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ABSTRACT

Training effective Vision-Language Models (VLMs) for GUI agents typically
depends on large-scale annotated datasets, whose collection is both labor-intensive
and error-prone. We introduce K -step GUI Transition, a self-supervised inverse
dynamics task in which VLMs learn GUI dynamics by predicting the initial action
that causes a transition between two GUI states. This approach eliminates the
need for natural language instructions and enables scalable dataset construction
from existing GUI trajectories or automated exploration. Building on this task, we
propose GUI-Shift, a reinforcement learning (RL) framework that combines rule-
based optimization with data filtering to improve VLM performance. We conduct
extensive experiments using multiple VLM backbones across four benchmarks,
spanning GUI task automation (AndroidControl, GUI Odyssey) and GUI grounding
(ScreenSpot-v2, ScreenSpot-Pro). Our results show that training on GUI-Shift
generalizes well to both GUI automation and grounding tasks, yielding up to an
11.2% increase in GUI automation accuracy. This study underscores the potential
of self-supervised RL to leverage unlabeled GUI trajectories and offers a scalable
alternative to training with annotated samples.

1 INTRODUCTION

Mobile GUI agents (Gou et al., [2024; [Hong et al., [2024; [Qin et al., |2025; [Wen et al.| 2024} [Yang
et al.}|2024) interpret natural language instructions and perform actions (e.g., click, scroll) directly
on smartphone screens. They can control diverse apps as a human would, improving accessibility
for users who are visually impaired, elderly, or have their hands occupied. Breakthroughs of vision
language models (VLMs) (Bai et al., 2025} (Chen et al.| [2024; | Xiaomi, 2025b) have reshaped the
design paradigm of mobile GUI agents, transitioning from handcrafted heuristics to learned, vision-
grounded policies. However, VLMs still struggle to deliver satisfactory accuracy (Dai et al., [2025};
Qin et al.| 2025; Rawles et al.,|2024; |Zhang et al.l 2025a), especially when facing complex multi-
step tasks. A common approach for enhancing VLMs is through supervised fine-tuning (SFT) on
datasets containing GUI interaction trajectories paired with human-annotated task instructions (L1
et al., [2024; Rawles et al., [2023)). Yet effective, collecting GUI trajectories with task instructions
remains labor-intensive and error-prone (Deka et al.l [2017; Rawles et al.| 2023). For example, the
AndroidControl (Li et al., [2024) dataset takes one year of paid annotation effort to produce just
15,283 task demonstrations. Such high annotation cost limits the scalability of this paradigm.

In this study, we aim to address a fundamental challenge: how fo train capable mobile GUI agents
using large-scale, unlabeled GUI trajectories, rather than relying on costly human-annotated in-
structions. To tackle this, we propose a self-supervised training task, termed K -step GUI Transition.
Inspired by inverse-dynamics modeling in robotics and biomechanics (Brandfonbrener et al., 2023}
Tian et al.| [2024; |[Zapolsky & Drumwright, 2017), where a model predicts control commands linking
two consecutive physical states, our task treats screenshots as states and GUI actions as commands.
Each training sample in K-step GUI Transition consists of two screenshots, Sy and Sy, where
St4k results from executing k actions starting from S;. The VLM is trained to predict the first action
that transforms S; into S;+1. This design offers two key advantages: (1) Explicit state-change signal.
Each sample contains a pair of GUI screenshots, enabling the model to utilize inter-screen visual
differences and temporal cues, rather than learning from a single screen. (2) Efficient data utilization
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Figure 1: Overview of the GUI-Shift framework. Left: K -step GUI Transition replaces annotated
instructions with the target state Sy, enabling scalable data construction through automated offline
exploration. Middle: The model learns GUI dynamics by predicting the action that causes the
transition. Right: GUI-Shift achieves self-supervised training by applying GRPO to GUI Transition.

at scale. Since ground-truth actions are embedded in GUI trajectories (Rawles et al., 2023} |Li et al.,
2024), no predefined instructions or manual annotations are needed. Moreover, for any k, a GUI
trajectory with n screens can yield up to n — k training samples, enabling scalable data construction.
These benefits make K'-step GUI Transition a strong candidate for self-supervised GUI agent training.

With the self-supervised training task, it is essential to determine how to effectively enhance VLMs.
In GUI tasks, multiple action parameters can often be functionally equivalent and result in the same
next state. For example, any coordinate within a button’s bounding box is valid for a click, and
textual inputs may be accepted in various formats or with different keywords. This multiplicity
makes supervised fine-tuning (SFT) suboptimal, as it enforces a single reference action in a static
dataset through the cross-entropy loss, penalizing all other valid alternatives and therefore providing
misleading learning signals. To address this limitation, we adopt Group Relative Policy Optimization
(GRPO) (Shao et al., [2024), which samples diverse plausible actions, evaluates them using a task-
specific reward function, and ranks them based on group-normalized advantages. For example, in
click actions, rewards are assigned if the sampled point lies within the target bounding box, offering a
more tolerant and informative optimization signal. Overall, GRPO provides a more effective training
paradigm for GUI agents by encouraging exploration and increasing robustness to action variability.

To this end, we present GUI-Shift, a self-supervised reinforcement learning (RL) framework that
applies GRPO to K -step GUI Transition. Figure[T]illustrates the overview of the GUI-Shift framework.
To select data matched to the model’s learning ability, we adopt a unified action sampling and scoring
mechanism during both data filtering and training stages. For each sample, the VLM generates N
action predictions, each scored based on format and action correctness. Only samples containing both
correct and incorrect predictions among the NV predictions are selected for training. After training,
the VLM acquires GUI-specific capabilities and serves as a more effective backbone for GUI agents.
VLMs enhanced with GUI-Shift also have the ability to generalize well to GUI task automation and
GUI grounding tasks without further alignment or fine-tuning.

