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ABSTRACT

Recently, there has been growing interest in developing Vision Transformer (ViT)
or Convolutional Neural Network (CNN) methods for 3D medical image segmen-
tation, which necessitates both large receptive fields and adaptations to varying
spatial geometries. Previous works in both CNNs and ViTs demonstrated lim-
itations in capturing the complex spatial and semantic structure of 3D medical
images. In this paper, we introduce MGDC-UNet, a multi-group deformable con-
volution network for 3D volumetric medical image segmentation. Our MGDC-
UNet employs deformable convolution operators with learnable spatial offsets to
improve attention on semantically important regions. Our approach leverages sta-
ble spatial distribution across subjects to enhance semantic learning. We also
incorporate transformer components to augment feature learning and reduce in-
ductive biases inherent in traditional CNNs. MGDC-UNet demonstrated supe-
rior performance accuracy on three challenging segmentation tasks using public
datasets: 1). brain tumor segmentation (BraTS21), 2). CT multi-organ segmen-
tation (FLARE21) and 3). cross-modality MR/CT segmentation (AMOS22). Our
network also compared favorably with existing methods in terms of computational
efficiency.

1 INTRODUCTION

Volumetric medical image segmentation plays an important role in the identification and delineation
of specific regions, such as tumors or organs, within 3D medical images. In diagnostic and ther-
apeutic applications, this technique aids clinicians in precisely determining the location and scale
of pathological changes, which consequently enhances treatment planning and improves patients’
quality of life. However, the task of volumetric medical image segmentation is challenging. The
complexity of anatomical structures, such as the congestion or even the invasion among tissues,
organs, and systems in the limited human body space, may complicate the segmentation process.
Additionally, the large volume of 3D image data often demands substantial resources and efficiency.

Previous learning-based approaches have shown remarkable performance in medical image analy-
sis tasks, particularly the U-Net architecture in volumetric image segmentation (Ronneberger et al.,
2015). However, existing methods demonstrate limitations in effective receptive fields (ERFs) when
dealing with the complicated structure and semantics of volumetric medical image segmentation.
Our analysis, illustrated in Fig. 1, shows the ERF distributions of previous network designs lack
specificity towards pertinent anatomical structures. Conventional CNN is constrained by its uniform
convolution strategy. Since plain convolution kernel samples evenly on the feature map, it under-
performs in regions requiring more attention and overcompensates in regions requiring less focus.
Small kernel CNN (3× 3× 3) is hindered by a constrained ERF thus offering limited attention and
fine-grained analysis capabilities (Fig 1.a). Large kernel CNN (7× 7× 7) improves ERF and local
segmentation accuracy but still lacks long-range dependencies (Fig 1.b). Vision Transformers have
better attention mechanisms than CNNs, but fall short in capturing semantic correlations due to sim-
ple feature correlation design and the complexity of the input volumetric image structures (Fig 1.c).
Furthermore, self-attention in ViTs might not inherently focus on the most semantically relevant
features of the images, thereby increasing the risk of overfitting.

To address this issue, we propose a novel 3D volumetric feature extraction network designed to
explicitly attract more attention to regions with relevant semantics. We observe that, despite their

1



Under review as a conference paper at ICLR 2024

complexity, medical images often possess strong location-semantics correlations. That is, the posi-
tion distribution of each organ tends to remain consistent across different subjects. Inspired by De-
formable Neural Networks (Zhu et al., 2019b; Wang et al., 2023), we have developed a deformable
convolution approach used for 3D volumetric images. Through convolution kernels with learnable
position distribution, our network can gather more attention to semantically important regions. Due
to the strong correlation between semantics and spatial distribution in 3D volumetric medical im-
ages, the learned positional information tends to be more stable, leading to a more efficient and
robust network that extracts more semantically accurate features. Our result in Fig. 1d shows a
noticeable semantic-related spatial distribution in feature attention.

Specifically, our 3D volumetric medical image segmentation network is named MGDC-UNet. First,
we design a learnable spatial offset for each deformable convolution operator which can be applied
to 3D volumetric data. The network can adaptively adjust the offset of sampled locations, con-
centrating its attention on semantically relevant organ positions. This design leverages the stable
positional prior of organs to capture robust semantic features. Furthermore, we dynamically ad-
just offsets and modulation scalars to mitigate the inductive biases inherent in traditional CNNs,
achieving transformer-like spatial aggregation. Finally, we designed MGDC blocks with a hybrid
deformable convolution and multi-layer perceptron (MLP) structure for effective channel scaling
and enhanced feature learning.

