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1 Introduction

Pre-trained Multilingual Sequence-to-Sequence
(PMSS) models, such as mBART (Tang et al.,
2021) and mT5 (Xue et al., 2021), have shown con-
siderable promise over vanilla Transformer mod-
els for Neural Machine Translation (NMT). This
promise persists to low-resource language trans-
lation as well (Thillainathan et al., 2021), which
remains a challenge despite the recent advances in
the field (Ranathunga et al., 2021). In addition to
the empirical analysis carried out during the intro-
duction of these PMSS models (Tang et al., 2021),
further empirical analysis for the task of NMT was
conducted by Wang et al. (2022); Liu et al. (2021a)
and Lee et al. (2022). The latter two specifically
focused on low-resource language pairs, showing
that the effectiveness of an NMT model trained
on mBARTS50 depends on the amount of language
data used at the pre-training stage. Specifically, re-
sults for languages unseen in the PMSS model are
below useful levels.Lee et al. (2022) also showed
that the results are dversely impacted by the do-
main differences of the datasets. Liu et al. (2021a)
experimented with continuous pre-training (CPT)
to include unseen languages into the model, but
found that when the amount of parallel data used
in the fine-tuning stage is very low, there is no
noticeable impact made by CPT, particularly for
non-English-centric translations.

However, both Lee et al. (2022) and Liu et al.
(2021a) considered only the case where the PMSS
model is fine-tuned only once with a dataset belong-
ing to a particular domain. A look into the avail-
able corpora suggests that there are either noisy
automatically created parallel corpora or manually
curated small parallel corpora for hundreds of lan-
guages (Tiedemann and Thottingal, 2020). Bapna

et al. (2022) automatically mined bitext from over
1000 languages from the web. Artetxe et al. (2020)
also point to several initiatives aimed at creating
parallel resources at scale. This means, that for
a given language pair, there can be several paral-
lel datasets, belonging to different domains. In
fact, Artetxe et al. (2020) argue that pure unsuper-
vised NMT setup is not realistic given the availabil-
ity of parallel data.

Recent research exploits available parallel cor-
pora to improve the pre-training stage of the PMSS
model, which is further fine-tuned with parallel
data (either from the same or different domain)
with an NMT objective (Reid and Artetxe, 2021).
However, their experiments do not discuss the im-
pact of the size and domain of the parallel data
used during pre-training. On the other hand, before
the PMSS era, researchers have experimented with
Transfer Learning on vanilla Transformer (Vaswani
et al., 2017) models and recurrent models. During
transfer learning, a low-resource language trans-
lation task is trained on an NMT model, which
has already been trained for a high-resource lan-
guage pair (Lakew et al., 2018; Dabre et al., 2019a;
Maimaiti et al., 2020; Imankulova et al., 2019; Luo
et al., 2019). Despite its success, the impact of
Transfer Learning on PMSS models has not been
explored for NMT.

Considering the shortcomings in the existing lit-
erature, the objective of this research is to identify
the most effective way of utilizing parallel data
of low-resource language pairs in training PMSS
models for NMT. More specifically, we quantify
the impact of domain differences and sizes of the
available parallel datasets, as well as how the paral-
lel data is used to train the PMSS model.

For our empirical experiments, we selected sev-
eral low-resource languages, where some are not in
the selected PMSS model. We tested the effective-
ness of two fine-tuning strategies (intermediate task
fine-tuning and single-stage mixed-domain fine-



tuning) as well as the bitext denoising pre-training
strategy. Our results reveal that. [Shravan: Will
we mention things like mBART vs mt5 here and
are we planning to write our main contribution
here as pointers?]

As an additional contribution, we release a multi-
way parallel bible dataset of 25k for the selected
languages, which until now had less than xx.