We apply GUI-Shift to train four VLMs: Qwen2.5-VL-7B (Bai et al.} 2025)), InternVL3-8B (Chen
et al.,[2024), MimoVL-7B-SFT (Xiaomi}, 2025b), and MimoVL-7B-RL, each using 2K samples for
four K -step GUI Transition variants (k € {1, 2, 3,4}). We evaluate the VLMs on four benchmarks:
AndroidControl (Li et al.} 2024) and GUI Odyssey (Lu et al.| 2024) for GUI task automation, and
ScreenSpot-v2 (Wu et al., 2024b)) and ScreenSpot-Pro (Li et al.,|2025a) for GUI grounding. Overall,
VLMs enhanced with GUI-Shift show notable improvements over their base versions. For example,
GUI-Shift-Qwen achieves up to 11.2% higher accuracy on AndroidControl-High and 2.5% on
ScreenSpot-v2, yielding 70.4% and 89.0% overall accuracy on the respective benchmarks. We also
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conduct comprehensive ablation studies to examine the effects of data filtering, task formulation,
reasoning configurations, and training paradigms. The results show that using the target state Sy as
a visual instruction offers an effective alternative to human- or Al-annotated textual instructions for
training GUI agents. The key contributions are summarized below.

(1) We introduce K -step GUI Transition, a training task that leverages abundant unlabeled GUI
trajectories to enhance VLMs used in GUI agents.

(2) We propose GUI-Shift, a self-supervised RL framework that bridges the gap between GUI
dynamics modeling and action-level GUI learning, mitigating the limitation of SFT in
handling action multiplicity and poor generalization in GUI tasks.

(3) Experiments across four VLMs and four benchmarks show that VLMs enhanced with GUI-
Shift exhibit generalization in both GUI automation and grounding tasks, with up to 11.2%
accuracy gains.

2 RELATED WORK

2.1 MOBILE GUI AGENTS

Recent progress in mobile GUI agents has been driven by VLMs trained via SFT on large-scale
datasets. These models learn to map instructions to GUI actions using instruction-following tasks,
making high-quality annotations essential. Despite the availability of diverse GUI datasets (Deka et al.
2017;|Gao et al., 2024; |Li et al.| |2024; |Lu et al.|, 2024; |[Rawles et al., 2023), the quantity of high-quality
annotations remains insufficient for robust training and usually requires significant human effort to
scale. To reduce annotation costs, prior pipelines often incorporate out-of-domain image-caption
pairs (Hong et al., [2024; Wang et al.}2024) and supplement training with web and desktop data to
improve cross-platform generalization (Cheng et al.| |2024). As a result, the overall scale of training
data tends to be large: Uground (Gou et al.,[2024)) uses 1.3M screenshots to train a visual grounding
model; OS-Atlas (Wu et al.| 2024b) leverages 13M GUI elements for grounding pretraining. Some
recent approaches have explored GUI state modeling. UI-TARS (Qin et al.,|2025) incorporates a state
transition task, which focuses on describing visual changes between screenshots rather than predicting
the underlying actions, resulting in a gap with GUI task automation. MobileVLM (Wu et al.| 2024a)
introduces an action prediction task between screenshots, but is restricted to one-step transitions and
SFT. They still rely on annotation-heavy fine-tuning for downstream alignment and generalization. In
this work, we propose K -step GUI Transition, formulating a k-step inverse dynamics objective that
enables scalable training on large, unlabeled, and underutilized GUI datasets.

2.2 RULE-BASED REINFORCEMENT LEARNING

Rule-based RL has proven to be a promising alternative to SFT. GRPO (Shao et al.l2024) uses a re-
ward model to score each response and computes group relative advantages instead of training a critic
model, whose size is comparable to the policy model, thereby significantly reducing computational
cost. Reinforcement Learning with Verifiable Rewards (Lambert et al., [2024) further emphasize the
use of verifiable answers to design reliable reward signals. DeepSeek-R1 (Guo et al., 2025)) shows
that simple format and accuracy rewards are sufficient to surpass the performance of instruction-tuned
models. Several recent works have applied GRPO on GUI tasks: UI-R1 (Lu et al.| 2025) employs
one-stage RL on 136 samples with step-level instructions. GUI-R1 (Xia & Luol 2025)) expands this
to 3K task-level instructions from five platforms. InfiGUI-R1 (Liu et al.,|2025) adopts a two stage
SFT+RL pipeline and scales to 32K samples from both GUI and non-GUI domains. UI-Venus (Gu
et al.,|2025) employs GRPO to two variants, using 107K samples for grounding and 350K for naviga-
tion. While these works demonstrate the effectiveness of rule-based RL for GUI agents, they still rely
on annotated instructions and require reasoning during training and inference. Different from these
annotation-dependent training paradigms, GUI-Shift fine-tunes VLMs via one-stage RL on K -step
GUI Transition in a self-supervised manner, achieving competitive performance and demonstrating
strong generalization across GUI task automation and GUI grounding benchmarks.
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3 METHODOLOGY

GUI-Shift is a self-supervised RL framework designed to enhance VLM-based GUI agents through
the K -step GUI Transition task. In this section, we first describe GRPO, the underlying training
algorithm in GUI-Shift. We then detail the reward design tailored to GUI action modeling, and
present the complete GUI-Shift framework along with its rationale and advantages.

3.1 PRELIMINARIES

GRPO (Shao et al.| 2024) offers a computationally efficient alternative to Proximal Policy Optimiza-
tion (PPO) (Schulman et al., [2017), a widely used actor-critic method. Instead of maintaining a
separate critic network for value estimation, GRPO computes normalized, group-wise advantages A;
directly from reward scores, thereby removing the value function update and lowering computational
cost. The GRPO objective in our framework is defined as follows:

Jarro(9) = E [¢ ~ P(Q), {0}y ~ 7,,,(0 | q)]

€
1 . .
& > (min (pids, clip (pi, 1=, 1+ €) Ai) = ADxu(mo|meer)) . (1)
i=1
where py— 7010 4 i mean({rir, o rg))
614 (Oi | q) Std({rla T2, 7TG})
Specifically, for each question g in the training set, we sample a group of outputs {01, 09, ..., 05}

from the old policy mg_,, using high temperature decoding, and compute the group-wise relative
advantage A; for each output. A clipped surrogate objective, along with a KL divergence regularizer
toward the reference policy 7, is then used to update model parameters and ensure training stability.