Our contributions are as follows:

• We proposed a core operator named MGDC, which capitalizes on the correlation between
location and semantics in medical images. Our operator achieves more accurate semantic
learning through adaptive attentional positional offsets.

• We augment our core MGDC operator with transformer components in the MGDC block
to boost feature learning and attain optimal performance.

• We evaluate our proposed architecture on three large publicly available datasets, demon-
strating superior performance in terms of segmentation metrics, inference time, and model
parameters.

Figure 1: We compare the ERFs on segmented regions from different operations and their effects
on multi-organ segmentation. Top row: ERFs from the bottleneck layer of every method. Bottom
row: the segmentation results on an example CT (white arrow indicating improvements). (a) Small-
kernel convolutions often segment regions without accounting for the anatomical correlation with
adjacent structures. (b) Large-kernel convolutions enhance anatomical context but remain confined
to considering only nearby structures. (c) Global self-attention extends the ERF but still falls short in
capturing semantic relationships among correlated organs. (d) Multi-group deformable convolutions
successfully expand the ERF while adapting to task-specific geometry through learnable offsets,
thereby focusing on semantically relevant regions.
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2 RELATED WORKS

2.1 3D VOLUMETRIC MEDICAL IMAGE SEGMENTATION

Due to the strong local inductive bias and parameter efficiency, CNN-based methods have long
dominated medical image segmentation. The spatial parameter sharing of CNN enables compact
designs suitable for medical image analysis. (Ronneberger et al., 2015) introduced U-Net, a CNN
architecture with symmetric expansive and contractive paths enabling precise localization, making it
a standard choice for many segmentation tasks in medical imaging. However, the limited receptive
field of CNNs can significantly hinder their performance on medical segmentation tasks, where the
objects are often irregular or distorted. A standard convolutional layer with a small kernel size can
only capture local spatial patterns. Even with pooling or striding, the inherent design of CNNs forces
them to accumulate global context through many layers, potentially losing or diluting important
long-range information. To address the locality of CNN, variants of U-Net have been proposed by
leveraging novel breakthroughs from various vision tasks. Attention UNet utilized attention-gates
to select important features to improve segmentation performance (Oktay et al., 2018). (Zhang
et al., 2017) introduced dilated convolution and pyramid pooling to U-Net to enlarge the receptive
field. Self-attention has also been applied to address the locality of convolution operation (Sinha
& Dolz, 2020). Different from previous works on this task, our proposed method can leverage the
correlation of spatial prior and semantics in 3D volumetric image segmentation tasks, which gives
better attention to semantic relevant regions.

2.2 DEFORMABLE CONVOLUTION NEURAL NETWORKS

Deformable convolution has emerged as a powerful technique for addressing the limitations of tra-
ditional CNNs in tasks requiring adaptive receptive fields, such as image segmentation. Initial con-
tributions, such as Deformable ConvNet by (Dai et al., 2017) laid the foundation by introducing
dynamic offsets to adapt receptive fields. Subsequent advancements, such as DCNv2 and DCNv3,
incorporated learnable modulation scalars and multi-group spatial aggregation for greater flexibility
and efficiency (Zhu et al., 2019b; Wang et al., 2023). While deformable convolution has been ef-
fectively applied in 2D medical image segmentation and 3D CT multi-organ segmentation tasks (Jin
et al., 2019; Heinrich et al., 2019), its full potential in combination with transformer-like architec-
tures for 3D medical image segmentation remains underexplored. Our hypothesis is that deformable
convolution can significantly augment transformer-like architectures, offering benefits in handling
long-range dependencies and providing computational efficiency compared to traditional CNNs and
Vision Transformers. Different from previous works, we further equipped deformable convolution
with multi-group spatial aggregation and transformer-like components for 3D medical image seg-
mentation, while still improving computational efficiency.

3 METHOD

In this section, we first present our MGDC module and block design. To design a large-scale de-
formable CNN for medical image segmentation, we start by improving the original deformable
convolution with multi-group mechanisms to improve feature encoding capabilities. We then design
the basic block of MGDC by incorporating transformer components to stronger modeling capacity.

