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Abstract

a001

1 Introduction002

Pre-trained Multilingual Sequence-to-Sequence003

(PMSS) models, such as mBART (Tang et al.,004

2021) and mT5 (Xue et al., 2021), have shown con-005

siderable promise over vanilla Transformer mod-006

els for Neural Machine Translation (NMT). This007

promise persists to low-resource language trans-008

lation as well (Thillainathan et al., 2021), which009

remains a challenge despite the recent advances in010

the field (Ranathunga et al., 2021). In addition to011

the empirical analysis carried out during the intro-012

duction of these PMSS models (Tang et al., 2021),013

further empirical analysis for the task of NMT was014

conducted by Wang et al. (2022); Liu et al. (2021a)015

and Lee et al. (2022). The latter two specifically016

focused on low-resource language pairs, showing017

that the effectiveness of an NMT model trained018

on mBART50 depends on the amount of language019

data used at the pre-training stage. Specifically, re-020

sults for languages unseen in the PMSS model are021

below useful levels.Lee et al. (2022) also showed022

that the results are dversely impacted by the do-023

main differences of the datasets. Liu et al. (2021a)024

experimented with continuous pre-training (CPT)025

to include unseen languages into the model, but026

found that when the amount of parallel data used027

in the fine-tuning stage is very low, there is no028

noticeable impact made by CPT, particularly for029

non-English-centric translations.030

However, both Lee et al. (2022) and Liu et al.031

(2021a) considered only the case where the PMSS032

model is fine-tuned only once with a dataset belong-033

ing to a particular domain. A look into the avail-034

able corpora suggests that there are either noisy035

automatically created parallel corpora or manually036

curated small parallel corpora for hundreds of lan-037

guages (Tiedemann and Thottingal, 2020). Bapna038

et al. (2022) automatically mined bitext from over 039

1000 languages from the web. Artetxe et al. (2020) 040

also point to several initiatives aimed at creating 041

parallel resources at scale. This means, that for 042

a given language pair, there can be several paral- 043

lel datasets, belonging to different domains. In 044

fact, Artetxe et al. (2020) argue that pure unsuper- 045

vised NMT setup is not realistic given the availabil- 046

ity of parallel data. 047

Recent research exploits available parallel cor- 048

pora to improve the pre-training stage of the PMSS 049

model, which is further fine-tuned with parallel 050

data (either from the same or different domain) 051

with an NMT objective (Reid and Artetxe, 2021). 052

However, their experiments do not discuss the im- 053

pact of the size and domain of the parallel data 054

used during pre-training. On the other hand, before 055

the PMSS era, researchers have experimented with 056

Transfer Learning on vanilla Transformer (Vaswani 057

et al., 2017) models and recurrent models. During 058

transfer learning, a low-resource language trans- 059

lation task is trained on an NMT model, which 060

has already been trained for a high-resource lan- 061

guage pair (Lakew et al., 2018; Dabre et al., 2019a; 062

Maimaiti et al., 2020; Imankulova et al., 2019; Luo 063

et al., 2019). Despite its success, the impact of 064

Transfer Learning on PMSS models has not been 065

explored for NMT. 066

Considering the shortcomings in the existing lit- 067

erature, the objective of this research is to identify 068

the most effective way of utilizing parallel data 069

of low-resource language pairs in training PMSS 070

models for NMT. More specifically, we quantify 071

the impact of domain differences and sizes of the 072

available parallel datasets, as well as how the paral- 073

lel data is used to train the PMSS model. 074

For our empirical experiments, we selected sev- 075

eral low-resource languages, where some are not in 076

the selected PMSS model. We tested the effective- 077

ness of two fine-tuning strategies (intermediate task 078

fine-tuning and single-stage mixed-domain fine- 079
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tuning) as well as the bitext denoising pre-training080

