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Abstract

Modern deep neural networks (DNNs) are extremely powerful; however, this comes
at the price of increased depth and having more parameters per layer, making their
training and inference more computationally challenging. In an attempt to address
this key limitation, efforts have been devoted to the compression (e.g., sparsification
and/or quantization) of these large-scale machine learning models, so that they
can be deployed on low-power IoT devices. In this paper, building upon recent
advances in neural tangent kernel (NTK) and random matrix theory (RMT), we
provide a novel compression approach to wide and fully-connected deep neural
nets. Specifically, we demonstrate that in the high-dimensional regime where
the number of data points n and their dimension p are both large, and under a
Gaussian mixture model for the data, there exists asymptotic spectral equivalence
between the NTK matrices for a large family of DNN models. This theoretical
result enables “lossless” compression of a given DNN to be performed, in the
sense that the compressed network yields asymptotically the same NTK as the
original (dense and unquantized) network, with its weights and activations taking
values only in {0,±1} up to a scaling. Experiments on both synthetic and real-
world data are conducted to support the advantages of the proposed compression
scheme, with code available at https://github.com/Model-Compression/
Lossless_Compression.

1 Introduction

Modern deep neural networks (DNNs) are becoming increasingly over-parameterized, having more
parameters than required to fit the also increasingly large, complex, and high-dimensional data.
While the list of successful applications of these large-scale machine learning (ML) models is rapidly
growing, the energy consumption of these models is also increasing, making them more challenging
to deploy on close-to-user and low-power devices. To address this issue, compression techniques
have been proposed that prune, sparsify, and/or quantize DNN models [14, 23], thereby yielding
DNNs of a much smaller size that can still achieve satisfactory performance on a given ML task. As
an illustrative example, it has been recently shown that at least 90% of the weights in popular DNN
models such as VGG19 and ResNet32 can be removed with virtually no performance loss [53].

Despite the remarkable progress achieved by various DNN model compression techniques, due to the
nonlinear and highly non-convex nature of DNNs, our theoretical understanding of these large-scale
ML models, as well as of their compression schemes, is progressing at a more modest pace. For
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example, it remains unclear how much a given DNN model can be compressed without severe
performance degradation; perhaps more importantly, on the degree to which such a performance and
complexity trade-off depends on the ML task and the data also remains unknown.

In this respect, neural tangent kernels (NTKs) [28], provide a powerful tool for use in assessing the
convergence and generalization properties of very wide (sometimes unrealistically so) DNNs by
studying their corresponding NTK eigenspectra, which are solely dependent on the input data, the
network architecture and activation function, as well as the random weights distribution.1

In this paper, building upon recent advances in random matrix theory (RMT) and high-dimensional
statistics, we demonstrate that for data x1, . . . ,xn ∈ Rp drawn from a K-class Gaussian mixture
model (GMM), in a high-dimensional and non-trivial classification regime where the input data
dimension p and their size n are both large and comparable, the eigenspectra of both the NTK and
the closely related conjugate kernel (CK) matrices at any layer ℓ ∈ {1, . . . , L} are independent of the
distribution of the i.i.d. entries of the (random) weight matrix Wℓ, provided that they are “normalized”
to have zero mean and unit variance, and only depend on the activation function σℓ(·) via four scalar
parameters. In a sense, we establish, at least for GMM data, the asymptotic spectral equivalence
between the CK and NTK matrices of the corresponding network layers, and consequently of the
whole network, for a large family of DNN models with possibly very different weights and activations,
given that they have normalized weights and share the same few activation-related parameters.

Since the convergence and generalization properties of wide DNNs depend only on the eigenspectra
(i.e., eigenvalue-eigenvector pairs; see also Remark 2 below) of the corresponding NTK matrices
[28, 18], in the sense that, e.g., the time evolutions (when trained with gradient descent using a
sufficiently small step size) of both the residual error and the in-sample prediction of the network
can be expressed as explicit functions of NTK eigenvalues and eigenvectors [18, 1, 26], we further
exploit the above theoretical results to propose a novel “lossless” compression approach for fully-
connected DNN models, by designing a sparse and quantized DNN that (i) has asymptotically the
same NTK eigenspectra as the original “dense and full precision” network, and (ii) has both weights
and activations taking values in the set {−1, 0,+1} before scaling, and can thus be stored and
computed much more efficiently.

Despite being derived here for Gaussian mixture data, an unexpected close match is observed between
our theory and the empirical results on real-world datasets, suggesting possibly wider applicability
for the proposed “lossless” compression approach. Looking forward, we expect that our analysis will
open the door to improved analysis of involved ML methods based on RMT and high-dimensional
statistics, which will demystify the seemingly striking empirical observations in, say, modern DNNs.