2 Related Work

2.1 Empirical Evaluation of PMSS Models for
NMT

Liu et al. (2020), who introduced the mBART?25
model experimented with both English-centric and
non-English-centric data, as well as languages not
included in mBART?25. They showed that for lan-
guages with low amounts of monolingual data, pre-
training with other languages helps in the down-
stream NMT task as well as that the performance
of the NMT model has a lower bound and an upper
bound related to the size of the fine-tuning dataset.
Tang et al. (2021) showed the effective-
ness of continuous pre-training of PMSS models.
They also showed that multilingual fine-tuning on
mBARTS50 for many-to-one translation beats a mul-
tilingual NMT model trained from scratch.

Wang et al. (2022) studied the impact of domain
and the objective discrepancy between pre-training
and fine-tuning stages (i.e. pre-training has been
with monolingual open domain data with objec-
tives s.a. denoising, while fine-tuning is with paral-
lel domain-specific data with an NMT objective).
They also introduced pre-training with in-domain
monolingual data, as well as input adaptation in
fine-tuning to battle the two discrepancy issues.

Lee et al. (2022) showed that NMT models built
on mBARTS50 are data efficient compared to vanilla
Transformer models when trained with sufficient
quantities of parallel data. For languages not in-
cluded in mBARTS50, the performance is poor,
when fine-tuned with low amounts of data. Their
results also showed that both domain relatedness
and language relatedness have an impact on the
model performance. Liu et al. (2021a) specifically
focused on languages not included in mBART and
showed that continuous pre-training is effective
when fine-tuning with over 50k parallel sentences.
However, for low amounts parallel corpora (10k),
performance is poor even when pre-trained with
1M monolingual corpus, which is further exasper-
ated for non-English-centric pairs. Therefore, to

make NMT systems robust and applicable for low-
resource languages, alternative techniques for im-
proving PMSS models must be explored.

2.2 Exploiting Auxiliary Parallel Data to
Improve NMT Performance

In the context of RNN, as well as vanilla Trans-
former models, continuous fine-tuning of NMT
models using Transfer Learning techniques have
been widely explored for low-resource language
translation. Dabre et al. (2019b) and Maimaiti et al.
(2020) first trained a multilingual NMT model with
all the available parallel data (including the tar-
get language pair). Then they further fine-tuned
this parent model with the selected parallel dataset
(child model). Lakew et al. (2018) followed a sim-
ilar approach, but assumed that child data is not
available in parent model training. Imankulova et al.
(2019) focused on the domain-specific translation
task. They build a multilingual NMT model with
out-domain parallel data, further fine-tuning it with
(relatively small) in-domain data, followed by the
final fine-tuning with the limited parallel data for
the final task.

Although the above strategies have not been
applied to fine-tuning PMSS models, Reid and
Artetxe (2021); Chi et al. (2021); Kale et al. (2021)
experimented with new pre-training objectives that
utilized available parallel data. Reid and Artetxe
(2021) augmented the existing denoising objec-
tive in mBART with three new objectives: replace
words in the noised sequence with a bilingual dic-
tionary, predict the reference translation instead of
the input sequence, and a combination of the two
former. Kale et al. (2021) introduce four denois-
ing tasks to mT5: translation language modelling,
Standard NMT, denoised NMT and denoised NMT
+ language model (LM). Chi et al. (2021) pre-
sented three cross-lingual objectives to mT5: ma-
chine translation, translation pair span corruption,
and translation span corruption. They also intro-
duce a new objective for text-to-text pre-training,
called partially non-autoregressive (PNAT) decod-
ing. However, Kale et al. (2021) or (Chi et al.,
2021) did not test their models on NMT tasks.

