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Abstract: Large language models (LLMs) have shown great promise in robotic
task planning through in-context learning with a few successful demonstrations,
guiding the model to generate feasible task plans. However, existing approaches
typically overlook the learning signals from failures, often relying solely on man-
ually curated positive examples. Recent methods attempt to utilize failures by
transforming them into feedback or improved plans through LLMs, which in-
volves additional steps to generate knowledge that can serve as positive exam-
ples for learning. Moreover, these methods often store examples indiscriminately
in an external memory, leading to unbounded memory expansion and inefficien-
cies in both retrieval and resource usage. In this work, we propose a contrastive
in-context learning framework for task planning that utilizes both successful and
failed demonstrations through a dual prompting strategy. It enables the model to
learn by contrasting positive prompts from successful ones, which guide correct
behaviors, and negative prompts from failed ones, which prevent recurring mis-
takes. To implement this strategy efficiently, we introduce an active memory with
a limited budget that selectively incorporates useful demonstrations generated by
an LLM during task planning. Experiments on diverse multi-object, long-horizon,
and spatially constrained manipulation tasks show that our method improves the
average task success rate by 10.7%, while reducing memory size by up to 75.0%
compared to existing LLM-based task planning approaches.
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1 Introduction

Large language models (LLMs) have shown impressive generalization and reasoning capabilities
across a wide range of tasks, from natural language understanding [1] to code generation [2], by
leveraging extensive pre-trained knowledge. Recently, these capabilities have been extended to
robotic task planning [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], where an LLM generates action sequences
through in-context learning [13]. In this approach, the model is provided with a few input-output
examples (referred to as contextual memory) and generates plans without requiring additional fine-
tuning. It enables task planning in scenarios with varying task specifications [3, 4, 5].

Most existing works employ contextual memory for in-context learning, typically composed of suc-
cessful demonstrations manually curated by human experts [3, 4, 5, 6, 14], as illustrated in Fig-
ure 1(a). These approaches primarily focus on positive examples, which guide the model toward
ideal action sequences. However, they overlook valuable learning signals from negative examples,
which can help the model recognize and avoid incorrect behaviors [15].

In task planning, it is challenging to generate demonstrations that support learning from positive
and negative examples. This is because such demonstrations require complex reasoning over tem-
poral and causal dependencies, typically in a structured language-based representations, such as
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Figure 1: Comparison of in-context learning methods for task planning. In memory, blue and
purple colors represent examples derived from successful and failed demonstrations, respectively.
Memories with dashed and solid borders indicate growing and fixed sizes, respectively. (a) learns
with positive examples from a pre-defined contextual memory. (b) conducts in-context learning us-
ing successful demonstrations stored in an external memory, and (c) learns from corrected examples
derived from failures in an external memory. In contrast, ours in (d) performs contrastive in-context
learning with both successful and failure demonstrations by selectively incorporating them into an
active memory of a limited size during task planning.

symbolic actions [6, 14] or planning domain languages [16, 17]. This leads to error-prone human-
crafted examples, especially in long-horizon tasks with increased planning complexity. To address
this, we utilize demonstrations generated by LLMs during task planning, where the LLM outputs
the structured action sequences. Recently, a few works have leveraged generated demonstrations by
storing them in an external memory for future knowledge retrievals when executing new task in-
structions [18, 19, 20]. They either collect only successful demonstrations [18] or corrected demon-
strations from failures [19, 20], both of which also provide the model with positive examples, as in
Figure 1(b) and 1(c). However, they lead to unbounded memory expansion and inefficient retrieval
due to an extensive number of generated examples in the memory. Moreover, they often require an
additional step to store or transform specific types of knowledge, such as for LLM querying.

To address these problems, we propose a novel approach that introduces contrastive in-context learn-
ing for task planning, utilizing both successful and failure demos through a dual prompting strategy.
This method employs two prompts to learn by exploiting the contrast between them, where posi-
tive prompts derived from successes guide desirable reasoning patterns, and negative prompts from
failures help in recognizing incorrect behaviors. To make use of both types of demos, we intro-
duce an active memory that serves as a self-evolving repository of LLM-generated demos to provide
task-specific knowledge while selectively integrating useful ones. Additionally, we adopt a diversity-
aware selection strategy to ensure a compact yet informative memory, identifying a representative
set of demos. In doing so, the robot can continually improve its planning ability by distilling its own
experiences, including successes and failures, without requiring additional supervision or resources.

