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Abstract

Task-oriented dialogue (TOD) systems are re-
quired to identify key information from con-
versations for the completion of given tasks.
Such information is conventionally specified
in terms of intents and slots contained in task-
specific ontology or schemata. Since these
schemata are designed by system developers,
the naming convention for slots and intents is
not uniform across tasks, and may not con-
vey their semantics effectively. This can lead
to models memorizing arbitrary patterns in
data, resulting in suboptimal performance and
generalization. In this paper, we propose
that schemata should be modified by replac-
ing names or notations entirely with natural
language descriptions. We show that a lan-
guage description-driven system exhibits bet-
ter understanding of task specifications, higher
performance on state tracking, improved data
efficiency, and effective zero-shot transfer to
unseen tasks. Following this paradigm, we
present a simple yet effective Description-
Driven Dialog State Tracking (D3ST) model,
which relies purely on schema descriptions
and an “index-picking” mechanism. We
demonstrate the superiority in quality, data effi-
ciency and robustness of our approach as mea-
sured on the MultiwWOZ (Budzianowski et al.,
2018), SGD (Rastogi et al., 2020), and the re-
cent SGD-X (Lee et al., 2021b) benchmarks.

1 Introduction

The design of a task-oriented dialogue (TOD) sys-
tem conventionally starts with defining a rigid
schema specifying types of information that are
most critical to the completion of a given task, of-
ten in the form of a list of slots and intents relevant
to the task. A model can then be trained to iden-
tify the specified slots and intents accurately from
conversations for user language understanding.
The format of schema elements can in principle
be defined in arbitrary ways, but they often appear
as abbreviated notations like train-leaveat

and hotel-internet to indicate the task
domain and required information. The build-
ing procedure of many TOD models are driven
by such abbreviated or loosely defined nota-
tions. For example, decoder-only or sequence-
to-sequence (seq2seq) TOD models (Hosseini-
Asl et al., 2020; Zhao et al., 2021) are usually
trained with supervision to predict dialogue state
sequences like train-leaveat=3:00pm and
hotel-internet=no. This conventional way
of defining and using schema, however, has several
disadvantages. First, the element notations convey
little semantic (and possibly ambiguous) meaning
for the requirements of the slot (Du et al., 2021),
potentially harming language understanding. Sec-
ond, task-specific abstract schema notations make
it easy for a model to overfit on observed tasks
and fail to transfer to unseen ones, even if there
is sufficient semantic similarity between the two.
Finally, creating notations for each slot and intent
also complicates the schema design process.

In this paper, we advocate presenting schema
with more natural, human-readable and semanti-
cally richer natural language descriptions, rather
than abbreviated or even arbitrary ones. For exam-
ple, instead of “hotel-internet”, it is more
natural to describe this slot as “whether the
hotel has internet”. This would be easier
for both the designer of the TOD system when spec-
ifying the task ontology, and we also argue that it
plays an important role in improving model quality
and data efficiency. To this end, we propose a sim-
ple yet effective Description-Driven Dialog State
Tracking (D3ST) approach based on the seq2seq
architecture. In this approach, schema descrip-
tions are indexed and concatenated as prefixes to a
seq2seq model, which then learns to predict active
schema element indices and corresponding values.
An index-picking mechanism reduces the chance
of the model overfitting to specific schema descrip-
tions, and we demonstrate not only its superior



(//;:departure location of train
l:destination location of train 2:day of

the train 2a) monday 2b) tuesday 2c)
wednesday il:look for a train i2:change
ticket [user] i need to find a spot on a
train on wednesday, can you help me find
one? [system] yes i can. where are you
going and what time would like to arrive
or depart? [user] i’m leaving from london
kings cross and going to cambridge. could
you choose a train and give me the A///

station it leaves from?

[states] 0:london kings
cross l:cambridge 2:2c
[intents] il

|IIHHH%%|H%H!I|

Figure 1: An example of D3ST. Red: Indexed schema description sequence as prefix; Blue: Conversation context;
Green: State prediction sequence. See Section 3 for details. Best viewed in color.

performance as measured on benchmarks includ-
ing MultiWOZ (Budzianowski et al., 2018; Zang
et al., 2020; Han et al., 2021; Ye et al., 2021) and
Schema-Guided Dialogue (SGD, (Rastogi et al.,
2020)), but also strong zero- and few-shot transfer
capability to unseen tasks.

There is prior work for leveraging language de-
scriptions for better and more efficient dialogue.
For example, the proposal of the SGD dataset (Ras-
togi et al., 2020) encourages adoption of language
description for out-of-domain generalization, and
(Lin et al., 2021b,a; Lee et al., 2021a; Mi et al.,
2021) which takes advantage of descriptions or
instructions as extra inputs to the model for im-
proved model quality and sample efficiency. The
differences and contributions from our work are
summarized as follows:

1. We advocate creating schemata with detailed
natural language descriptions for elements, do-
ing away with abbreviated (or even arbitrary)
schema element names. This paradigm not
only simplifies schema design, but also im-
proves model performance.

