yi, sj) is a similarity mea-

surement between the i-th motion state yi and the robot state sj at timestep j. We aim to find the
optimal matching M∗ = (u∗0:k∗ , v

∗
0:k∗) that maximizes the total similarity, namely

(u∗0:k∗ , v
∗
0:k∗) = argmax

(u0:k,v0:k)∈M

k∑
m=0

Sim(yum
, svm),

which can be solved via dynamic programming. The optimal matching M∗ helps filter out unrealis-
tic poses and allows the robot to smoothly transit between two consecutive motion frames. With the
optimal matching (u∗0:k∗ , v

∗
0:k∗), the matched state-error reward is defined as

rme
t = Sim(yu∗

m
, sv∗m) · I(t = v∗m ∈ v∗0:k∗) (2)

Our final reward is a combination of adversarial reward and matched state-error reward.

rt = λadvr
adv
t + λmer

me
t (3)

where λadv and λme are weighting factors. We also remark that the adversarial reward remains
critical since it provides much denser reward signals than the state-error reward.

2https://github.com/NVIDIA-Omniverse/IsaacGymEnvs/tree/main/
isaacgymenvs/tasks/amp/poselib
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4.2.2 PPO with Augmented Critic Inputs

We utilize PPO [47] for RL training, which adopts an actor-critic structure with two separate neural
networks, i.e. a policy πθ and a value function Vϕ. The critic is only used for variance reduction
at training time, so we can input additional information not presented in robot states to the value
network to accelerate training. In particular, given the trajectory τ , the reference sequence y, and
the optimal matchingM∗, for each state st, we take the next future reference motion for st fromM∗

as the additional information to the critic. Such future information significantly improves training in
practice. We also remark that similar techniques have been widely adopted in multi-agent RL [48].

Figure 3: The reference motion sequence over-
looks the law of physics. The trained policies
robustly perform the “cartwheel” motion even in
complex terrains (Wave) or a different skeleton
with shorter arms (Short Hand).

4.2.3 Domain Randomization

In order to learn robust control policies, we
adopt domain randomization [6] during RL
training. We randomize both the terrains and
physics parameters in the simulator so that the
trained RL policy can generalize to different
terrain conditions and even to the real world.

5 Experiment

We conduct experiments on the humanoid and
quadrupedal robots in the IsaacGym [49] sim-
ulator. We test LAGOON using the 28 DoF
humanoid from AMP [27, 49] and the go1
quadrupedal robot3 with 12 DoF. We use the
target DoF angles of proportional derivative
(PD) controllers as the actions. The action di-
mensions are 28 and 12 for the humanoid and
quadrupedal robots, respectively. We also de-
ploy the policies in the real-world quadrupedal
robot.

5.1 Humanoid Robot

For the humanoid robot, We conduct experiments on the tasks specified by the texts “the person runs
backward”, “cartwheel”, and “the person kicks with his left leg”. These tasks include the movement
and rotation of the entire body and fine-grained control of parts of the body.

Baselines: We compare LAGOON with other state-based imitation learning methods. BCO [34] is
a non-RL method that learns an inverse dynamics model to label the reference motion with actions
and adopt behavior cloning on the labeled motion. Other baselines are RL-based methods. State
Err. only uses the state-error reward. GAILfO [37, 38, 27] and RGAILfO [41] utilize the adversarial
rewards. In particular, RGAILfO tried to alleviate the problem of dynamics mismatch by introducing
an adversary policy when collecting trajectories. We also conduct experiments using the hand-
designed reward and denote it as pure RL. The reward for “run backward” is the backward velocity
at each timestep. For the task “kick”, let ht denote the height of the robot’s left foot at timestep t,
and the reward is computed as max(0, ht − maxs<t(hs)), which measure the difference between
the current foot height and the previous maximum height. The “cartwheel” task is excluded since it
is difficult to manually design reward functions for doing cartwheels.