strategy. Our results reveal that. [Shravan: Will081

we mention things like mBART vs mt5 here and082

are we planning to write our main contribution083

here as pointers?]084

As an additional contribution, we release a multi-085

way parallel bible dataset of 25k for the selected086

languages, which until now had less than xx.087

2 Related Work088

2.1 Empirical Evaluation of PMSS Models for089

NMT090

Liu et al. (2020), who introduced the mBART25091

model experimented with both English-centric and092

non-English-centric data, as well as languages not093

included in mBART25. They showed that for lan-094

guages with low amounts of monolingual data, pre-095

training with other languages helps in the down-096

stream NMT task as well as that the performance097

of the NMT model has a lower bound and an upper098

bound related to the size of the fine-tuning dataset.099

Tang et al. (2021) showed the effective-100

ness of continuous pre-training of PMSS models.101

They also showed that multilingual fine-tuning on102

mBART50 for many-to-one translation beats a mul-103

tilingual NMT model trained from scratch.104

Wang et al. (2022) studied the impact of domain105

and the objective discrepancy between pre-training106

and fine-tuning stages (i.e. pre-training has been107

with monolingual open domain data with objec-108

tives s.a. denoising, while fine-tuning is with paral-109

lel domain-specific data with an NMT objective).110

They also introduced pre-training with in-domain111

monolingual data, as well as input adaptation in112

fine-tuning to battle the two discrepancy issues.113

Lee et al. (2022) showed that NMT models built114

on mBART50 are data efficient compared to vanilla115

Transformer models when trained with sufficient116

quantities of parallel data. For languages not in-117

cluded in mBART50, the performance is poor,118

when fine-tuned with low amounts of data. Their119

results also showed that both domain relatedness120

and language relatedness have an impact on the121

model performance. Liu et al. (2021a) specifically122

focused on languages not included in mBART and123

showed that continuous pre-training is effective124

when fine-tuning with over 50k parallel sentences.125

However, for low amounts parallel corpora (10k),126

performance is poor even when pre-trained with127

1M monolingual corpus, which is further exasper-128

ated for non-English-centric pairs. Therefore, to129

make NMT systems robust and applicable for low- 130

resource languages, alternative techniques for im- 131

proving PMSS models must be explored. 132

2.2 Exploiting Auxiliary Parallel Data to 133

Improve NMT Performance 134

In the context of RNN, as well as vanilla Trans- 135

former models, continuous fine-tuning of NMT 136

models using Transfer Learning techniques have 137

been widely explored for low-resource language 138

translation. Dabre et al. (2019b) and Maimaiti et al. 139

(2020) first trained a multilingual NMT model with 140

all the available parallel data (including the tar- 141

get language pair). Then they further fine-tuned 142

this parent model with the selected parallel dataset 143

(child model). Lakew et al. (2018) followed a sim- 144

ilar approach, but assumed that child data is not 145

available in parent model training. Imankulova et al. 146

(2019) focused on the domain-specific translation 147

task. They build a multilingual NMT model with 148

out-domain parallel data, further fine-tuning it with 149

(relatively small) in-domain data, followed by the 150

final fine-tuning with the limited parallel data for 151

the final task. 152

Although the above strategies have not been 153

applied to fine-tuning PMSS models, Reid and 154

Artetxe (2021); Chi et al. (2021); Kale et al. (2021) 155

experimented with new pre-training objectives that 156

utilized available parallel data. Reid and Artetxe 157

(2021) augmented the existing denoising objec- 158

tive in mBART with three new objectives: replace 159

words in the noised sequence with a bilingual dic- 160

tionary, predict the reference translation instead of 161

the input sequence, and a combination of the two 162

former. Kale et al. (2021) introduce four denois- 163

ing tasks to mT5: translation language modelling, 164

Standard NMT, denoised NMT and denoised NMT 165

+ language model (LM). Chi et al. (2021) pre- 166

sented three cross-lingual objectives to mT5: ma- 167

chine translation, translation pair span corruption, 168

and translation span corruption. They also intro- 169

duce a new objective for text-to-text pre-training, 170

called partially non-autoregressive (PNAT) decod- 171

ing. However, Kale et al. (2021) or (Chi et al., 172

2021) did not test their models on NMT tasks. 173

2.3 Quantifying Domain Relatedness in 174

Domain Adaptation Scenarios 175

Wang et al. (2022) quantified the disparity between 176

typical pre-training and fine-tuning domains for 177

NMT by comparing unigram distributions. The dis- 178

parity seen in the long tail region of these distribu- 179
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tions is supposed to contain much domain-specific180