3.2 REWARD DESIGN

The reward function plays a central role in guiding and stabilizing model optimization. In GUI action
prediction, each answer is a structured action comprising a verifiable action type and associated
parameters, making the task well-suited to a rule-based reward formulation. Following DeepSeek-
R1 (Guo et al.,|2025)), we adopt a rule-based reward R tailored for GUI tasks, which combines a format
reward Ry to enforce output consistency and an action reward R, to evaluate action correctness:

R=R;+R, @)

Format reward. To ensure that model outputs are well-structured and easy to parse, GUI-Shift
requires the final answer to be enclosed in <answer>. . .</answer> tags during training. Pre-
dictions conforming to the expected format receive Ry = 1; otherwise, Ry = 0. Unlike prior
methods (Lu et al.l [2025; |Liu et al.l [2025; | Xia & Luo, 2025), GUI-Shift omits explicit reasoning
traces in outputs, eliminating reasoning token generation and substantially reduces training time. For
example, training Qwen2.5-VL-7B on 2K K-step GUI Transition samples requires only 9 hours,
compared to 17 hours with reasoning traces, without compromising downstream performance, as
shown in Table[3l

Action reward. We adopt a unified action space of eight types for both training and inference.
The action space comprises eight types, each as a JSON object with action_type and type-specific
parameters: click and long_press require a target point; scroll requires a direction; open_app requires
an app name; input_text requires the input content; and navigate_back, navigate_home and wait
require no parameters. The action reward R, is defined accordingly:

, ifxy <3 <axzoandy; < g <y, tE€{click,long press};
ift=tandp=p, tc {open_app,input_text, scroll};

R, = 3

1
1
1, ift =t, t¢& {navigate_back,navigate_home,wait};
0, otherwise.

Here, £ and p denote the predicted action type and parameter, ¢ and p denote their ground-truth
counterparts; &, § are the predicted coordinates, and [z1, Y1, Z2, y2] is the ground-truth bounding box.
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3.3 GUI-SHIFT FRAMEWORK

K -step GUI Transition. While existing VLMs can parse individual GUI screens due to exposure to
GUI data during pretraining, they still lack the temporal reasoning capabilities required for complex
multi-step GUI tasks. To bridge this gap, we propose the K-step GUI Transition task, which
asks the model to predict the first action that transitions a given state Sy to a future state S;, as
shown in Figure[I] Compared to annotated approaches, our task offers two key advantages. First,
while annotated tasks require costly and error-prone textual annotations for each step, K -step GUI
Transition leverages state pairs directly extracted from GUI trajectories. The future state Siy,
obtained after executing k actions from Sy, serves as an explicit visual goal, providing a supervision
signal that is not only annotation-free but also more concrete and informative than textual instructions.
Second, rather than mapping textual instructions to actions, our task compels the model to interpret
and compare both the current and target GUI states, infer the transition goal, and identify the action
that initiates the state change. Overall, by leveraging visual goals and requiring temporal reasoning
across state pairs, this more challenging formulation fosters a deeper understanding of GUI dynamics
and provides a scalable, practical solution for robust GUI agent training.

Self-supervised RL. During training, for each sample, the model generates N candidate actions
(N = 8 in our experiments), each evaluated by a rule-based reward that integrates format and action
correctness, as detailed in Section[3.2] Group-wise normalized advantages are then computed, and
optimization proceeds as outlined in Section[3.1] GRPO is particularly well-suited to GUI-Shift for
three reasons: (1) Compared to PPO, it eliminates the need for a separate value function, typically
in the same size as the policy model. This substantially reduces computational overhead and better
supports our efficiency objectives; (2) Compared to SFT, it enables flexible reward assignment tailored
to each action type. For instance, click actions are considered correct if the predicted point falls
within the ground-truth bounding box rather than requiring an exact match in SFT, which better
reflects practical GUI grounding requirements; (3) The N-candidate sampling mechanism encourages
exploration and model can learn from optimal candidates while avoiding suboptimal ones.

Data filtering pipeline. To prepare high-quality K-step GUI Transition data, we perform data
filtering using the same action sampling and scoring mechanism as in training. First, for each
k € {1,2,3,4}, we construct a pool of candidate state pairs (S, Si+1) from the original dataset.
Next, for each pair, the model generates 8 responses using the same sampling temperature as in
GRPO training. Each response is then evaluated with the reward function described in Section
Finally, we retain only those pairs with both correct and incorrect responses. By applying this filtering
process to each model independently, the final training set is both challenging and informative, and
well aligned with the model’s learning capacity.

Taken together, these design choices enable GUI-Shift to provide higher efficiency from three aspects:
(1) Scalable data construction. Without relying on annotated instructions, GUI-Shift enables large-
scale filtering of training data at minimal cost. For example, for Mimo-VL-7B-RL, we filtered 2,920
high-quality samples out of 8K original 1-step GUI Transition pairs, without any annotation waste.
(2) Maximized data utilization. For each k, an n-image trajectory can yield up to n — k training pairs,
maximizing data utilization for fixed-length GUI trajectories. (3) Reduced training cost. Without
explicit reasoning traces during training, GUI-Shift avoids extra token decoding and reduces training
time by nearly 50%, from 17 to 9 hours on 2K samples under our experimental setup.

4 EXPERIMENTS

In this section, we first detail the experimental setup, including data construction and training
configurations (Section[d.T)). We then present results for models trained with K -step GUI Transition
(k € {1,2,3,4}), emphasizing improvements over base models and comparisons with existing
baselines on GUI task automation and grounding benchmarks (Section[d.2)). To further verify the
design choices in GUI-Shift, we conduct comprehensive ablation studies from four perspectives: data
filtering, task formulation, reasoning configurations during RL, and training algorithms (Section [.3).

4.1 EXPERIMENTAL SETUP

Training configurations. Using the open-source VLM-R1 (Shen et al.| 2025} framework, we fine-
tune Qwen2.5-VL-7B (Bai et al., [2025)), InternVL3-8B (Chen et al., 2024}, MimoVL-7B-SFT, and
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MimoVL-7B-RL (Xiaomi, [2025b) with the pipeline described in Section[3] During training, only the
language model is optimized while the vision encoder and projector are frozen. All experiments are
conducted on 8 xNVIDIA H100 GPUs. Hyper-parameters are listed in Appendix [B]

Data construction. All training data are sourced from the training set of AndroidControl (L1 et al.|
2024), which provides GUI trajectories paired with human-labeled instructions. These instructions
enable both self-supervised GUI-Shift training and comparisons with VLMs trained using SFT (see
Section [4.3]for a comparison of the two training approaches). Following the data filtering pipeline
discussed in Section [3| we select 2K samples per k for each model. For Qwen2.5-VL-7B, the
proportion of samples with either entirely correct or entirely incorrect actions was exceptionally high.
As a result, we use unfiltered data for its training.

