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Abstract

Task-oriented dialogue (TOD) systems are re-001
quired to identify key information from con-002
versations for the completion of given tasks.003
Such information is conventionally specified004
in terms of intents and slots contained in task-005
specific ontology or schemata. Since these006
schemata are designed by system developers,007
the naming convention for slots and intents is008
not uniform across tasks, and may not con-009
vey their semantics effectively. This can lead010
to models memorizing arbitrary patterns in011
data, resulting in suboptimal performance and012
generalization. In this paper, we propose013
that schemata should be modified by replac-014
ing names or notations entirely with natural015
language descriptions. We show that a lan-016
guage description-driven system exhibits bet-017
ter understanding of task specifications, higher018
performance on state tracking, improved data019
efficiency, and effective zero-shot transfer to020
unseen tasks. Following this paradigm, we021
present a simple yet effective Description-022
Driven Dialog State Tracking (D3ST) model,023
which relies purely on schema descriptions024
and an “index-picking” mechanism. We025
demonstrate the superiority in quality, data effi-026
ciency and robustness of our approach as mea-027
sured on the MultiWOZ (Budzianowski et al.,028
2018), SGD (Rastogi et al., 2020), and the re-029
cent SGD-X (Lee et al., 2021b) benchmarks.030

1 Introduction031

The design of a task-oriented dialogue (TOD) sys-032

tem conventionally starts with defining a rigid033

schema specifying types of information that are034

most critical to the completion of a given task, of-035

ten in the form of a list of slots and intents relevant036

to the task. A model can then be trained to iden-037

tify the specified slots and intents accurately from038

conversations for user language understanding.039

The format of schema elements can in principle040

be defined in arbitrary ways, but they often appear041

as abbreviated notations like train-leaveat042

and hotel-internet to indicate the task 043

domain and required information. The build- 044

ing procedure of many TOD models are driven 045

by such abbreviated or loosely defined nota- 046

tions. For example, decoder-only or sequence- 047

to-sequence (seq2seq) TOD models (Hosseini- 048

Asl et al., 2020; Zhao et al., 2021) are usually 049

trained with supervision to predict dialogue state 050

sequences like train-leaveat=3:00pm and 051

hotel-internet=no. This conventional way 052

of defining and using schema, however, has several 053

disadvantages. First, the element notations convey 054

little semantic (and possibly ambiguous) meaning 055

for the requirements of the slot (Du et al., 2021), 056

potentially harming language understanding. Sec- 057

ond, task-specific abstract schema notations make 058

it easy for a model to overfit on observed tasks 059

and fail to transfer to unseen ones, even if there 060

is sufficient semantic similarity between the two. 061

Finally, creating notations for each slot and intent 062

also complicates the schema design process. 063

In this paper, we advocate presenting schema 064

with more natural, human-readable and semanti- 065

cally richer natural language descriptions, rather 066

than abbreviated or even arbitrary ones. For exam- 067

ple, instead of “hotel-internet”, it is more 068

natural to describe this slot as “whether the 069

hotel has internet”. This would be easier 070

for both the designer of the TOD system when spec- 071

ifying the task ontology, and we also argue that it 072

plays an important role in improving model quality 073

and data efficiency. To this end, we propose a sim- 074

ple yet effective Description-Driven Dialog State 075

Tracking (D3ST) approach based on the seq2seq 076

architecture. In this approach, schema descrip- 077

tions are indexed and concatenated as prefixes to a 078

seq2seq model, which then learns to predict active 079

schema element indices and corresponding values. 080

An index-picking mechanism reduces the chance 081

of the model overfitting to specific schema descrip- 082

tions, and we demonstrate not only its superior 083
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0:departure location of train 
1:destination location of train 2:day of 
the train 2a) monday 2b) tuesday 2c) 
wednesday i1:look for a train i2:change 
ticket [user] i need to find a spot on a 
train on wednesday, can you help me find 
one? [system] yes i can. where are you 
going and what time would like to arrive 
or depart? [user] i’m leaving from london 
kings cross and going to cambridge. could 
you choose a train and give me the 
station it leaves from?

[states] 0:london kings 
cross 1:cambridge 2:2c 
[intents] i1

seq2seq

Figure 1: An example of D3ST. Red: Indexed schema description sequence as prefix; Blue: Conversation context;
Green: State prediction sequence. See Section 3 for details. Best viewed in color.