information.181

Popular quantitative measures for domain di-182

vergence metrics used in NMT and other related183

research areas include the Jensen-Shannon diver-184

gence (JS Divergence) (Lin, 1991) and the proxy185

A-distance (Ben-David et al., 2006). Ruder and186

Plank (2017a); Remus (2012); Ruder et al. (2017)187

used unigram distribution-based JS Divergence188

with respect to a target-distribution for data selec-189

tion in the context of sentiment analysis. Whereas190

Kerinec et al. (2018); Bingel and Søgaard (2017)191

used it for data selection in the context of multi-task192

learning.193

3 Methodology194

We experiment with two main ways of exploiting195

auxiliary parallel data to improve PMSS models for196

domain-specific NMT, namely at the pre-training197

(PT) stage and at the fine-tuning (FT) stage.198

3.1 Fine-tuning Strategies199

We experiment with two FT strategies, namely in-200

termediate task FT, and mixed-domain FT.201

Intermediate task fine-tuning refers to fine-202

tuning the PMSS model first with an out-domain203

parallel dataset (or another pair of languages), fol-204

lowed by the target domain parallel data, as shown205

in Figure 1. This has been extensively experi-206

mented with Encoder-based models for tasks such207

as NLU (Phang et al., 2018). Note that it is possi-208

ble to sequentially fine-tune a PMSS model with209

parallel data from different domains. However, we210

stick to one intermediate task, because of the com-211

putational cost, as well as the lack of parallel data212

from many different domains.213

Mixed-domain Fine-tuning refers to fine-tuning214

the PMSS model with all the parallel data available215

for a language pair (including the target domain216

data), which is again fine-tuned on the target do-217

main parallel data. The idea is similar to the mul-218

tilingual Transfer learning methods discussed in219

Section 2.2, however, instead of data from multi-220

ple languages, we use data from multiple domains.221

Note that this method is similar to intermediate task222

fine-tuning, where we use multiple corpora in the223

intermediate stage.224

Intermediate Task Fine Tuned PMSS 
model

PMSS Model

Final PMSS Model

Train NMT

Train NMT

Parallel data from 
different domain

Parallel data from 
target domain

Figure 1: Overview of Multistage Fine-tuning.

Language Family Script Joshi mBART mT5
class Tokens (M) Tokens(M)

Hindi (HI) IA Devanagari 4 1715 24000
Gujarati (GU) IA Gujarati 1 140 800
Kannada (KN) Dr Kannada 1 – 1100
Sinhala (SI) IA Sinhala 1 243 800
Tamil (TA) Dr Tamil 3 595 3400

Table 1: Languages (IA- Indo Aryan, Dr - Dravidian)

3.2 Continuous Pre-training with Parallel 225

data 226

Out of the previous research that experimented 227

with new pre-training objectives for PMSS models, 228

only Reid and Artetxe (2021) tested the resulting 229

models on the NMT task. Out of the three objec- 230

tives introduced, two are based on the availability 231

of bilingual lexicons, which is not a commodity for 232

many low-resource. Therefore we experimented 233

only with their bitext denoising objective. 234

Given a source-target parallel pair of sentences, 235

the bitext denoising objective optimizes the likeli- 236

hood of generating the target sentence conditioned 237

on the noised version of the source sentence. Note 238

that Reid and Artetxe (2021) included even mono- 239

lingual data in this PT stage. However, we consider 240

only bitext, in order to have a fair comparison with 241

the FT techniques. 242

4 Experimental Settings 243

4.1 Languages 244

We focus our empirical experiments on six lan- 245

guages (English, Hindi, Gujarati, and Kannada, 246

Sinhala, Tamil). Note that the last four are low- 247

resource languages (Joshi et al., 2020). All, except 248

English use non-Latin scripts (Pires et al., 2019). 249

Table 1 reports details of these languages. 250
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4.2 Dataset251

We use a mix of both open-domain and domain-252

specific corpora to train and test our models. The253

domain-specific corpora differ across the family of254

languages. Dataset summary details are given in255

the Table 2.256

Bible corpus Existing parallel corpora for Bible257

such as McCarthy et al. (2020), although multiway258

parallel, have very little data for the languages we259

considered. Since we intend to perform a detailed260

analysis on dataset size, we curate a bible corpus261

for languages used in our experiments. We scrape262

Bible data the from web1[Surangika: need to give263

url] [Shravan: Done] and then automatically align264

the sentences (on a verse level). Using this method265

we curate a multi-way parallel corpus of size 25k266

for 4 languages (KN, GU, HI, TA). Note that Sin-267

hala was scraped from a different website, thus has268

different content2.269

Common Crawl (CC) CCAligned (El-Kishky270

et al., 2020) corpus consists of parallel text that was271

automatically aligned using LASER sentence em-272

beddings (Schwenk, 2018).The dataset, although273

noisy (Kreutzer et al., 2022), has been used to de-274

velop highly multilingual machine translation mod-275

els like M2M100 (Fan et al., 2020) and mBART276

multilingual MT (Tang et al., 2021).277

PMIndia corpus (PMI) PMIndia (Haddow and278

Kirefu, 2020) is a parallel corpus for English and279

13 other languages in India. It consists of news up-280

dates and excerpts of the Prime Minister’s speeches281

extracted from the Prime Minister of India’s web-282

site.283

Government corpus (Gvt) The government doc-284

ument corpus (Fernando et al., 2020) is a multilin-285

gual corpus for Sinhala, Tamil and English. It con-286

tains annual reports, committee reports, crawled287

content from government institutional websites,288

procurement documents, and acts from official Sri289

Lankan government documents.290

FLORES The FLORES-101 (Goyal et al., 2021)291

dataset is a multilingual, multi-way parallel cor-292

pus whose sentences are extracted from English293

Wikipedia and translated into 101 languages. It294

1Sinhala: https://www.wordproject.org/bibles/si/index.htm;
and others: https://ebible.org/download.php

2We will be releasing the scripts to create the corpus on
acceptance of the paper.