To validate the effectiveness of our method, we conduct evaluations on a diverse set of benchmark
scenarios, each reflecting key challenges in LLM-based robot task planning: Shelf [21] for multi-
object manipulation, Coffee [5] for long-horizon task sequences, and Unpacking [22] for spatially
constrained tasks. Experimental results demonstrate that the proposed contrastive in-context learn-
ing approach significantly outperforms existing in-context learning based task planning methods,
improving task success rates by up to 20.8% and reducing memory usage by up to 75.0%. Further-
more, we demonstrate the real-world applicability of our approach, showing that leveraging both
successful and failed cases through contrastive in-context learning helps prevent potential mistakes,
compared to the standard in-context learning, which relies on pre-defined successful examples.

2 Related Works

To leverage pre-trained large language models (LLMs) without additional parameter updates, in-
context learning [13] has emerged as a powerful learning strategy. LLMs can rapidly adapt to new
tasks and generate contextually appropriate responses based on a small set of input-output examples.
This capability has recently been applied to robotic task planning [3, 4, 5, 6, 7, 8,9, 10, 11, 12, 14,
18, 19, 20, 23, 24], where in-context examples facilitate the generation of coherent action sequences,
showcasing its flexibility and generalization ability.



Most works focus on generating plans grounded in the environment [3, 4, 6, 7, 8, 9]. Specifically, [3]
combines LLMs for task-grounding information with affordance functions to consider the environ-
ment information. [4] employs a scene descriptor with a visual question answering model [25] to ob-
tain environment feedback. [6] converts natural language instructions into the planning domain def-
inition language (PDDL) formulation [16, 17] with an LLM-based translator. [8] presents a partially
observable task planning framework by considering uncertainties of the environment and skill exe-
cution. Additionally, some works generate an executable code that represents task plans [10, 11, 14].
[10, 14] present programmatic prompting templates to generate a structured robot-executable code.
[11] develops multi-level task decomposition for a multi-robot framework in code-style represen-
tations. These methods rely on manually curated successful examples in a pre-defined contextual
memory for in-context learning, limiting the ability of the model to learn from diverse examples.

To address this limitation, recent works have explored memory-augmented approaches that incorpo-
rate demonstrations generated by LLMs during task planning into an external memory [18, 19, 20],
thereby enhancing the learning capability of the model. [18] collects successful experiences, and
[19, 20] store transformed feedback or improved plans obtained by querying an LLM with failed
outputs. However, these methods face several limitations. First, they rely on positive prompting,
where the model is encouraged during training to imitate the provided positive examples. Second,
they often suffer from unbounded memory growth, leading to resource overhead and inefficient re-
trieval. Third, they typically store only a subset of experiences either successful demonstrations [18]
or corrections derived from failures [19, 20], which limits the diversity of learned knowledge. In
contrast, we propose contrastive in-context learning with dual prompting, which provides both pos-
itive and negative examples to guide the model on what to imitate and what to avoid. To realize this
in a resource-constrained robotic system, we introduce an active memory module that continuously
curates and updates a compact collection of successful and failed LLM-generated demonstrations,
selectively retaining the most useful examples within a limited memory budget.

Additionally, other recent studies have focused on detecting and correcting errors in action sequences
generated by LLMs [5, 12, 23, 24, 26]. [24] employs an external validator with a rule-based verifier,
while [5] uses additional LLMs to summarize robot sensory observations for failure reasoning. [23,
26] propose an iterative self-refinement process, and [12] introduces an execution-level feedback
loop with a vision-language model. In contrast, our approach enhances planning capabilities through
the proposed contrastive in-context learning, without relying on corrected examples or requiring
additional re-planning processes.