Training Details: The input states of the control policy include the root’s linear velocity and angular
velocity, the local velocity and rotation of each joint, and the 3D position of the end-effectors. We

3https://www.unitree.com/go1
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train the policies by randomizing the terrains and the physics parameters to handle various complex
situations. There are four terrains during training. “Plane” refers to a flat surface without variations
in elevation. “Rand.” is terrain with a bit of random undulation. “Pyramid” is square cone terrain
with steps. “Wave” is the terrain with a great deal of undulation. We additionally train a policy for
a humanoid robot with shorter arms.

We create 4096 parallel simulation environments in IsaacGym to collect training samples. The max
episode length of each simulation is 300. Each environment would be reset when the robot in it falls
(i.e., any part of the humanoid except hands and feet is in contact with the ground). We train the
policy for 5,000 iterations and adopt the final policy for evaluation. All the RL-based baselines are
trained using the same hyper-parameters.

5.1.1 Illustration of Learned Motion
Table 1: Success rates of different tasks. We train a
single policy over all 4 terrains and evaluate the policy
separately on each terrain.

Terrian Plane Rand. Pyramid Wave

Task: Cartwheel

LAGOON 100.0 ± 0.0 98.8 ± 0.5 85.2 ± 6.6 86.4 ± 10.6
GAILfO 66.7 ± 47.1 65.6 ± 46.3 33.1 ± 38.7 58.7 ± 34.7

RGAILfO 0.0 ± 0.0 6.3 ± 8.6 16.3 ± 22.7 19.9 ± 13.2
State Err. 0.0 ± 0.0 4.7 ± 6.6 15.0 ± 21.1 11.9 ± 15.3

Pure RL - - - -
BCO 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Task: Kick

LAGOON 100.0 ± 0.0 78.9 ± 6.8 89.9 ± 7.0 69.7 ± 7.5
GAILfO 0.0 ± 0.0 46.6 ± 17.5 60.4 ± 15.1 45.5 ± 8.3

RGAILfO 33.3 ± 47.1 28.9 ± 18.9 39.7 ± 14.2 29.5 ± 14.0
State Err. 100.0 ± 0.0 75.3 ± 24.9 85.4 ± 20.7 70.0 ± 29.2

Pure RL 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
BCO 0.0 ± 0.0 0.0 ± 0 0.0 ± 0.0 0.0 ± 0.0

Task: Run Backwards

LAGOON 100.0 ± 0.0 99.8 ± 0.2 100.0 ± 0.0 95.5 ± 1.2
GAILfO 100.0 ± 0 99.6 ± 0.4 99.9 ± 0.1 96.2 ± 1.7

RGAILfO 100.0 ± 0.0 99.9 ± 0.0 99.8 ± 0.3 98.8 ± 0.5
State Err. 100.0 ± 0.0 99.1 ± 0.4 100.0 ± 0.0 97.5 ± 1.0

Pure RL 97.2 ± 0.7 25.5 ± 2.1 96.6 ± 0.2 24.0 ± 0.2
BCO 14.0 ± 0.5 13.6 ± 0.4 12.8 ± 0.9 13.5 ± 0.9

A critical problem of the generated mo-
tion is physics ignoring. As shown in
Fig. 3. The top picture is the motion gener-
ated by MDM conditioned on the language
prompt “cartwheel”, where some postures
are floating or ground-penetrating. We
mark the strange postures impossible to
imitate in red, and the posture represents
that teleportation occurs in yellow. Af-
ter retargeting and RL training, the con-
trol policy can do cartwheels in various
terrains. For example, the control pol-
icy can do cartwheels on a large slope.
We also train the policy on the robot
with short hands. We can observe that
the robot can also do cartwheels steadily.
Since these behaviors are conducted in the
physics simulator, the generated robot mo-
tion would always be physically realistic.

5.1.2 Comparision with Baselines

Figure 4: The task of “throw a ball” on the
quadrupedal robot. Even though the getting up
does not appear in the reference motion, the
quadrupedal robot learns how to get up from the
ground and then wave its front legs.