2.3 Quantifying Domain Relatedness in
Domain Adaptation Scenarios

Wang et al. (2022) quantified the disparity between
typical pre-training and fine-tuning domains for
NMT by comparing unigram distributions. The dis-
parity seen in the long tail region of these distribu-



tions is supposed to contain much domain-specific
information.
Popular quantitative measures for domain di-
vergence metrics used in NMT and other related
research areas include the Jensen-Shannon diver- / ;
Parallel data from
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gence (JS Divergence) (Lin, 1991) and the proxy
A-distance (Ben-David et al., 2006). Ruder and
Plank (2017a); Remus (2012); Ruder et al. (2017)
used unigram distribution-based JS Divergence / /_>

different domain
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with respect to a target-distribution for data selec-
tion in the context of sentiment analysis. Whereas
Kerinec et al. (2018); Bingel and Sggaard (2017)
used it for data selection in the context of multi-task

Figure 1: Overview of Multistage Fine-tuning.

learning.
Language Family  Script Joshi mBART mT5
class Tokens (M) Tokens(M)
3 Methodology Hindi (H1) 1A Devanagari 4 1715 24000
Gujarati (GU) 1A Gujarati 1 140 800
. . . . Kannada (KN) Dr Kannada 1 - 1100
We experlment with two main ways of explomng Sinhala (S1) 1A Sinhala 1 243 800
Tamil (TA) Dr Tamil 3 595 3400

auxiliary parallel data to improve PMSS models for
domain-specific NMT, namely at the pre-training
(PT) stage and at the fine-tuning (FT) stage.

3.1 Fine-tuning Strategies

We experiment with two FT strategies, namely in-
termediate task FT, and mixed-domain FT.

Intermediate task fine-tuning refers to fine-
tuning the PMSS model first with an out-domain
parallel dataset (or another pair of languages), fol-
lowed by the target domain parallel data, as shown
in Figure 1. This has been extensively experi-
mented with Encoder-based models for tasks such
as NLU (Phang et al., 2018). Note that it is possi-
ble to sequentially fine-tune a PMSS model with
parallel data from different domains. However, we
stick to one intermediate task, because of the com-
putational cost, as well as the lack of parallel data
from many different domains.

Mixed-domain Fine-tuning refers to fine-tuning
the PMSS model with all the parallel data available
for a language pair (including the target domain
data), which is again fine-tuned on the target do-
main parallel data. The idea is similar to the mul-
tilingual Transfer learning methods discussed in
Section 2.2, however, instead of data from multi-
ple languages, we use data from multiple domains.
Note that this method is similar to intermediate task
fine-tuning, where we use multiple corpora in the
intermediate stage.

Table 1: Languages (IA- Indo Aryan, Dr - Dravidian)

3.2 Continuous Pre-training with Parallel
data

Out of the previous research that experimented
with new pre-training objectives for PMSS models,
only Reid and Artetxe (2021) tested the resulting
models on the NMT task. Out of the three objec-
tives introduced, two are based on the availability
of bilingual lexicons, which is not a commodity for
many low-resource. Therefore we experimented
only with their bitext denoising objective.

Given a source-target parallel pair of sentences,
the bitext denoising objective optimizes the likeli-
hood of generating the target sentence conditioned
on the noised version of the source sentence. Note
that Reid and Artetxe (2021) included even mono-
lingual data in this PT stage. However, we consider
only bitext, in order to have a fair comparison with
the FT techniques.

4 Experimental Settings

4.1 Languages

We focus our empirical experiments on six lan-
guages (English, Hindi, Gujarati, and Kannada,
Sinhala, Tamil). Note that the last four are low-
resource languages (Joshi et al., 2020). All, except
English use non-Latin scripts (Pires et al., 2019).
Table 1 reports details of these languages.



4.2 Dataset

We use a mix of both open-domain and domain-
specific corpora to train and test our models. The
domain-specific corpora differ across the family of
languages. Dataset summary details are given in
the Table 2.

Bible corpus Existing parallel corpora for Bible
such as McCarthy et al. (2020), although multiway
parallel, have very little data for the languages we
considered. Since we intend to perform a detailed
analysis on dataset size, we curate a bible corpus
for languages used in our experiments. We scrape
Bible data the from web!

[Shravan: Done] and then automatically align
the sentences (on a verse level). Using this method
we curate a multi-way parallel corpus of size 25k
for 4 languages (KN, GU, HI, TA). Note that Sin-
hala was scraped from a different website, thus has
different content.