3 Method

3.1 Overview

Our goal is to enable large language models (LLMs) to enhance their learning capabilities by
fully utilizing both self-generated successful and failed experiences under a limited memory bud-
get. Typically, existing works [3, 4, 10, 14] perform standard in-context learning using a fixed
contextual memory, M, manually constructed by human experts, as illustrated in Figure 2(a).
Mp = {dy,...,dp} is a set of B successful demonstrations, where each d; = (x;, y;) consists of
an input-output pair that encourages the model to imitate the provided behaviors as positive prompt-
ing. To broaden the learning capability using self-generated new experiences during task planning,
recent works have attempted to store them in an external memory by transforming and accumulating
them [18, 19, 20], as depicted in Figure 2(b) (transforming can be omitted). However, they indiscrim-
inately accumulate data into an unbounded memory, hindering efficient retrieval, and often require
additional steps to store or transform specific types of knowledge for positive prompting [19, 20].

To address these limitations, we introduce a contrastive in-context learning framework with an ac-
tive memory to effectively leverage both generated successful and failed knowledge during task
planning. The framework employs a dual prompting strategy that contrasts positive prompts from
successes and negative prompts from failures to allow the model to imitate correct behaviors and
avoid mistakes. As shown in Figure 2(c), the planner generates an action sequence as a demon-
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Figure 2: A comparison of approaches for LLM-based task planning. (a) generates a demon-
stration as an action sequence by performing positive prompting with manually curated success-
ful demonstrations to guide the planner toward optimal planning behaviors. (b) conducts positive
prompting using an external memory that retains successful demonstrations or refined demonstra-
tions obtained from the correction of failures. (c) employs positive and negative prompting by uti-
lizing generated successful and failed demonstrations stored in an active memory, respectively.

stration for the given task instruction, resulting in success or failure. A selector module evaluates
existing and newly generated demonstrations by estimating their utility using a diversity-aware ap-
proach in the language feature space. It updates the active memory by selecting the most informative
subset while preserving the fixed capacity of Mp. The updated active memory is then used to pro-
vide contrastive examples during in-context learning, enabling an LLM to continuously refine its
planning ability with a compact yet diverse set of experiences.

3.2 Active Memory

To enable experience-driven learning within resource-constrained robotic systems, it is crucial to
build a memory as a diverse set of demonstrations while minimizing human efforts and additional
resources. To this end, we construct an active memory, M 4, consisting of demonstrations generated
by an LLM, preserving its planning-oriented language and reasoning patterns. Notably, we retain
both successful and failed demonstrations in M 4, as each provides complementary guidance in
learning to capture the reasoning patterns behind success or failure.

The active memory is progressively updated by a selector module, S, which employs a diversity-
aware selection strategy inspired by active learning [27]. It evaluates both newly generated and
stored demonstrations to identify the most informative and representative subset within a constrained
memory budget. Given the current memory, M 4, and a set of newly generated demonstrations, G,
containing successful and failed cases, the selector evaluates them in the language feature space to
update the memory by discarding less informative or redundant examples and incorporating those
that enhance diversity and representativeness in memory. This can be formalized as follows:

Ma + S(Ma,G), where My = {M?3, M4} (1)

Here, M} and M j; represent the sets of selected successful and failed demonstrations, respectively.

To identify the most valuable demos, we first encode them into vector representations using
Sentence-BERT [28], capturing their semantic and contextual features. Then, we perform k-means
clustering [29] on successful and failed demos separately, aiming to ensure diversity within each
case. The total number of clusters is set to the memory budget, and the allocation between success
and failure clusters can be adjusted, whose impact is analyzed in Section 4.1.2. From each cluster,
we select a representative demo to retain in the active memory, keeping it compact yet informative.

3.3 Contrastive In-Context Learning with Dual Prompting

We introduce contrastive in-context learning with dual prompting to enhance in-context learning
while adaptively leveraging two types of demonstrations. The key intuition is that effective learning
benefits not only from understanding correct reasoning patterns but also from learning to recognize
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Figure 3: Examples of positive and negative prompting. (a) Positive prompting helps the model
learn correct behaviors through an instruction and a successful demonstration, while (b) negative
prompting encourages avoiding incorrect behaviors with a negative learning signal and a failed
demonstration. Underlined texts indicate the differences between the two demonstrations.

and avoid unsuccessful ones. This is motivated by the observation that LLMs are highly sensitive
to the context and can imitate behaviors depending on the demonstrations they are given [30]. It
can address the limitation of conventional prompting strategies, which primarily focus on positive
examples [13], overlooking valuable learning signals from failure cases.