Dataset Domain Languages Train Size Test Size

FLORES-101 Open HI, GU, KN, TA test only 1k
FLORESv1 Open SI test only 1k

CCAligned Open all 100k 1k

Government Administrative SI, TA 50k 1k
PMIndia News HI 50k 1k

GU, KN 25k 1k

Web-scrap Bible Religious all 25k 1k

Table 2: Parallel corpus

consists of data from a variety of topics and do- 295

mains. We use FLORESv1 (Guzmán et al., 2019) 296

for Sinhala since it is not present in FLORES-101. 297

Note that PMI and Government corpora are mu- 298

tually exclusive for the datasets we considered3. 299

Therefore, when describing results (Section 5), we 300

use PMI/Gvt to denote that we use one of these 301

corpora for the considered experiment. 302

4.3 PMSS Models 303

Related research has reported mixed results in the 304

comparative performance of the two commonly 305

used PMSS models, mBART and mT5 (Lee et al., 306

2022; Liu et al., 2021b). Thus we considered both 307

models (mBART50 and mT5) for initial experi- 308

ments. We used both HuggingFace and FairSeq 309

libraries for our experiments. Model training de- 310

tails are given in Appendix A.1. 311

4.4 Evaluation Metrics 312

4.4.1 Measuring Performance of NMT 313

We use SentencePiece BLEU (spBLEU in short), 314

introduced by Goyal et al. (2022) as the evaluation 315

metric for all our experiments. In this method, the 316

BLEU scores are calculated for the text tokenized 317

using sentence-piece subword model (which has 318

been trained for all the 101 languages in FLORES- 319

101 dataset). The standardization of tokenizers 320

allows research to make comparisons among each 321

other. Further, Goyal et al. (2022) also show that 322

spBLEU functions similar to BLEU and also has 323

strong correlation with the tokenzier-independent 324

Chrf++ metric (Popović, 2017). We use the offi- 325

cial implementation provided in the sacreBLEU 326

library4 (Post, 2018) for evaluating all the experi- 327

ments. 328

4.4.2 Measuring Domain Relatedness 329

We measured the similarity between the two do- 330

mains using the Jenson-Shannon (JS) divergence, 331

3Although Tamil data is available in the PMI corpus we do
not use this for our experiments.

4https://github.com/mjpost/sacreBLEU

4



Dataset Gvt test FLORES test Bib test PMI test

Gvt train 0.18 0.56 0.73 -
CC train 0.82 0.56 0.90 0.77
Bib train 0.51 0.55 0.23 0.53
PMI train - 0.59 0.94 0.29

Table 3: JS Divergence between train and test sets

which is a modification of the Kullback-Leibler332

(KL) divergence.333

The KL divergence is a non-negative measure to334

compute the similarity between the two probability335

distributions of two domains P and Q (Plank and336

van Noord, 2011). The KL divergence is defined337

as DKL(P ||Q) =
∑n

i=1 pilog
pi
qi

, where P is the338

unigram distribution of the source domain and Q339

is the unigram distribution of the target domain.340

However, the KL divergence is undefined when341

there exists unigram i such that qi = 0, which342

is common in natural language tasks (Ruder and343

Plank, 2017b).344

The JS divergence is a symmetric and smoothed345

variant of the KL divergence and avoids unigram346

qi being zero. The JS divergence considers the347

KL divergence between P , Q and the average348

M = 1
2(P +Q). The JS divergence is defined as349

DJS(P ||Q) = 1
2 [DKL(P ||M) + DKL(Q||M)]350

(Lee, 2001). Divergence between the training and351

test sets we used is given in Table 3.352

5 Results and Discussions353

For all our experiments, we discuss results for xx-354

En, as well as En-xx tasks. Note that the obser-355

vations discussed in the rest of this section hold356

for both translation directions, unless specifically357

mentioned. We carry out both out-domain test-358

ing (train with a dataset belonging to one domain359

and test with another) as well as in-domain testing360

(train and test with the same domain data). Test set361

specifications are as indicated in Table 2.362

5.1 Baseline Results363

As the baseline, we fine-tune mBART and mT5 sep-364

arately with each of the training sets, and evaluate365

with the test set. According to Figure 2, mBART366

generally outperforms mT5 across domains and367

dataset sizes, for both in-domain and out-domain368

testing, thus confirming the observations of Lee369

et al. (2022); Liu et al. (2021b). mT5 outperforms370

mBART mainly for Kannada, which is not included371

in mBART372

Therefore we selected mBART for further exper- 373

iments. 374

Our mBART experiment results reported in ta- 375

ble 5 in Appendix replicate the observations of Lee 376

et al. (2022): For the in-domain cases, the NMT 377

models built on mBART produce very low results 378

for Kannada, which is missing in the mBART, 379

when the parallel dataset size is less than 10k. How- 380

ever, with 25k parallel sentences, even for Kannada, 381

the model reports very string results. This strong 382

result confirms the data efficiency of the models 383

trained on mBART. When FLORES is the test set, 384

fine-tuning mBART with PMI/Gvt gives promising 385

results. However, using Bible as the FT dataset 386

gives extremely low results, even for the languages 387

included in mBART pre-training. 388
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(a) Difference in performance by Training Set
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(b) Difference in performance by Training Set Size