1.1 Our contributions

Our main results can be summarized as follows:

1. We provide, in Theorems 1 and 2 respectively, for GMM data and in the high-dimensional
regime of Assumption 1, precise eigenspectral characterizations of CK and NTK matrices
of fully-connected DNNs; we particularly show that the CK and NTK eigenspectra do not
depend on the distribution of i.i.d. network weights, and depend solely on the activation
function of each layer via a few scalar parameters.

2. In Corollary 1 and Algorithm 1, we exploit these results to propose a novel DNN compression
scheme, with sparsified and ternarized weights and activations, without affecting the NTK
spectral behavior, and thus the convergence and generalization properties of the network.

3. We provide empirical evidence on (not so) wide DNNs trained on both synthetic Gaussian
and real-world datasets such as MNIST [31] and CIFAR10 [30], and show a factor of 103
less memory is needed with the proposed DNN compression approach, with virtually no
performance loss.

1In the remainder of this article, what we refer to as the “NTK matrix” is essentially the limiting (and
nonrandom) NTK matrix to which the random NTK converges under the infinite-wide limit.
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1.2 Related work

Neural network model compression. The study of NN compression dates back to early 1990
[32], at which point, in the absence of the (possibly more than) sufficient computational power that
we have today, compression techniques allowed neural networks to be empirically evaluated on
computers with limited computational and/or storage resources [49]. Alongside the rapid growth
of increasingly powerful computing devices, the development of more efficient NN architectures
and training/inference protocols, and the need to implement NNs on mobile and low-power devices,
(D)NN model compression has become an active research topic and many elegant and efficient
compression approaches have been proposed over the years [22, 25, 27, 23]. However, due to the
nonlinear and highly non-convex nature of DNNs, our theoretical understanding of these large-
scale ML models, as well as of (e.g., the fundamental “performance and complexity” trade-off of)
compressed DNNs, is somewhat limited [23].

Neural tangent kernel. Neural tangent kernel (NTK) theory proposed in [28], by considering
the limit of infinitely wide DNNs, characterizes the convergence and generalization properties of
very wide DNNs when trained using gradient descent with small steps. Initially proposed for fully-
connected nets, the NTK framework has been subsequently extended to convolutional [5], graph [16],
and recurrent [3] settings. The NTK theory, while having the advantage of being mathematically
more tractable (via, e.g., the characterization of the associated reproducing kernel Hilbert space [8]),
seems to diverge from the regime on which modern (and not so wide) DNNs operate, see [10, 38, 18].

Random matrix theory and neural networks. Random matrix theory (RMT), a powerful and
flexible tool for assessing the behavior of large-scale systems with a large “degree of freedom”,
is gaining popularity in the field of NN analysis [44, 45], in both shallow [48, 36, 37] and deep
[7, 18, 47] settings, and for both homogeneous (e.g., standard normal) [48, 46] and mixture-type data
[36, 4]. From a technical perspective, the most relevant paper is [4] , in which the authors proposed a
RMT-inspired NN compression scheme, albeit only in the single-hidden-layer setting. This paper
extends the analysis in [4] to multi-layer fully-connected DNNs, by focusing on both the CK and
NTK matrices, and proposes a novel sparsification and quantization scheme for fully-connected
DNNs (which is in spirit similar to, although formally different from, that in [4]).

1.3 Notations and organization of the paper

We denote scalars by lowercase letters, vectors by bold lowercase, and matrices by bold uppercase.
We denote the transpose operator by (·)T, and use ∥ · ∥ to denote the Euclidean norm for vectors and
the spectral/operator norm for matrices. For a random variable z, E[z] denotes the expectation of z.
We use 1p and Ip to represent an all-ones vector of dimension p and the identity matrix of size p× p.

The remainder of this article is structured as follows. In Section 2, we present the fully-connected
DNN model under study, together with our working assumptions. Section 3 contains our main
technical results on the eigenspectra of the conjugate kernel KCK and NTK matrix KNTK, along
with an account of how they apply to the compression of fully-connected DNNs with the proposed
“lossless” compression scheme. Empirical evidence is provided in Section 4 to demonstrate the
significant computation and storage savings, with minimal performance degradation, that can be
obtained using the proposed approach. Conclusion and future perspectives are placed in Section 5.

2 Preliminaries

Let x1, . . . ,xn ∈ Rp be n data vectors independently drawn from one of the K-class Gaussian
mixtures C1, . . . , CK , and let X = [x1, . . . ,xn] ∈ Rp×n, with class Ca having cardinality na; that is,

xi ∈ Ca ⇔ xi ∼ N (µa/
√
p,Ca/p), (1)

for mean vector µa ∈ Rp and covariance matrix Ca ∈ Rp×p associated with class Ca.