We compare LAGOON with various RL-based
baselines. The results are listed in Tab. 1. We
evaluate the policies on each task using success
rates. The BCO baseline performs worst on all
tasks and all terrains, as it is challenging to esti-
mate the environment dynamics. Pure RL poli-
cies achieve high success rates. However, we observe the policy can’t maintain balance. And it is
usually difficult to design the reward for the pure RL method. LAGOON consistently outperforms
the baselines on different terrains. For the task “cartwheel”, the low success rates of State Err. in-
dicate that tracking the states in the reference motion alone may not suffice for completing complex
skills. For the task “kick”, methods without state-error rewards (GAILfO, RGAILfO) have signifi-
cantly lower success rates than methods with state-error rewards (LAGOON, State Err.). This result
suggests that the state error reward encourages the policy to imitate the fine-grained poses.

5.2 Quadrupedal Robot

We evaluate LAGOON on the task given on the language text “the person throws a ball”. The
quadrupedal robot has an essentially different body structure from the humans, and the initial states
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of the robots and the reference motion are largely different. The robot must first learn to “stand” like
the humans without extra data. The result in Fig. 4 demonstrates that LAGOON makes the policy
“stand” on two feet, then the robot successfully takes the behavior “throws a ball”.

5.3 Real-World Robot Deployment Table 2: Randomization parameters.
Parameter Operation Distribution Unit

Obs.Gravity Additive U(−0.05, 0.05) m/s2

Obs.ROT Additive U(−0.01, 0.01) rad
Obs.VEL Additive U(−1.5, 1.5) rad/s

Trunk Mass Additive U(−1, 1) kg
Body Friction Scaling U(0.3, 3) 1

Proportional Gain Scaling U(0.7, 1.3) 1
Derivative Gain Scaling U(0.7, 1.3) 1

For the real-world experiments, besides the re-
ward mentioned in Eq. 3, we add the following
auxiliary rewards to protect the robots:

rauxt = [rplt , r
a
t , r

tor
t , rart , r

col
t , rslipt ] (4)

where rplt is a strict penalty to prevent the motor position from exceeding its limit. rat and rtort are
used to mitigate motor behavior by penalizing excessive acceleration and torque. rart is introduced
with the purpose of smoothing the action. To enhance motion regulation and safety, we incorporate
rcolt to penalize collisions. Additionally, we introduce rslipt to penalize the velocity component of the
robot’s toe perpendicular to the ground normal when it makes contact with the ground. This measure
significantly alleviates slip-related issues. Furthermore, we incorporate a contact reset mechanism
when the robot falls. We also adopt domain randomization, the details are listed in Table 2.

Figure 5: The retargeted reference motions and
the behaviors of the real-world robot. The refer-
ence motions are imperfect and physics-ignorant.

We demonstrate the real-world results of four
different motions in Fig.(1, 5), including walk-
ing backward, raising the left hand, handstand,
and throwing a ball.

We have identified multiple options for retar-
geting strategies, and LAGOON works well for
different strategies and generates diverse con-
trol policies. For instance, in the case of the
commands ”handstand” and ”throw a ball,” we
retarget all the robot joints, aligning the human
hands with the robot’s front legs and the human
legs with the robot’s rear legs Consequently, the robot executes these actions like a human. For
the “walk backward” command, we realign the human legs with the robot’s rear legs and mirror
the states to the front legs, allowing the robot to mimic a dog’s walking pattern. Furthermore, we
also explored retargeting of partial joints. When given the command ”raise the left hand,” we solely
retarget the joints of the left front hand. As a result, the robot stands on three legs while extending
its left hand.

We present a comparison between the retargeted reference motions and the actual behaviors of the
real-world robot, as illustrated in Fig. 5. Even though the reference motions appear to defy the
laws of physics, our LAGOON policies excel at completing these tasks. For example, consider the
command ”walk backward.” In the reference motion, the posture depicted cannot maintain stability,
but our robot executes a secure backward walk. Similarly, when instructed to perform a ”handstand,”
the reference motion begins from a standing posture and concludes in a precarious state. In contrast,
our policy skips the two-legged stance, ultimately achieving a safe and steady handstand.

6 Conclusion

We propose a multi-phase method LAGOON to train robot control policy following the given lan-
guage command. We first generate human motion using a language-conditioned motion diffusion
model, and retarget the generated human motion to the robot skeleton. We adopt RL to train control
policies. LAGOON finally produces a robust policy that controls a real-world quadrupedal robot to
take behaviors consistent with the language commands.
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