Accordingly, the active memory with successful demonstrations M 3 and failure ones M j; is utilized
for positive and negative prompting, respectively. Positive prompting provides successful exemplars
that demonstrate how to solve a task [13], whereas negative prompting introduces failure cases
to help the model recognize and avoid incorrect strategies, inspired by [31]. Each demonstration
d; = (x;,vy;) is reconstructed into a triplet (g, ;, y; ), where g is an instruction signal determined by
the prompting type as follows:

(gp71'i,yi)a lf(xlayi) S M,ia

(Gn>wir i), if (2i,4:) € M.
Here, g, is a positive instruction that encourages the model to imitate successful behavior, while g,
is a negative instruction that discourages the replication of failure. These instructions implicitly label
the demonstrations, enabling dual prompting to contrast successes and failures within the context.
Examples of positive and negative prompting are shown in Figure 3.

4 Experiments

4.1 Benchmark Experiments
4.1.1 Setup

Datasets. We validated the proposed method in three widely-used benchmark scenarios, including
Shelf [21], Coffee [5], and Unpacking [22]. Each scenario is designed to validate the capability of
the LLM-based task planning in multi-object, long-horizon, and spatially constrained manipulation
tasks, respectively. In the Shelf scenario, the robot aims to re-arrange N objects, initially placed at
random, into a size-ordered sequence on a shelf that can hold up to N+1 objects. The objective of the
Coffee scenario is to serve N cups of coffee, each composed of up to six different ingredients, using
one coffee machine. The Unpacking scenario requires retrieving a designated target object from a
box filled with IV objects of varying sizes and placing it into a separate box. Each environment was
evaluated using 20 randomized test cases, designed with different initial and goal configurations.
To evaluate performance across tasks of varying complexities, we adjusted the number of objects
N in each scenario. Specifically, we set IV to 2 and 4 for Coffee, and 5 and 7 for both Shelf and
Unpacking. This variation produces task sequences of different lengths. In the Shelf scenario, the
average sequence spans 15 and 26 steps for NV = 5 and N = 7, respectively. In the Coffee scenario,
the averages increase to 29 and 57 for N = 2 and N = 4, respectively. The Unpacking scenario has
Sand 7 stepsfor N =5and N = 7.

The task sequences are relatively short since accessing the target involves removing only a few obstructing
objects in the box, not all items.




Table 1: Comparison results of task success rates. The bold and underlined texts indicate the best
and second-best results, respectively.

Shelf Coffee Unpackin
Method N=3 N=TIN=2 N=1|N=3 N=7| A%
GPT-40-mini
Standard planning 72.5% 35.0% | 77.5% 62.5% | 62.5% 32.5% | 57.1%
Re-planning 90.0% 37.5% | 85.0% 77.5% | 671.5% 37.5% | 65.8%

Planning w/ external success memory | 95.0% 50.0% | 90.0% 85.0% | 77.5% 45.0% | 73.8%
Planning w/ external failure memory | 90.0% 47.5% | 87.5% 82.5% | 71.5% 52.5% | 72.9%
Planning w/ active memory (ours) 97.5% 52.5% | 90.0% 87.5% | 82.5% 57.5% | 77.9%
Gemini-1.5-Flash-8B
Standard planning 525% 20.0% | 70.0% 57.5% | 35.0% 25.0% | 43.3%
Re-planning 55.0% 20.0% | 85.0% 55.0% | 37.5% 22.5% | 45.8%

Planning w/ external success memory | 57.5% 30.0% | 90.0% 80.0% | 47.5% 25.0% | 55.0%
Planning w/ external failure memory | 65.0% 22.5% | 85.0% 67.5% | 52.5% 20.0% | 52.1%
Planning w/ active memory (ours) 67.5% 27.5% | 90.0% 80.0% | 60.0% 35.0% | 60.0%

Implementation details. To verify the applicability of the proposed method across diverse mod-
els, we used two models: GPT-40-mini (GPT) [32] and Gemini-1.5-Flash-8B (Gemini) [33] both of
which have approximately 8 billion parameters. We utilized the LLM to convert natural language
task instructions into PDDL representations [6], with a temperature of 0 to eliminate randomness
in the output. After that, the LLM generated action sequences based on the translated PDDL, using
a temperature of 0.1 to allow for diversity in plan generation. The success or failure of the gener-
ated plan was assessed using a rule-based simulation system [23]. Additionally, we set the memory
budget (B) to 6 and 12 demonstrations, updating the active memory every five task instructions to
balance learning responsiveness and stability. To balance the ratios of successful and failed exam-
ples in memory, we limited the number of failed examples to at most half of the memory budget (see
Table 3 for analyses of the failure ratio).

