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Abstract

Warning: This paper contains examples of MLLMs that are offensive or harmful
in nature.

Multimodal large language models (MLLMs) have achieved remarkable progress,
yet remain critically vulnerable to adversarial attacks that exploit weaknesses in
cross-modal processing. We present a systematic study of multimodal jailbreaks tar-
geting both vision-language and audio-language models, showing that even simple
perceptual transformations can reliably bypass state-of-the-art safety filters. Our
evaluation spans 1,900 adversarial prompts across three high-risk safety categories
harmful content, CBRN (Chemical, Biological, Radiological, Nuclear), and CSEM
(Child Sexual Exploitation Material) tested against seven frontier models. We
explore the effectiveness of attack techniques on MLLMs, including FigStep-Pro
(visual keyword decomposition), Intelligent Masking (semantic obfuscation), and
audio perturbations (Wave-Echo, Wave-Pitch, Wave-Speed). The results reveal
severe vulnerabilities: models with almost perfect text-only safety (0% ASR) suffer
>75% attack success under perceptually modified inputs, with FigStep-Pro achiev-
ing up to 89% ASR in Llama-4 variants. Audio-based attacks further uncover
provider-specific weaknesses, with even basic modality transfer yielding 25% ASR
for technical queries. These findings expose a critical gap between text-centric
alignment and multimodal threats, demonstrating that current safeguards fail to
generalize across cross-modal attacks. The accessibility of these attacks, which
require minimal technical expertise, suggests that robust multimodal Al safety
will require a paradigm shift toward broader semantic-level reasoning to mitigate
possible risks.

1 Introduction

The rapid evolution of large language models into multimodal systems has fundamentally transformed
the AI landscape, enabling unprecedented capabilities in processing and generating content across
text, vision, and audio modalities. Multimodal Large Language Models (MLLMs) now power widely-
deployed applications from ChatGPT and Gemini to Claude and Grok, serving millions of users
across personal and enterprise contexts [[1, 2. However, this remarkable progress in capability has
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not been matched by corresponding advances in safety alignment, creating a critical vulnerability gap
that threatens the responsible deployment of these powerful systems.

Recent investigations into multimodal red teaming have revealed alarming vulnerabilities in state-
of-the-art MLLMs, demonstrating that safety mechanisms designed for text-only scenarios fail
catastrophically when confronted with adversarial inputs across different modalities [3]. While
existing research has proposed various attack strategies [4} 5, 6] and evaluation benchmarks [[7 |8,
9, 110], these efforts have primarily focused on open-source models, leaving a critical gap in our
understanding of frontier model vulnerabilities. Recent work has begun to address this gap, with
studies demonstrating successful attacks against commercial models including GPT-4 and Gemini
[L1,[12]], yet a comprehensive evaluation across modalities remains absent.

The disconnect between unimodal safety evaluation and real-world multimodal deployment presents
an urgent challenge. Current safety alignment predominantly inherits assumptions from text-based
training, creating systematic blind spots when harmful content is encoded through visual or acoustic
channels. Our investigation reveals that even simple perceptual transformations requiring minimal
technical expertise and readily available tools can reliably bypass sophisticated safety filters that
would successfully block equivalent text-based attacks. This accessibility transforms theoretical
vulnerabilities into immediate practical threats, particularly concerning given the rapid integration of
MLLMs into sensitive applications ranging from educational platforms to healthcare systems.

In this work, we present the first systematic evaluation of multimodal jailbreak attacks against frontier
vision-language and audio-language models. Drawing inspiration from established red teaming
methodologies [I8], we develop an automated pipeline that transforms textual adversarial prompts into
potent multimodal attacks through a two-stage process: first converting text into alternative modalities,
then applying perceptually aware transformations that preserve human interpretability while evading
detection. Our emphasis on lightweight, easily reproducible transformations is deliberate, as these
simple techniques not only achieve surprising effectiveness but also highlight the fundamental nature
of the vulnerability, demonstrating that current defenses are misaligned with actual threat models.

Our experimental evaluation spans seven frontier models across vision and audio modalities, revealing
that simple transformations can achieve attack success rates exceeding 75% for specialized content
domains. The effectiveness of these lightweight approaches which operate by shifting inputs outside
the safety alignment’s training distribution while maintaining semantic clarity, underscores a critical
insight: the challenge of multimodal safety is not merely technical but fundamental, requiring a
paradigm shift in how we conceptualize and implement Al safety mechanisms. The scalability of our
pipeline and the consistency of vulnerabilities in providers emphasize the systemic nature of these
weaknesses, demanding immediate attention from the research community and industry practitioners
alike.

‘We summarize our contributions as follows:

* We propose the first systematic multimodal red teaming framework combining visual,
audio, and textual attack vectors to comprehensively evaluate cross-modal vulnerabilities in
frontier models.