performance as measured on benchmarks includ-084

ing MultiWOZ (Budzianowski et al., 2018; Zang085

et al., 2020; Han et al., 2021; Ye et al., 2021) and086

Schema-Guided Dialogue (SGD, (Rastogi et al.,087

2020)), but also strong zero- and few-shot transfer088

capability to unseen tasks.089

There is prior work for leveraging language de-090

scriptions for better and more efficient dialogue.091

For example, the proposal of the SGD dataset (Ras-092

togi et al., 2020) encourages adoption of language093

description for out-of-domain generalization, and094

(Lin et al., 2021b,a; Lee et al., 2021a; Mi et al.,095

2021) which takes advantage of descriptions or096

instructions as extra inputs to the model for im-097

proved model quality and sample efficiency. The098

differences and contributions from our work are099

summarized as follows:100

1. We advocate creating schemata with detailed101

natural language descriptions for elements, do-102

ing away with abbreviated (or even arbitrary)103

schema element names. This paradigm not104

only simplifies schema design, but also im-105

proves model performance.106

2. Based on the above, we propose an approach107

for dialogue state tracking via index selec-108

tion, resulting in a state tracking model that109

requires a single forward pass for each turn110

to obtain the full dialogue state and leverages111

language descriptions in a simpler and more112

efficient manner than prior work.113

3. We demonstrate superior performance on mul-114

tiple benchmarks, as well as significant data115

efficiency improvement in zero-, few-shot,116

low-resource and cross-dataset settings.117

4. We demonstrate its robustness to variations118

in language descriptions by evaluating on the119

SGD-X benchmark (Lee et al., 2021b), veri- 120

fying that stronger language models lead to 121

more robust task understanding. 122

2 Related Work 123

In recent years, there has been increasing interest 124

in leveraging language prompts for data efficiency 125

and quality improvement for dialogue modelling. 126

Inclusion of task descriptions: One line of re- 127

search focuses on providing descriptions or instruc- 128

tions related to the dialogue tasks. Shah et al. 129

(2019) utilized both slot descriptions and a small 130

number of examples of slot values for learning slot 131

representations for spoken language understanding. 132

Similar to our work, Lin et al. (2021b); Lee et al. 133

(2021a) provided slot descriptions as extra inputs to 134

the model and have shown quality improvement as 135

well as zero-shot transferability. Mi et al. (2021) ex- 136

tended the descriptions to a more detailed format by 137

including task instructions, constraints and prompts 138

altogether, demonstrating advantages of providing 139

more sophisticated instructions to the model. How- 140

ever, unlike our approach, they predict slot values 141

one-by-one in turn, which becomes increasingly 142

inefficient as the number of slots increases, and is 143

also prone to oversampling slot values since most 144

slots are inactive at any stage during a dialogue. 145

In contrast, our work predicts all states in a single 146

pass, and is hence more efficient. 147

Prompting language models: Powerful lan- 148

guage models like GPT (Radford et al., 2019; 149

Brown et al., 2020) demonstrated impressive few- 150

shot learning ability even without fine-tuning. It 151

is therefore natural to consider leveraging these 152

models for few-shot dialogue modeling. Madotto 153

et al. (2020) applied GPT-2 by priming the model 154

with examples for language understanding, state 155

tracking, dialogue policy and language generation 156
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tasks respectively, and in Madotto et al. (2021) this157