Figure 2: Comparative Analysis between mBART and
mT5

5.2 Effectiveness of FT Techniques 389

5.2.1 Intermediate Task Fine-tuning 390

We vary the size and domain of the intermediate 391

task, as well as the size of the final task. 392

Figure 4 shows that the intermediate task FT out- 393

performs the baseline in the out-domain translation 394

task (tested on FLORES) for all the test scenarios. 395

Even for the in-domain translation task, interme- 396
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diate task FT generally outperforms the baseline.397

[Surangika: add train-train divergence to table398

3]. The exact result depends on the divergence399

between the datasets used in the first and second400

stage fine-tuning. For example, the fine-tuning path401

PMI-> Bib result is lower than the baseline (fine-402

tune only with Bible). Here, we note that the JS403

divergence is [Surangika: xx]. On the other hand,404

the best performing FT scenario CC-> Bible cor-405

responds to a JS divergence of just [Surangika:406

xx].407

In Figure 8, we analyse the impact of fine-tuning408

dataset size used in intermediate task FT. In the409

given graphs, x-axis varies the size of the dataset410

used for the final stage FT. Each colored line cor-411

responds to the size of the intermediate task (0k -412

baseline, where there is no intermediate task FT).413

As evident by the graphs, when there is very lit-414

tle data for the considered domain, intermediate415

task fine-tuning boosts up the performance of the416

model - more data in the intermediate task is prefer-417

able. However, as the dataset size of the final stage418

fine-tuning increases, the impact of the first stage419

diminishes and we see a convergence towards the420

baseline values.421

===============================422

5.3 Mixed domain vs Paradise vs mT6 vs423

Baseline424

• Fig xa. Amount of data for in-domain425

(pmo/gov)426

when the parallel datset is larger ( 50k), par-427

adise outperforms mixed-domain.428

Vice-versa for 25k except En-TE and Te-En.429

• Fig xb. Amount of data for out-domain430

(cc_aligned)431

increasing CC harms mixed-domain . But432

better, or on par for paradise. Hindi seems to433

be doing better when CC is increased. check434

whethee this is due to Hi-En CC being less435

noisy.436

• Fig xc.437

Kannada-En performance better for paradise438

than mixed-domain.439

discuss what happens when En is target size440

vs xx is in target size.441

Kannada-En performance better for paradise442

than mixed-domain.443

discuss what happens when En is target size vs xx444

is in target size. out-domain445

when pmo is out-domain, results are very good in446

paradise, for flores. When it is bible, it is relatively 447

bad 448

for mixed-domain, flores gets a good results when 449

using either pmo or bible (when coparing pmo vs 450

bible, we see mixed results). so mixed-domain is 451

the winner. 452

[Rikki: out-domain to be modified] 453

We have to report results to answer the following 454

questions. please add your plots and observations 455

for each point: 456

1. (Shravan) For basic fine-tuning, is there a 457

noticeable difference between mBART and 458

mT5. [Shravan: Yes, considering how we 459

have trained mbart and mt5, mbart always 460

performs better.] 461

2. (Shravan) when you have some data to fine- 462

tune your model, (e.g. bible or pmo), is two- 463

stage fine-tuning ALWAYS better than basic 464

fine-tuning. [Shravan: Yes, in general it 465

is better in all cases; there is a very close 466

result for ccalign followed by bible but here 467

also 2 stage looks better.] 468

3. (Andrew/Rikki) In two-stage fine-tuning, 469

when you have some data to fine-tune your 470

model,what happens if you combine both 471

datasets and test (train with pmo+bible, test 472

with pmo/bible) 473

4. (Andrew/Rikki) In three-stage fine-tuning, 474

when you have some data to fine-tune your 475

model, what happens if you do (say)train with 476

pmo+bible, train again pmo/bible test with 477

pmo/bible [Rikki: I don’t think we have 478

mixed-domain/three-stage training. we 479

have multilingual setup but not mixed do- 480