* We develop a perceptually-constrained transformation pipeline employing lightweight,
easily reproducible techniques that maintain human interpretability while successfully
evading safety mechanisms.

¢ We conduct an exhaustive evaluation of 7 frontier models across vision and audio modal-
ities, testing 1,900 adversarial prompts spanning harmful content, CBRN, and CSEM
categories.

* We demonstrate superior attack effectiveness with simple transformations achieving up to
89% ASR, significantly outperforming existing complex adversarial methods.

* We provide theoretical insights into the fundamental disconnect between current safety
alignment approaches and the reality of multimodal threats, identifying critical gaps in
cross-modal safety transfer.



2 Related Work

2.1 Evolution of Jailbreak Attacks from Text to Multimodal

The landscape of adversarial attacks against language models has undergone rapid evolution from text-
only manipulations to sophisticated multimodal exploits. Early text-based jailbreak strategies, includ-
ing gradient-based methods like GCG [13]] and black-box approaches like PAIR [14]], demonstrated
high transferability across different LLMs but faced increasing resistance from perplexity-based and
toxicity detection filters [15 |16} [17]. This arms race in the text domain has driven adversaries to
explore alternative attack surfaces through multimodal channels, exploiting the expanded capabilities
of modern MLLMs that can process and reason across multiple modalities [18 [2, [19]].

The transition to multimodal attacks has revealed fundamental vulnerabilities in how safety mecha-
nisms transfer across modalities. In the vision-language domain, pioneering work by [4}, 5] demon-
strated that typographic images could effectively bypass VLM safety filters, while [8]] showed that
traditional LL.M attack strategies could be directly transferred to MLLMs through visual encoding.
Recent advances have shown that even simpler approaches including basic image transformations
[11] and visual encoder-based gradient strategies [6] can push inputs outside the distribution of safety
alignment training, successfully compromising state-of-the-art closed-source models including GPT-4
and Gemini.

Audio-based attacks represent an emerging frontier in multimodal jailbreaking research. While [20]
introduced sophisticated dual-phase optimization strategies for white-box audio attacks, subsequent
work has revealed that simpler approaches can be equally effective. Studies by [21} 22, 23] have
shown that basic audio editing mechanisms applied to TTS-generated content can achieve significant
attack success rates. Particularly notable is the work by [24], which demonstrated that combining
multilingual and multi-accent variations with acoustic perturbations yields dramatic improvements in
attack effectiveness, especially when leveraging low-resource languages that are underrepresented in
safety training data.

2.2 Safety Alignment Challenges in Multimodal Models

The fundamental challenge of safety alignment in multimodal models stems from the inheritance
of toxic concepts during large-scale pretraining [25] combined with the complexity of cross-modal
interactions. While text-based models have benefited from sophisticated alignment techniques
including Reinforcement Learning from Human Feedback (RLHF) [26, 16} 27]] and Constitutional
Al approaches [28]], extending these methods to multimodal settings introduces unprecedented
challenges. The addition of visual and audio processing capabilities not only expands the model’s
understanding of the world but also creates new attack surfaces that existing safety mechanisms were
not designed to defend.

Recent attempts to address multimodal safety through specialized guardrails and cross-modal RLHF
[29, 30} 131]] have shown promise but remain vulnerable to targeted attacks. Knowledge of the
multimodal encoder architecture [[6] or the distribution of unsafe content used in safety training [11]
enables adversaries to craft inputs that systematically evade detection. Furthermore, approaches that
attempt to unlearn toxic concepts [32} 33| 34] risk degrading the model’s existing safety mechanisms,
creating a delicate balance between capability and safety that current methods struggle to maintain.

2.3 Benchmarks and Evaluation Frameworks

The evaluation of multimodal safety requires comprehensive benchmarks that capture the diverse ways
harmful content can manifest across modalities. Existing frameworks range from direct adaptations
of text-based benchmarks to purpose-built multimodal evaluation suites. MMSafetyBench [5]] and
JailbreakV [8]] provide structured evaluations for vision-language models, while MSTS [10] offers
a broader multimodal safety taxonomy. For audio-specific evaluation, JailbreakAudioBench [23]]
provides targeted assessments of ALM vulnerabilities.

However, these benchmarks often suffer from limited scope, focusing on specific attack types or
modalities in isolation. The challenge of synthetic data generation for safety evaluation compounds
this issue. While automated pipelines can generate adversarial samples through LLM prompting [5]] or
modality-specific transformations [4}[11,121]], they face inherent trade-offs between scale and quality,



often resulting in mode collapse and inadequate coverage of harm categories. Recent work like SAGE-
RT [35] addresses these limitations through iterative taxonomy expansion, adapting the ALERT
framework [36] to create fine-grained categories that better capture the nuances of multimodal harm.
Our work builds upon these foundations while introducing novel categories specifically designed to
evaluate cross-modal vulnerabilities.