2. Based on the above, we propose an approach
for dialogue state tracking via index selec-
tion, resulting in a state tracking model that
requires a single forward pass for each turn
to obtain the full dialogue state and leverages
language descriptions in a simpler and more
efficient manner than prior work.

3. We demonstrate superior performance on mul-
tiple benchmarks, as well as significant data
efficiency improvement in zero-, few-shot,
low-resource and cross-dataset settings.

4. We demonstrate its robustness to variations
in language descriptions by evaluating on the

SGD-X benchmark (Lee et al., 2021b), veri-
fying that stronger language models lead to
more robust task understanding.

2 Related Work

In recent years, there has been increasing interest
in leveraging language prompts for data efficiency
and quality improvement for dialogue modelling.

Inclusion of task descriptions: One line of re-
search focuses on providing descriptions or instruc-
tions related to the dialogue tasks. Shah et al.
(2019) utilized both slot descriptions and a small
number of examples of slot values for learning slot
representations for spoken language understanding.
Similar to our work, Lin et al. (2021b); Lee et al.
(2021a) provided slot descriptions as extra inputs to
the model and have shown quality improvement as
well as zero-shot transferability. Mi et al. (2021) ex-
tended the descriptions to a more detailed format by
including task instructions, constraints and prompts
altogether, demonstrating advantages of providing
more sophisticated instructions to the model. How-
ever, unlike our approach, they predict slot values
one-by-one in turn, which becomes increasingly
inefficient as the number of slots increases, and is
also prone to oversampling slot values since most
slots are inactive at any stage during a dialogue.
In contrast, our work predicts all states in a single
pass, and is hence more efficient.

Prompting language models: Powerful lan-
guage models like GPT (Radford et al., 2019;
Brown et al., 2020) demonstrated impressive few-
shot learning ability even without fine-tuning. It
is therefore natural to consider leveraging these
models for few-shot dialogue modeling. Madotto
et al. (2020) applied GPT-2 by priming the model
with examples for language understanding, state
tracking, dialogue policy and language generation



tasks respectively, and in Madotto et al. (2021) this
approach has been extended to systematically eval-
uate on a set of diversified tasks using GPT-3 as
backbone. Unlike these works in which the lan-
guage models are frozen, we finetune the models
on downstream tasks. Budzianowski and Vulié
(2019); Baolin Peng (2020) on the other hand, ap-
plied GPT-2 for few-shot and transferable response
generation with given actions, whereas our work
focuses mainly on state tracking.

Describe task with questions: Another line of
research casts state tracking as a question answer-
ing (QA) or machine reading (MR) problem (Gao
et al., 2020; Namazifar et al., 2020; Li et al., 2021;
Lin et al., 2021a), in which models are provided
questions about each slot and their values are pre-
dicted as answers to these questions. The mod-
els are often finetuned on extractive QA or MR
datasets, and by converting slot prediction into QA
pairs the models are able to perform zero-shot state
tracking on dialogue datasets. Their question gener-
ation procedure however, is more costly than using
schema descriptions, which we adopt in our work.

3 Methodology

We make two design choices for our proposed ap-
proach: Use seq2seq model for state tracking, and
use only descriptions of schema items to instruct
the model.

3.1 Model

We choose to use seq2seq for modeling for the fol-
lowing reasons: first, seq2seq is a general and ver-
satile architecture that can easily handle different
formats of language instructions; second, seq2seq
has been shown to be an effective approach for
DST (Zhao et al., 2021); and third, seq2seq as a
generic model architecture can be easily initialized
from a pretrained checkpoint publicly available.
For our implementation and experiments, We
use the TS5 (Raffel et al., 2020) model and the asso-
ciated pretrained checkpoints of different sizes.

3.2 Description-Driven Modeling

As discussed in Section 1, we aim to adopt a pure
description-driven paradigm for dialogue model-
ing. For this purpose, we propose a simple ap-
proach that makes full use of schema descriptions
with an “index-picking” mechanism, which we call
Description-Driven Dialog State Tracking (D3ST).
An example of D3ST is provided in Figure 1.