main. Is there one we should run rn?] 481

For above cases, we need to discuss how domain 482

matters 483

Are we reporting results for mT5 for the above 484

cases? All above are for bilingual fine-tuning. So 485

next we have to compare bilingual vs multilingual 486

Once above is done, and if we have time, we 487

can experiment with using the prallel data during 488

pre-training stage, as done by some ACL22 papers. 489

5.4 Fine-Tuning 490

To determine whether additional data can help im- 491

prove the performance of the model, we tested fine- 492

tuning techniques under various data setting. We 493

conduct each of the case studies (???Scenerios???) 494

below and observed whether the increase data led 495

to a performance gain. 496

6



0 5 10 15 20 25
Train Size 2

10

15

20

25

30

35

40

m
ba

rt 
sp

B
LE

U
 s

co
re

s

Train Set 2 = Bib

0 5 10 15 20 25
Train Size 2

Train Set 2 = PMI

0 10 20 30 40 50
Train Size 2

Train Set 2 = Gov't

Train Size 1
0k
1k
10k
25k
50k
100k

(a) In-domain spBLEU on Bib/Gov’t/PMI

0 5 10 15 20 25
Train Size 2

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

m
ba

rt 
sp

B
LE

U
 s

co
re

s

Train Set 2 = Bib

0 5 10 15 20 25
Train Size 2

Train Set 2 = PMI

0 10 20 30 40 50
Train Size 2

Train Set 2 = Gov't

Train Size 1
0k
1k
10k
25k
50k
100k

(b) Out-domain spBLEU on FLORES

Figure 3: Intermediate Fine-tuning - effect of dataset sizes used for fine-tuning.
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KN GU HI SI TA
Stage 1 Stage 2 Test Set

ITF MDF ITF MDF ITF MDF ITF MDF ITF MDF

Bib 26.5 27.8 27.1 26.9 30.3 30.9 36.3 31.3 29.6 26.8
Bib + PMI/Gov’t Bib

FLORES 2.9 7.5 8.0 14.1 4.9 10.3 3.1 6.8 3.1 6.5

PMI/Gov’t 32.3 33.9 36.6 35.5 34.3 33.4 43.2 44.5 35.8 36.6
Bib + PMI/Gov’t PMI/Gov’t

FLORES 12.9 14.0 19.3 18.1 17 16.2 11.2 10.7 9.3 9.6

Bib 25.7 27.6 26.7 27.0 30.3 30.7 36.0 36.0 29.2 30.5
CC + Bib Bib

FLORES 1.7 2.2 6.6 9.7 4.4 7.7 2.9 5.8 2.8 5.4

PMI/Gov’t 32.1 33.6 36.6 36.0 34 33.5 42.8 44.1 36.2 37.2
CC + PMI/Gov’t PMI/Gov’t

FLORES 12.7 14.5 20.6 19.9 18.2 17.6 12.0 11.6 10.0 11.5

Table 4: Intermediate task Fine Tuning (ITF) vs Mixed domain Fine Tuning (MDF).
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Figure 5: Mixed domain vs Paradise vs mT6 vs Baseline

Two-Stage Fine-Tuning [Annie: Definition of 497

two-stage fine-tuning - citations @sarubi?] 498

In two-stage fine-tuning, our results shows that: 499

1. By fixing the dataset size of the first train- 500

ing step, and vary the dataset size for the sec- 501

ond training step, matched domain performs 502

better while mismatched domain performs 503

worse. We observe in figure x that when train 504

with in-domain data, and then with a second 505

out-of-domain data, the test performance is 506

positively sloped for matched domain and neg- 507

atively sloped for mismatch domain. These re- 508

sults indicate that more data is not always bet- 509

ter, and adding mismatch data actually hurts 510

the performance. 511

2. Similarly, by fixing the dataset size of the 512

second training step and vary the dataset size 513

for the first training step, matched domain per- 514

forms better while mismatched domain per- 515

forms worse. We observe in figure y that 516

the curve two-stage fine tuning performs bet- 517

ter than the baseline when the test dataset 518

matches the domain of the second training 519

set. These results indicate that two-stage fine- 520

tuning is recommended when related data is 521

available. 522

3. We also observe in figure z that the learn- 523

ing curve for varying ccalign (open noisy 524

dataset) in training set 1 is not as steep as in- 525

domain datasets (Bible, PMO/Gov) for both 526

traininset 1 and trainingset 2. Therefore it is 527

more advantageous to collect small amount of 528

clean closed in-domain dataset rather than a 529

large amount of noisy open data set. [Annie: 530

@Shravan, this is obviously true, but can 531

we come up with a quantifiable observation, 532

like a "data/performance efficiency" gain] 533

4. Lastly, when data is extremely limited, it 534
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is best to train with PMO/Gov and test with535