4.2 BENCHMARKS AND RESULTS

GUI task automation. We evaluate GUI-Shift on two task automation benchmarks: AndroidCon-
trol (L1 et al.| 2024) and GUI Odyssey (Lu et al.,2024). AndroidControl provides two test settings:
AndroidControl-Low, which assesses step-level instruction following ability (e.g., “Type the product
name in the search box”), and AndroidControl-High, which evaluates long-horizon task planning (e.g.,
“View the detail page of the product”). GUI Odyssey offers a more challenging evaluation, encom-
passing both phone and tablet applications as well as cross-app scenarios. The test set includes 9,134
samples in AndroidControl and 27,493 in GUI Odyssey, covering six action types: click, long_press,
scroll, navigate_back, navigate_home, and input_text. We report type match (TM) that represents the
proportion of samples with the correct action type, and exact match (EM), which requires both the
action type and all parameters to be correct. Metrics are computed using AgentCPM-GUI (Zhang
et al.l [2025b) and GUIEvalKit (Xiaomil |2025a)).

Table 1: Performance comparison on GUI task automation benchmarks: AndroidControl (AC-Low,
AC-High) and GUI Odyssey. GUI-Shift achieves substantial improvements over base models. Bold:
the best result; underlined: the second best result. TM: type match; EM: exact match.

AC-Low AC-High GUI Odyssey

# Training
Model Samples TM EM TM EM TM EM
Proprietary models
GPT-40 (OpenAl!|2024) - 74.3 194 66.3 20.8 34.3 3.3
Models trained with annotations
SeeClick (Cheng et al..[2024) 1M 93.0 750 82.9 59.1 71.0 53.9
0S-Atlas-7B (Wu et al.||2024b) 2.3M 93.6 85.2 85.2 71.2 - 62.0
Aguvis-7B (Xu et al.|[2024) 1M - 80.5 - 61.5 - -
UI-TARS-7B (Qin et al.[[2025) - 98.0 90.8 83.7 72.5 94.6 87.0
UI-R1-3B (Lu et al.![2025) 136 94.3 88.5 57.9 45.4 52.2 32.5
GUI-R1-7B (Xia & Luo,[2025) 3K 85.2 66.5 71.6 51.7 65.5 38.8
InfiGUI-R1-3B (Liu et al.|[2025) 32K 96.0 92.1 82.7 71.1 - -
AgentCPM-GUI (Liu et al.|[2025) 470K 94.4 90.2 77.7 69.2 90.9 75.0
UI-Venus-Navi-7B (Gu et al.|[2025) 350K 97.1 92.4 86.5 76.1 87.3 71.
Ours: Qwen2.5-VL-7B as the base model
Qwen2.5-VL-7B (Bai et al.|[2025) - 94.9 83.8 72.9 59.2 59.8 44.9
GUI-Shift-Qwen (kK = 1) 2K 98.013.1 90.616.8 85.9113.0 70.4111.2 78.5118.7 54.819.9
Ours: InternVL3-8B as the base model
InternVL3-8B (Chen et al.|[2024) - 97.8 90.0 71.5 49.8 48.8 20.3
GUI-Shift-Intern (kK = 4) 2K 97.3105 88.012.0 78.517.0 56.6168 59.6110.8 23.313.0
Ours: Mimo-VL-7B-SFT as the base model
Mimo-VL-7B-SFT (Xiaomi,[2025b) - 90.8 85.7 75.2 63.1 86.9 62.0
GUI-Shift-Mimo-SFT (k£ = 3) 2K 98.617.8 93.217.5 87.2112.0 73.41103 86.1108 60.7,1.3
Ours: Mimo-VL-7B-RL as the base model

Mimo-VL-7B-RL (Xiaomi, [2025b) - 91.8 87.2 76.5 64.6 87.2 63.1
GUI-Shift-Mimo-RL (£ = 1) 2K 98.9+7.1 93.216.0 86.91104 71.7171 84.824 59.5]3.6
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o GUI-Shift generally improves performance over base models on GUI task automation benchmarks.
Table[T] presents the results of GUI-Shift, together with comparisons against both base models and
models trained with annotations. GUI-Shift achieves notable gains across all four models, especially
on AndroidControl-High. GUI-Shift-Qwen raises EM by 11.2% over Qwen2.5-VL-7B, while GUI-
Shift-Mimo-SFT and GUI-Shift-Mimo-RL reach gains of 10.3% and 7.1%, respectively. On GUI
Odyssey, minor declines for GUI-Shift-Mimo-SFT and GUI-Shift-Mimo-RL likely result from
the 1,381 tablet episodes in the test set, whose GUI layouts differ substantially from smartphones.
Compared to models trained with annotations, GUI-Shift achieves comparable or even superior results
on all benchmarks using only 2K K-step GUI Transition samples. Overall, these results underscore
the robustness and effectiveness of our approach in GUI task automation.

GUI grounding. We evaluate GUI-Shift on two GUI grounding benchmarks: ScreenSpot-v2 (Wu
et al.| [2024b)) with 1,272 samples from mobile, desktop, and web platforms, and ScreenSpot-Pro (Li
et al.| [2025a) with 1,581 high-resolution screenshots for fine-grained evaluation. Evaluations for the
base models and GUI-Shift are adapted from ScreenSpot-Pro-GUI-Grounding (Li et al.,|2025b).

e GUI-Shift consistently outperforms base models and surpasses most existing baselines on GUI
grounding benchmarks. Table 2] summarizes the overall and baseline results. Across all models,
GUI-Shift delivers improved accuracy over base models, with the best variants reaching 2.5% and
1.5% gains on ScreenSpot-v2 and ScreenSpot-Pro, respectively. Moreover, GUI-Shift surpasses all
annotation-trained models except UI-Venus-Ground-7B, which is trained specifically for the GUI
grounding using 107K annotated samples. These results demonstrate that models trained solely on
unlabeled GUI Transition data can effectively transfer to challenging GUI grounding tasks.

Table 2: Performance comparison on GUI grounding benchmarks: ScreenSpot-v2 and ScreenSpot-
Pro. GUI-Shift exhibits strong generalization and achieves the second best result on ScreenSpot-Pro.
Bold: the best result; underlined: the second best result.