Given a set of descriptions corresponding to

slots and intents specified by a schema, let
dg'°*,i=1...Tand dj*,j =1...J be the de-
scriptions for slots and intents respectively, where
I and J are the numbers of slots and intents. Let
ulsT and uy’® be the utterances by the user and
system at turn t respectively.
Input The input to the encoder con-
sists of a concatenation of two parts:
descriptions 4 context. The descriptions
part contains all descriptions from the schema
arranged in the following format:

0:d§™% ... T:d5%" j0:dg™®...iJ: 4™

Note that 0...I and i0...iJ are the indices we
assign to each of the slot and intent descriptions
respectively. Here, “i” is a literal character to dif-
ferentiate intent indices from those for slots. The
context part consists of conversation history in

the format of

usr ys ys

[usr]|ug °r

[sys]ug’® ... [usr] up® [sys]us

listing all utterances up to the current turn T. To
prevent the model from memorizing association
between a specific index:description pair, we ran-
domize the assignment of indices to descriptions
for each example during training. Such a dynamic
construction forces the model to consider descrip-
tions rather than treating inputs as constant strings
to make generalizable predictions.
Output The decoder generates a sequence of dia-
logue states in the format

[states]af : v5...as : v§ [intents]ag...ay
where a3 is the index of the m" active slot and
there are M active slots in all, v? is its corresponding
value. al is the index of the n'" active intent and
N is the number of active intents. This way the
model learns to identify active schema elements
with abstract indices, as we randomize the element
order during training. Note that inactive elements
are not generated.
Handling categorical slots Some slots are cat-
egorical, that is, they have pre-defined candi-
date values for the model to choose from. For
example “whether the hotel provides
free wifi or not” could have the categor-
ical values “yes” and “no”. To improve categori-
cal slot prediction accuracy, we enumerate possible
values together with their slot descriptions. That



is, assuming the i'" slot is categorical and has k
values v, . . . vy, its corresponding input format is
i:d$%%ia)v,...1ik) vg
in which ia)...ik) are indices assigned to each
of the values.! Assuming this slot is active with its
third value (v.) being mentioned, then the corre-

sponding prediction has the format i : ic).

3.3 Properties

From the formulation described in Section 3.2, we
expect our proposed approach to have the follow-
ing properties. First, the model relies fully on the
understanding of schema descriptions for the iden-
tification of active slots and intents. Second, the
model learns to pick indices corresponding to the
active slots, intents or categorical values, instead
of generating these schema elements. This “index-
picking” mechanism, based on schema description
understanding, reduces the chance of the model
memorizing training schemata and makes it easier
for the model to zero-shot transfer to unseen tasks.
Finally, unlike previous work which also takes ad-
vantage of schema descriptions (for example Lin
etal., 2021b; Lee et al., 2021a) but generates values
for each slot in turn (even if a slot is inactive), our
approach enables predicting multiple active (and
only active) slot-value pairs together with intents
with a single decoding pass, making the inference
procedure more efficient.

We also note that the sequence of schema de-
scriptions prepended to the conversation context
plays a similar role as instructions for specific tasks
(Wei et al., 2021; Mishra et al., 2021). Providing
more detailed human-readable descriptions enables
the language model understand task requirements
better, and leads to improved few-shot performance,
as will be seen in experimental results.

4 Experiments

We design our experiments to answer the following
questions:

1. What is the quality of the D3ST model, when
all training data is available?

'One may also adopt a)...k) as value indices or even
completely discard indexing for categorical values, however
we found this shared indexing across categorical slots can
sometimes cause selection ambiguity when some values (like
“true” or “false”) are shared by multiple categorical slots.
We therefore apply slot-specific indices ia)...ik) to con-
strain index-picking within the %" slot value range.

2. How does the description type for schema
definition, including human-readable natural
descriptions, abbreviated or even random no-
tations, affect model quality?

3. How data-efficient is D3ST in the low-
resource or zero-shot regimes, and how do
different description types affect efficiency?

4. How robust is the model to different wordings
of the human-readable descriptions?

4.1 Setups

Datasets We conduct experiments on the Multi-
WOZ 2.1-2.4 (Budzianowski et al., 2018; Zang
et al., 2020; Han et al., 2021; Ye et al., 2021) and
SGD (Rastogi et al., 2020) datasets. The Multi-
WOZ dataset is known to contain annotation errors
in multiple places and previous work adopted dif-
ferent data pre-processing procedures, so we follow
the recommended procedure? of using the TRADE
(Wu et al., 2019) script to pre-process MultiwOZ
2.1, but do not apply any pre-processing to 2.2-2.4
for reproducibility and fair comparison with exist-
ing results. We use Joint-Goal-Accuracy (JGA) as
evaluation metric, which measures the percentage
of turns for which all states are correctly predicted
by the model.

Training setup We use the open-source TS5 code
base? and the associated T5 1.1 checkpoints.* We
consider models of the size base (250M parame-
ters), large (800M) and xxI (11B) initialized from
the corresponding pretrained checkpoints, and ran
each experiment on 64 TPU v3 chips (Jouppi et al.,
2017). For fine-tuning, we use batch size 32 and
use constant learning rate of le — 4 across all ex-
periments.