approach has been extended to systematically eval-158

uate on a set of diversified tasks using GPT-3 as159

backbone. Unlike these works in which the lan-160

guage models are frozen, we finetune the models161

on downstream tasks. Budzianowski and Vulić162

(2019); Baolin Peng (2020) on the other hand, ap-163

plied GPT-2 for few-shot and transferable response164

generation with given actions, whereas our work165

focuses mainly on state tracking.166

Describe task with questions: Another line of167

research casts state tracking as a question answer-168

ing (QA) or machine reading (MR) problem (Gao169

et al., 2020; Namazifar et al., 2020; Li et al., 2021;170

Lin et al., 2021a), in which models are provided171

questions about each slot and their values are pre-172

dicted as answers to these questions. The mod-173

els are often finetuned on extractive QA or MR174

datasets, and by converting slot prediction into QA175

pairs the models are able to perform zero-shot state176

tracking on dialogue datasets. Their question gener-177

ation procedure however, is more costly than using178

schema descriptions, which we adopt in our work.179

3 Methodology180

We make two design choices for our proposed ap-181

proach: Use seq2seq model for state tracking, and182

use only descriptions of schema items to instruct183

the model.184

3.1 Model185

We choose to use seq2seq for modeling for the fol-186

lowing reasons: first, seq2seq is a general and ver-187

satile architecture that can easily handle different188

formats of language instructions; second, seq2seq189

has been shown to be an effective approach for190

DST (Zhao et al., 2021); and third, seq2seq as a191

generic model architecture can be easily initialized192

from a pretrained checkpoint publicly available.193

For our implementation and experiments, We194

use the T5 (Raffel et al., 2020) model and the asso-195

ciated pretrained checkpoints of different sizes.196

3.2 Description-Driven Modeling197

As discussed in Section 1, we aim to adopt a pure198

description-driven paradigm for dialogue model-199

ing. For this purpose, we propose a simple ap-200

proach that makes full use of schema descriptions201

with an “index-picking” mechanism, which we call202

Description-Driven Dialog State Tracking (D3ST).203

An example of D3ST is provided in Figure 1.204

Given a set of descriptions corresponding to 205

slots and intents specified by a schema, let 206

dsloti , i = 1 . . . I and dintj , j = 1 . . . J be the de- 207

scriptions for slots and intents respectively, where 208

I and J are the numbers of slots and intents. Let 209

uusrt and u
sys
t be the utterances by the user and 210

system at turn t respectively. 211

Input The input to the encoder con- 212

sists of a concatenation of two parts: 213

descriptions+ context. The descriptions 214

part contains all descriptions from the schema 215

arranged in the following format: 216

0 : dslot0 . . . I : dslotS i0 : dint0 . . . iJ : dintJ 217

Note that 0 . . . I and i0 . . . iJ are the indices we 218

assign to each of the slot and intent descriptions 219

respectively. Here, “i” is a literal character to dif- 220

ferentiate intent indices from those for slots. The 221

context part consists of conversation history in 222

the format of 223

[usr] uusr0 [sys] u
sys
0 . . . [usr] uusrT [sys] u

sys
T 224

listing all utterances up to the current turn T. To 225

prevent the model from memorizing association 226

between a specific index:description pair, we ran- 227

domize the assignment of indices to descriptions 228

for each example during training. Such a dynamic 229

construction forces the model to consider descrip- 230

tions rather than treating inputs as constant strings 231

to make generalizable predictions. 232

Output The decoder generates a sequence of dia- 233

logue states in the format 234

[states] as0 : v
s
0 . . . a

s
M : v

s
M [intents] a

i
0 . . . a

i
N 235

where asm is the index of the mth active slot and 236

there are M active slots in all, vsm is its corresponding 237

value. ain is the index of the nth active intent and 238

N is the number of active intents. This way the 239

model learns to identify active schema elements 240

with abstract indices, as we randomize the element 241

order during training. Note that inactive elements 242

are not generated. 243

Handling categorical slots Some slots are cat- 244

egorical, that is, they have pre-defined candi- 245

date values for the model to choose from. For 246

example “whether the hotel provides 247

free wifi or not” could have the categor- 248

ical values “yes” and “no”. To improve categori- 249

cal slot prediction accuracy, we enumerate possible 250

values together with their slot descriptions. That 251
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is, assuming the ith slot is categorical and has k252

values va . . . vk, its corresponding input format is253

i : dsloti ia) va . . . ik) vk254

in which ia) . . . ik) are indices assigned to each255

of the values.1 Assuming this slot is active with its256

third value (vc) being mentioned, then the corre-257

sponding prediction has the format i : ic).258

3.3 Properties259

From the formulation described in Section 3.2, we260

expect our proposed approach to have the follow-261

ing properties. First, the model relies fully on the262

understanding of schema descriptions for the iden-263

tification of active slots and intents. Second, the264

model learns to pick indices corresponding to the265

active slots, intents or categorical values, instead266

of generating these schema elements. This “index-267

picking” mechanism, based on schema description268

understanding, reduces the chance of the model269

memorizing training schemata and makes it easier270

for the model to zero-shot transfer to unseen tasks.271

Finally, unlike previous work which also takes ad-272

vantage of schema descriptions (for example Lin273

et al., 2021b; Lee et al., 2021a) but generates values274

for each slot in turn (even if a slot is inactive), our275

approach enables predicting multiple active (and276

only active) slot-value pairs together with intents277

with a single decoding pass, making the inference278

procedure more efficient.279

We also note that the sequence of schema de-280

scriptions prepended to the conversation context281

plays a similar role as instructions for specific tasks282

(Wei et al., 2021; Mishra et al., 2021). Providing283

more detailed human-readable descriptions enables284

the language model understand task requirements285

better, and leads to improved few-shot performance,286

as will be seen in experimental results.287

4 Experiments288

We design our experiments to answer the following289

questions:290

1. What is the quality of the D3ST model, when291

all training data is available?292

1One may also adopt a) . . . k) as value indices or even
completely discard indexing for categorical values, however
we found this shared indexing across categorical slots can
sometimes cause selection ambiguity when some values (like
“true” or “false”) are shared by multiple categorical slots.
We therefore apply slot-specific indices ia) . . . ik) to con-
strain index-picking within the ith slot value range.