Comparison methods. We compared the proposed method against four representative baselines. (i)
Standard planning performs in-context learning for task planning by using a fixed set of successful
demonstrations with positive prompting [3, 4, 6]. (ii) Re-planning corrects errors of the generated
action sequence through positive prompting with resolved correction examples as a recent self-
corrective method [23]. (iii) Planning with external success memory [18] stores demonstrations
that are either initially successful or become successful after re-planning and continues positive
prompting with them. (iv) Planning with external failure memory [19, 20], stores the original failed
demonstrations and their improved ones obtained through re-planning, along with feedback. For (iii)
and (iv), we apply a recent self-corrective approach [23] for re-planning and use the widely adopted
Sentence-BERT [28] to retrieve demonstrations with the closest embeddings to the task instruction.

4.1.2 Results

Main results. We summarize the comparison results on three benchmark scenarios in Table 1, av-
eraging over two memory budgets. The proposed method consistently outperforms all competitors,
achieving an average increase of 10.5% with GPT and 11.9% with Gemini, respectively. Compared
to Standard planning, our approach demonstrates a 18.8% higher average success rate across all sce-
narios. This indicates that relying on a pre-defined contextual memory limits the learning capability
of the model and its adaptability in diverse scenarios. Although Re-planning requires additional
resources, such as querying an LLM for plan validation and generating feedback, it shows lower
average performance than our method with a 13.2% drop across all settings. External memory with
successful examples yields comparable results to our proposal in some scenarios, but it shows an
average performance drop of about 10.1% in the most challenging Unpacking scenario. We observe
that external failure memory method consisting of corrected failures achieves performance similar
to using successful examples, but it still results in an 6.5% average drop compared to ours across
all scenarios. Those results suggest that incorporating both successful and failed demonstrations en-
hances the learning capabilities of LLMs by explicitly indicating which plans to imitate and which
to avoid, thereby compensating for the limited guidance implicitly offered in successful examples.



Table 2: Ablation study in terms of active memory, dual prompting, and selector.

Functionality Shelf Coftee Unpacking
Active Dual f gelector | N=5 N=7|N=2 N=4|N=5 N=7| A%
memory | prompting

GPT-40-mini

72.5% 35.0% | 77.5% 62.5% | 62.5% 32.5% | 57.1%
82.5% 40.0% | 85.0% T75.0% | 72.5% 45.0% | 66.7%
v 92.5% 47.5% | 87.5% 80.0% | 72.5% 50.0% | 71.7%
90.0% 45.0% | 87.5% 82.5% | 75.0% 50.0% | 71.7%
V4 V4 97.5% 52.5% | 90.0% 87.5% | 82.5% 57.5% | 77.9%
Gemini-1.5-Flash-8B
52.5% 20.0% | 70.0% 57.5 350% 25.0% | 43.3%
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v 60.0% 22.5% | 80.0% 72.5% | 45.0% 27.5% | 51.3%
v v 62.5% 25.0% | 80.0% 75.0% | 47.5% 27.5% | 52.9%
v v 65.0% 25.0% | 85.0% 75.0% | 52.5% 32.5% | 55.8%
v v v 67.5% 27.5% | 90.0% 80.0% | 60.0% 35.0% | 60.0%
18 _1s Table 3: Analysis of prompt ratio. The
X |y @ Externalmemory | X Coffee prompt ratio denotes the maximum propor-
h=1 * * Active memory i=1 Shelf . f . . h h t.
g16 (ours) g * Unpacking tion of negative prom.pts.wn in the active
g 213 memory. The values indicate task success
214 - | z | X o ra gains over the 0% prompt ratio baseline.
3 PS 3
] 211 % ° Prompt
P12} = = 2 s - ratio | 0% | 33% 50% 67%
Memory size (# examples) Memory size (# examples) B — 6
() B=6 (b) B=12 Easy - +42% | +11.7% | +5.8%
. . Hard - | 45.0% | +83% | +1.7%
Figure 4: Comparison of success rate and mem- B =19
ory size. Success rate gain denotes the success rate Easy T 408% | +42% | +17%
improvement compared to Standard planning. Hard -1 125% | +33% | +17%