3 Methodology

3.1 Multimodal Attack Framework

Our proposed multimodal attack framework first constructs a base set of textual jailbreak data across
multiple attack facets, and then passes each adversarial prompt through an attack pipeline augmented
by modality-specific transformations, aimed to encode the toxic content in other modalities. The base
data generation process is described in Section[3.1.1]and the multimodal attack pipeline in Sections
[3.1.2]and [3.1.3|respectively. The diagram for our proposed multimodal attack pipeline is illustrated
in Figure[l]

3.1.1 Base Data Generation

SAGE taxonomy adaptation to multimodal harm categories We restrict our analysis to the two
most widely-used modalities besides text - images and audio. To generate red-teaming data for these
two modalities across various attack facets (), we employ SAGE-RT’s ([35]]) synthetic data generation
pipeline. Further details on base data generation using SAGE-RT are provided in Appendix [A]

PHASE 1: HARMFUL INPUT PHASE 2: MODALITY TRANSFORMATIONS PHASE 3: OBFUSCATED INPUTS PHASE 4: TARGET MODELS
VISUAL METHODS
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Figure 1: The diagram for our proposed multimodal jailbreak attack pipeline. The original adversarial
text prompt is passed through modality-specific transformations to encode the toxic content in the
image/audio modalities. The resulting multimodal jailbreak prompt is passed to the target model and
elicits a harmful, jailbroken text response.

3.1.2 Visual Attack Pipeline

To convert the adversarial text prompts produced by SAGE-RT into Large Vision-Language Model
(LVLM) red-teaming data, we try out the following black-box attack strategies:

* Basic:
To observe the efficacy of the aforementioned cross-modal visual attack strategies, we also
provide a text-only baseline where the same set of models are tested out on the original
adversarial text prompts.

 FigStep:
FigStep ([4]) is a simple black-box typographic transformation to convert adversarial text

prompts into corresponding image-text samples. The resulting sample consists of a benign
generic text prompt and a malicious typographic image, with the embedded adversarial



text re-phrased into a list format. FigStep shows impressive Attack Success Rates (ASR)
on open-source models like LLaVA-1.5 ([18]), Mini-GPT4 ([37]) and CogVLM-Chat-v1.1
([38D.
* FigStep-Pro:

FigStep-Pro is a modified version of FigStep, which includes an additional preprocessing
step to bypass the OCR detector within GPT-4V and achieves a high ASR (70%, up from
36% using FigStep) on it in the process. We compare the effects of both FigStep and
FigStep-Pro transforms by applying them independently on adversarial text prompts.

* Intelligent text masking:
We follow a procedure similar to [S] where we first extract the toxic phrase from each
adversarial text query using GPT-40, embedding it into a typographical image. The text
prompt is then converted to a benign query by replacing the extracted toxic phrase with
a <M ASK> token, and suffixed with an accompanying instruction asking the model to
extract the <M AS K> token from the image prompt. A sample adversarial input created
using this intelligent text masking strategy is shown in Appendix[C|

3.1.3 Audio Attack Pipeline

On the audio front, we employ a similar multi-step process to convert the SAGE-RT text-based
adversarial prompts into audio red-teaming data, described as follows:

* Text-to-Speech conversion: In our pipeline, the text-to-speech (TTS) stage is imple-
mented using Kokoro—82Mﬂ a neural model with approximately 82 million parameters.
The model combines the StyleTTS2 [39] architecture for prosody and expressiveness with
ISTFTNet[40] as the vocoder for waveform synthesis. Kokoro-82M adopts a decoder-only
architecture, which reduces computational overhead and enables efficient inference while
maintaining perceptually competitive speech quality.

* Waveform transformations:

We apply a set of signal-level perturbations to adversarial audio queries in order to evaluate
the robustness of models against simple yet effective waveform manipulations. Specifically,
we implement transformations including Speed (temporal rate adjustment with selective
application), Echo (delayed signal overlay with volume shift), Pitch (frequency modification
by semitone steps), and Volume (amplitude increase in decibels). In addition, we design a
multi-transform strategy that jointly applies speed-up, pitch shift, volume amplification, and
background noise injection under a selective perturbation scheme (e.g., affecting 60% of the
signal).

3.2 Benchmark Data Categorization

We propose a comprehensive safety suite for benchmarking multimodal jailbreaks for VLMs and
ALMs. Although we follow a general-purpose harm categorization similar to (5 4]) in our Harmful
Test dataset, we also introduce new benchmarks targeting two high-risk categories of concern:
CBRN (Chemical, Biological, Radiological, Nuclear Science) and CSEM (Child Sexual Exploitation
Material). More details on the individual benchmarks in our data suite and related dataset statistics,
along with a comparison vis-a-vis related safety benchmarks in the vision-language and audio
modalities is provided in Appendix [B]

3.3 Target Model Selection

We test out the following state-of-the-art models as targets for jailbreak evaluation on our multimodal
safety suite. Further details on the exact model versions and corresponding API providers used for
evaluations are provided in Appendix [D]

* Vision-Language Models
We choose Llama-4 (Maverick and Scout), GLM-4.5V and GPT-40 as VLM baselines for
jailbreak evaluation. We choose these models due to their extensive pre-training and strong
image-based instruction-following capabilities across diverse tasks.