2. How does the description type for schema 293

definition, including human-readable natural 294

descriptions, abbreviated or even random no- 295

tations, affect model quality? 296

3. How data-efficient is D3ST in the low- 297

resource or zero-shot regimes, and how do 298

different description types affect efficiency? 299

4. How robust is the model to different wordings 300

of the human-readable descriptions? 301

4.1 Setups 302

Datasets We conduct experiments on the Multi- 303

WOZ 2.1-2.4 (Budzianowski et al., 2018; Zang 304

et al., 2020; Han et al., 2021; Ye et al., 2021) and 305

SGD (Rastogi et al., 2020) datasets. The Multi- 306

WOZ dataset is known to contain annotation errors 307

in multiple places and previous work adopted dif- 308

ferent data pre-processing procedures, so we follow 309

the recommended procedure2 of using the TRADE 310

(Wu et al., 2019) script to pre-process MultiWOZ 311

2.1, but do not apply any pre-processing to 2.2-2.4 312

for reproducibility and fair comparison with exist- 313

ing results. We use Joint-Goal-Accuracy (JGA) as 314

evaluation metric, which measures the percentage 315

of turns for which all states are correctly predicted 316

by the model. 317

Training setup We use the open-source T5 code 318

base3 and the associated T5 1.1 checkpoints.4 We 319

consider models of the size base (250M parame- 320

ters), large (800M) and xxl (11B) initialized from 321

the corresponding pretrained checkpoints, and ran 322

each experiment on 64 TPU v3 chips (Jouppi et al., 323

2017). For fine-tuning, we use batch size 32 and 324

use constant learning rate of 1e − 4 across all ex- 325

periments. 326

We use the slot and intent descriptions included 327

in the original MultiWOZ and SGD datasets as in- 328

puts (dsloti and dinti described in Section 3.2) to the 329

model. For MultiWOZ, we include schema descrip- 330

tions across all domains as model prefix and set the 331

input length limit to 2048. To avoid ambiguity be- 332

tween descriptions from different domains, we also 333

add domain names as part of the descriptions. For 334

example for the hotel-parking slot, the de- 335

scription is “hotel-parking facility at 336

2https://github.com/budzianowski/
multiwoz#dialog-state-tracking

3https://github.com/google-research/
text-to-text-transfer-transformer

4https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md
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the hotel”. For SGD, we include descriptions337

from domains relevant to each turn as suggested by338

the standard evaluation, and the input length limit339

is set to 1024. The output length is 512 in all cases.340

4.2 Main Results341

Our first experiment examines the model qual-342

ity when the entire training datasets are used for343

fine-tuning. For MultiWOZ, we compare results344

with existing methods: TRADE (Wu et al., 2019),345

SUMBT (Lee et al., 2019), DS-DST (Zhang et al.,346

2020), Seq2Seq-DU (Feng et al., 2021), SOM-DST347

(Kim et al., 2020), Transformer-DST (Zeng and348

Nie, 2021), TripPy (Heck et al., 2020), SAVN349

(Wang et al., 2020), SimpleTOD (Hosseini-Asl350

et al., 2020), Seq2seq (Zhao et al., 2021), and DST-351

as-Prompting (DaP, Lee et al. (2021a)). For DaP,352

we consider two variations of the approach, namely353

sequential prediction (seq) and independent predic-354

tion (ind), described in their paper.355

For SGD, we compare with the SGD baseline356

(Rastogi et al., 2020), SGP-DST (Ruan et al., 2020),357

paDST (Ma et al., 2020), DaP, as well as Team145358

from the DSTC8 challenge (Kim et al., 2019) .359

The results are given in Table 1, which show that360

D3ST is close to, or at the state-of-the-art across361

all benchmarks, illustrating the effectiveness of the362

proposed approach. We also see that increasing the363

model size significantly improves the quality.364

Note however that not all results are directly365

comparable, and we discuss some notable incon-366

gruities. The best result on SGD is given by paDST,367

which uses both a data augmentation procedure by368

back-translating between English and Chinese, as369

well as special handcrafted rules for model predic-370

tions. In contrast, our models only train on the371

default SGD dataset, and do not apply any hand-372

crafted rules whatsoever. While paDST has signif-373

icantly higher JGA compared to D3ST base, our374

xxl model is only marginally worse. On the other375

hand, DaP also relies on slot descriptions and is376

finetuned from a T5 base model, making it directly377

comparable to our D3ST base model and we ob-378

serve better performance on SGD and MultiWOZ.379

One additional advantage of D3ST is that it pre-380

dicts all slots at once in a single inference pass. In381

contrast, the independent (ind) decoding variant of382

DaP does inference once for every slot, similar to383

most other baselines, and is thus far less efficient.384

5We are not aware of any publicly available implementa-
tion for the methodology used by Team14.

Model 2.1 2.2 2.3 2.4
TRADE 45.6 45.4 49.2 55.1
SUMBT 49.2 49.7 52.9 61.9
DS-DST 51.2 51.7 - -
Seq2Seq-DU - 54.4 - -
Transformer-DST 55.35 - - -
SOM-DST 51.2 - 55.5 66.8
TripPy 55.3 - 63.0 59.6
SAVN 54.5 - 58.0 60.1
SimpleTODH 50.3/55.7 - 51.3 -
Seq2seqF 52.8 57.6 59.3 67.1
DaP (seq) - 51.2 - -
DaP (ind) 56.7 57.6 - -
D3ST (base) 54.2 56.1 59.1 72.1
D3ST (large) 54.5 54.2 58.6 70.8
D3ST (xxl) 57.8 58.7 60.8 75.9

(a) JGA on MultiWOZ 2.1-2.4.
Model JGA Intent Req slot
SGD baseline 25.4 90.6 96.5
DaP (ind) 71.8 90.2 97.8
SGP-DST 72.2 91.8 99.0
Team14s 77.3 96.9 99.5
paDSTn 86.5 94.8 98.5
D3ST (base) 72.9 97.2 98.9
D3ST (large) 80.0 97.1 99.1
D3ST (xxl) 86.4 98.8 99.4

(b) JGA, active intent accuracy and requested slot F1 on SGD.

Table 1: Results on MultiWOZ and SGD datasets
with full training data. H: SimpleTOD results are
retrieved from the 2.3 website https://github.
com/lexmen318/MultiWOZ-coref, in which
two numbers are reported for 2.1 (one produced by the
2.3 author, the other by the original SimpleTOD pa-
per). F: No data pre-processing applied for MultiWOZ
2.1. s: No publication for the methodology or open-
source codes available. n: Data augmentation and spe-
cial rules applied. “-” indicates no public number is
available. Best results are marked in bold.