ScreenSpot-v2 -Pro
Model #S’El‘r;lnllel;g Mobile Desktop Web A A
p Text Icon Text Icon Text Icon Ve Ve
Models trained with annotations
CogAgent-18B (Wang et al.||2024) - - - - - - - - 7.7
SeeClick-9.6B (Cheng et al.|[2024) M 784 50.7 70.1 29.3 552 325 55.1 1.1
UGround-7B (Gou et al.[[2024) 1.3M 75.1 84.5 85.1 614 84.6 719 763 16.5
OS-Atlas-7B (Wu et al.|[2024Db) 2.3M 952 75.8 90.7 63.6 90.6 77.3 84.1 18.9
ShowUI-2B (Lin et al.||[2024) 256K - - - - - - - 7.7
UI-TARS-7B (Qin et al.||2025) - 96.9 89.1 954 85.0 93.6 852 91.6 35.7
UI-R1-E-3B (Lu et al.[[2025) 2K 83.0 97.1 850 91.7 779 954 89.5 33.5
InfiGUI-R1-3B (Liu et al.[[2025) 32K 35.7

LPO (Tang et al.[[2025) - 97.9 829 959 86.4 95.6 842 90.5 -
UI-Venus-Ground-7B (Gu et al.|[2025) 107K 99.0 90.0 97.0 90.7 96.2 88.7 94.1 50.8

Ours: Qwen2.5-VL-7B as the base model

Qwen2.5-VL-7B (Bai et al.|[2025) - 98.3 86.3 88.7 67.1 92.7 81.8 87.7 26.4
GUI-Shift-Qwen (k = 4) 2K 98.6 89.6 86.1 75.0 92.7 82.8 89.0t13 27.1107
Ours: InternVL3-8B as the base model

InternVL3-8B (Chen et al.|[2024) - 934 81.5 804 52.1 91.0 734 81.3 15.0
GUI-Shift-Intern (k = 1) 2K 93.8 834 804 514 91.0 73.4 81.6103 15.4104
Ours: Mimo-VL-7B-SFT as the base model

Mimo-VL-7B-SFT (Xiaomi!2025b) - 96.6 84.4 92.8 80.0 88.9 76.8 87.6 39.8

GUI-Shift-Mimo-SFT (k = 1) 2K 98.3 87.7 923 82.1 94.0 79.8 90.1125 40.7109
Ours: Mimo-VL-7B-RL as the base model

Mimo-VL-7B-RL (Xiaomi, 2025b) - 98.3 86.3 90.2 80.7 92.7 754 884 40.2

GUI-Shift-Mimo-RL (k = 1) 2K 99.0 87.7 91.2 83.6 89.7 72.9 88.4100 41.7115

"Detailed results for different k values are provided for GUI task automation and GUI grounding benchmarks
in Appendix [Cland Appendix D] respectively.
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Figure 2: Impact of Data filtering. Each model is fine-tuned on 2K K-step GUI Transition samples.
Filtered data are more informative and challenging, and outperform unfiltered ones.

4.3 ABLATION STUDY

Data filtering. We evaluate InternVL3-8B, MimoVL-7B-SFT, and MimoVL-7B-RL trained with and
without data filtering on both GUI task automation and GUI grounding benchmarks. For each K -step
GUI Transition sample, each model generates 8 responses to build its candidate pool, retaining only
those samples where predictions are both correct and incorrect. We select 2K training samples per
model and & from each filtered pool and the original training set, respectively.

o Data filtering improves accuracy on both GUI task automation and GUI grounding benchmarks.
Figure 2] shows that models trained with filtered data achieve higher accuracy than those trained on
unfiltered data in most cases. For example, on AndroidControl-Low, Mimo-VL-7B-SFT achieves
up to 4.8% higher accuracy (Figure 2{f), k=3), and on ScreenSpot-v2, up to 2.3% (Figure 2]i),
k=1). These results suggest that our filtering mechanism effectively selects more informative and
challenging samples for GUI agent training. Moreover, since K -step GUI Transition does not require
human-annotated instructions, this filtering process scales easily and incurs minimal cost.

Task formulation. We compare K -step GUI Transition with two annotated baselines. To ensure
fairness, we do not apply data filtering, and all models in each comparison are trained on the same set
of 2K samples, with identical current states S; and ground-truth actions. The only difference is the
instruction type: baselines pair S; with a human-annotated task instruction or step instruction, while
K-step GUI Transition uses the target state Sy, as the visual instruction.

o Using Sy, as the visual target outperforms using textual instructions as input. Table [3]shows that
VLMs trained with K-step GUI Transition achieves better performance than those with annotated
tasks in most cases. For example, on AC-Low and AC-High, InternVL3-8B trained with GUI
Transition achieves 4.0% and 3.6% higher EM accuracy, respectively, than when trained with task
instructions. Qwen2.5-VL-7B also achieves the highest EM accuracy with GUI Transition across
all benchmarks. These results indicate that S;,j provides a more informative signal than human-
annotated instructions.

Reasoning configurations. To verify the effect of reasoning during training, we compare models
fine-tuned on 2K K-step GUI Transition data with and without <think>...</think>.

e Excluding reasoning boosts performance and efficiency for GUI-Shift. Table [3]shows that omitting
explicit reasoning requirements during training not only maintains but often improves performance.
For InternVL3-8B, training without reasoning achieves up to 7.9% higher EM on AndroidControl-
High; Qwen2.5-VL-7B shows consistent gains of about 2% across benchmarks. Moreover, removing
reasoning nearly halves training time cost, reducing it from 17 to 9 hours for Qwen2.5-VL-7B and
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Table 3: Performance on GUI task automation under different training settings. GUI-Shift outper-
forms models trained with textual instructions or with explicit reasoning requirements. Bold: the best
result. TM: type match; GR: grounding accuracy for clicks; EM: exact match.