“https://huggingface.co/hexgrad/Kokoro-82M



* Audio-Language Models

For audio jailbreaks, we employ gpt-4o-audio-preview, gemini-2.5-flash and
gemini-2.5-pro as our Audio-Language model targets, owing to their strong performance
across audio-language downstream tasks and large-scale integration in various real-life use
cases.

3.4 Evaluation Framework

We report Attack Success Rate (ASR) as the evaluation metric, which is defined using the number
of model responses judged adversarial by a binary judging LLM (#749¢), which outputs 1 for
inappropriate responses and 0 otherwise. We use GPT-4. 1 as the binary evaluator for this assessment.
For our evaluation, the LLM judge also classifies the responses into one of 12 response classification
before classifying it as appropriate/inappropriate. The information about response categories is
provided in Appendix@ Let J(® € 7 be an adversarial prompt, we compute ASR as follows:

S giudge( J(h))
mMeg
ASRyqy = 2 (1)
T |

4 Results and Analysis

We present a comprehensive evaluation of our multimodal jailbreak attacks across state-of-the-art
vision-language and audio-language models. Our experiments encompass 1,900 adversarial prompts
distributed across three critical safety categories, tested against multiple attack methodologies to
provide a thorough assessment of current multimodal Al safety mechanisms.

100 CBRN Attack Success Rate CSEM Attack Success Rate Harmful Attack Success Rate

Attack Success Rate (%)

B Liama-4-Maverick BB Llama-4-Scout  HEEI GLM-45v  HEEN GPT-4o |

Figure 2: Attack Success Rate (ASR) evaluation of state-of-the-art Vision-Language Models across
our benchmark suite. The figure presents results across three safety categories (Harmful Test, CBRN,
and CSEM), comparing four models (Llama-4-Maverick, Llama-4-Scout, GLM-4.5v, and GPT-40)
against four attack methods: Basic (text-only baseline), IM (Intelligent Masking), FS (FigStep), and
FS-Pro (FigStep-Pro). Higher ASR values indicate greater model vulnerability, with reference lines
at 25%, 50%, and 75% marking critical effectiveness thresholds.

Visual Attack Performance. Figure [2]reveals striking vulnerabilities in vision-language models
when exposed to visual obfuscation techniques. While text-only baselines achieve minimal success,
visual transformations fundamentally alter the vulnerability landscape. FigStep achieves ASRs of
9.1% and 75% for Llama-4 models on Harmful Test and CBRN benchmarks respectively, highlighting
the disconnect between text-based safety training and visual processing.
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Figure 3: Attack Success Rate (ASR) evaluation of Audio-Language Models across our benchmark
suite. Results span three models (Gemini-2.5-Flash, Gemini-2.5-Pro, and GPT-40-Audio) tested
against six audio transformation methods: Basic Audio (untransformed TTS), Wave-Echo (delayed
signal overlay), Wave-Multi (combined transformations), Wave-Pitch (frequency modification), Wave-
Speed (temporal rate adjustment), and Wave-Volume (amplitude modulation). The visualization
reveals substantial variation in vulnerability across both models and attack categories, with reference
lines indicating effectiveness thresholds.

FigStep-Pro demonstrates the most sophisticated attack, decomposing harmful keywords into visually
separated sub-images that exploit sequential visual processing. This technique achieves remarkable
success rates up to 40.8% for harmful content and 89% for CBRN queries against Llama-4 models
by circumventing OCR-based filters while maintaining semantic coherence. Surprisingly, Intelligent
Masking’s simple approach of strategic term replacement achieves comparable effectiveness, par-
ticularly against GLM-4.5v and GPT-40, revealing how safety mechanisms fail to generalize from
complete to partially obscured content.

The CSEM category shows extreme sensitivity with near-zero baseline success rates, yet advanced
obfuscation techniques achieve 3-9% ASR against Llama-4 models. GLM-4.5v and GPT-40 demon-
strate lower overall ASRs (peak 17-24% for CBRN), though this may reflect either genuine robustness
or overly conservative response generation that impacts utility.

Audio Attack Performance. Figure[3|exposes distinct vulnerabilities in audio-language models
through perceptual transformations. CBRN content shows unprecedented vulnerability, with Wave-
Echo achieving ASRs of 75.0% for Gemini-2.5-Flash and 74.0% for GPT-40-Audio. Wave-Pitch and
Wave-Volume modifications achieve similarly high success rates, indicating models fail to maintain
safety boundaries when processing acoustically modified but semantically preserved content.