This is not salable and not consistent with current 385

trend in TOD with more domains and slots avail- 386

able. DaP also has a sequential (seq) variant that 387

also predicts all slots at once, but performs worse 388

on JGA. 389

4.3 Comparison of Description Types 390

We now study whether the quality of D3ST is 391

sensitive to the schema description types. For 392

this, we run the same experiment as in Section 393

4.2 with D3ST large and xxl, but using three dif- 394

ferent types of descriptions: human-readable lan- 395

guage descriptions, schema element names (abbre- 396

viations) as defined in the original schema, and 397
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random strings. The random string descriptions398

are generated by simply randomly permuting the399

character sequences of the original element names.400

This experiment is designed to check how a model401

with only memorization capability without any un-402

derstanding of schema element semantics does on403

seen and unseen schemas. An example of all three404

description type comparisons can be found in Ap-405

pendix A.406

Type M2.1 M2.2 M2.3 M2.4 SGD

Language 54.5 55.9 58.6 70.8 80.0
57.8 58.7 60.8 75.9 86.4

Name 55.1 55.8 59.6 72.2 73.7
57.5 57.9 60.4 75.4 79.7

Random 20.1 9.0 12.1 16.9 37.4
57.6 56.1 59.3 73.6 64.8

Table 2: Comparison between D3ST models using dif-
ferent types of descriptions on MultiWOZ and SGD.
“Language”, “Name” and “Random” correspond to
using detailed language description, schema element
name and random strings respectively. Each type con-
tains two rows, corresponding to the results given by
“large” and “xxl” models. Note that the "Random" ex-
periments for "large" models had trouble converging,
and we instead report their JGA at 85k steps.

Table 2 compares the performance with different407

description types. It can be seen that using lan-408

guage descriptions consistently outperforms other409

types, aligned with our expectation that natural and410

human-readable descriptions contain richer seman-411

tics and are aligned with the pretraining objective,412

enabling LM to perform better. Element names are413

less readable than full descriptions, but still retain414

some semantics: they preform well but fall short415

of full descriptions. On the other hand, using ran-416

dom strings performs worst on average, even on417

MultiWOZ where the training and test schema are418

the same (and the model is allowed to memorize419

descriptions from training). With random strings,420

there is the extra challenge of identifying the cor-421

rect slot id for each value to predict, since each422

example has a random shuffling of the slot ids. In-423

deed, we observed that training "large" models on424

random names is hard to converge, and instead of425

reporting their final results, we stopped these exper-426

iments early and reported their JGA at 85k steps.427

The xxl models did not encounter the same issue;428

we suspect that it was easier for larger models to429

memorize slot name permutations.430

In constrast to MultiWOZ, SGD requires models431

to generalize to unseen tasks and domains in the432

evaluation datasets. Here, using random strings433

undermined quality significantly. In general, mean- 434

ingless inputs hurt performance and lead to less 435

generalization. We therefore suggest instructing 436

the model with semantically rich representations, 437

in particular, language descriptions. 438

One more observation we make is that, on large 439

MultiWOZ models, using element names had better 440

JGA than using a full language description. This 441

trend does not hold on SGD, and also reverses when 442

trained with xxl. We hypothesize that this is a result 443

of input sequence length: on MultiWOZ we feed 444

slots descriptions from all domains as prefix, and 445

when full language description is utilized, the input 446

sequence becomes excessively long. Using element 447

names shortens the length, making a moderate-size 448

model easier to learn. In contrast, input sequence 449

lengths on SGD are lower than that on MultiWOZ, 450

since only active domains are provided as part of 451

the input. 452

4.4 Data Efficiency 453

Properly designed prefixes or prompts have been 454

shown to significantly improve an LM’s data ef- 455

ficiency (Radford et al., 2019; Liu et al., 2021; 456

Wei et al., 2021). We investigate how different 457

types of description prefixes vary in performance 458

in low-resource regimes by running experiments 459

with large and xxl models on SGD with 0.16% (10- 460

shot), 1%, and 10% of training data. For the 0.16% 461

experiment, we randomly select 10 samples from 462

each training domain to increase the domain diver- 463

sity, totalling 260 examples. For other experiments 464

the samples are uniformly sampled across the en- 465

tire training set. We sample from three random 466

seeds for each experiment. 467

Type 0.18% 1% 10%

Language
6.1 ± 0.7 36.7 ± 2.0 73.1 ± 0.2

51.0 ± 0.2 79.4 ± 0.4 83.0 ± 0.1

Name
5.0 ± 0.2 28.0 ± 2.7 69.7 ± 0.3

47.7 ± 0.5 74.9 ± 1.4 78.6 ± 0.7

Table 3: Data efficiency of D3ST using natural lan-
guage and element name descriptions, trained and eval-
uated on SGD. Each description type contains two
rows, corresponding to the results given by “large” and
“xxl” models. The metric is JGA.