We use the slot and intent descriptions included
in the original MultiWOZ and SGD datasets as in-
puts (d5§°% and di** described in Section 3.2) to the
model. For MultiwWOZ, we include schema descrip-
tions across all domains as model prefix and set the
input length limit to 2048. To avoid ambiguity be-
tween descriptions from different domains, we also
add domain names as part of the descriptions. For
example for the hotel-parking slot, the de-
scription is “hotel-parking facility at

https://github.com/budzianowski/
multiwoz#dialog-state-tracking

3https://github.com/google-research/
text-to-text-transfer-transformer

*https://github.com/google-research/

text-to-text-transfer-transformer/blob/
main/released_checkpoints.md
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the hotel”. For SGD, we include descriptions
from domains relevant to each turn as suggested by
the standard evaluation, and the input length limit
is set to 1024. The output length is 512 in all cases.

4.2 Main Results

Our first experiment examines the model qual-
ity when the entire training datasets are used for
fine-tuning. For MultiWOZ, we compare results
with existing methods: TRADE (Wu et al., 2019),
SUMBT (Lee et al., 2019), DS-DST (Zhang et al.,
2020), Seq2Seq-DU (Feng et al., 2021), SOM-DST
(Kim et al., 2020), Transformer-DST (Zeng and
Nie, 2021), TripPy (Heck et al., 2020), SAVN
(Wang et al., 2020), SimpleTOD (Hosseini-Asl
et al., 2020), Seq2seq (Zhao et al., 2021), and DST-
as-Prompting (DaP, Lee et al. (2021a)). For DaP,
we consider two variations of the approach, namely
sequential prediction (seq) and independent predic-
tion (ind), described in their paper.

For SGD, we compare with the SGD baseline
(Rastogi et al., 2020), SGP-DST (Ruan et al., 2020),
paDST (Ma et al., 2020), DaP, as well as Team14°
from the DSTCS challenge (Kim et al., 2019) .

The results are given in Table 1, which show that
D3ST is close to, or at the state-of-the-art across
all benchmarks, illustrating the effectiveness of the
proposed approach. We also see that increasing the
model size significantly improves the quality.

Note however that not all results are directly
comparable, and we discuss some notable incon-
gruities. The best result on SGD is given by paDST,
which uses both a data augmentation procedure by
back-translating between English and Chinese, as
well as special handcrafted rules for model predic-
tions. In contrast, our models only train on the
default SGD dataset, and do not apply any hand-
crafted rules whatsoever. While paDST has signif-
icantly higher JGA compared to D3ST base, our
xxI model is only marginally worse. On the other
hand, DaP also relies on slot descriptions and is
finetuned from a TS base model, making it directly
comparable to our D3ST base model and we ob-
serve better performance on SGD and MultiwWOZ.
One additional advantage of D3ST is that it pre-
dicts all slots at once in a single inference pass. In
contrast, the independent (ind) decoding variant of
DaP does inference once for every slot, similar to
most other baselines, and is thus far less efficient.

SWe are not aware of any publicly available implementa-
tion for the methodology used by Team14.

Model 2.1 22 23 24
TRADE 456 454 492 55.1
SUMBT 49.2  49.7 529 619
DS-DST 51.2 517 - -
Seq2Seq-DU - 544 - -
Transformer-DST ~ 55.35 - - -
SOM-DST 51.2 - 555 66.8
TripPy 55.3 - 63.0 59.6
SAVN 54.5 - 58.0 60.1
SimpleTOD % 50.3/55.7 - 513 -
Seq2seq4+ 52.8 57.6 59.3 67.1
DaP (seq) - 512 - -
DaP (ind) 56.7 576 - -
D3ST (base) 542  56.1 59.1 72.1
D3ST (large) 545 542 58.6 70.8
D3ST (xx1) 57.8 58.7 60.8 75.9
(a) JGA on MultiwOZ 2.1-2 4.
Model JGA Intent Req slot
SGD baseline 254  90.6 96.5
DaP (ind) 71.8  90.2 97.8
SGP-DST 722 91.8 99.0
Team14 A 773  96.9 99.5
paDSTH 86.5 948 98.5
D3ST (base) 729 97.2 98.9
D3ST (large) 80.0 97.1 99.1
D3ST (xx1) 86.4  98.8 99.4

(b) JGA, active intent accuracy and requested slot F1 on SGD.

Table 1: Results on MultiWOZ and SGD datasets
with full training data. : SimpleTOD results are
retrieved from the 2.3 website https://github.
com/lexmen318/MultiWOZ—-coref, in which
two numbers are reported for 2.1 (one produced by the
2.3 author, the other by the original SimpleTOD pa-
per). 4: No data pre-processing applied for MultiwOZ
2.1. A: No publication for the methodology or open-
source codes available. l: Data augmentation and spe-
cial rules applied. “-” indicates no public number is
available. Best results are marked in bold.

This is not salable and not consistent with current
trend in TOD with more domains and slots avail-
able. DaP also has a sequential (seq) variant that
also predicts all slots at once, but performs worse
on JGA.