3.1 MULTI-GROUP DEFORMABLE CONVOLUTION

While traditional CNNs typically use small convolution kernels that result in limited effective re-
ceptive fields, deformable convolution enhances the conventional convolutional process by allowing
for adaptive sampling positions within the convolutional grid. Unlike traditional convolution, which
operates on uniformly spaced grid points, deformable convolution modifies these positions based
on learnable offsets, thus enabling the model to learn more flexible representations of the input.
Accordingly, we first take a 3D a dynamic deformable convolution network (3D DCN) (Zhu et al.,
2019b) with adaptive sampling offsets and modulation masks to enhance the targeted segmentation
tasks. Given an input x ∈ RH×W×D and a current voxel v0, our proposed 3D DCN layer can be
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formulated in the following:

y (v0) =

S∑
s=1

wsmsx (v0 + vs +∆vs) (1)

where s enumerates the sampling points with a total of S points. vs represents the s-th location
of the pre-defined grid sampling {(−1,−1,−1), (−1,−1, 0), . . . , (1, 1, 0), (1, 1, 1)} as in regular
3 × 3 × 3 convolutions. ∆vs is the offset corresponding to the s-th sampling location, ws denotes
the projection weights of the s-th sampling point, and ms is the modulation scalar of the s-th sam-
pling point normalized by sigmoid function. From equation (1), we can see that the sampling offset
∆vs is conditioned based on inputs and is able to achieve both short and long-range dependencies.
Furthermore, the modulation scalar ms is also learnable and dynamically adjusted based on inputs.
Therefore, the 3D DCN layer already shares similar properties with MHSA. Nonetheless, the pro-
posed 3D DCN layer faces challenges in medical image segmentation. First, the design leads to
linear memory complexity and computational demands, raising the risk of overfitting in data-limited
medical settings. Second, unlike transformers or group convolutions, DCN lack a multi-group mech-
anism to capture diverse features, limiting their representational power.

To address these limitations, we introduce MGDC, a specialized deformable convolution operator.
To remedy the computation complexity, we propose to use depth-wise convolution and detach the
regular convolution ws into depth-wise and point-wise parts. The depth-wise part is responsible for
the location-aware modulation scalar mk and the point-wise part is the shared projection weights wg

among sampling points. We also introduce multi-group spatial aggregation to effectively learn richer
information from different representation subspaces at different locations. Similar to the concept of
grouped convolution, we split the spatial aggregation process into G groups, each of which has
individual sampling offsets ∆pgs and modulation scaler mgs and hence different groups on a single
convolution layer can have different spatial aggregation patterns, resulting in stronger features for
downstream tasks. mgs and ∆vgs are obtained via two linear layers applied over input. Given an
input x, our proposed MGDC can be formulated as the following:

x1 = DWC(x) (2)
∆vgs = linear(x1) (3)
mgs = softmax (linear(x1), S) (4)

y(v0) =

G∑
g=1

S∑
s=1

wgmgsx(v0 + vs +∆vgs) (5)

where DWC stands for depth-wise convolution and linear stands for linear transformation. S stands
for the total number of sampled points. G denotes the total number of aggregation groups. For
the g-th group, wg denotes the location-irrelevant projection weights of the group, wg ∈ RCg×Cg

where Cg = C/G represents the group channel dimension. mgs denotes the modulation scalar of
the s-th sampling point in the g-th group, normalized by the softmax function along dimension S.
xg ∈ RCg×H×W×D represents the g-th grouped input feature map. ∆vgs is the offset corresponding
to the grid sampling location ps in the g-th group. Since v0+vs+∆vgs might be fractional, trilinear
interpolation is used to convert fractions to integers.

3.2 MGDC-UNET

The overall pipeline of our proposed method is illustrated in Figure 2. Following the encoder-
decoder design of Hatamizadeh et al. (2022), our MGDC-UNet consists of four stages in encoder,
decoder, and four residual connections. For an input volume with a size of H ×W ×D, MGDC-
UNet first leverages two convolution embedding layers to obtain downsampled feature maps of
H
4 ×W

4 × D
4 ×C, where we set C empirically to 48. Next, each stage of encoding starts with MGDC

blocks to extract spatial representations and ends with a downsample block (except for the last stage)
to produce hierarchical features and double the channel dimension. After hierarchical encoding, the
output from each stage in the encoder is fed to a CNN-based decoder with skip connections. Inside
the decoder, a transposed convolutional layer is used for upsampling input and concatenating with
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multi-scale features. On the final layer, we concatenated the transformed input with the upsampled
features to produce the final segmentation map Below we show detailed design of the MGDC blocks.