The results are given in Table 3. From the table 468

we have the following observations: 469

• Using human-readable language descriptions 470

consistently outperforms other types of rep- 471
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resentations, indicating better data efficiency472

with semantically-rich descriptions.473

• With just 0.18% of the data, xxl models can474

already reach more than half of their full qual-475

ity (from Table 1). At 1%, we observe quality476

close to using 100% data. Increasing to 10%477

only yielded marginal gains.478

• Larger models are much more data efficient479

than smaller ones, as can be seen from the big480

gap between “large” and “xxl” models.481

4.5 Zero-shot Transfer to Unseen Tasks482

To assess our approach’s zero-shot transfer ability483

to unseen tasks, we conduct the following set of484

experiments:485

MultiWOZ cross-domain transfer Following a486

setup similar to TransferQA (Lin et al., 2021a)487

and T5DST (Lin et al., 2021b), we run the “leave-488

one-out” cross-domain zero-shot transfer evalua-489

tion on MultiWOZ 2.1.6 For each domain, we490

train a model on examples excluding that domain,491

and evaluate it on examples including it. Table492

4a shows our results in comparison with the base-493

lines.7 It can be seen that our approach achieves494

the best cross-domain transfer performance with495

significant gains across almost all domains.496

SGD unseen service transfer The SGD bench-497

mark contains numerous services and some do-498

mains only present in the test set. We present the499

results for zero-shot transfer to these domains and500

services in Table 4b. Note that D3ST base has501

worse JGA on unseen domains when fairly com-502

pared to DaP and SGP-DST. However, D3ST has503

superlative JGA on seen domains, even better than504

paDST (with data augmentation and hand-crafted505

rules). In addition, increasing the size of D3ST506

further increases both seen and especially unseen507

JGA, indicating better generalization. At xxl, JGA508

on unseen domains is almost equal to paDST.509

Cross-dataset transfer In this setup, we evaluate510

if a model trained on one dataset can be directly511

applied to another dataset. To this end, we train a512

model on SGD then directly evaluate on the Mul-513

6For zero-shot evaluation, Lin et al. (2021a) and Lin et al.
(2021b) experimented on MultiWOZ 2.1 and 2.0 respectively.
While our models are trained and evaluated on MultiWOZ 2.1,
we include results from both of them for comparison.

7When skipping the train domain, we postpro-
cess predictions for slots train-departure and
train-destination by ignoring the suffix "train
station". This is semantically correct and improves JGA.

tiWOZ 2.4 test set, and vice versa8. In both cases 514

we use the xxl model from Section 4.2, and report 515

the numbers in Table 4. 516

Despite obvious schema differences and domain 517

mismatch between MultiWOZ and SGD, our model 518

trained on MultiWOZ already achieves zero-shot 519

quality on SGD close to the BERT-baseline (Ras- 520

togi et al., 2020) with 25.4% JGA. Our model 521

trained on SGD and evaluated on MultiWOZ shows 522

similarly strong zero-shot results. Both results 523

are much lower than the state of the art for both 524

datasets however, due to differing biases defined 525

in schemata between the two datasets, and from 526

latent knowledge that isn’t captured from a schema 527

alone. 528

Domain JGA
D3ST TransferQA T5DST

Attraction 56.4 31.3 33.1
Hotel 21.8 22.7 21.2
Restaurant 38.2 26.3 21.7
Taxi 78.4 61.9 64.6
Train 38.7 36.7 35.4
Avg 46.7 35.8 35.2

(a) Cross-domain (leave-one-out) transfer on MultiWOZ.

Model JGA
Overall Seen Unseen

SGD Baseline 25.4 41.2 20.0
DaP (ind) 71.8 83.3 68.0
SGP-DST 72.2 87.9 66.9
Team14s 77.3 90.0 73.0
paDSTn 86.5 92.4 84.6
D3ST (base) 72.9 92.5 66.4
D3ST (large) 80.0 93.8 75.4
D3ST (xxl) 86.4 95.8 83.3

(b) JGA on seen versus unseen services for SGD. s and n have
the same meaning as in Table 1.

Transfer JGA
SGD→MultiWOZ 28.9
MultiWOZ→SGD 23.1

(c) Cross-dataset transfer b/w SGD and MultiWOZ 2.4.

Table 4: Zero-shot transfer evaluation results from
three different setups.

Qualitative Evaluation In addition to quantita- 529

tively evaluating zero-shot transfer, we qualitatively 530

examined examples of D3ST transferring to novel 531

domains. We handcrafted a few dialogues for do- 532

mains very different from the ones seen in the 533

SGD dataset (e.g. conference submission, inter- 534

net provider, e-commerce retailer). We designed 535

the dialogues to be as stylistically realistic as pos- 536

8Note that the SGD dataset defines the services that will
occur in each dialogue, whereas MultiWOZ expects models to
be able to predict any of its domains for all dialogues. To make
it compatible between SGD and MultiWOZ for cross-task
zero-shot transfer, we limit the schema prefix for MutliWOZ
to domains that appear in the current dialogue.
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sible for customer service scenarios. We tasked537