Common Crawl (CC) CCAligned (El-Kishky
et al., 2020) corpus consists of parallel text that was
automatically aligned using LASER sentence em-
beddings (Schwenk, 2018).The dataset, although
noisy (Kreutzer et al., 2022), has been used to de-
velop highly multilingual machine translation mod-
els like M2M100 (Fan et al., 2020) and mBART
multilingual MT (Tang et al., 2021).

PMIndia corpus (PMI) PMiIndia (Haddow and
Kirefu, 2020) is a parallel corpus for English and
13 other languages in India. It consists of news up-
dates and excerpts of the Prime Minister’s speeches
extracted from the Prime Minister of India’s web-
site.

Government corpus (Gvt) The government doc-
ument corpus (Fernando et al., 2020) is a multilin-
gual corpus for Sinhala, Tamil and English. It con-
tains annual reports, committee reports, crawled
content from government institutional websites,
procurement documents, and acts from official Sri
Lankan government documents.

FLORES The FLORES-101 (Goyal et al., 2021)
dataset is a multilingual, multi-way parallel cor-
pus whose sentences are extracted from English
Wikipedia and translated into 101 languages. It

'Sinhala: https://www.wordproject.org/bibles/si/index.htm;
and others: https://ebible.org/download.php

2We will be releasing the scripts to create the corpus on
acceptance of the paper.

Dataset Domain Languages Train Size Test Size
FLORES-101 Open HI, GU, KN, TA test only 1k
FLORESV1 Open SI test only 1k
CCAligned Open all 100k 1k
Government Administrative SI, TA 50k 1k
PMIndia News HI 50k 1k

GU, KN 25k 1k
Web-scrap Bible Religious all 25k 1k

Table 2: Parallel corpus

consists of data from a variety of topics and do-
mains. We use FLORESv]1 (Guzman et al., 2019)
for Sinhala since it is not present in FLORES-101.

Note that PMI and Government corpora are mu-
tually exclusive for the datasets we considered>.
Therefore, when describing results (Section 5), we
use PMI/Gvt to denote that we use one of these
corpora for the considered experiment.

4.3 PMSS Models

Related research has reported mixed results in the
comparative performance of the two commonly
used PMSS models, mBART and mT5 (Lee et al.,
2022; Liu et al., 2021b). Thus we considered both
models (MBARTS50 and mT5) for initial experi-
ments. We used both HuggingFace and FairSeq
libraries for our experiments. Model training de-
tails are given in Appendix A.1.

4.4 Evaluation Metrics

4.4.1 Measuring Performance of NMT

We use SentencePiece BLEU (spBLEU in short),
introduced by Goyal et al. (2022) as the evaluation
metric for all our experiments. In this method, the
BLEU scores are calculated for the text tokenized
using sentence-piece subword model (which has
been trained for all the 101 languages in FLORES-
101 dataset). The standardization of tokenizers
allows research to make comparisons among each
other. Further, Goyal et al. (2022) also show that
spBLEU functions similar to BLEU and also has
strong correlation with the tokenzier-independent
Chrf++ metric (Popovié, 2017). We use the offi-
cial implementation provided in the sacreBLEU
library* (Post, 2018) for evaluating all the experi-
ments.

4.4.2 Measuring Domain Relatedness

We measured the similarity between the two do-
mains using the Jenson-Shannon (JS) divergence,

3 Although Tamil data is available in the PMI corpus we do
not use this for our experiments.
*https://github.com/mjpost/sacreBLEU



Dataset Gvttest FLORES test Bibtest PMI test
Gvttrain  0.18 0.56 0.73 -

CC train  0.82 0.56 0.90 0.77
Bib train  0.51 0.55 0.23 0.53
PMI train - 0.59 0.94 0.29

Table 3: JS Divergence between train and test sets

which is a modification of the Kullback-Leibler
(KL) divergence.