1). MGDC Block: We present the MGDC Block, a new architecture that includes a reverse bottle-
neck design similar to MobileNetV2 (Sandler et al., 2018), but augmented with transformer com-
ponents. While traditional inverted bottleneck design utilized depthwise convolution, our MGDC
block leverages two MLP layers for channel expansion and reduction and LayerNorm for normaliza-
tion, a design further inspired by Vision Transformers. This approach enables the network to capture
more complex and richer features. Given input into the MLP layer min, we define MLP function as:

MLP = LN (Linear (GELU (Linear (min)))) (6)
The overall block is formulated by the MLP layer with the GELU activation and post-normalization
strategy as:

x′ = x+ GELU (LN (MGDC (x))) (7)

xout = x′ + LN (MLP (x′)) (8)

2). Stem block & downsample block: Hierarchical design downsamples the input to varying
resolutions to extract multi-scale features and is commonly used in image segmentation. To obtain
hierarchical feature maps, our stem block first reduces the input resolution by a factor of 4. We stack
two plain convolution layers with a stride of 2, two Layer Normalization layers, and one GELU
activation layer. The downsample block only reduces the input feature by a factor of 2. It consists
of one plain convolution with a stride of 2, followed by one Layer Normalization layer.

3). Upsample block & final block: To upsample the processed feature maps, we utilize transposed
convolution with a stride of 2 (except for the last upsample block which uses a stride of 4), followed
by Instance Normalization. An additional plain convolution layer is used to further extract semantic
information from the decoded feature maps. In the final block, we swap the transposed convolution
with plain convolution and output the segmentation maps.

Figure 2: Illustration of Proposed MGDC-UNet Architecture. The complete encoder-decoder ar-
chitecture is displayed on the left. Structures of MGDC block, stem block, downsample block and
upsample block are revealed on the right.

4 RESULTS

4.1 IMPLEMENTATION DETAILS AND DATASET

To evaluate the proposed MGDC-UNet, we trained and evaluated the network in BraTS21, FLARE
2021, and AMOS 2022 dataset on an NVIDIA A6000. A comprehensive overview of datasets and
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evaluation strategies can be found in Appendix A.1. The BraTS21 dataset for glioma segmenta-
tion includes 1,251 multi-parametric MRI scans with four modalities and evaluates using Dice score
(DSC) and 95% Hausdorff distance (HD95). Annotations target three sub-regions: Gd-enhancing
tumor (ET), peritumoral tissue (ED), and necrotic core (NCR). FLARE 2021 dataset for abdominal
organ segmentation consists of 361 multi-contrast CT scans from two major medical centers and in-
volves verification from five radiologists. For AMOS 2022, we focused on cross-modality CT-MRI
segmentation using 300 CT and 60 MRI scans. Annotations were performed for 15 abdominal or-
gans by multiple groups of radiologists. Both the Dice score and surface Dice score were computed
for FLARE 2021 and AMOS 2022. A comprehensive overview of our training procedure can be
found Appendix A.2. In all experiments, the networks are optimized by the AdamW optimizer with
a linear warmup and cosine annealing strategy. For the BraTS21 dataset, we opted for an input size
of (128, 128, 128) following the methodology established by (Wang et al., 2021). On the other hand,
for the AMOS and FLARE datasets, an input size of (96, 96, 96) was employed, as suggested by
Lee et al. (2022). Several techniques including random rotation, random flipping, random cropping,
random intensity shifts, and random affine transformations were deployed. Additionally, to fully
demonstrate the capability of the DCN layer in handling large kernels for performance enhance-
ment, we conducted experiments using various convolution kernel sizes (3, 5, and 7) to maximize
MGDC’s performance.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

To demonstrate the effectiveness of our proposed method, we compare it against state-of-the-art
CNNs, transformers, and ConvNext methods on volumetric segmentation tasks. Our comparative
methods include ResUNET (Zhang et al., 2018), SegResNet (Myronenko, 2019), Swin UNETR
(Tang et al., 2022), TransBTS (Wang et al., 2021) and UXNET (Lee et al., 2022). We reimple-
mented the above methods according to the publicly released codes. To ensure the fairness of the
comparison, we utilized the same optimization tool, data augmentation strategies, and data split
for each method. We conducted five-fold cross-validation on each dataset respectively, and paired
student’s t-test was used to evaluate statistical significance.