the xxl model trained on SGD (from Table 1) with538

inferring their dialogue states, and share one ex-539

ample in Table 5. More examples can be found540

in Table A2 of Appendix B. We observe that the541

model performs surprisingly well across all of our542

handcrafted dialogues, even though the domains543

are very different from the training data.544

Domain: Conference Submission

Input: 0:name of the conference 1:title
of the paper 2:the first author of
the paper 3:research areas for the
paper 4:email for openreview account
i1:submit a paper to a conference
i2:check if a paper has been accepted
[user] hi, i’d like to submit a
paper for a conference [system]
that’s great. which conference would
you like to submit to? [user] i’d
like to submit to acl 2022 [system]
ok. could you share the title of
your paper and the name of your
first author? [user] the paper is
"description-driven task-oriented
dialog modeling", and the first author
is grace hopper [system] great, thank
you. note that this year, we require
all paper authors to be registered on
openreview. could you give the email
for your openreview account? [user]
sure, its gracehopper@gmail.com

Prediction:[states] 0:acl 2022
1:description-driven task-oriented
dialog modeling 2:grace hopper
4:gracehopper@gmail.com [intents] i1

Table 5: An example of D3ST performing zero-shot
transfer to a hypothetical "Conference Submission" do-
main. The predicted dialogue state is entirely correct.
Boldface and color were added for visual clarity.

4.6 Robustness to Variations of Descriptions545

Since there are many ways to provide descriptions546

for a given schema, a natural question to raise about547

this approach is how robust the model is against548

different choices of descriptions. The recently pro-549

posed SGD-X benchmark (Lee et al., 2021b) is550

designed specifically for the study of this problem.551

SGD-X contains five variations of the original SGD,552

each one using a different set of schema descrip-553

tions provided by different crowd-source workers.554

To assess the robustness of D3ST, we use the large555

and xxl models evaluated in Section 4.2 and decode556

test sets from each of the five variants of SGD-X.557

A robust model is expected to have smaller fluc-558

tuations in predictions across schema variants for559

the same dialogue context, as measured by Schema560

Sensitivity SS(JGA) defined in Lee et al. (2021b),.561

which calculates the average variation coefficient562

of JGA at turn level. A lower SS(JGA) value563

implies less fluctuation and more robustness.564

We compare the robustness of models using dif- 565

ferent prompt types in Table 6. From the numbers 566

we see that using the most human-readable natural 567

language descriptions not only achieves the highest 568

average accuracy over all SGD-X test set variants, 569

but also enjoys the smallest SS(JGA) at the same 570

model size. This indicates that description-driven 571

models are more robust. On the other hand, using 572

element names and random names have progres- 573

sively lower mean accuracy and higher sensitivity 574

to schema changes. 575

Size Orig v1 v2 v3 v4 v5 Avg v1-5 SS(JGA)
large 80.0 79.9 79.4 76.5 71.9 69.1 75.3 0.26
xxl 86.4 85.5 85.1 73.9 75.5 68.9 77.8 0.27

(a) Natural language description
Size Orig v1 v2 v3 v4 v5 Avg v1-5 SS(JGA)
large 73.7 72 69.5 66.4 61.1 65.7 66.9 0.37
xxl 79.7 80.8 76.6 74.2 61.2 72.3 73.0 0.35

(b) Element name description
Size Orig v1 v2 v3 v4 v5 Avg v1-5 SS(JGA)
large 37.4 29.3 34.6 28.0 25.2 25.0 28.4 0.74
xxl 64.8 67.8 68.8 72.9 58.1 68.1 67.1 0.51

(c) Random description

Table 6: Robustness comparison for various description
types. SS(JGA) refers to schema sensitivity for JGA.

5 Conclusion 576

We advocate using human-readable language de- 577

scriptions in place of abbreviated or arbitrary nota- 578

tions for schema definition in TOD modeling. We 579

believe this schema representation contains more 580

meaningful information for a strong LM to lever- 581

age, leading to better performance and improved 582

data efficiency. To this end, we propose a sim- 583

ple and effective DST model named “Description- 584

Driven Dialogue State Tracking” (D3ST), which 585

relies fully on schema descriptions and an index- 586

picking mechanism to indicate active slots or in- 587

tents. Our experiments verify the effectiveness of 588

description-driven dialogue modeling in the fol- 589

lowing ways. First, D3ST achieves superior qual- 590

ity on MultiWOZ and SGD. Second, using lan- 591

guage descriptions outperforms abbreviations or 592

arbitrary notations. Third, the description driven 593

approach improves data-efficiency, and enables ef- 594

fective zero-shot transfer to unseen tasks and do- 595

mains. Fourth, using language for schema descrip- 596

tion improves model robustness as measured by the 597

SGD-X benchmark. 598
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6 Ethical Considerations599

We proposed a more efficient way of building TOD600

systems by leveraging language descriptions. Our601

intended use cases include developing automated602

conversational agents for customer service centers,603

hotel and ticket booking systems, etc. Our exper-604

iments are conducted on publicly available task-605

oriented conversation datasets in English, cover-606

ing common domains like restaurant reservation,607

movie tickets, hotel reservation etc. We hope our608

work contributes to improving TOD system lan-609

guage understanding quality while reducing re-610

liance on large amounts of annotated data.611
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Language