The KL divergence is a non-negative measure to
compute the similarity between the two probability
distributions of two domains P and () (Plank and
van Noord, 2011). The KL divergence is defined
as Dir(P||Q) = Z?:lpilog%, where P is the
unigram distribution of the source domain and )
is the unigram distribution of the target domain.
However, the KL divergence is undefined when
there exists unigram ¢ such that ¢; = 0, which
is common in natural language tasks (Ruder and
Plank, 2017b).

The JS divergence is a symmetric and smoothed
variant of the KL divergence and avoids unigram
q; being zero. The JS divergence considers the
KL divergence between P, () and the average
M = (P + Q). The JS divergence is defined as
Dys(PIQ) = LDxL(P||M) + D L(Q||M)]
(Lee, 2001). Divergence between the training and
test sets we used is given in Table 3.

5 Results and Discussions

For all our experiments, we discuss results for xx-
En, as well as En-xx tasks. Note that the obser-
vations discussed in the rest of this section hold
for both translation directions, unless specifically
mentioned. We carry out both out-domain test-
ing (train with a dataset belonging to one domain
and test with another) as well as in-domain testing
(train and test with the same domain data). Test set
specifications are as indicated in Table 2.

5.1 Baseline Results

As the baseline, we fine-tune mBART and mTS5 sep-
arately with each of the training sets, and evaluate
with the test set. According to Figure 2, mBART
generally outperforms mT5 across domains and
dataset sizes, for both in-domain and out-domain
testing, thus confirming the observations of Lee
et al. (2022); Liu et al. (2021b). mT5 outperforms
mBART mainly for Kannada, which is not included
in mBART

Therefore we selected mBART for further exper-
iments.

Our mBART experiment results reported in ta-
ble 5 in Appendix replicate the observations of Lee
et al. (2022): For the in-domain cases, the NMT
models built on mBART produce very low results
for Kannada, which is missing in the mBART,
when the parallel dataset size is less than 10k. How-
ever, with 25k parallel sentences, even for Kannada,
the model reports very string results. This strong
result confirms the data efficiency of the models
trained on mBART. When FLORES is the test set,
fine-tuning mBART with PMI/Gvt gives promising
results. However, using Bible as the FT dataset
gives extremely low results, even for the languages
included in mBART pre-training.
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Figure 2: Comparative Analysis between mBART and
mT5

5.2 Effectiveness of FT Techniques

5.2.1 Intermediate Task Fine-tuning

We vary the size and domain of the intermediate
task, as well as the size of the final task.

Figure 4 shows that the intermediate task FT out-
performs the baseline in the out-domain translation
task (tested on FLORES) for all the test scenarios.
Even for the in-domain translation task, interme-



diate task FT generally outperforms the baseline.

. The exact result depends on the divergence
between the datasets used in the first and second
stage fine-tuning. For example, the fine-tuning path
PMI-> Bib result is lower than the baseline (fine-
tune only with Bible). Here, we note that the JS
divergence is . On the other hand,
the best performing FT scenario CC-> Bible cor-
responds to a JS divergence of just

In Figure 8, we analyse the impact of fine-tuning
dataset size used in intermediate task FT. In the
given graphs, x-axis varies the size of the dataset
used for the final stage FT. Each colored line cor-
responds to the size of the intermediate task (Ok -
baseline, where there is no intermediate task FT).
As evident by the graphs, when there is very lit-
tle data for the considered domain, intermediate
task fine-tuning boosts up the performance of the
model - more data in the intermediate task is prefer-
able. However, as the dataset size of the final stage
fine-tuning increases, the impact of the first stage
diminishes and we see a convergence towards the
baseline values.

5.3 Mixed domain vs Paradise vs mT6 vs
Baseline

* Fig xa. Amount of data for in-domain
(pmo/gov)
when the parallel datset is larger ( 50k), par-
adise outperforms mixed-domain.
Vice-versa for 25k except En-TE and Te-En.

* Fig xb. Amount of data for out-domain
(cc_aligned)
increasing CC harms mixed-domain . But
better, or on par for paradise. Hindi seems to
be doing better when CC is increased. check
whethee this is due to Hi-En CC being less
noisy.