In the high-dimensional scenario where n, p are both large and comparable, we position ourselves
in the following non-trivial classification setting, so that the classification of the K-class mixture is
neither trivially easy nor impossible; see also [13] and [9, Section 2].
Assumption 1 (High-dimensional asymptotics). As n→ ∞, we have, for a ∈ {1, . . . ,K} that (i)
p/n → c ∈ (0,∞) and na/n → ca ∈ [0, 1); (ii) ∥µa∥ = O(1); (iii) for C◦ ≡

∑K
a=1

na

n Ca
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and C◦
a ≡ Ca − C◦, we have ∥Ca∥ = O(1), trC◦

a = O(
√
p) and tr(CaCb) = O(p) for

a, b ∈ {1, . . . ,K}; and (iv) τ0 ≡
√
trC◦/p converges in (0,∞).

We consider using a fully-connected DNN model of depth L for the classification of the above
K-class Gaussian mixture. Such a network can be parameterized by a sequence of weight matrices
W1 ∈ Rd1×d0 , . . . ,WL ∈ RdL×dL−1 (with the convention d0 = p), and nonlinear activation
functions σ1, . . . , σL that apply entry-wise, so that the network output f(x) ∈ R is given by:

f(x) =
1√
dL

wTσL

(
1√
dL−1

WLσL−1

(
. . .

1√
d2
σ2

(
1√
d1

W2σ1(W1x)

)))
, (2)

for an input data vector x ∈ Rp and output vector w ∈ RdL . We denote Σℓ ∈ Rdℓ×n the
representations of the data matrix X ∈ Rp×n at layer ℓ ∈ {1, . . . , L} defined as

Σℓ =
1√
dℓ
σℓ

(
1√
dℓ−1

Wℓσℓ−1

(
. . .

1√
d2
σ2

(
1√
d1

W2σ1(W1X)

)))
. (3)

The normalization by 1/
√
dℓ follows from the NTK literature and ensures the consistent asymptotic

behavior of the network in the high-dimensional setting in Assumption 1 and 2; see also [28, 8, 18].

The training and generalization performance of the NN model defined in (2) are closely related to
two types of kernel matrices: the Conjugate Kernel (CK) matrix and Neural Tangent Kernel (NTK)
matrix, defined respectively for ℓ ∈ {1, . . . , L} as follows:

KCK,ℓ = E[ΣT
ℓ Σℓ] ∈ Rn×n, (4)

with expectation taken with respect to the random weights W1, . . . ,Wℓ and Σℓ ∈ Rdℓ×n the data
representation at the output of layer ℓ defined in (3). In particular, CK matrices are known to satisfy
the following recursive relation [28, 8]

[KCK,ℓ]ij = Eu,v[σℓ(u)σℓ(v)], with u, v ∼ N
(
0,

[
[KCK,ℓ−1]ii [KCK,ℓ−1]ij
[KCK,ℓ−1]ij [KCK,ℓ−1]jj

])
, (5)

while for the NTK matrix KNTK,ℓ ∈ Rn×n of layer ℓ, we have:

KNTK,ℓ = KCK,ℓ +KNTK,ℓ−1 ◦K′
CK,ℓ, KNTK,0 = KCK,0 = XTX, (6)

where ‘A ◦ B’ denotes the Hadamard product between two matrices A,B of the same size, and
K′

CK,ℓ denotes the CK matrix with nonlinear function σ′
ℓ instead of σℓ as for KCK,ℓ defined in

(5); that is, [K′
CK,ℓ]ij = Eu,v[σ

′
ℓ(u)σ

′
ℓ(v)]. Note in particular that for a given DNN model, the

corresponding CK and NTK matrices depend only on the network structure (i.e., the number of
layers and the activation function in each layer), the distribution of the random (initializations of the)
weights to be integrated over (e.g., in the expectation in equation (4)), and the input data.

It has been shown in a series of previous efforts [28, 18, 26] that for very (and sometimes unrealis-
tically) wide DNNs trained using gradient descent with a small step size, the time evolution of the
residual errors and in-sample predictions of a given DNN are explicit functionals of the corresponding
KNTK involving its eigenvalues and eigenvectors. In this respect, the NTK theory provides, via the
eigenspectral behavior of KNTK, precise characterizations of the convergence and generalization
properties of DNNs [28, 8], by focusing on the impact of the network structure, the input data, and
the weight initialization schemes.

In this paper, we focus on fully-connected nets under the following assumption regarding the weights.
Assumption 2 (On weight initializations). The random weights W1 ∈ Rd1×p, . . . ,WL ∈ RdL×dL−1

are independent and have i.i.d. entries of zero mean, unit variance, and finite fourth-order moment.

Assumption 2, together with the 1/
√
dℓ normalization, is compatible with fully-connected DNNs in

(2), which are admittedly less interesting, from a practical perspective, compared to their convolutional
counterparts. The proposed framework is envisioned to be extendable to a convolutional [5, 8] and
more involved setting (e.g., graph NNs [16]) by considering (e.g., Toeplitz-type) structures on Ws.