4.3 Comparison of Description Types

We now study whether the quality of D3ST is
sensitive to the schema description types. For
this, we run the same experiment as in Section
4.2 with D3ST large and xxI, but using three dif-
ferent types of descriptions: human-readable lan-
guage descriptions, schema element names (abbre-
viations) as defined in the original schema, and
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random strings. The random string descriptions
are generated by simply randomly permuting the
character sequences of the original element names.
This experiment is designed to check how a model
with only memorization capability without any un-
derstanding of schema element semantics does on
seen and unseen schemas. An example of all three
description type comparisons can be found in Ap-
pendix A.

Type M2.1 M22 M23 M24 SGD
Language 54.5 559 58.6 70.8 80.0
57.8 58.7 60.8 75.9 86.4
Name 55.1 55.8 59.6 72.2 73.7
57.5 579 60.4 75.4 79.7
20.1 9.0 12.1 16.9 37.4
Random

57.6  56.1 59.3 73.6 648

Table 2: Comparison between D3ST models using dif-
ferent types of descriptions on MultiWwOZ and SGD.
“Language”, ‘“Name” and “Random” correspond to
using detailed language description, schema element
name and random strings respectively. Each type con-
tains two rows, corresponding to the results given by
“large” and “xx1” models. Note that the "Random" ex-
periments for "large" models had trouble converging,
and we instead report their JGA at 85k steps.

Table 2 compares the performance with different
description types. It can be seen that using lan-
guage descriptions consistently outperforms other
types, aligned with our expectation that natural and
human-readable descriptions contain richer seman-
tics and are aligned with the pretraining objective,
enabling LM to perform better. Element names are
less readable than full descriptions, but still retain
some semantics: they preform well but fall short
of full descriptions. On the other hand, using ran-
dom strings performs worst on average, even on
MultiWOZ where the training and test schema are
the same (and the model is allowed to memorize
descriptions from training). With random strings,
there is the extra challenge of identifying the cor-
rect slot id for each value to predict, since each
example has a random shuffling of the slot ids. In-
deed, we observed that training "large" models on
random names is hard to converge, and instead of
reporting their final results, we stopped these exper-
iments early and reported their JGA at 85k steps.
The xx1 models did not encounter the same issue;
we suspect that it was easier for larger models to
memorize slot name permutations.

In constrast to MultiWwOZ, SGD requires models
to generalize to unseen tasks and domains in the
evaluation datasets. Here, using random strings

undermined quality significantly. In general, mean-
ingless inputs hurt performance and lead to less
generalization. We therefore suggest instructing
the model with semantically rich representations,
in particular, language descriptions.

One more observation we make is that, on large
MultiWOZ models, using element names had better
JGA than using a full language description. This
trend does not hold on SGD, and also reverses when
trained with xx1. We hypothesize that this is a result
of input sequence length: on MultiWwOZ we feed
slots descriptions from all domains as prefix, and
when full language description is utilized, the input
sequence becomes excessively long. Using element
names shortens the length, making a moderate-size
model easier to learn. In contrast, input sequence
lengths on SGD are lower than that on MultiWwOZ,
since only active domains are provided as part of
the input.

4.4 Data Efficiency

Properly designed prefixes or prompts have been
shown to significantly improve an LM’s data ef-
ficiency (Radford et al., 2019; Liu et al., 2021;
Wei et al., 2021). We investigate how different
types of description prefixes vary in performance
in low-resource regimes by running experiments
with large and xx1 models on SGD with 0.16% (10-
shot), 1%, and 10% of training data. For the 0.16%
experiment, we randomly select 10 samples from
each training domain to increase the domain diver-
sity, totalling 260 examples. For other experiments
the samples are uniformly sampled across the en-
tire training set. We sample from three random
seeds for each experiment.

Type 0.18% 1% 10%
Language 01 =07 367420 73102
51.04+02 794+04 83.0+0.1
Name 50+02 280+27 69.7+03
477405 749+14 78.6+07

Table 3: Data efficiency of D3ST using natural lan-
guage and element name descriptions, trained and eval-
uated on SGD. Each description type contains two
rows, corresponding to the results given by “large” and
“xx1” models. The metric is JGA.

The results are given in Table 3. From the table
we have the following observations:

e Using human-readable language descriptions
consistently outperforms other types of rep-



resentations, indicating better data efficiency
with semantically-rich descriptions.

o With just 0.18% of the data, xxI models can
already reach more than half of their full qual-
ity (from Table 1). At 1%, we observe quality
close to using 100% data. Increasing to 10%
only yielded marginal gains.

e Larger models are much more data efficient
than smaller ones, as can be seen from the big
gap between “large” and “xx1” models.