* Fig xc.
Kannada-En performance better for paradise
than mixed-domain.
discuss what happens when En is target size
VS XX is in target size.

Kannada-En performance better for paradise
than mixed-domain.
discuss what happens when En is target size vs xx
is in target size. out-domain
when pmo is out-domain, results are very good in

paradise, for flores. When it is bible, it is relatively
bad
for mixed-domain, flores gets a good results when
using either pmo or bible (when coparing pmo vs
bible, we see mixed results). so mixed-domain is
the winner.

[RikKi: out-domain to be modified]

We have to report results to answer the following
questions. please add your plots and observations
for each point:

1. (Shravan) For basic fine-tuning, is there a
noticeable difference between mBART and
mT5. [Shravan: Yes, considering how we
have trained mbart and mtS, mbart always
performs better.]

2. (Shravan) when you have some data to fine-
tune your model, (e.g. bible or pmo), is two-
stage fine-tuning ALWAY'S better than basic
fine-tuning. [Shravan: Yes, in general it
is better in all cases; there is a very close
result for ccalign followed by bible but here
also 2 stage looks better.]

3. (Andrew/Rikki) In two-stage fine-tuning,
when you have some data to fine-tune your
model,what happens if you combine both
datasets and test (train with pmo-+bible, test
with pmo/bible)

4. (Andrew/Rikki) In three-stage fine-tuning,
when you have some data to fine-tune your
model, what happens if you do (say)train with
pmo-+bible, train again pmo/bible test with
pmo/bible [Rikki: I don’t think we have
mixed-domain/three-stage training. we
have multilingual setup but not mixed do-
main. Is there one we should run rn?]

For above cases, we need to discuss how domain
matters

Are we reporting results for mT5 for the above
cases? All above are for bilingual fine-tuning. So
next we have to compare bilingual vs multilingual

Once above is done, and if we have time, we
can experiment with using the prallel data during
pre-training stage, as done by some ACL22 papers.

5.4 Fine-Tuning

To determine whether additional data can help im-
prove the performance of the model, we tested fine-
tuning techniques under various data setting. We
conduct each of the case studies (???Scenerios???)
below and observed whether the increase data led
to a performance gain.
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Figure 3: Intermediate Fine-tuning - effect of dataset sizes used for fine-tuning.
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Table 4: Intermediate task Fine Tuning (ITF) vs Mixed domain Fine Tuning (MDF).

Two-Stage Fine-Tuning [Annie: Definition of
two-stage fine-tuning - citations @sarubi?]
In two-stage fine-tuning, our results shows that:

Varying In-domain Training Set

(a) In-Domain

Varying Out-domain Training Set
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Figure 5: Mixed domain vs Paradise vs mT6 vs Baseline

1. By fixing the dataset size of the first train-
ing step, and vary the dataset size for the sec-
ond training step, matched domain performs
better while mismatched domain performs
worse. We observe in figure x that when train
with in-domain data, and then with a second
out-of-domain data, the test performance is
positively sloped for matched domain and neg-
atively sloped for mismatch domain. These re-
sults indicate that more data is not always bet-
ter, and adding mismatch data actually hurts
the performance.

2. Similarly, by fixing the dataset size of the
second training step and vary the dataset size
for the first training step, matched domain per-
forms better while mismatched domain per-
forms worse. We observe in figure y that
the curve two-stage fine tuning performs bet-
ter than the baseline when the test dataset
matches the domain of the second training
set. These results indicate that two-stage fine-
tuning is recommended when related data is
available.

3. We also observe in figure z that the learn-
ing curve for varying ccalign (open noisy
dataset) in training set 1 is not as steep as in-
domain datasets (Bible, PMO/Gov) for both
traininset 1 and trainingset 2. Therefore it is
more advantageous to collect small amount of
clean closed in-domain dataset rather than a
large amount of noisy open data set. [Annie:
@Shravan, this is obviously true, but can
we come up with a quantifiable observation,
like a '"data/performance efficiency' gain]
4. Lastly, when data is extremely limited, it



is best to train with PMO/Gov and test with
Flores, since Bible shows high sensitivity to
domain mismatch. For two-stage fine-tuning,
the second stage fine-tuning with PMO/Gov
performs better than Bible due to the latest
memorization effect [Annie: someone please
confirm with hallucination/memorization
literature ].