AndroidControl-Low AndroidControl-High GUI Odyssey
™ GR EM ™ GR EM ™ GR EM

Base model: Qwen2.5-VL-7B
Qwen2.5-VL-7B 94.9 90.9 83.8 72.9 66.6 59.2 59.8 47.5 449
+ Task Instruction  97.913.0 93.5126 90.516.7 85.31124 76.2196 69.9110.7 74.11143 62.01145 51.8169
+ Step Instruction  97.712.8 93.7128 86.4126 82.4195 73.1165 67.2180 74.51147 62.71152 51.516.6
Ours (w/ reasoning) 95.5106 91.1102 88.2144 83.81109 75.6190 69.0t98 74.0t142 63.5t160 51.616.7

Model

Ours 98.013.1 94.013.1 90.616.8 85.9+13.0 77.5t109 70.4111.2 78.5118.7 67.2119.7 54.819.9
Base model: InternVL3-8B
InternVL3-8B 97.8 92.4 90.0 71.5 54.6 49.8 48.8 20.2 20.3

+ Task Instruction  95.9119 92.8t04 853147 79.7182 65.81112 54.6148 57.3185 31.5t113 26.516.2
+ Step Instruction  96.811.0 92.8104 86.0140 80.7192 66.0111.4 54.5t47 62.61138 34.4t142 28.8185
Ours (w/ reasoning) 97.3105 92.3101 87.8122 72.4t09 55.8t12 50.3705 38.9199 18.8114 16.214.1
Ours 97.5103 92.6102 89.3107 78.617.1 61.717.1 58.2984 51.4126 21.4112 21.4111

from 15 to 7 hours for InternVL3-8B. These results confirm that excluding reasoning both improves
performance and significantly enhances training efficiency.

== Qwen2.5-VL-7B =+ |nternVL3-8B w=ge= v/ GRPO == W/ SFT
(a) QwenVL on AC-Low (b) QwenVL on AC-High (c) InternVL on AC-Low (d) InternVL on AC-High
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Figure 3: Comparison of training algorithms for the K -step GUI Transition task (k € {1, 2, 3,4}).
Qwen2.5-VL-7B and InternVL3-8B are fine-tuned with 2K samples for each & and evaluated on
AndroidControl. GRPO provides notable performance gains over SFT for all models and settings.

Training algorithms. For each k € {1,2, 3,4}, we fine-tune Qwen2.5-VL-7B and InternVL3-8B on
2K identical K-step GUI Transition data using SFT or GRPO, and evaluate them on AndroidControl.

e GRPO is more suitable than SFT for K -step GUI Transition. Figure [3|shows that GRPO improves
accuracy in most cases, whereas SFT consistently reduces accuracy compared to both the base models
and GRPO, with drops up to 65.1% relative to GRPO (Figure[3{(c), k = 3). We attribute this to its
sensitivity to format mismatch between training and evaluation. These results confirm that GRPO is a
more effective choice for transferring K -step GUI Transition knowledge to GUI task automation.

5 CONCLUSION

This study introduces GUI-Shift, a self-supervised reinforcement learning framework for training
VLM-based GUI agents without relying on costly annotations. Based on the K -step GUI Transition
training task, enhancing VLMs with GUI-Shift captures temporal dynamics between GUI states
and provides a scalable, annotation-free training signal. Experiments across four VLMs and four
benchmarks show consistent improvements, including up to 11.2% gains in GUI task automation
accuracy and strong generalization to GUI grounding tasks. These results demonstrate that self-
supervised RL can effectively exploit unlabeled GUI trajectories, offering a practical and efficient
alternative to training tasks with human-annotated instructions.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs for writing polishing and language refinement.

B TRAINING HYPER-PARAMETERS

The hyper-parameter details for GUI-Shift are provided in Table ]

Table 4: Hyper-parameter settings used for all GRPO training.

Hyper-parameter

Value

learning_rate

from le-6to 0

temperature 0.9
num_generations 8
num_train_epochs 4
max_prompt_length 1024
max_completion_length 256
per_device_train_batch_size 2
gradient_accumulation_steps 8

€ (clipping parameter) 0.2
[ (KL coefficient) 0.04

13
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C TASK AUTOMATION RESULTS WITH AND WITHOUT DATA FILTERING

Table [5] and Table [6] report the performance of GUI-Shift on AndroidControl and GUI Odyssey
benchmarks using 2K K-step GUI Transition samples, with and without data filtering. Without data
filtering, as shown in Table |5} GUI-Shift trained with each k value outperforms the base models on
most benchmarks. Specifically, for Qwen2.5-VL-7B, GUI-Shift delivers consistent improvements
across all benchmarks; for the other three models, GUI-Shift also improves task automation in most
cases, especially on AndroidControl. These results demonstrate that conditioning on the future state
St+k consistently provides an effective supervision signal across different transition step sizes. We
apply data filtering is to InternVL3-8B, MimoVL-7B-SFT, and MimoVL-7B-RL. With data filtering,
as shown in Table[6] model performance further improves in most settings, confirming that filtering
enhances data quality and strengthens VLM optimization.

Table 5: Performance on task automation benchmarks: AndroidControl and GUI Odyssey. Models
are fine-tuned with 2K k-step UI Transition samples for each k& € {1, 2, 3,4}, without model-specific
data filtering. The target states Sy with different £ values provide effective visual instructions for
GUI agent training. TM: type match; GR: grounding accuracy for clicks; EM: exact match.

AndroidControl-Low  AndroidControl-High GUI Odyssey
Model T™ GR EM TM GR EM TM GR EM
Qwen2.5-VL-7B 949 909 838 72.9 66.6 59.2 59.8 47.5 44.9

GUI-Shift-Qwen (k = 1) 98.013.1 94.013.1 90.616.8 85.9113.0 77.51109 70.4+112 78.5118.7 67.2119.7 54.819.9
GUI-Shift-Qwen (k = 2) 98.013.1 93.712.8 90.016.2 85.9113.0 76.91103 70.8+11.6 79.4119.6 68.6121.1 55.7110.8
GUI-Shift-Qwen (k = 3) 97.913.0 93.612.7 91.5¢7.7 85.3112.4 77.7111.1 70.0¢108 77.1417.3 67.6120.1 53.818.9
GUI-Shift-Qwen (k = 4) 97.812.9 92.811.9 91.0172 84.8111.9 77.11105 69.61104 76.01162 65.71182 53.1182

InternVL3-8B 97.8 924 90.0 71.5 54.6 49.8 48.8 20.2 20.3

GUI-Shift-Intern (k = 1) 98.110.3 92.8104 89.604 73.111.6 56.0114 52.5t27 429159 17.626 17.9124
GUI-Shift-Intern (k = 2) 97.6102 92.9105 87.912.1 76.3148 59.8152 54.3145 59.41106 24.4142 23.1128
GUI-Shift-Intern (k = 3) 97.5103 92.6102 89.310.7 78.647.1 61.717.1 582184 S51.4126 21.4+112 21.4111
GUI-Shift-Intern (k = 4) 97.3105 92.9105 88.0j2.0 78.5170 64.319.7 56.6168 59.61108 259157 23.313.0