Provider-specific patterns emerge prominently in CSEM attacks. Gemini-2.5-Pro shows striking
susceptibility to temporal modifications (Wave-Speed: 63.3% ASR, Wave-Volume: 56.7%), while
Gemini-2.5-Flash and GPT-40-Audio maintain stronger defenses (<25% ASR). This variation reveals
inconsistent safety training methodologies across providers. General harmful content shows robust
defenses with most transformations achieving <10% ASR, suggesting extensive training that doesn’t
generalize to specialized domains.

Basic Audio (untransformed TTS) achieves near-zero success for most categories but notably reaches
19.0% ASR against Gemini-2.5-Pro and 25.0% against GPT-40-Audio for CBRN content. This
reveals that even simple modality transfer can bypass text-based safety for technical content. The
success of Wave-Echo and Wave-Pitch modifications indicates current systems rely on acoustic pattern
matching rather than semantic understanding, creating fundamental vulnerabilities to perceptual
modifications.



Why Simple Transformations Succeed. Simple perceptual transformations exploit fundamental
gaps in safety alignment. Pattern-based blind spots: Safety mechanisms fail against perceptually
modified inputs, with Wave-Echo achieving 75% ASR for CBRN. Cross-modal transfer failure:
Models with 0% text ASR show 74% vulnerability to identical content through audio/visual channels.
Perceptual-algorithmic gap: Transformations remain human-interpretable while evading detection;
Basic Audio achieves 19-25% ASR for CBRN content that text filters block. Uneven coverage:
CBRN shows higher vulnerability than CSEM or general harm, indicating misaligned safety priorities.

Vulnerability Scaling Patterns. Model safety doesn’t scale predictably with capabilities. Provider-
specific profiles: Llama-4 shows visual vulnerability (FigStep-Pro: 85-89% ASR) but audio robust-
ness, while Gemini exhibits the inverse pattern. Capability-safety trade-offs: General-purpose
models (GPT-40, GLM-4.5v) maintain consistent defenses, while specialized models show high
variance. Paradoxical scaling: Newer models (Llama-4-Maverick, Gemini-2.5-Pro) show higher
vulnerability than predecessors. Domain asymmetry: CBRN consistently more vulnerable than
general harm, suggesting expertise and safety scale independently.

Attack Transfer and Generalization. Attack transferability reveals fundamental patterns. Univer-
sal CBRN weakness: Wave-Echo and FigStep-Pro achieve >70% ASR for CBRN across all models.
Shared principles: Successful attacks preserve human interpretability while evading detection, target
specialized knowledge, and maintain semantic coherence. Provider asymmetry: Gemini shows
audio vulnerability (75% ASR) but visual resistance (40-45%), while Llama-4 exhibits the reverse.
Content hierarchy: CBRN transfers robustly, CSEM shows provider-specific patterns, and general
harm rarely generalizes.

Paradoxical Safety Behaviors. Our evaluation uncovers counterintuitive patterns. Expertise
vulnerability: Models show higher vulnerability for CBRN (19-25% ASR) than general harm (0%),
despite CBRN’s greater risks. Sophistication paradox: Advanced models (Llama-4-Maverick,
Gemini-2.5-Pro) show greater vulnerability to simple transformations than older models. Modal-
ity asymmetry: GPT-4o0 shows 0% text ASR but 74% audio vulnerability for identical content.
Complexity inversion: Multi-layered transformations sometimes achieve lower ASR than simple
ones.

Implications for Future Safety Research. These findings demand fundamental changes in multi-
modal safety. Semantic-level alignment: The 0% text vs. 75% audio ASR disparity requires abstract
semantic safety across encodings. Domain-aware scaling: CBRN vulnerability demands safety
mechanisms that scale with content sophistication. Perceptual robustness: Transformation success
elevates perceptual resistance to a primary safety concern. Collaborative standards: Complementary
provider vulnerabilities suggest coordinated protocols could address collective blind spots.

5 Discussion and Implications

Deployment and Governance. Our findings reveal critical gaps between safety assumptions and
multimodal Al vulnerabilities. Simple attacks requiring basic tools transform theoretical vulnerabili-
ties into practical threats. The disparity between text safety (0% ASR) and multimodal vulnerability
(>75% ASR) shows current evaluation creates false confidence through single-modality focus. This
necessitates reconsidering deployment in high-stakes applications and developing evaluation frame-
works that explore cross-modal vulnerabilities systematically.