1). Experiment results on BRaTS21 dataset: Table 1 presents a comparative analysis of MGDC-
UNet with state-of-the-art segmentation techniques on the BraTS21 dataset. Notably, MGDC-UNet
outperformed all competing methods, registering remarkable improvements in both the DSC and
HD95. For a kernel size of 3, the MGDC-UNet achieved a DSC score of 90.6% and an HD95 value
of 4.816 mm, surpassing Swin UNETR by 0.9% and 0.849 mm, respectively. Further investigation
revealed consistent performance gains when incrementing the kernel size from 3 to 5 and ultimately
to 7, corroborating our theory that larger receptive fields improve segmentation performance. A
paired t-test provided additional statistical validation for the observed enhancements when increas-
ing the kernel size from 3 to 7. For a deeper visual understanding, we refer the reader to Figure
3. As depicted in the first and second rows, our MGDC-UNet effectively minimizes false positive
NCR (red) and ET (yellow) regions when segmenting brain tumors compared to competing meth-
ods. The third row also clearly illustrates MGDC-UNet’s exceptional accuracy in outlining various
tumor boundaries. Our observations further revealed that even with a small kernel size (k = 3),
our MGDC-UNet still excelled over the large-kernel ConvNext method, UXNET, by 0.9% in DSC.
This indicates that deformable convolutions are capable of capturing long-range dependencies ef-
ficiently. Statistical validation reinforced the superior performance of MGDC-UNet over the best
SOTA methods.

Furthermore, we provide the time efficiency and the memory usage of MGDC-UNet and compari-
son methods. For CNN methods, although ResUNet and SegResNet demonstrated fast training and
inference time, their segmentation performances were much worse than our MGDC-UNet. For trans-
former methods, Swin UNETR outperformed TransBTS in segmentation accuracy but demonstrated
lower training and inference speed. Compared to MGDC-UNet, both methods still have relatively
high memory consumption. For the ConvNext method, UXNET demonstrated a good balance be-
tween performance and training speed. However, our MGDC-UNet k = 3 is 38% faster and has
19% less memory consumption than UXNET while still improving DSC by 1.3%. Therefore, our
model achieves the best balance between segmentation performance and time-resource efficiency.

2). Experiment results on FLARE21 dataset: As shown in Table 2, our MGDC-UNet outper-
formed all comparable methods in terms of DSC and SDC. Notably, MGDC-UNet outperformed
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Table 1: Quantitative comparison with SOTA methods in BraTS21 dataset with Avg (average)
results. The best result from SOTA methods is underlined. T-test is performed between the best
result from SOTA models and our models. Bold means p-value p < 0.05. Efficiency analysis was
also performed in terms of time (training or inference on each sample) and memory consumption
for various models.

Methods
DSC HD95 (mm) Time (s) Memory (G)

TC WT ET Avg TC WT ET Avg Train Inference

ResUNET 0.875 0.912 0.858 0.881 7.740 12.446 6.542 8.912 0.25 0.37 2.5

SegResNet 0.901 0.917 0.867 0.895 6.481 10.421 5.478 7.460 0.24 0.78 3.3

UXNET 0.890 0.916 0.873 0.893 7.442 9.583 5.053 7.357 0.63 2.7 10.3

Swin UNETR 0.898 0.921 0.872 0.897 5.091 7.770 4.135 5.665 0.55 2.56 11.4

TransBTS 0.864 0.907 0.838 0.869 8.651 10.972 7.385 9.003 0.36 1.69 9.6

MGDC-UNet (k=3) 0.908 0.928 0.881 0.906 4.774 6.024 3.951 4.816 0.39 1.67 8.3

MGDC-UNet (k=5) 0.911 0.933 0.885 0.910 4.083 5.880 3.787 4.583 0.45 1.89 8.6

MGDC-UNet (k=7) 0.917 0.936 0.888 0.914 3.818 5.504 3.605 4.309 0.51 2.08 9.4

Figure 3: Visualization of segmentation results on BraTS21 dataset. Green, yellow and red regions
indicate ED, ET and NCR.

UXNET (the previous state-of-the-art on Flare 21) by 0.8% in DSC and 0.4% in SDC. Experi-
ments on enlarging the kernel size showed that MGDC-UNet achieved the best performance when
k = 7, achieving 94.4% DSC and 94.1% SDC. We also generated visualization results in Figure
4. MGDC-UNet demonstrated the best segmentation performance for kidneys (row 2) and reduced
false negative regions for liver segmentation (row 3).

3). Experiment results on AMOS22 dataset: Table 3 summarizes results on the AMOS 22 dataset.
Our MGDC-UNet (k=3) outperformed all comparable methods on CT segmentation tasks in both
DSC and SDC. For MRI segmentation, both SegResNet and UXNET demonstrated similar perfor-
mance to MGDC-UNet (k=3) in terms of DSC. However, after switching kernel size to 7, MGDC-
UNET outperformed both methods by 0.3% in DSC. For SDC, all MGDC-UNet models demon-
strated superior performance, leading comparison methods by 0.7% to 4.6%. While cross-modal
multi-organ segmentation still remained a challenge, our MGDC-UNet still achieved satisfactory
performance for most organs (Figure 5, row two). In row one, we found that MGDC-UNet provided
finer segmentation details of the stomach than other methods.