5.5 Pre-training with parallel data
[Sarubi: Todo: @RikKki] [Rikki:

1. Pretraining is better than finetuning
when there is more data available
e pretraining then finetuning on the
same dataset for 25k does not give an
improvement
¢ with 25k, multistage finetuning shows
slightly better results but there is no
large difference between the two
» with 50k, pretraining shows better re-
sults compared to finetuning (except
en-hi)
2. However, there is no consistent better
dataset to pretrain/finetune on -> can we
provide an explanation for this through do-
main divergence?

]

5.6 Dataset Insights = Surangika,
Yining/Annie

Fine-Tuning Dataset Size and Data Efficiency

Noisiness of Open Domain versus Closed Do-
main Dataset - Shravan [Shravan: On ex-
perimenting with comet models, I found that
ccaligned is good which does not make sense. So
I am a bit confused what to write here.] [12:28
a.m., 2022-06-14] Shravan: I believe we were man-
ually scoring 100 Bible sentences in the manner
surangika had given us. [12:29 a.m., 2022-06-14]
Surangika: Yes, there are translation quality esti-
mation models. @Shravan used few and they r not
reliable. V must add a discussion on that NOTE:
must be sensitive here, that we don’t say this means
the "correctness" of a dataset (and insult other re-
searcher’s datasets), but rather it’s suitability for
adapting to another domain due to it’s noisiness

Domain Relatedness

Language Relatedness - Surangika

5.7 Model Insights - Sarubi/Shravan

mBART versus mT5 mbart Vs mt5 which is
better? Train and test on same domain: is this
dependant on domain as well 0. scores comparison
bleu,sp-bleu,chrf

1. analyse baseline Eng centric test with same
domain and diff domains: observations same as
paperl, bible show better results since the dataset
is bible. 1k domain <3 bleu, 25k < 3bleu still low.
bible is bad for TL across different domains.

analyse baseline non-Eng centric compare with
mbart25 paper.

2. [new] bi, multi-stage mutli-domain in a seq
manner (exp:2) update graphs [Shravan] Domainl
-> Domain?2 and then test on Domain2, Domain3
make sense, not test on Domainl. what r the ob-
servations? always better than baseline? Large
domainl data, little domain2 data, how much?? lit-
tle domain2 data, Large domainl data, how much??
compare between mbart vs mt5 hold same or diff.
for all three Qs. unseen lang

3. bi, single stage multi-domain [future work]

4. [FAIRSEQ] [mbart] [en] multilingual, single
stage, single domain (baseline- same as reported in
mbart paper, try including non-eng) lets compare
with baseline bi-single domain, single stage.

curse of multilinguality; increase number of lan-
guages don’t get the same gain across languages

)
Evaluation Matrix and Scoring - Shravan

Fine-Tuning: Non-English Centric Fine-Tuning

6 Domain Divergence
@ Yining, Jonah

6.1 Analysis and Discussion of Domain
Relatedness

To establish whether domain relatedness between
the train-test datasets effects the performance of
the model, we plotted the model test performance
(measured with spBLEU) against the domain re-
latedness of the train-test set’(measured with JS
divergence). Figure 6 shows that when the do-
main divergence increases, the spBLEU score for
model test performance decreases. The negative
correlation between the domain divergence and the
model test performance implies that the stronger

SDataset for measuring JS Divergence uses the English
side of translation in the parallel corpora of English-centric
datasets



the relatedness between the English side of the
train-test datasets, the higher quality of translation.
Language-wise, Sinhala showed the strongest cor-
relation, and unsurprisingly, Kannada shows the
weakest correlation. To support this, the average
R? of the linear fit® is strongest for Sinhala, then
followed by Tamil, Hindi, and Gujarati, and finally
Kannada’.