Mimo-VL-7B-SFT 90.8 93.5 85.7 75.2 75.7 63.1 86.9 66.3 62.0

GUI-Shift-Mimo-SFT (k = 1) 98.617.8 93.810.3 92.016.3 86.8111.6 74.3114 71.7186 85.4115 67.1108 61.3107
GUI-Shift-Mimo-SFT (k = 2) 98.517.7 92.7108 90.0143 87.0111.8 73.9118 70.3172 85.0119 66.0j03 59.5125
GUI-Shift-Mimo-SFT (k = 3) 98.2174 92.5,1.0 88.4127 85.51103 72.2/35 68.1150 86.0109 65.4109 58.535
GUI-Shift-Mimo-SFT (k = 4) 98.3175 93.0105 92.2165 86.9111.7 73.423 72.4193 859110 67.7t14 60.1119

Mimo-VL-7B-RL 91.8 945 87.2 76.5 77.5 64.6 87.2 67.9 63.1

GUI-Shift-Mimo-RL (kK = 1) 98.716.9 94.710.2 92.5153 86.71102 77.0j05 70.8162 85.0122 67.810.1 59.1140
GUI-Shift-Mimo-RL (k = 2) 98.716.9 93.311.2 88.211.0 86.119.6 72.7148 69.0144 853119 66.211.7 59.4,37
GUI-Shift-Mimo-RL (k = 3) 98.0t6.2 93.810.7 89.111.9 85.8193 73.6/39 68.8t42 859113 66.0/19 58.8143
GUI-Shift-Mimo-RL (k = 4) 98.5t6.7 93.011.5 89.5123 86.61101 73.0045 70.1455 853119 66.1118 57.5/56
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Table 6: Performance on task automation benchmarks: AndroidControl and GUI Odyssey. Compared
to training without data filtering, applying filtering yields greater improvements in most cases. TM:
type match; GR: grounding accuracy for clicks; EM: exact match.

AndroidControl-Low  AndroidControl-High GUI Odyssey
Model ™ GR EM TM GR EM TM GR EM
InternVL3-8B 978 924 900 715 546 498 488 202 203

GUI-Shift-Intern (k = 1) 96.211.6 92.6102 87.013.0 78.617.1 63.2186 55.1153 51.6128 24.5143 22.1118
GUI-Shift-Intern (k = 2) 97.2106 92.310.1 86.4136 79.4179 63.3187 55.9t6.1 51.913.1 24.4142 23.913.6
GUI-Shift-Intern (k = 3) 96.3115 92.7103 87.7123 79.9184 65.5t109 57.617.8 59.51107 27.247.0 24.8145
GUI-Shift-Intern (k = 4) 96.211.6 92.8104 87.7,23 81.0195 67.81132 59.9110.1 57.0182 27.4472 25.7154

Mimo-VL-7B-SFT 90.8 935 85.7 75.2 75.7 63.1 86.9 66.3 62.0

GUI-Shift-Mimo-SFT (k = 1) 97.817.0 93.8103 92.2165 84.6194 75.7t00 70.217.1 81.8/51 64.3]20 56.2]538
GUI-Shift-Mimo-SFT (k = 2) 98.617.8 93.3102 92.9172 86.41112 75.8101 72.0189 85.2/1.7 66.6103 60.3,1.7
GUI-Shift-Mimo-SFT (k = 3) 98.617.8 94.0t05 93.217.5 87.24120 75.610.1 73.41103 86.1,08 66.310.0 60.7,13
GUI-Shift-Mimo-SFT (k = 4) 98.617.8 93.510.0 92.717.0 85.8t106 73.9118 71.6185 85.9/1.0 67.5t1.2 60.9,1.1

Mimo-VL-7B-RL 91.8 94.5 87.2 76.5 71.5 64.6 87.2 67.9 63.1

GUI-Shift-Mimo-RL (k = 1) 98.917.1 94.3102 93.216.0 86.91104 759116 71.7171 84.8124 67.5104 59.5]36
GUI-Shift-Mimo-RL (k = 2) 97.71459 93.7108 91.314.1 87.6111.1 759116 71.6170 84.9,23 65.4]25 58.9]4.2
GUI-Shift-Mimo-RL (k = 3) 97.3155 93.906 91.1139 87.11106 77.3102 71.7171 84.9,23 67.6/03 59.7]34
GUI-Shift-Mimo-RL (k = 4) 96.8150 94.2103 90.913.7 87.0t105 77.0005 72.1175 84.7,25 68.3104 59.9]32
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D GROUNDING RESULTS WITH AND WITHOUT DATA FILTERING

We report the accuracy of GUI-Shift on two GUI grounding benchmarks: ScreenSpot-v2 and
ScreenSpot-Pro, under both filtered and unfiltered settings.

For ScreenSpot-v2 (Table[7), all models except GUI-Shift-Intern achieve consistent improvements
over their respective baselines without data filtering. With data filtering (Table [8), GUI-Shift-Intern
models also surpass their baselines, indicating the benefit of filtering.

For ScreenSpot-Pro (Table [9), all GUI-Shift-Qwen models improve without data filtering, while
other models exhibit mixed results across different k. We attribute the performance drop to the
high-resolution desktop screenshots in ScreenSpot-Pro, which are not present in our training data.
With data filtering (Table , GUI-Shift-Mimo-RL achieves consistent gains for all k.

Overall, GUI-Shift demonstrates strong generalization on GUI grounding, with performance gains in
most cases, especially when data filtering is applied.

Table 7: Performance on GUI grounding benchmark: ScreenSpot-v2. Models are fine-tuned with 2K
k-step UI Transition samples for each k € {1, 2, 3, 4}, without model-specific data filtering.