4.3 ABLATION STUDY

1). Effectiveness of MGDC operator: We started by investigating the effectiveness of our pro-
posed MGDC operator. As shown in Table 4 (row 1 and 2), introducing a shared weight mechanism
to MGDC decreased 22% parameters. Our MGDC introduced shared weights to alleviate the high
computational costs and reduce memory consumption by 33%. We also observed a small perfor-
mance boost after switching from 3D DCN to MGDC. Next, we compared the MGDC with and
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Table 2: Quantitative comparison with SOTA methods in FLARE21 dataset with Avg (average)
results. The best result from SOTA methods is underlined. T-test is performed between the best
result from SOTA models and our models. Bold means p-value p < 0.05.

Methods
DSC SDC

Spleen Kidney Liver Pancreas Avg Spleen Kidney Liver Pancreas Avg

ResUNET 0.976 0.955 0.968 0.774 0.918 0.957 0.958 0.986 0.726 0.907

SegResNet 0.976 0.956 0.969 0.816 0.929 0.966 0.965 0.992 0.799 0.930

UXNET 0.977 0.959 0.973 0.819 0.932 0.966 0.967 0.994 0.810 0.934

Swin UNETR 0.978 0.959 0.971 0.803 0.928 0.965 0.963 0.986 0.782 0.924

TransBTS 0.978 0.959 0.971 0.764 0.918 0.968 0.966 0.991 0.719 0.911

MGDC-UNet (k=3) 0.982 0.963 0.972 0.842 0.940 0.973 0.967 0.992 0.819 0.938

MGDC-UNet (k=5) 0.992 0.965 0.967 0.840 0.941 0.973 0.968 0.994 0.823 0.940

MGDC-UNet (k=7) 0.995 0.968 0.971 0.843 0.944 0.975 0.969 0.994 0.825 0.941

Figure 4: Visualization of segmentation results on FLARE21 dataset. White arrow indicates superior
regions of our results compared with other models

Figure 5: Visualization of segmentation results on AMOS22 dataset. White arrow indicates superior
regions of our results compared with other models

without the multi-group spatial aggregation. As shown in row 2 and row 3, introducing a multi-
group mechanism into deformable convolution improved DSC by 0.5% for brain tumor segmenta-
tion and 0.4% for multi-organ segmentation. We suspected that a larger training sample size would
further improve the performance gains of the larger kernel convolution method. In this section, we
study how the different components in our designed MGDC-UNet contribute to gains in segmenta-
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Table 3: Quantitative comparison with SOTA methods in AMOS22 dataset with Avg (average)
results. The best result from SOTA methods is underlined. T-test is performed between the best
result from SOTA models and our models. Bold means p-value p < 0.05.

Methods
DSC SDC

CT MRI Avg CT MRI Avg

ResUNET 0.825 0.706 0.805 0.840 0.823 0.846
SegResNet 0.854 0.720 0.830 0.888 0.867 0.885

UXNET 0.856 0.720 0.833 0.886 0.860 0.882
Swin UNETR 0.851 0.712 0.828 0.876 0.862 0.874

TransBTS 0.847 0.717 0.826 0.877 0.858 0.873

MGDC-UNet (k=3) 0.865 0.720 0.840 0.893 0.884 0.891
MGDC-UNet (k=5) 0.865 0.721 0.841 0.894 0.886 0.892
MGDC-UNet (k=7) 0.866 0.723 0.841 0.894 0.885 0.892

Table 4: Ablation on component of MGDC-UNet. Network parameters and DSC from BraTS21
and FLARE21 were reported.

Operator Multi-group MLP Params
(M)

BraTS21 FLARE21

3D DCN × × 71.5 0.894 0.929
MGDC × × 58.7 0.896 0.930
MGDC ✓ × 58.1 0.901 0.932
MGDC ✓ ✓ 61.2 0.906 0.940

tion performance. We conducted ablation studies on BraTS21 and Flare21 datasets due to their large
sample sizes. All ablation studies on MGDC-UNet were performed with kernel size set to 3.

2). Effectiveness of MGDC Block: The core design of our MGDC Block is introducing a multi-
layer perceptron as a feed-forward network. As shown in Table 4 (row 3 and 4), introducing MLP
layers to the network successfully scaled up the model and further improved segmentation perfor-
mance by 0.5% and 0.8% in DSC on BraTS21 and FLARE21 datasets. This also confirmed our
hypothesis that transformer-like components can also enhance medical image segmentation.