Unlike most existing NTK literature [28, 8, 17], we do not assume the Gaussianity of the entries of
Wℓs, but only that they are i.i.d. and “normalized” to have zero mean and unit variance. As it turns
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out, this assumption together with a (Lyapunov-type) central limit theorem argument, is sufficient to
establish most existing results on the convergence and generalization of DNNs; see for example [34].

We also need the following assumption on the activation functions in each layer.
Assumption 3 (On activation functions). The activations σ1, . . . , σL are at least four-times differen-
tiable with respect to standard normal measure, in the sense that maxk∈{0,1,2,3,4}{|E[σ

(k)
ℓ (ξ)]|} < C

for some universal constant C > 0, ξ ∼ N (0, 1), and ℓ ∈ {1, . . . , L}.

Using the Gaussian integration by parts formula, one has E[σ′(ξ)] = E[ξσ(ξ)] for ξ ∼ N (0, 1), as
long as the right-hand side expectation exists. As a result, for non-differentiable functions, it suffices
to have |σℓ| upper-bounded by some (high-degree) polynomial function for Assumption 3 to hold.

With these preliminaries, we are now ready to present our main technical results on the eigenspectral
behavior of the CK and NTK matrices for a large family of fully-connected DNN models.

3 Main results

For a fully-connected DNN defined in (2), our first result is on the eigenspectral behavior of the
corresponding CK matrices KCK defined in (4). More specifically, we show for Gaussian mixture data
in (1) and in the high-dimensional setting of Assumption 1, that the KCK,ℓ of layer ℓ ∈ {1, . . . , L} is
asymptotically spectrally equivalent to another random matrix K̃CK,ℓ, in the sense that their spectral
norm difference ∥KCK,ℓ − K̃CK,ℓ∥ vanishes as n, p→ ∞. This result is stated as follows, the proof
of which is based on an induction on ℓ and is given in Section A.1 of the appendix.
Theorem 1 (Asymptotic spectral equivalents for CK matrices). Let Assumptions 1–3 hold, and let
τ0, τ1, . . . , τL ≥ 0 be a sequence of non-negative numbers satisfying the following recursion:

τℓ =
√
E[σ2

ℓ (τℓ−1ξ)], ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}. (7)

Further assume that the activation functions σℓ(·)s are “centered,” such that E[σℓ(τℓ−1ξ)] = 0. Then,
for the CK matrix KCK,ℓ of layer ℓ ∈ {0, 1, . . . , L} defined in (4), as n, p→ ∞, one has that:

∥KCK,ℓ − K̃CK,ℓ∥ → 0, K̃CK,ℓ ≡ αℓ,1X
TX+VAℓV

T + (τ2ℓ − τ20αℓ,1 − τ40αℓ,3)In, (8)

almost surely, with

V = [J/
√
p, ψ] ∈ Rn×(K+1), Aℓ =

[
αℓ,2tt

T + αℓ,3T αℓ,2t
αℓ,2t

T αℓ,2

]
∈ R(K+1)×(K+1), (9)

for class label vectors J = [j1, . . . , jK ] ∈ Rn×K with [ja] = δxi∈Ca , second-order data fluctuation
vector ψ = {∥xi − E[xi]∥2 − E[∥xi − E[xi]∥2]}ni=1 ∈ Rn, second-order discriminative statistics
t = {trC◦

a/
√
p}Ka=1 ∈ RK and T = {trCaCb/p}Ka,b=1 ∈ RK×K of the Gaussian mixture in (1),

as well as non-negative scalars αℓ,1, αℓ,2, αℓ,3 ≥ 0 satisfying the following recursions:

αℓ,1 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,1, αℓ,2 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,2 +
1

4
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,4, (10)

αℓ,3 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,3 +
1

2
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,1, (11)

with αℓ,4 = αℓ−1,4E
[
(σ′

ℓ(τℓ−1ξ))
2 + σℓ(τℓ−1ξ)σ

′′
ℓ (τℓ−1ξ)

]
for ξ ∼ N (0, 1).

A few remarks on Theorem 1 are in order. The first remark is on the assumption E[σℓ(τℓ−1ξ)] = 0.
Remark 1 (On activation centering). The condition E[σℓ(τℓ−1ξ)] = 0, seemingly restrictive at first
sight, in fact only subtracts an identical constant from all entries of the data representation Σℓ at
layer ℓ, and should therefore not restrict the expressive power of the network, nor its performance on
downstream ML tasks. For a given DNN model of interest, it suffices to “center” the output of each
layer by subtracting a constant to satisfy Assumption 3, and to further apply our Theorem 1.