4.5 Zero-shot Transfer to Unseen Tasks

To assess our approach’s zero-shot transfer ability
to unseen tasks, we conduct the following set of
experiments:

MultiWOZ cross-domain transfer Following a
setup similar to TransferQA (Lin et al., 2021a)
and T5DST (Lin et al., 2021b), we run the “leave-
one-out” cross-domain zero-shot transfer evalua-
tion on MultiWOZ 2.1.° For each domain, we
train a model on examples excluding that domain,
and evaluate it on examples including it. Table
4a shows our results in comparison with the base-
lines.” It can be seen that our approach achieves
the best cross-domain transfer performance with
significant gains across almost all domains.

SGD unseen service transfer The SGD bench-
mark contains numerous services and some do-
mains only present in the test set. We present the
results for zero-shot transfer to these domains and
services in Table 4b. Note that D3ST base has
worse JGA on unseen domains when fairly com-
pared to DaP and SGP-DST. However, D3ST has
superlative JGA on seen domains, even better than
paDST (with data augmentation and hand-crafted
rules). In addition, increasing the size of D3ST
further increases both seen and especially unseen
JGA, indicating better generalization. At xx1, JGA
on unseen domains is almost equal to paDST.
Cross-dataset transfer In this setup, we evaluate
if a model trained on one dataset can be directly
applied to another dataset. To this end, we train a
model on SGD then directly evaluate on the Mul-

®For zero-shot evaluation, Lin et al. (2021a) and Lin et al.
(2021b) experimented on MultiWOZ 2.1 and 2.0 respectively.
While our models are trained and evaluated on MultiWOZ 2.1,
we include results from both of them for comparison.

"When skipping the train domain, we postpro-
cess predictions for slots train-departure and
train-destination by ignoring the suffix "train
station". This is semantically correct and improves JGA.

tiWOZ 2.4 test set, and vice versa®. In both cases
we use the xxl model from Section 4.2, and report
the numbers in Table 4.

Despite obvious schema differences and domain
mismatch between MultiwWOZ and SGD, our model
trained on MultiWOZ already achieves zero-shot
quality on SGD close to the BERT-baseline (Ras-
togi et al., 2020) with 25.4% JGA. Our model
trained on SGD and evaluated on MultiWOZ shows
similarly strong zero-shot results. Both results
are much lower than the state of the art for both
datasets however, due to differing biases defined
in schemata between the two datasets, and from
latent knowledge that isn’t captured from a schema
alone.

Domain JGA
D3ST TransferQA  T5DST
Attraction 56.4 31.3 33.1
Hotel 21.8 22.7 21.2
Restaurant  38.2 26.3 21.7
Taxi 78.4 61.9 64.6
Train 38.7 36.7 354
Avg 46.7 35.8 352
(a) Cross-domain (leave-one-out) transfer on MultiwOZ.
JGA

Model Overall Seen Unseen

SGD Baseline 254 41.2 20.0

DaP (ind) 71.8 83.3 68.0

SGP-DST 72.2 87.9 66.9

Team14 A 71.3 90.0 73.0

paDSTH 86.5 924 84.6

D3ST (base) 72.9 92.5 66.4
D3ST (large) 80.0 93.8 75.4
D3ST (xx1) 86.4 95.8 83.3

(b) JGA on seen versus unseen services for SGD. A and M have
the same meaning as in Table 1.
Transfer JGA
SGD—MultiwOZ  28.9
MultiwWOZ—SGD  23.1

(¢) Cross-dataset transfer b/w SGD and MultiwOZ 2.4.

Table 4: Zero-shot transfer evaluation results from
three different setups.

Qualitative Evaluation In addition to quantita-
tively evaluating zero-shot transfer, we qualitatively
examined examples of D3ST transferring to novel
domains. We handcrafted a few dialogues for do-
mains very different from the ones seen in the
SGD dataset (e.g. conference submission, inter-
net provider, e-commerce retailer). We designed
the dialogues to be as stylistically realistic as pos-

8Note that the SGD dataset defines the services that will
occur in each dialogue, whereas MultiWOZ expects models to
be able to predict any of its domains for all dialogues. To make
it compatible between SGD and MultiWOZ for cross-task
zero-shot transfer, we limit the schema prefix for MutliwOZ
to domains that appear in the current dialogue.



sible for customer service scenarios. We tasked
the xx1 model trained on SGD (from Table 1) with
inferring their dialogue states, and share one ex-
ample in Table 5. More examples can be found
in Table A2 of Appendix B. We observe that the
model performs surprisingly well across all of our
handcrafted dialogues, even though the domains
are very different from the training data.