5 CONCLUSION AND DISCUSSION

In this paper, we introduce MGDC-UNet, the first 3D multi-group deformable convolution net-
work for medical image segmentation. Our architecture integrates multi-group spatial aggregation
into deformable convolutions, inspired by the multi-head mechanism found in ViTs. Addition-
ally, we incorporate transformer-specific elements such as MLP and LayerNorm to emulate the
inverted-bottleneck design featured in ViT blocks. To further enhance performance, we explore
the use of large deformable convolutional kernels, which further improve the network’s capabil-
ity for capturing long-range dependencies—crucial for achieving high-quality segmentation results.
Our rigorous evaluation clearly demonstrates MGDC-UNet’s advantages through both quantitative
and statistical metrics, establishing its superiority over existing methods. MGDC-UNet excels in
capturing long-range dependencies, a feat attributed mainly to its flexible offsets and modulation
scalars. This distinctive feature sets our model apart from traditional CNNs, which frequently strug-
gle with global attention, a limitation we overcome as demonstrated in Figure 1. When compared
to transformer-based architectures, MGDC-UNet offers dual benefits: it not only learns more robust
representations but also achieves this with fewer model parameters. Thus, MGDC-UNet emerges
as a resilient solution, less prone to overfitting while maintaining higher computational efficiency.
In summary, MGDC-UNet surpasses the state-of-the-art transformer models in performance with
less memory usage and better performance speed across three challenging public datasets. We be-
lieve that MGDC-UNet holds significant potential as a tool for fast organ delineation in clinical
applications.
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A APPENDIX

A.1 DATA STRATEGIES FOR TRAINING AND EVALUATION

Table 5: Data strategies and evaluation details for each public datset.
Settings BraTS21 FLARE21 AMOS22 Prostate158

Imaging Modality MRI: T2W, T1CE, T1, Flair CT CT or MRI MRI: T2W, DWI, ADC
Total samples 1251 361 360 158

Cross validation 5-fold CV 5-fold CV 5-fold CV 5-fold CV
Train/Val/Test Train 850, Val 150, Test 251 Train 246, Val 43, Test 72 Train 204, Val 36, Test 120 Train 118, Val 21, Test 19

Metrics Dice, Hausdorff Distance Dice, Surface Dice Dice, Surface Dice Dice, Hausdorff Distance
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A.2 TRAINING RECIPES FOR ALL DATASETS

Table 6: Training configurations for each dataset. For BraTS21, we followed preprocessing
pipeline as (Tang et al., 2022). For FLARE21 and AMOS22, we followed preprocessing pipeline as
(Lee et al., 2022). Preprocessing method for Prostate158 was discussed in A.3.

Settings BraTS21 FLARE21 AMOS22 Prostate158
Channels 48, 96, 192, 384

Channel groups 3, 6, 12, 24
MLP embedding ratio 4, 4, 4, 4

Depths 2, 2, 2, 2

Input size 128, 128, 128 96, 96, 96 96, 96, 96 160, 160, 32
Batch 1 1 1 4

LR, schedule 5e-5, cosine 1e-4, cosine 1e-4, cosine 1e-5, cosine
Epoch 300 500 500 100

Warmup epoch 20 20 20 ×
Loss Dice DiceCE DiceCE Generalized Dice

Random Flip ✓ × × ✓

Random Crop ✓ ✓ ✓ ×
Random Rotation ✓ × × ✓

Random Intensity Shift ✓ ✓ ✓ ×
Random Affine × ✓ ✓ ×

A.3 ADDITIONAL EXPERIMENTS ON PROSTATE158

Automated segmentation of prostate MR images is crucial in clinical settings, but it faces significant
challenges. Accurately segmenting the prostate from MRI is difficult due to unclear boundaries with
adjacent tissues (Zhu et al., 2019a). The complexity of prostate cancer, which varies in size, shape,
and texture, poses additional challenges for automated deep learning methods.

We evaluated MGDC-UNet on the Prostate158 dataset (Adams et al., 2022), which includes 158
prostate MRIs with T2w, diffusion-weighted imaging (DWI) sequences and anisotropic diffusion
coefficient (ADC) maps, for two tasks: segmenting the prostate gland and clinically significant
prostate cancer. The MRIs were annotated by two board-certified radiologists. For preprocessing,
we followed (Saha et al., 2021) where images were resampled to a uniform axial resolution and slice
thickness, followed by center cropping of the prostate to a standard size and interpolating the final
image to fit our network’s input requirements.