Theorem 1 unveils the (possibly surprising) fact that, for the high-dimensional and non-trivial
Gaussian mixture classification in (1), the spectral behavior of K̃CK,ℓ, and thus that of the CK
matrix KCK,ℓ, is (i) independent of the distribution of the (entries of the) weights Wℓ when they are
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“normalized” to have zero mean and unit variance, as demanded in Assumption 2, and (ii) depends
on the activation function σℓ only via four2 scalar parameters αℓ,1, αℓ,2, αℓ,3 and τℓ: such universal
results have been previously observed in random matrix theory and high-dimensional statistics
literature (see for example [12, 6, 56]) and indicate some kind of universality of DNN models.

On closer inspection of Theorem 1, we further observe that:

(i) for a given DNN, Theorem 1 characterizes, via the form of K̃CK,ℓ in (8) and the recursions
in (10) and (11), how the linear (via αℓ,1, which is multiplied by XTX) and nonlinear (via
αℓ,2 and αℓ,3 in Aℓ, which respectively weight the second-order data statistics t and T) data
features “propagate” in a DNN, in a layer-by-layer fashion, as ℓ increases, as quantitatively
measured by the corresponding αℓs; and

(ii) for two DNNs with the same number of layers, but possibly different weights and activations,
given the same input data X (so that the two nets have the same KCK,0), if they have
asymptotically equivalent CK matrices KCK,ℓ−1 at layer ℓ−1 with the same αℓ−1,1, αℓ−1,2

and αℓ−1,3, then its follows from Equation (10) and (11) that having the same E[σ′
ℓ(τℓ−1ξ)]

2,
E[σ′′

ℓ (τℓ−1ξ)]
2, and E[(σ2

ℓ (τℓ−1ξ))
′′] (which only depends on the activation σℓ of layer ℓ

and τℓ−1) suffices for the two nets to have asymptotically equivalent KCK,ℓ at layer ℓ.

It follows from the above item (ii) that for a given DNN of depth L, it is possible to design a novel
DNN model that “matches” the original one – in the sense that both models will have asymptotically
equivalent CK matrices at each layer, by using the following layer-by-layer matching strategy:
Starting from the same KCK,0 = XTX, one chooses the first-layer weights W1 of the novel DNN
according to Assumption 2, and then select the first-layer activation σ1 in such a way that the novel
net has the same parameters α1,1, α1,2 and α1,3 as the original one, so that the first-layer CK matrices
KCK,1 of the two nets are spectrally matched as per Theorem 1; one then proceeds similarly to match
the second, the third, etc., and eventually the Lth layer of the two nets. As we shall see below, this
layer-by-layer matching strategy facilitates the “lossless” compression of a given DNN.

Using the relation in (6), a similar result (as in Theorem 1 for CKs) can be established for NTK
matrices, as shown in the following theorem. The proof is also based on an induction on ℓ and is
provided in Section A.2 of the appendix.

Theorem 2 (Asymptotic spectral equivalent for NTK matrices). Let Assumptions 1–3 hold, let the
activations σℓ(·)s be centered so that E[σℓ(τℓ−1ξ)] = 0 for τℓs defined in (7), let τ̇0, τ̇1, . . . , τ̇L ≥ 0
be a sequence of non-negative numbers satisfying the following recursion:

τ̇ℓ =

√
E
[
(σ′

ℓ(τ̇ℓ−1ξ))
2
]
, ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}, (12)

with τ̇0 = τ0 (which is similar to the τℓs defined in (7), but on the derivative σ′
ℓ instead of σℓ itself),

and let κ1, . . . , κL ≥ 0 be a sequence of non-negative numbers satisfying

κℓ =
√
τ2ℓ + κ2ℓ−1(τ̇ℓ)

2, ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}, (13)

with κ0 = τ0. Then, for the NTK matrix KNTK,ℓ of layer ℓ defined in (6), as n, p→ ∞, one has that

∥KNTK,ℓ − K̃NTK,ℓ∥ → 0, K̃NTK,ℓ ≡ βℓ,1X
TX+VBℓV

T + (κ2ℓ − τ20βℓ,1 − τ40βℓ,3)In, (14)

almost surely, with V ∈ Rn×(K+1), t ∈ RK ,T ∈ RK×K as defined in Theorem 1, and

Bℓ ≡
[
βℓ,2tt

T + βℓ,3T βℓ,2t
βℓ,2t

T βℓ,2

]
∈ R(K+1)×(K+1), (15)

as well as scalars βℓ,1, βℓ,2, βℓ,3 ≥ 0, and ḋℓ, α̇ℓ,1 such that

βℓ,1 = αℓ,1 + βℓ−1,1ḋℓ, βℓ,2 = αℓ,2 + βℓ−1,2ḋℓ, βℓ,3 = αℓ,3 + βℓ−1,3ḋℓ + βℓ−1,1α̇ℓ,1, (16)

2It is worth noting that the parameter τℓ appears in the CK eigenspectrum only by shifting all its eigenvalues
(by τ2