Flores, since Bible shows high sensitivity to536

domain mismatch. For two-stage fine-tuning,537

the second stage fine-tuning with PMO/Gov538

performs better than Bible due to the latest539

memorization effect [Annie: someone please540

confirm with hallucination/memorization541

literature ].542

5.5 Pre-training with parallel data543

[Sarubi: Todo: @Rikki] [Rikki:544

1. Pretraining is better than finetuning545

when there is more data available546

• pretraining then finetuning on the547

same dataset for 25k does not give an548

improvement549

• with 25k, multistage finetuning shows550

slightly better results but there is no551

large difference between the two552

• with 50k, pretraining shows better re-553

sults compared to finetuning (except554

en-hi)555

2. However, there is no consistent better556

dataset to pretrain/finetune on -> can we557

provide an explanation for this through do-558

main divergence?559

]560

5.6 Dataset Insights = Surangika,561

Yining/Annie562

Fine-Tuning Dataset Size and Data Efficiency563

Noisiness of Open Domain versus Closed Do-564

main Dataset - Shravan [Shravan: On ex-565

perimenting with comet models, I found that566

ccaligned is good which does not make sense. So567

I am a bit confused what to write here.] [12:28568

a.m., 2022-06-14] Shravan: I believe we were man-569

ually scoring 100 Bible sentences in the manner570

surangika had given us. [12:29 a.m., 2022-06-14]571

Surangika: Yes, there are translation quality esti-572

mation models. @Shravan used few and they r not573

reliable. V must add a discussion on that NOTE:574

must be sensitive here, that we don’t say this means575

the "correctness" of a dataset (and insult other re-576

searcher’s datasets), but rather it’s suitability for577

adapting to another domain due to it’s noisiness578

Domain Relatedness579

Language Relatedness - Surangika580

5.7 Model Insights - Sarubi/Shravan 581

mBART versus mT5 mbart Vs mt5 which is 582

better? Train and test on same domain: is this 583

dependant on domain as well 0. scores comparison 584

bleu,sp-bleu,chrf 585

1. analyse baseline Eng centric test with same 586

domain and diff domains: observations same as 587

paper1, bible show better results since the dataset 588

is bible. 1k domain <3 bleu, 25k < 3bleu still low. 589

bible is bad for TL across different domains. 590

analyse baseline non-Eng centric compare with 591

mbart25 paper. 592

2. [new] bi, multi-stage mutli-domain in a seq 593

manner (exp:2) update graphs [Shravan] Domain1 594

-> Domain2 and then test on Domain2, Domain3 595

make sense, not test on Domain1. what r the ob- 596

servations? always better than baseline? Large 597

domain1 data, little domain2 data, how much?? lit- 598

tle domain2 data, Large domain1 data, how much?? 599

compare between mbart vs mt5 hold same or diff. 600

for all three Qs. unseen lang 601

3. bi, single stage multi-domain [future work] 602

4. [FAIRSEQ] [mbart] [en] multilingual, single 603

stage, single domain (baseline- same as reported in 604

mbart paper, try including non-eng) lets compare 605

with baseline bi-single domain, single stage. 606

curse of multilinguality; increase number of lan- 607

guages don’t get the same gain across languages 608

(?) 609

Evaluation Matrix and Scoring - Shravan 610

Fine-Tuning: Non-English Centric Fine-Tuning 611

6 Domain Divergence 612

@ Yining, Jonah 613

6.1 Analysis and Discussion of Domain 614

Relatedness 615

To establish whether domain relatedness between 616

the train-test datasets effects the performance of 617

the model, we plotted the model test performance 618

(measured with spBLEU) against the domain re- 619

latedness of the train-test set5(measured with JS 620

divergence). Figure 6 shows that when the do- 621

main divergence increases, the spBLEU score for 622

model test performance decreases. The negative 623

correlation between the domain divergence and the 624

model test performance implies that the stronger 625

5Dataset for measuring JS Divergence uses the English
side of translation in the parallel corpora of English-centric
datasets
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the relatedness between the English side of the626

train-test datasets, the higher quality of translation.627

Language-wise, Sinhala showed the strongest cor-628

relation, and unsurprisingly, Kannada shows the629

weakest correlation. To support this, the average630

R2 of the linear fit6 is strongest for Sinhala, then631

followed by Tamil, Hindi, and Gujarati, and finally632

Kannada7.633

6The average R2 of four lines in each graph. R2 is 1- sum
of square of residuals/total squares such that 1 is perfectly fit,
0 is not fit at all

7Sinhala at 0.8754037935, then Tamil at 0.7401615805,
Hindi at 0.5757370221, Gujarati at 0.5693370897 and finally
Kannada at 0.2677606688
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(a) Sinhala (b) Hindi (c) Tamil

(d) Gujarati (e) Kannada

Figure 6: mBART performance based on domain relatedness of training-test sets in each language and English
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7 Conclusions - tbd634