SThe average R* of four lines in each graph. R is 1- sum
of square of residuals/total squares such that 1 is perfectly fit,
0 is not fit at all

7Sinhala at 0.8754037935, then Tamil at 0.7401615805,
Hindi at 0.5757370221, Gujarati at 0.5693370897 and finally
Kannada at 0.2677606688
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Figure 6: mBART performance based on domain relatedness of training-test sets in each language and English
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7 Conclusions - thd
8 References and Appendix
A Example Appendix

This is a section in the appendix.

[Annie: we didn’t use both divergence mea-
sures, only JSD and not PAD, therefore tem-
porarily remove PAD, will move over to Ap-
pendix at this point]

A.1 Hyperparameters and Model Settings

All experiments are ran with seed 222 and per-
formed using a Nvidia Volta of 32 GPU RAM.

Intermediate Task Fine-tuning and Mixed-
Domain Fine-tuning We train up to 3 epochs
with learning rate of 5 - 10~°, dropout of 0.1, max-
imum length of 200 for the source and target, and
a batch size of 10 for training and evaluation. We
use the implementations in the HuggingFace Trans-
formers library.

Pretraining We train up to 40k updates in both
finetuning and denoising steps with warm updates
of 2500 steps. We use 0.2 label smoothing, 0.3
dropout, 0.1 attention dropout and adam optimizer
with epsilon 1e-6 and betas *(0.9, 0.98)’. In addi-
tion, for denoising we use mask (0.3, mask-random
0.1 and poisson-lambda of 3.5. These experiments
uses implementation in fairseq.

A.2 Results for English centric versus
non-English centric

(Yining) in basic fine-tuning, is there a noticeable
diff between English-centric vs non-english centric
[Yining: To compare the performance of En-
glish centric and non-English centric, we assess
BLEU of mBART with basic fine-tuning. ]

For each language pair, we use data from Gov-
ernment and Bible as training corpora. The Govern-
ment data has four sizes (1k, 10k, 25k, 50k), while
the Bible has three sizes (1k, 10k, 25k). Moreover,
we conduct zero-shot translation experiment for
the language pairs. For the case of Sinhala and
Gujarati, the translation from English to Sinhala
outperforms the translation between Sinhala and
Gujarati. For the case of Hindi and Gujarati, we
observe that the translation between English and
Gujarati performs better than Hindi and Gujarati.
Similar trends can also be found in Kannada and
Gujarati, where translation between English and

12

Gujarati outperforms Kannada and Gujarati. [Yin-
ing: Should we move zero-shot training details
to experiment setting?] [Rikki: maybe refer to
3.2 corpus for dataset details - maybe a table
like table 1 would be suitable ]
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KN GU

HI N TA

Training Size
FLORES Bib PMI FLORES Bib PMI FLORES Bib PMI FLORES Bib Govt FLORES Bib Gov't
Zero shot 0.1 00 0.1 0.3 00 0.1 0.3 00 04 0.2 00 12 0.5 00 09
1k 0.1 00 0. 73 21 176 85 17 182 3.1 04 157 2.1 05 94
PMUGoyt 10K 4.2 05 199 154 37 321 145 29 302 86 11 368 6.0 08 308
25k 104 11305 183 44 363 165 31 343 107 11 423 8.1 11 358
50k - - - - - - 18.5 34 367 109 1.0 47.1 9.6 13 392
1k 0.0 36 00 34 100 38 35 133 46 0.9 109 09 15 97 15
Bib 10k 0.6 173 04 4.6 232 35 38 265 3.1 1.6 309 12 22 240 1.6
25k 13 249 05 45 273 32 32 305 24 1.7 361 1.0 2.1 294 1.1
cc 25k 0.2 00 0.1 78 11 40 15.1 56 130 93 21 146 9.4 57 78
100k 2.8 01 21 75 09 64 23.1 68 198 151 40 259 16.0 84 152

Table 5: Experimental results reported in spBLEU for EN—xx direction.
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