ℓ ), thereby acting as an (implicit) ridge-type regularization in DNN models, see also [29, 15, 39].
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and

ḋℓ = Eξ1,ξ2

[
σ′
ℓ(τ̇ℓ−1ξ1)σ

′
ℓ

(
ḋℓ−1

τ̇ℓ−1
ξ1 +

√
λ̇ℓ−1ξ2

)]
,

α̇ℓ,1 = Eξ1,ξ2

σ′
ℓ(τ̇ℓ−1ξ1)σ

′′
ℓ

(
ḋℓ−1

τ̇ℓ−1
ξ1 +

√
λ̇ℓ−1ξ2

) α̇ℓ−1,1

τ̇ℓ−1
ξ1 −

1√
λ̇ℓ−1

ḋℓ−1α̇ℓ−1,1

τ̇2ℓ−1

ξ2

 ,
with λ̇ℓ−1 = τ̇2ℓ−1 −

ḋ2
ℓ−1

τ̇2
ℓ−1

for independent ξ1, ξ2 ∼ N (0, 1).

Roughly speaking, Theorem 2 shows that the eigenspectral behavior established in Theorem 1 for
CK matrices also holds for NTK matrices, up to a change of the associated coefficients αℓs to βℓs.
The remarks after Theorem 1 thus remain valid, at least in spirit, for NTK matrices.
Remark 2 (On spectral norm characterization). Note that the characterizations in Theorem 1 and 2
for CK and NTK matrices are provided in a spectral norm sense. It then follows from Weyl’s inequality
[24] and the Davis–Kahan theorem [61] that the difference between the eigenvalues (e.g., when
listed in a decreasing order) and the associated eigenvectors (when the eigenvalues under study are

“isolated”) of KNTK and K̃NTK vanish asymptotically as n, p → ∞. As such, the spectral norm
guarantees in Theorem 1 and 2 provide more tractable access to the convergence and generalization
properties of wide DNNs, at least for GMM data, via the spectral study of K̃NTK [28, 18].

Despite being derived here for the Gaussian mixture model in (1), we conjecture that the results
in Theorem 1 and 2 hold beyond the Gaussian setting and extend, for example, to the family of
concentrated random vectors [50, 33]. As discussed after Assumption 2 for the distribution of
W, such universality commonly arises in random matrix theory and high-dimensional statistics
[12, 6, 56]; we refer interested readers to Remark 4 in Appendix A for further discussions.

From a technical perspective, the results in Theorem 1 and 2 extend the single-hidden-layer CK
analysis in [4, 36] to both CK and NTK matrices of fully-connected DNNs with an arbitrary number
of layers. In particular, taking ℓ = 1 in Theorem 1, one obtains [4, Theorem 1] as a special case.3

Remark 3 (On CK and NTK matrices). It follows from Theorem 1 that for a given DNN model, it
suffices to match the coefficients αℓ,1, αℓ,2 and αℓ,3 in a layer-by-layer manner to propose a novel
DNN with asymptotically equivalent CK matrices. Similarly, matching the key coefficients βℓ,1, βℓ,2,
and βℓ,3 leads to a DNN model with asymptotically equivalent NTK matrices. Moreover, for two nets
with the same αℓ,1, αℓ,2, αℓ,3, and therefore the same CKs, it suffices to match the additional ḋℓ, α̇ℓ

to render the two nets asymptotically equivalent in both CK and NTK senses.

In the following corollary, we present a concrete example of how to apply the results in Theo-
rem 1 and 2 in the design of a novel computationally and storage efficient DNN, that shares the same
CK and NTK eigenspectra with any given fully-connected neural net having centered activation.
Corollary 1 (Sparse and quantized DNNs). For a given fully-connected DNN (referred to as DNN1)
of depth L with centered activation such that E[σℓ(τℓ−1ξ)] = 0 for ξ ∼ N (0, 1), one is able to
construct, say in a layer-by-layer manner, a sparse and quantized “equivalent” DNN model, of depth
L and referred to as DNN2, such that the two nets have asymptotically the same eigenspectra for
their CK (and NTK similarly, as per Remark 3) matrices, by using the following ternary weights:

[W]ij = 0 with proba ε ∈ [0, 1), [W]ij = ±(1− ε)−1/2 each with proba 1/2− ε/2, (17)

as well as quantized activations (as visually displayed in Figure 1):

σT (t) = a · (1t<s1 + 1t>s2), σQ(t) = b1 · (1t<r1 + 1t>r4) + b2 · 1r2≤t≤r3 . (18)

We refer readers to Appendix A.4 for the proof and discussions of Corollary 1, as well as the detailed
expressions of E[σ′(τξ)], E[σ′′(τξ)], and E[(σ2(τξ))′′], of direct algorithmic use for both σT and σQ
as functions of the parameters a, s1, s2 and b1, b2, r1, r2, r3, r4. Built upon Corollary 1, we propose
a DNN “lossless” compression scheme with equivalent CKs, as summarized in Algorithm 1 below.