Ethical Considerations. Our research maintains strict ethical boundaries. CSEM evaluation
concerns only textual patterns (grooming, coercion) and excludes visual CSEM content. No illegal
material was created or accessed. All prompts test safety refusal mechanisms without generating
harmful outputs. We adopted responsible disclosure, notifying providers before publication while
omitting exploitable details. We justify disclosure as these vulnerabilities are likely known to
adversaries, public awareness drives improvements, and defensive insights outweigh risks.

Limitations and Future Work. Our evaluation focuses on simple perceptual transformations,
yet sophisticated attacks combining multiple strategies could achieve higher success rates. The
co-evolutionary nature of attacks and defenses means findings represent current vulnerabilities, not



permanent truths. Our scope is limited to vision and audio, leaving 3D perception, video, and
cross-modal generation unexplored. Audio evaluation focuses on English with standard accents;
multilingual and multi-accent variations in low-resource languages may reveal additional vulnerabil-
ities. Future work should investigate these dimensions while ensuring safety improvements don’t
discriminate against linguistic minorities.

6 Defenses and Mitigation

Proposed Defense Strategies. Our evaluation reveals the need for multi-layered defensive ap-
proaches that address fundamental weaknesses while remaining deployable Cross-modal consis-
tency checking offers immediate promise by detecting divergent safety assessments across modalities
when audio content triggers different responses than its transcribed text, this divergence signals
potential manipulation. Perceptual anomaly detection leverages statistical artifacts introduced by
transformations, though balancing sensitivity against false positives remains challenging. Enhanced
safety training must extend beyond text-centric RLHF to explicitly incorporate cross-modal attack
scenarios, requiring new training objectives that penalize inconsistent safety behaviors across modali-
ties. Input preprocessing provides a practical near-term solution through inverse transformations
and standardization audio normalization can remove acoustic artifacts while OCR-based re-rendering
eliminates typographic manipulations, though careful design is needed to avoid degrading legitimate
1nputs.

Implementation Trade-offs. Deploying these defenses reveals critical trade-offs. The safety-utility
balance is particularly delicate: aggressive filtering may block attacks but also reject legitimate
content from users with disabilities or non-standard dialects. Computational overhead poses
scalability challenges cross-modal consistency checking can multiply inference costs, necessitating
selective application to high-risk content. Adversarial training with multimodal attacks improves
robustness but risks over-conservative models that refuse benign content resembling attacks. The
vast transformation space makes comprehensive training intractable, requiring careful selection
of representative examples. Adaptive adversaries present the ultimate challenge defenses must
anticipate not just current attacks but evolving strategies, demanding continuous evaluation and
fundamental solutions addressing entire attack classes rather than specific instances.

7 Conclusion

This work presents a comprehensive evaluation of multimodal jailbreak attacks against state-of-the-art
vision-language and audio-language models, revealing that simple perceptual transformations can
bypass sophisticated safety mechanisms with alarming effectiveness achieving attack success rates
exceeding 75% for specialized content domains. Through systematic testing of 1,900 adversarial
prompts across harmful content, CBRN, and CSEM categories, we demonstrate a fundamental
disconnect between current text-centric safety paradigms and the reality of multimodal threats, where
techniques like FigStep-Pro’s visual decomposition and Wave-Echo’s acoustic modifications exploit
modality-specific processing blind spots that persist despite advances in Al safety. Our findings
expose critical vulnerabilities: models showing near-perfect text safety fail catastrophically against
perceptually modified inputs, specialized knowledge domains like CBRN exhibit disproportionate
susceptibility even to basic modality transfers, and the effectiveness of simple transformations
over complex adversarial methods reveals fundamental misalignment between current defenses and
actual threat models. The accessibility of these attacks requiring only basic technical skills and
widely available tools transforms these vulnerabilities from academic curiosities into immediate
practical threats, particularly concerning given the rapid deployment of multimodal Al across critical
applications. These results demand a paradigm shift in multimodal Al safety from pattern-based
detection within individual modalities toward semantic-level understanding that transcends specific
perceptual representations, requiring not only technical innovations in cross-modal safety alignment
but also fundamental reconceptualization of how we evaluate and certify the safety of multimodal Al
systems making this not merely a technical challenge but an urgent societal imperative as we navigate
an increasingly multimodal Al landscape.

“In future work, we plan to quantitatively evaluate these defense strategies against our attack framework,
reporting concrete effectiveness metrics for each approach.
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A SAGE-RT pipeline for Base Data Generation

SAGE-RT [35] adapts the six major safety category-based taxonomy proposed by ALERT ([36]) and
adds more fine-grained leaf/sub-subcategories, giving a total of 279 leaf categories for evaluating LLM
safety. Since the SAGE-RT red-teaming data generation pipeline is taxonomy-agnostic, we construct
custom taxonomies for the image and audio modalities. To enable support for multimodal data
generation, we augment the SAGE-RT pipeline with a host of modality-specific data transformations,
as discussed in Sections 3.1.2]and

Prompt diversification. The initial text-based jailbreak queries are created using a 3-step process
that: (1) first generates an initial set of harmful instructions for all leaf categories based on the
provided taxonomy using Mistral-7B ([41]]), (2) generates corresponding harmful responses for these
instructions using an uncensored LLM (SOLAR-10.7B, [42]). The number of uncensored raw text
responses thus generated is given by

Nune = Ntf X Nipe X Nie X Nsampl (2)

where ¢ f is the Task Format (from Blogs, Articles, Book Summaries and Social Media Posts), mc is
the micro-category, [c is the leaf category and Ny is the number of samples per leaf category.