Domain: Conference Submission

Input: O:name of the conference l:title
of the paper 2:the first author of
the paper 3:research areas for the
paper 4:email for openreview account
il:submit a paper to a conference
i2:check if a paper has been accepted
[user] hi, i’d like to submit a

paper for a conference [system]
that’s great. which conference would
you like to submit to? [user] 1i’d
like to submit to ael 2022 [system]
ok. could you share the title of
your paper and the name of your

first author? [user] the paper is
"description-driven task-oriented
dialog modeling", and the first author
is grace hopper [system] great, thank
you. note that this year, we require
all paper authors to be registered on
openreview. could you give the email
for your openreview account? [user]
sure, its gracehopper@gmail.com

Prediction: [states] 0O:acl 2022
l:description-driven task-oriented
dialog modeling 2:grace hopper
4:gracehopper@gmail.com [intents] il

Table 5: An example of D3ST performing zero-shot
transfer to a hypothetical "Conference Submission" do-
main. The predicted dialogue state is entirely correct.
Boldface and color were added for visual clarity.

4.6 Robustness to Variations of Descriptions

Since there are many ways to provide descriptions
for a given schema, a natural question to raise about
this approach is how robust the model is against
different choices of descriptions. The recently pro-
posed SGD-X benchmark (Lee et al., 2021b) is
designed specifically for the study of this problem.
SGD-X contains five variations of the original SGD,
each one using a different set of schema descrip-
tions provided by different crowd-source workers.
To assess the robustness of D3ST, we use the large
and xxI models evaluated in Section 4.2 and decode
test sets from each of the five variants of SGD-X.
A robust model is expected to have smaller fluc-
tuations in predictions across schema variants for
the same dialogue context, as measured by Schema
Sensitivity SS (JGA) defined in Lee et al. (2021b),.
which calculates the average variation coefficient
of JGA at turn level. A lower SS (JGA) value
implies less fluctuation and more robustness.

We compare the robustness of models using dif-
ferent prompt types in Table 6. From the numbers
we see that using the most human-readable natural
language descriptions not only achieves the highest
average accuracy over all SGD-X test set variants,
but also enjoys the smallest SS (JGA) at the same
model size. This indicates that description-driven
models are more robust. On the other hand, using
element names and random names have progres-
sively lower mean accuracy and higher sensitivity
to schema changes.

Size Orig vl v2 v3 vd4d v5S Avgvl-5 SS(JGA)
large 80.0 79.9 794 765 719 69.1 753 0.26
xxl 864 855 85.1 739 755 689 77.8 0.27

(a) Natural language description
Size Orig vl v2 v3 v4 v5 Avgvl-5 SS(JGA)
large 737 72 69.5 664 61.1 65.7  66.9 0.37
xxl  79.7 80.8 76.6 742 612 723  73.0 0.35

(b) Element name description
Size Orig vl v2 v3 v4 v5 Avgvl-5 SS(JGA)
large 37.4 29.3 34.6 28.0 252 250 284 0.74
xxl 64.8 67.8 68.8 72.9 58.1 68.1 67.1 0.51

(c) Random description

Table 6: Robustness comparison for various description
types. SS(JGA) refers to schema sensitivity for JGA.

5 Conclusion

We advocate using human-readable language de-
scriptions in place of abbreviated or arbitrary nota-
tions for schema definition in TOD modeling. We
believe this schema representation contains more
meaningful information for a strong LM to lever-
age, leading to better performance and improved
data efficiency. To this end, we propose a sim-
ple and effective DST model named “Description-
Driven Dialogue State Tracking” (D3ST), which
relies fully on schema descriptions and an index-
picking mechanism to indicate active slots or in-
tents. Our experiments verify the effectiveness of
description-driven dialogue modeling in the fol-
lowing ways. First, D3ST achieves superior qual-
ity on MultiwWOZ and SGD. Second, using lan-
guage descriptions outperforms abbreviations or
arbitrary notations. Third, the description driven
approach improves data-efficiency, and enables ef-
fective zero-shot transfer to unseen tasks and do-
mains. Fourth, using language for schema descrip-
tion improves model robustness as measured by the
SGD-X benchmark.



6 Ethical Considerations

We proposed a more efficient way of building TOD
systems by leveraging language descriptions. Our
intended use cases include developing automated
conversational agents for customer service centers,
hotel and ticket booking systems, etc. Our exper-
iments are conducted on publicly available task-
oriented conversation datasets in English, cover-
ing common domains like restaurant reservation,
movie tickets, hotel reservation etc. We hope our
work contributes to improving TOD system lan-
guage understanding quality while reducing re-
liance on large amounts of annotated data.
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A Example of Description Types

An example of the different description types for a
single example can be found in Table A1l.