3Note that in [4, Theorem 1], the authors do not assume E[σ(τ0ξ)] = 0 as in our Theorem 1, but instead
“center” the CK matrices by pre- and post-multiplying KCK with P = In − 1n1

T
n/n. This can be shown

equivalent to taking E[σ(τ0ξ)] = 0 in the single-hidden-layer setting; see Appendix A.3 for more details.
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Figure 1: Visual representations of activations σT and σQ in (18) (left) and the expressions of
E[σT (τξ)] and E[σQ(τξ)](right), with r1− r2 = r3− r4 here and erf(·) the Gaussian error function.

Algorithm 1 “Lossless” compression scheme for fully-connected DNNs
1: Input: Input data x1, . . . ,xn, sparsity level ε ∈ [0, 1), and DNN1 with activations σ1, . . . , σL.
2: Output: Sparse and quantized model DNN2 with weights Wℓ and activations σ̃ℓ, ℓ ∈ {1, . . . , L}.

3: Estimate τ0 from data as τ0 =
√

1
n

∑n
i=1 ∥xi∥2. Set τ = τ0 for DNN1, and τ̃ = τ0 for DNN2.

4: for ℓ = 1, . . . , L− 1 do
5: Compute αℓ,1, αℓ,2, αℓ,3 of DNN1 using τℓ−1, and derive the expressions of α̃ℓ,1, α̃ℓ,2, α̃ℓ,3

of DNN2 using τ̃ℓ−1 as per (10) and (11).
6: Solve, with Corollary 1 and the detailed expressions in Appendix A.4, the system of equations

(αℓ,1, αℓ,2, αℓ,3) = (α̃ℓ,1, α̃ℓ,2, α̃ℓ,3) for the parameters a, s1, s2, to get the activation σ̃ℓ of
DNN2 at layer ℓ.

7: Update τ, τ̃ as τ =
√
E[σ2

ℓ (τξ)], and τ̃ =
√

E[σ̃2
ℓ (τ̃ ξ)].

8: end for
9: For the layer ℓ = L, compute αL,1, αL,2, αL,3, τL and α̃L,1, α̃L,2, α̃L,3, τ̃L. Use them to solve

for the parameters b1, b2, r1, r2, r3, r4 to obtain the activation σ̃L of DNN2 at layer ℓ.
10: Draw independently the i.i.d. entries of W1, . . . ,WL according to (17) with sparsity level ε.
11: return DNN2 model with weights Wℓ and activations σ̃ℓ, ℓ = 1, . . . , L.

As a side remark, note that the “sign” of activations does not matter in Corollary 1 or Algorithm 1,
in the sense that the key parameters αℓ,1, αℓ,2, and αℓ,3 for CKs, as well as βℓ,1, βℓ,2, and βℓ,3 for
NTKs, remain unchanged when −σℓ(t) is used instead of σℓ(t).

Before embarking on the detailed numerical experiments in Section 4, we would like to bring the
readers’ attention to the recent line of works [35, 53, 57, 54, 19] showing that for wide and deep NN
models, very efficient sparse sub-networks can be found that almost match the performance of the
original dense nets with little or even no training, for instance by uniformly pruning the network
weights [53]. To develop a theoretical grasp of these (extremely counterintuitive) empirical successes,
a few attempts have been made, for example, to carefully prune the network weights to retain the
same (limiting) NTK [40], or to show that randomly pruned sparse nets have the same (limiting)
NTK as the original net up to a scaling factor [60]. Instead, our work, by considering the statistical
structure of the input data, leverages tools from RMT to “compress” both the weights and activations
(per Theorem 2 and Corollary 1) without affecting the NTK eigenstructure.

4 Numerical experiments

In this section, we provide numerical experiments to (i) validate the asymptotic characterizations in
Theorem 1 and 2, on both synthetic GMM and real-world data (such as MNIST and CIFAR10) of (in
fact not so) large sizes and dimensions; and to (ii) show how these results can be used to sparsify
and quantize fully-connected DNNs, leading to huge savings in computational and storage resources
(up to a factor of 103 in memory and a level of sparsity ε = 90%) without significant performance
degradation. We refer readers to Section B in the appendix for further experiments and discussions.
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Figure 2: Eigenvalue histograms (top) and dominant eigenvectors (bottom) of last-layer CK matrices
KCK (blue) defined in (4) (with expectation estimated from 1 000 independent realizations of Ws)
and the asymptotic equivalent K̃CK (red) matrices. (Left) Gaussian W on two-class GMM data, with
p = 2000, n = 8000, µa = [08(a−1); 8; 0p−8a+7],Ca = (1 + 8(a− 1)/

√
p)Ip, a ∈ {1, 2} using

[ReLU, ReLU, ReLU] activations, here ∥KCK − K̃CK∥ = 0.15; and (right) symmetric Bernoulli
W on MNIST data (number 6 versus 8) [31], with p = 784, n = 3200, using [poly, ReLU, ReLU]

activations, ∥KCK − K̃CK∥ = 6.86. x1, . . . ,xn/2 ∈ C1 and xn/2+1, . . . ,xn ∈ C2 in both cases.