0:playback device on which the song is to be played 0a) bedroom speaker
0b) tv 0c) kitchen speaker 1=name of the artist the song is performed
by 2=name of the song 3=album the song belongs to 4=genre of the song
i0=search for a song based on the name and optionally other attributes
i1=play a song by its name and optionally artist [user] i want to find
a movie. [system] what is your location. [user] santa rosa. i want to
see it at 3rd street cinema. [system] i found 3 movies. does hellboy,
how to train your dragon: the hidden world or the upside interest you?
[user] how to train your dragon: the hidden world is perfect. can you
find me some songs from the album summer anthems. [system] i found 1
song you may like. how about no other love from the album summer anthems
by common kings? [user] that would be great. [system] play the song
now? [user] play it on the bedroom device.

Name

0:music_2-genre 1:music_2-playback_device 1a) bedroom speaker 1b) kitchen
speaker 1c) tv 2:music_2-album 3:music_2-artist 4:music_2-song_name
i0:music_2-playmedia i1:music_2-lookupmusic [user] i want to find a
movie. [system] what is your location. [user] santa rosa. i want to
see it at 3rd street cinema. [system] i found 3 movies. does hellboy,
how to train your dragon: the hidden world or the upside interest you?
[user] how to train your dragon: the hidden world is perfect. can you
find me some songs from the album summer anthems. [system] i found 1
song you may like. how about no other love from the album summer anthems
by common kings? [user] that would be great. [system] play the song
now? [user] play it on the bedroom device.

Random

0:e-e_ciugs2mrn 1:psuekc_l-2imceyibaca_dv 1a) bedroom speaker 1b) kitchen
speaker 1c) tv 2:umm2uisc_bal- 3:satriti_2-sumc 4:_-onassng2_cemmui
i0:aeusmmci2-adipl_y i1:miiu_2olosckucp-ums [user] i want to find a
movie. [system] what is your location. [user] santa rosa. i want to
see it at 3rd street cinema. [system] i found 3 movies. does hellboy,
how to train your dragon: the hidden world or the upside interest you?
[user] how to train your dragon: the hidden world is perfect. can you
find me some songs from the album summer anthems. [system] i found 1
song you may like. how about no other love from the album summer anthems
by common kings? [user] that would be great. [system] play the song
now? [user] play it on the bedroom device.

States [states] 1:1a 2:summer anthems 4:no other love [intents] i0

Table A1: Examples of the same SGD dialogue with different description types. "Language" uses a detailed natural
language description, "Name" uses the schema element name, and "Random" is generated from a random shuffling
of the slot name. Note that the categorical slot value enumeration is unaffected in "Random", and that all three
description types would have the same target slots and intents.
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Domain Internet Provider

Inputs

0:email address of the account 1:whether professional help is needed for
internet installation 1a) true 1b) false 2:whether to bundle services on
the same plan 2a) true 2b) false 3:download speed of the internet plan
4:whether services are for residential or business use 4a) residential 4b)
business 5:the address to provide services to i0=buy or change an internet
plan i1:file a formal complaint [user] hi there - my internet contract
is up for renewal, and i’m interested in exploring other plan options.
[system] happy to help. is this for your home or for a business? [user]
home [system] what’s the email associated with your account? [user]
noamchomsky@hotmail.com [system] thanks. your current plan is 25 mbps
download speed for $53 / month. the two other plans are 50 mbps for $63
/ month and 100 mbps for $73 / month. would you interested in either of
those? [user] i’m interested in upgrading to the 50 mbps plan. [system]
great. for $10 / month more, would you like to include our basic cable
plan? [user] no thanks. i’ll need to talk this over with my partner.
thank you for your help.

States [states] 0:noamchomsky@hotmail.com 3:50 mbps 4:4a [intents] i0
Domain E-Commerce Retailer

Inputs

0:phone number associated with the customer’s account 1:a coupon code to
apply to the purchase 2:the reason for the product return 2a) accidental
purchase 2b) malfunction 2c) preference 3:the retail product to purchase
or to be returned 4:date the product was purchased 5:identifier associated
with the purchase i0:return a product i1:purchase a product [system] hi
how can i help you today? [user] hello - i recently purchased a glow in
the dark ball that i’d like to return. [system] no problem. i’m happy
to help. can you provide the order number or date of purchase please?
[user] 1ozdl3v260lkq, and i purchased it last week on nov 1, 2021 [system]
thanks. and what’s the reason for the return? [user] the ball seems
to be broken. it doesn’t actually glow in the dark. [system] sorry to
hear about that. we’ll process the return and you should receive a refund
within 10 business days. is there anything else i can do for you? [user]
no, thanks for your help!

States [states] 2:2b 3:glow in the dark ball 4:nov 1, 2021 5:1ozdl3v260lkq
[intents] i0

Table A2: Two more examples of D3ST trained on SGD performing zero-shot transfer to novel domains. The only
error is in the "Internet Provider" example, where the model misses that the slot for "whether to bundle services on
the same plan" should be false. We hypothesize that "bundle" is industry jargon that the model fails to associate
with the dialogue context.
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