B Zero-shot Transfer to Novel Domains

Qualitative examples showcasing zero-shot transfer
to novel domains can be found in Table A2.
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Language

Name

Random

States

O:playback device on which the song is to be played 0Oa) bedroom speaker
Ob) tv 0Oc) kitchen speaker l=name of the artist the song is performed

by 2=name of the song 3=album the song belongs to 4=genre of the song
i0=search for a song based on the name and optionally other attributes
il=play a song by its name and optionally artist [user] i want to find

a movie. [system] what is your location. [user] santa rosa. i want to
see 1t at 3rd street cinema. [system] i found 3 movies. does hellboy,
how to train your dragon: the hidden world or the upside interest you?
[user] how to train your dragon: the hidden world is perfect. can you
find me some songs from the album summer anthems. [system] 1 found 1
song you may like. how about no other love from the album summer anthems
by common kings? [user] that would be great. [system] play the song
now? [user] play it on the bedroom device.

O:music_2-genre l:music_2-playback_device la) bedroom speaker 1b) kitchen
speaker 1lc) tv 2:music_2-album 3:music_2-artist 4:music_2-song_name
i0:music_2-playmedia il:music_2-lookupmusic [user] i want to find a
movie. [system] what is your location. [user] santa rosa. 1 want to
see 1t at 3rd street cinema. [system] i found 3 movies. does hellboy,
how to train your dragon: the hidden world or the upside interest you?
[user] how to train your dragon: the hidden world is perfect. can you
find me some songs from the album summer anthems. [system] i found 1
song you may like. how about no other love from the album summer anthems
by common kings? [user] that would be great. [system] play the song
now? [user] play it on the bedroom device.

O:e-e_ciugs2mrn 1:psuekc_l-2imceyibaca_dv la) bedroom speaker 1b) kitchen
speaker 1lc) tv 2:umm2uisc_bal- 3:satriti_2-sumc 4:_-onassng2_cemmui
i0:aeusmmci2-adipl_y il:miiu_2olosckucp-ums [user] 1 want to find a
movie. [system] what is your location. [user] santa rosa. i want to
see 1t at 3rd street cinema. [system] i found 3 movies. does hellboy,
how to train your dragon: the hidden world or the upside interest you?
[user] how to train your dragon: the hidden world is perfect. can you
find me some songs from the album summer anthems. [system] i found 1
song you may like. how about no other love from the album summer anthems
by common kings? [user] that would be great. [system] play the song
now? [user] play it on the bedroom device.

[states] 1l:1la 2:summer anthems 4:no other love [intents] 10

Table Al: Examples of the same SGD dialogue with different description types. "Language" uses a detailed natural
language description, "Name" uses the schema element name, and "Random" is generated from a random shuffling
of the slot name. Note that the categorical slot value enumeration is unaffected in "Random", and that all three
description types would have the same target slots and intents.
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Domain | Internet Provider

O:email address of the account l:whether professional help is needed for
internet installation la) true 1lb) false 2:whether to bundle services on
the same plan 2a) true 2b) false 3:download speed of the internet plan

4 :whether services are for residential or business use 4a) residential 4b)
business 5:the address to provide services to i0=buy or change an internet
plan il:file a formal complaint [user] hi there - my internet contract

is up for renewal, and i’m interested in exploring other plan options.
[system] happy to help. 1s this for your home or for a business? [user]
home [system] what’s the email associated with your account? [user]
noamchomsky@hotmail.com [system] thanks. vyour current plan is 25 mbps
download speed for $53 / month. the two other plans are 50 mbps for $63

/ month and 100 mbps for $73 / month. would you interested in either of
those? [user] i’m interested in upgrading to the 50 mbps plan. [system]
great. for $10 / month more, would you like to include our basic cable
plan? [user] no thanks. 1’11 need to talk this over with my partner.
thank you for your help.

Inputs

States [states] 0O:noamchomsky@hotmail.com 3:50 mbps 4:4a [intents] i0
Domain | E-Commerce Retailer

0:phone number associated with the customer’s account 1l:a coupon code to
apply to the purchase 2:the reason for the product return 2a) accidental
purchase 2b) malfunction 2c) preference 3:the retail product to purchase
or to be returned 4:date the product was purchased 5:identifier associated
with the purchase i0:return a product il:purchase a product [system] hi
how can i help you today? [user] hello - i recently purchased a glow in
the dark ball that i’d like to return. [system] no problem. 1i’m happy

to help. can you provide the order number or date of purchase please?
[user] lozdl3v260l1lkqg, and i purchased it last week on nov 1, 2021 [system]
thanks. and what’s the reason for the return? [user] the ball seems

to be broken. it doesn’t actually glow in the dark. [system] sorry to
hear about that. we’ll process the return and you should receive a refund
within 10 business days. 1s there anything else i can do for you? [user]
no, thanks for your help!

Inputs

[states] 2:2b 3:glow in the dark ball 4:nov 1, 2021 5:10zdl3v2601lkg

States [intents] i0

Table A2: Two more examples of D3ST trained on SGD performing zero-shot transfer to novel domains. The only
error is in the "Internet Provider" example, where the model misses that the slot for "whether to bundle services on
the same plan" should be false. We hypothesize that "bundle" is industry jargon that the model fails to associate
with the dialogue context.
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