Ablation study. We conducted an ablation study to investigate the impact of the proposed method in-
cluding the active memory, dual prompting, and the selector. The results are summarized in Table 2,
averaged across two budgets. Employing only the active memory yields a modest 8.8% improvement
over not employing it across all scenarios. However, it still shows an average 11.2% drop compared
to ours. Interestingly, comparing the impact of the selector and dual prompting, we observe that
the absence of each resulted in an average drop of 5.2% and 6.7%, respectively, across all settings.
It indicates that dual prompting, which leverages successful and failed knowledge for contrastive
in-context learning, improves the overall performance and adaptability of the model.

Efficiency of active memory. We evaluated our active memory and the external memory ap-
proach [18, 19, 20], comparing average success rate gain over standard planning and memory size, as
shown in Figure 4. External memory methods expand as new demos accumulate over time, thereby
requiring larger memory resources, averaging about 2.27 times the size of the proposed active mem-
ory across all scenarios. They achieve a 1.26 average success rate gain over standard planning,
whereas our proposal achieves an higher average gain of 1.38, demonstrating superior performance
with substantially less memory. These findings indicate that integrating newly generated knowledge
while optimizing memory allocation can cut memory usage without compromising performance.

Impact of prompt ratio. We analyzed the impact of varying the ratio of negative prompts given an
active memory budget (B) of 6 and 12, as shown in Table 3. We evaluated four configurations using
GPT and Gemini: 0% with positive prompts only and allowing up to 33%, 50%, and 67% negative
prompts out of each memory budgets, respectively. For the analysis, we grouped scenarios into two
categories, with settings for each scenario with fewer objects considered as Easy and settings with
more objects considered as Hard. Then, we calculated the average success rate for each category
and reported the improvements over the method using only positive prompts (0%). On average,
the results show that maintaining a balanced ratio of positive and negative signals yields the best
performance. Notably, increasing the proportion of negative prompts tends to benefit Easy, whereas
increasing the proportion of positive prompts is more effective for Hard.
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Figure 5: Comparison of execution sequences in the Shelf scenario between the standard
LLM-based planning and the proposed planning method. (action oi slotj) represents that
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4.2 Real-world Experiments

We evaluated the proposed method using a 7-DOF Franka Emika Panda robot arm in the Shelf
scenario using AprilTag [34] for scene perception with a wrist camera. The robot rearranges seven
objects of different sizes on a shelf according to a specified size-based order using Gemini. Note
that the shelf has one extra slot available. To gather scene information for all objects and slots, the
robot returns to detecting positions after each action. We compared the generated action sequences
against the Standard planning approach. This allows us to evaluate both the planning performance
and the impact of the proposed contrastive in-context learning with successes and failures.

As shown in Figure 5(a), both the standard and proposed planning approaches fail when executing
(place o7 slot7), since slot7 is already occupied by object4, resulting in a collision. Then, the
standard planning method fails again given a similar task instruction, as illustrated in Figure 5(b).
Since it does not leverage the previous failed experience for learning, resulting in a similar collision
when attempting (place o4 slot4), where slot4 is already occupied by object7. However, ours
leverages the previous failed experience through contrastive in-context learning, allowing the model
to learn to avoid similar mistakes and complete a similar task in the future, as shown in Figure 5Sc.

5 Conclusion

In this work, we have introduced a contrastive in-context learning framework for task planning with
large language models. It employs a dual prompting strategy, where successful knowledge serves
as positive prompts to guide the model toward effective behaviors, and failed knowledge is used
as negative prompts to help avoid previously observed mistakes. It allows the model to learn from
the contrast between the two different prompts. To leverage both types of knowledge for learning,
we introduce an active memory that is progressively updated with task-specific demonstrations,
generated by LLMs during task planning, ensuring the retention of a compact but diverse set of
knowledge. Extensive evaluations in both benchmark environments and real-world settings shows
that our method achieves a markedly higher task completion rate than existing LLM-based planners
while requiring only minimal additional resources.
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