8 References and Appendix635

A Example Appendix636

This is a section in the appendix.637

[Annie: we didn’t use both divergence mea-638

sures, only JSD and not PAD, therefore tem-639

porarily remove PAD, will move over to Ap-640

pendix at this point]641

A.1 Hyperparameters and Model Settings642

All experiments are ran with seed 222 and per-643

formed using a Nvidia Volta of 32 GPU RAM.644

Intermediate Task Fine-tuning and Mixed-645

Domain Fine-tuning We train up to 3 epochs646

with learning rate of 5 · 10−5, dropout of 0.1, max-647

imum length of 200 for the source and target, and648

a batch size of 10 for training and evaluation. We649

use the implementations in the HuggingFace Trans-650

formers library.651

Pretraining We train up to 40k updates in both652

finetuning and denoising steps with warm updates653

of 2500 steps. We use 0.2 label smoothing, 0.3654

dropout, 0.1 attention dropout and adam optimizer655

with epsilon 1e-6 and betas ’(0.9, 0.98)’. In addi-656

tion, for denoising we use mask 0.3, mask-random657

0.1 and poisson-lambda of 3.5. These experiments658

uses implementation in fairseq.659

A.2 Results for English centric versus660

non-English centric661

(Yining) in basic fine-tuning, is there a noticeable662

diff between English-centric vs non-english centric663

[Yining: To compare the performance of En-664

glish centric and non-English centric, we assess665

BLEU of mBART with basic fine-tuning. ]666

For each language pair, we use data from Gov-667

ernment and Bible as training corpora. The Govern-668

ment data has four sizes (1k, 10k, 25k, 50k), while669

the Bible has three sizes (1k, 10k, 25k). Moreover,670

we conduct zero-shot translation experiment for671

the language pairs. For the case of Sinhala and672

Gujarati, the translation from English to Sinhala673

outperforms the translation between Sinhala and674

Gujarati. For the case of Hindi and Gujarati, we675

observe that the translation between English and676

Gujarati performs better than Hindi and Gujarati.677

Similar trends can also be found in Kannada and678

Gujarati, where translation between English and679

Gujarati outperforms Kannada and Gujarati. [Yin- 680

ing: Should we move zero-shot training details 681

to experiment setting?] [Rikki: maybe refer to 682

3.2 corpus for dataset details - maybe a table 683

like table 1 would be suitable ] 684
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Figure 7: Intermediate Fine-tuning - effect of dataset sizes used for fine-tuning.
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Figure 8: Intermediate Fine-tuning - effect of dataset sizes used for fine-tuning.[Surangika: observations - for Ka
that is not in mBART, intermedate FT noticeably helps. there is an observable gap even after 10k, which is
not there for langauges in mBART. for Ka, increasing the intermediate size posiively impacts.(need to check
this for other languages) ]
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Figure 9: 2nd stage Bible
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Figure 10: 2nd stage PMI

(a) Sinhala-Tamil (b) Hindi-Gujarati (c) Kannada-Gujarati

Figure 11: mBART performance of English centric versus non-English centric
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Training Size
KN GU HI SI TA

FLORES Bib PMI FLORES Bib PMI FLORES Bib PMI FLORES Bib Gov’t FLORES Bib Gov’t

Zero shot - 0.1 0.0 0.1 0.3 0.0 0.1 0.3 0.0 0.4 0.2 0.0 1.2 0.5 0.0 0.9

PMI/Gov’t

1k 0.1 0.0 0.1 7.3 2.1 17.6 8.5 1.7 18.2 3.1 0.4 15.7 2.1 0.5 9.4
10k 4.2 0.5 19.9 15.4 3.7 32.1 14.5 2.9 30.2 8.6 1.1 36.8 6.0 0.8 30.8
25k 10.4 1.1 30.5 18.3 4.4 36.3 16.5 3.1 34.3 10.7 1.1 42.3 8.1 1.1 35.8
50k - - - - - - 18.5 3.4 36.7 10.9 1.0 47.1 9.6 1.3 39.2

Bib
1k 0.0 3.6 0.0 3.4 10.0 3.8 3.5 13.3 4.6 0.9 10.9 0.9 1.5 9.7 1.5
10k 0.6 17.3 0.4 4.6 23.2 3.5 3.8 26.5 3.1 1.6 30.9 1.2 2.2 24.0 1.6
25k 1.3 24.9 0.5 4.5 27.3 3.2 3.2 30.5 2.4 1.7 36.1 1.0 2.1 29.4 1.1

CC
25k 0.2 0.0 0.1 7.8 1.1 4.0 15.1 5.6 13.0 9.3 2.1 14.6 9.4 5.7 7.8
100k 2.8 0.1 2.1 7.5 0.9 6.4 23.1 6.8 19.8 15.1 4.0 25.9 16.0 8.4 15.2

Table 5: Experimental results reported in spBLEU for EN→xx direction.
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