Figure 2 compares the eigenvalues and dominant eigenvectors of the CK matrices KCK defined
in (4) versus those of their asymptotic approximations K̃CK given in Theorem 1, in the case of
fully-connected DNNs having three hidden layers (of width d1 = 2000, d2 = 2000, d3 = 1000).
For different types of activations: poly(t) = 0.2t2 + t and ReLU(t) = max(t, 0), different weight
distributions (Gaussian and symmetric Bernoulli), and on synthetic GMM as well as MNIST data, we
consistently observe a close match between the eigenvalues and dominant eigenvectors of KCK and
K̃CK, as a consequence of the spectral norm convergence in Theorem 1 (and Remark 2), suggesting
a possibly wider applicability of the proposed results beyond GMM data.4

Following the idea of CK matching in Figure 2, Figure 3 depicts the test accuracies of (i) the
original dense and unquantized network with three fully-connected layers, (ii) the proposed “lossless”
compression scheme described in Corollary 1 and Algorithm 1 via CK matching, as well as its
variant having ternarized weights but dense and unquantized activations, (iii) the popular magnitude-
based pruning approach as in [20], together with (iv) two “heuristic” compression approaches: (iv-i)
sparsification by uniformly zeroing out 80% of the weights (we cannot do more, as the resultant
performance is too poor to be visually compared with other curves) , and (iv-ii) binarization using
σ(t) = 1t<−1+1t>1, for different choices of width per layer, and the ten-class classification problems
of MNIST and CIFAR10. Specifically, neural networks before and after compression have three
fully-connected layers, and the original network uses ReLU activation in each layer. Classification is
performed on a concatenated and trainable fully-connected layer. For MNIST datasets, raw data are
taken as the network input; for CIFAR10 dataset, flattened output of the 16th convolutional layer of
VGG19 [52] are taken as the network input.

We observe from Figure 3 that the proposed “lossless” compression scheme produces significantly
sparser networks (up to 90% of weights set to zero) with minimal performance loss, while occupying
(up to) a factor of 103 less memory, when compared to the original or the heuristically compressed
nets. Also, higher accuracies are obtained with the proposed approach than, e.g., the popular
magnitude-based pruning under the same memory budget. In addition, the ternary weights variant
(with quantized weights only) of the proposed scheme can achieve even better performance (with
virtually no performance loss compared to the original dense net), however at the price of not
conducive to inference accelerating, since the activations are unquantized. We also see that the
sparsity level ε has limited impact on the classification accuracy, as in line with our theory.

4Small eigenvalues of KCK, K̃CK close to zero are removed from Figure 2 for better visualization.
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These experimental results show that the proposed approach achieves a better performance-complexity
trade-off than commonly used heuristic DNN compression methods.
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Figure 3: Classification accuracies of different compressed fully-connected nets on MNIST [31] (top)
and CIFAR10 [30] (bottom) datasets. Blue curves represent the proposed compression approach
with different levels of sparsity ε ∈ {0%, 50%, 90%}, purple curves represent the heuristic sparsifi-
cation approach by uniformly zeroing out 80% of the weights, green curves represent the heuristic
quantization approach using the binary activation σ(t) = 1t<−1 + 1t>1 , red curves represent the
original network, brown curves represent the proposed compression approach without activation
quantization, with ε = 90% for MNIST (top) and ε = 95% for CIFAR10 (bottom), and orange
curves represent magnitude-based pruning [20] with the same sparsity level ε as brown. Memory
varies due to the change of layer width of the network.

5 Conclusion and perspectives

In this paper, built upon recent advances in random matrix theory and high-dimensional statistics,
we provide precise characterizations of the eigenspectra of both conjugate kernel and neural tangent
kernel matrices, for high-dimensional Gaussian mixture data and fully-connected multi-layer neural
nets. These results further allows us to sparsify and quantize fully-connected deep nets, resulting in a
factor of 103 less memory consumption with virtually no performance degradation.

Extending the present theoretical framework to more involved settings such as convolutional nets
requires refined analysis on the block Toeplitz weights W and on their connection to the corresponding
CK and NTK matrices [5, 59]. Also, since the NTK eigenspectra determine the gradient descent
dynamics of ultra-wide deep nets, the asymptotic characterizations in Theorem 2 can be applied to
assess the learning dynamics [37, 2, 2] of fully-connected DNN models, in and possibly beyond the
infinitely wide NTK regime.
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were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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