As shown in Table 7, MGDC-UNet still exhibited superior performance under a smaller dataset
size. For prostate region segmentation, small kernel MGDC-UNet (k=3) significantly outperformed
all comparable methods, achieving a DSC of 0.855 and HD95 of 5.06. Further increasing kernel size
to 5 led to 1.0% percent improvement in DSC and the best performance was achieved at k=7, with
0.866 DSC. For prostate cancer segmentation, the small kernel MGDC-UNet (k=3) outperformed
other state-of-the-art methods, achieving a DSC of 0.515 and HD95 of 7.77. Increasing kernel size
to 5 and 7 further led to 0.9% and 1.2% improvement in DSC. We believed that larger MGDC ker-
nels capture a broader spatial context, which is beneficial for difficult segmentation tasks involving
irregular and heterogeneous objects such as prostate gland and clinically significant prostate cancer.
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Table 7: Quantitative comparison with SOTA methods in Prostate158 dataset. The best result from
SOTA methods is underlined. T-test is performed between the best result from SOTA models and
our models. Bold means p-value p < 0.05.

Methods
Prostate Cancer

DSC HD95 DSC HD95

ResUNET 0.812 8.56 0.382 13.59
SegResNet 0.833 6.26 0.497 8.64

UXNET 0.842 6.03 0.453 9.02
Swin UNETR 0.824 6.31 0.417 10.92

TransBTS 0.840 6.08 0.400 11.81

MGDC-UNet (k=3) 0.855 5.06 0.515 7.77
MGDC-UNet (k=5) 0.865 4.87 0.524 6.89
MGDC-UNet (k=7) 0.866 4.56 0.527 6.62

A.4 LIMITATIONS

While MGDC-UNet demonstrated excellent performances across several datasets, our work is not
without limitations. While we incorporated transformer components such as MLP and Layernorm
to enhance feature learning, such components could also benefit from parameter scaling similar to
other vision transformer backbones. In our future directions, we aim to explore scaling up MGDC-
UNet following EfficientNet’s compound scaling technique to balance depth, width and resolution
of CNNs. By systematically scaling these dimensions with a set of fixed scaling coefficients, we can
potentially build a foundational CNN model for medical image segmentation.

Also, our observations on the Prostate158 dataset align with the notion that kernel size can sig-
nificantly influence feature learning and hence segmentation accuracy. Larger kernels improves
segmentation performance by more effectively enlarging the ERFs, but at the cost of increased com-
putational complexity. To address this, our future work will focus on refining MGDC-UNet through
a heterogeneous kernel approach, inspired by the Inception architecture. This strategy will inte-
grate various kernel sizes, enabling efficient multi-scale information processing and yielding more
accurate segmentation with optimized computational efficiency.

13



Under review as a conference paper at ICLR 2024

A.5 MEMORY AND TIME EFFICIENCY ANALYSIS

Table 8: Time (training or inference on each sample) and memory efficiency analysis for BraTS21,
FLARE21 and AMOS22. Performance gaps in DSC were also shown with respect to MGDC-UNet
(k=3).

Dataset Method Memory (G) Time (s) ∆DSC

BraTS21

Train Inference
ResUNET 2.5 0.25 0.37 −2.5%
SegResNet 3.3 0.24 0.78 −1.1%

UXNET 10.3 0.63 2.70 −1.3%
Swin UNETR 11.4 0.55 2.56 −0.9%

TransBTS 9.6 0.36 1.69 −3.7%
MGDC-UNet (k=3) 8.3 0.39 1.67 0.0%
MGDC-UNet (k=5) 8.6 0.45 1.89 +0.4%
MGDC-UNet (k=7) 9.4 0.51 2.08 +0.4%

FLARE21

ResUNET 4.0 0.80 0.96 −2.2%
SegResNet 4.8 0.74 1.16 −1.1%

UXNET 8.9 1.05 2.89 −0.8%
Swin UNETR 10.3 0.77 2.81 −1.2%

TransBTS 7.6 0.89 1.25 −2.2%
MGDC-UNet (k=3) 7.6 0.77 1.93 0.0%
MGDC-UNet (k=5) 8.4 0.79 2.03 +0.1%
MGDC-UNet (k=7) 9.3 0.79 2.35 +0.4%

AMOS22

ResUNET 7.0 1.22 1.51 −3.5%
SegResNet 8.4 1.12 2.09 −1.0%

UXNET 15.0 1.40 5.90 −0.7%
Swin UNETR 16.7 1.20 4.91 −1.2%

TransBTS 13.2 1.23 2.50 −1.4%
MGDC-UNet (k=3) 10.1 1.19 3.52 0.0%
MGDC-UNet (k=5) 10.4 1.23 3.60 +0.1%
MGDC-UNet (k=7) 10.6 1.16 4.18 +0.1%
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