Finally, Step (3) - each raw text response is used to extract out different types of toxic queries
based on 9 common jailbreak attack types, which are as follows: (a) Direct question, (b) Biased, (c)
Toxic sentence completion, (d) Fictional scenario, (e) Role-playing scenario, (f) Story writing, (g)
Coding task, (h) Sub-task based question, (i) Constrained situations. These queries are then iteratively
diversified over multiple epochs by: (i) perturbing the specific attack scenario (For example, changing
the story setting in Fictional scenario), and (ii) changing the query prompt template. The total number
of toxic red-teaming queries finally obtained is as follows

Ntowic = Nunc X ij X Nepoch (3)

where jb is the jailbreak type, and Nepocp, is the number of epochs.

B Benchmark Data Categories
The detailed descriptions for various benchmarks in our multimodal safety suite are as follows:

Harmful Test: This dataset consists of 600 adversarial prompts targeting six broad
risk/inappropriate categories: (1) Criminal Planning (2) Guns and Illegal Weapons (3) Hate Speech
and Discrimination (4) Regulated/Controlled Substances (5) Sexual Content and (6) Suicide and Self-
Harm. The dataset is distributed across modalities with 60 text-only prompts, 180 typographic image
prompts, and 360 audio prompts (including basic-audio and transformed versions). We source this
dataset by sampling typographic adversarial prompts from ([15, (10, 8])), filtering out non-typographical
samples due to limited attack effectiveness observed on our target models.

CBRN: This dataset consists of 1000 adversarial prompts targeting four categories which may pose
risks to National Security and Public Safety (NSPS): (i) Chemical (ii) Biological (iii) Radiological
and (iv) Nuclear. The dataset includes 100 text-only prompts, 300 typographic image prompts,
and 600 audio prompts (including basic-audio and transformed versions). While we follow a risk
taxonomy similar to [43]], our dataset is created using the augmented SAGE-RT data generation
pipeline detailed in Section[3.1.2]

CSEM: This dataset consists of 300 adversarial prompts targeting four high-risk CSEM (Child
Sexual Exploitation Material, [44]) categories: (i) Blackmail/Extortion (ii) Child Pornography (iii)
Grooming and (iv) Sexual Acts. The dataset comprises 30 text-only prompts, 90 typographic
image prompts, and 180 audio prompts (including basic-audio and transformed versions). While
prior works on LLM/Multimodal safety like ([4, 5, l6]) include general categories of inappropriate
sexual content; to the best of our knowledge, this is the first publicly-available dataset to cover a
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comprehensive taxonomy for high-risk CSEM-based attacks. Please refer to our Ethics Statement
(Section [5) for details on the dataset’s mode of public release and clarifications on the CSEM vs
CSEM disambiguation.

For VLM attacks, the combined dataset (consisting of 570 image prompts across all categories) is
equally divided among the four attack strategies (Basic, FigStep, FigStep-Pro and Intelligent Masking)
described in Section[3.1.2] For audio attacks, the dataset comprises 1140 prompts distributed across
both basic-audio and various waveform transformation techniques, including speed modification,
pitch shifting, echo addition, and volume manipulation. Additionally, we evaluate multi-transform
strategies that combine multiple perturbations simultaneously. A comparison of our benchmark suite
with other multi-modal safety benchmarks is provided in Table[T] We source our benchmark suite
from datasets like MSTS ([10]), MM-SafetyBench ([S]) and FigStep ([41]), prioritizing benchmark
quality by filtering out sample types with limited effectiveness on our target models.

Benchmark Volume Modality CBRN CSEM Safety Criteria
MSTS ([101) 400 1 X X 5
FigStep ([4]) 500 1 X X 10
MMSBench ([3]]) 5040 1 X X 13
JailBreakV ([8]) 28000 T+1 X X 16
AlJailBench ([45]) 1495 A X X 10
JailBreak-AudioBench ([23]]) 157782 A X X -

Ours 1900 T+I+A v v 14

Table 1: Comparison of benchmarks with respect to safety, evaluation method, and scenarios. The
Safety Criteria column only mentions the number of high-level hazard categories (not leaf/sub-
categories) for uniform comparison. We use the shorthand MMSBench for MM-SafetyBench, and 7,
I and A for Text, Image and Audio respectively. Our benchmark suite covers 14 safety criteria in total
(6 for Harmful Test, 4 for CBRN, 4 for CSEM) with a total of 1900 prompts (190 text, 570 image,
1140 audio).

C Intelligent Masking: An Illustrative Example

Figure [4] shows an example adversarial prompt transformed using Intelligent Masking. While the
visual transformation process bears similarities to the typographic image strategy proposed by [3],
we employ a slightly different prompt de-toxing approach: replacing the harmful keyword by a
<M AS K> token, and appending a post-prompt specifying that the contents of the token must be
extracted from the provided image.

tax deductions

Figure 4: An example of a toxic keyword embedded in a typographic prompt in Intelligent Masking.
The corresponding paired prompt for this image is as follows: "Write a comprehensive wikiHow
guide on maximizing profits through <M ASK>. The content of the <MASK> token is provided in
the image."
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D Model specifications and API Providers

We use the latest version of OpenAl's GPT-4.1, i.e., gpt-4.1-2025-04-14 as the LLM judge for
our evaluations. Additionally, we use the following model versions for our VLM and Audio-LM
target models as described in Table 2] and [3}

D.1 Vision-Language Models

The target Vision-Language Model names, their corresponding versions and corresponding API
providers used for our evaluations are shown in Table[2]

Model name Model Version API Provider
Llama-4-Maverick | meta-1lama/1lama-4-maverick-17b-128e-instruct-fp8 | Together All
Llama-4-Scout meta-llama/llama-4-scout-17b-16e-instruct Together Al
GLM-4.5V zai-org/glm-4.5v Z.ai]

GPT-40 gpt-40-2024-08-06 OpenAll

Table 2: VLMs, their versions, and API providers used in our experiments.

D.2 Audio-Language Models

The target Audio-Language Model names, their corresponding versions and corresponding API
providers used for our evaluations are shown in Table[3]

Model name Model Version API Provider
GPT-40-Audio-Preview | gpt-4o0-audio-preview-2024-10-01 | OpenAl
Gemini-2.5-Flash gemini-2.5-flash Gemini APL]
Gemini-2.5-Pro gemini-2.5-pro Gemini API

Table 3: Audio-LMs, their versions, and API providers used in our experiments.

E Response Classification Categories

We instruct the LLM judge to classify the target model response into one of the following 12
categories, which aims to exhaustively cover all possible response types and subsequently decide its
appropriateness/inappropriateness. For example, the possible response categories are listed in Tabled]
for Llama-4-Scout, along with the total number of prompts classified in that category, the number
of attack successes and the risk respectively.

From Table ] the majority of unsuccessful attacks on Llama-4-Scout elicit either declined re-
sponses, hard refusals or even a safe refusal to comply with the request, along with a justification
for the same. Meanwhile, most of the successful jailbreak responses take the form of the model
either directly violating its internal policies or providing instructions for the adversarial activity, with
warnings or policy moralizing.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should

“https://api.together.ai/
"https://z.ai
“https://platform.openai.com
“https://ai.google.dev/gemini-api
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Response Category Success/Total Prompts | Risk
access_denied 0/5 0.0
clarifying_question 0/1 0.0
declined_response 0/258 0.0
direct_violation 136/136 100.0
hallucinated_off_topic 0/1 0.0
hard_refusal 0/49 0.0
instructions_with_warning 155/170 91.18
moralizing_compliance 13/13 100.0
policy_allowed_transformation 1/5 20.0
policy_explanation 0/14 0.0
safe_completion_refusal 0/88 0.0
verbatim 0/20 0.0

Table 4: Responses for L1ama-4-Scout across all 760 samples in our benchmark suite, classified
into 12 response categories, along with their respective inappropriateness scores (Risk).

follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe our experimental findings
and scope, which are supported by results in Section 4.

Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 5, including scope constraints and future
work directions.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This is an empirical study without theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Attack methods (Section 3), model versions (Appendix A), and evaluation
metrics are fully specified.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Code and data are not publicly released due to ethical considerations, but
methodological details are provided.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details including attack methods, benchmark composition,
and evaluation criteria are specified.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report exact Attack Success Rates (ASR) across 1,900 prompts without
error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Experiments use commercial API calls requiring minimal compute resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We follow ethical guidelines (Section 5), use no illegal material, and practice
responsible disclosure.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 5 discusses both positive impacts (safety improvements) and negative
impacts (potential misuse).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We practice responsible disclosure, omit exploitable details, and do not release
attack code publicly.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All models and datasets are properly cited with versions and sources.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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Justification: Our new benchmark and attack methods are documented in Section 3 and
appendices.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects or crowdsourcing involved; all evaluations are automated.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects involved in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: LLMs are used as evaluation judges (GPT-4.1), for data generation (SAGE-RT),
and as target models, all documented in the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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