Mobile Desktop Web
Model Text Icon Avg. Text Icon Avg. Text Icon Avg. Avg.
Qwen2.5-VL-7B 983 863 932 887 67.1 79.6 927 81.8 87.6 87.7
GUI-Shift-Qwen (k = 1) 98.6 877 940 881 714 81.1 927 818 87.6 884107
GUI-Shift-Qwen (k = 2) 98.6 89.1 946 876 73.6 81.7 923 80.8 87.0 88.6t09
GUI-Shift-Qwen (k = 3) 99.0 88.6 946 86.1 729 805 923 80.8 87.0 88.3106
GUI-Shift-Qwen (k = 4) 98.6 89.6 948 86.1 750 814 927 82.8 881 89.0113
InternVL3-8B 934 815 884 804 521 686 91 734 828 81.3
GUI-Shift-Intern (k = 1) 94.1 815 888 773 521 66.8 915 734 831 8l.1102
GUI-Shift-Intern (k = 2) 93.8 80.6 882 804 521 68.6 915 724 826 8l.1i02
GUI-Shift-Intern (k = 3) 948 80.1 88.6 789 47.1 656 90.6 714 817 80.21009
GUI-Shift-Intern (k = 4) 94.1 820 89.0 794 543 689 919 719 826 81.5t0:2
Mimo-VL-7B-SFT 96.6 844 914 928 800 874 889 76.8 833 87.6

GUI-Shift-Mimo-SFT (k =1) 972 863 926 91.8 793 865 90.6 749 833 87.8102
GUI-Shift-Mimo-SFT (k =2) 959 844 91.0 928 829 886 919 759 844 88.1105
GUI-Shift-Mimo-SFT (k =3) 96.6 863 922 91.8 829 880 90.6 773 844 88.410s
GUI-Shift-Mimo-SFT (k =4) 969 872 928 91.8 843 88.6 89.7 803 854 892116

Mimo-VL-7B-RL 983 863 932 902 80.7 862 927 754 847 88.4

GUI-Shift-Mimo-RL (k =1) 993 882 946 91.8 80.7 87.1 90.2 754 833 88.8104
GUI-Shift-Mimo-RL (k =2) 979 872 934 91.8 814 874 91 744 833 88.4100
GUI-Shift-Mimo-RL (k =3) 983 872 936 91.8 836 883 91 764 842 89.0106
GUI-Shift-Mimo-RL (k =4) 993 87.7 944 91.8 814 874 90.6 754 835 88.8104

16



Under review as a conference paper at ICLR 2026

Table 8: Performance on GUI grounding benchmark: ScreenSpot-v2. Model-specific data filtering
is applied to InternVL3-8B, MimoVL-7B-SFT, and MimoVL-7B-RL. For each model, we select 2K
k-step UI Transition samples for each k € {1,2, 3,4} from a pool of candidates.

Mobile Desktop Web

Model Text Icon Avg. Text Icon Avg. Text Icon Avg. Avg.

InternVL3-8B 934 815 884 804 521 68.6 91.0 734 828 81.3

GUI-Shift-Intern (k = 1) 93.8 834 894 804 514 683 91.0 734 82.8 8l1.6103
GUI-Shift-Intern (k = 2) 945 82 892 789 514 674 919 724 828 81.3100
GUI-Shift-Intern (k = 3) 945 834 898 794 507 674 919 734 833 8l.7104
GUI-Shift-Intern (k = 4) 934 834 892 778 543 68.0 915 739 833 81.6103
Mimo-VL-7B-SFT 96.6 844 914 928 80.0 874 889 768 833 87.6

GUI-Shift-Mimo-SFT (k =1) 983 87.7 938 923 821 880 940 79.8 874 90.1125
GUI-Shift-Mimo-SFT (k =2) 98.6 87.7 940 933 836 892 927 798 86.7 90.3127
GUI-Shift-Mimo-SFT (k =3) 96.6 853 91.8 91.8 814 874 893 803 851 88.410s8
GUI-Shift-Mimo-SFT (k =4) 97.6 839 918 923 829 883 915 793 858 88.8t12
Mimo-VL-7B-RL 983 863 932 902 80.7 862 927 754 84. 88.4

GUI-Shift-Mimo-RL (k =1) 99.0 87.7 942 912 836 88.0 89.7 729 819 88.4100
GUI-Shift-Mimo-RL (k =2) 979 86.7 932 90.7 80.7 865 910 754 838 88202
GUI-Shift-Mimo-RL (k =3) 99.0 872 940 91.8 80.7 87.1 91.0 768 844 889105
GUI-Shift-Mimo-RL (k =4) 98.6 853 93 91.8 814 874 919 773 851 88.8104

Table 9: Performance on GUI grounding benchmark: ScreenSpot-Pro. Models are fine-tuned with
2K k-step UI Transition samples for each k € {1, 2, 3, 4}, without model-specific data filtering.

CAD Dev Creative Scientific  Office 0OS
Model Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.
Qwen2.5-VL-7B 162 1.6 442 2.1 369 7.7 479 82 537 189 364 79 264
GUI-Shift-Qwen (k = 1) 162 47 52,6 9.0 273 7.0 52.1 55 49.7 17.0 38.3 13.5 26.8104
GUI-Shift-Qwen (k = 2) 16.8 3.1 52.6 103 29.3 84 52.1 4.5 50.8 17.0 35.5 13.5 27.2108
GUI-Shift-Qwen (k = 3) 157 3.1 52.6 9.7 303 7.0 50.7 5.5 48.0 15.1 355 12.4 26.510.1
GUI-Shift-Qwen (k = 4) 173 3.1 519 9.7 303 7.0 542 55 49.7 17.0 33.6 12.4 27.1107
InternVL3-8B 8.6 47 273 41 273 07 243 45 322 38 112 34 150
GUI-Shift-Intern (k = 1) 102 1.6 27.3 48 26.8 0.7 23.6 3.6 339 75 150 2.2 154104
GUI-Shift-Intern (k = 2) 7.6 3.1 273 34 283 0.7 21.5 45 333 75 12.1 22 14901
GUI-Shift-Intern (k = 3) 96 3.1 234 55 263 07 20.1 1.8 299 38 112 1.1 13.7.13
GUI-Shift-Intern (k = 4) 9.1 47 240 4.1 28.8 0.7 21.5 3.6 31.1 3.8 13.1 1.1 14.5)05
Mimo-VL-7B-SFT 47.2 234 48.7 9.0 48.0 13.3 70.8 27.3 644 39.6 364 157 39.8
GUI-Shift-Mimo-SFT (k. = 1) 49.7 15.6 46.8 13.8 49.0 16.1 74.3 25.5 65.0 37.7 40.2 15.7 40.9¢1.1
GUI-Shift-Mimo-SFT (k = 2) 48.7 20.3 50.6 11.7 48.5 14.0 72.9 264 63.3 41.5 36.4 16.9 40.6103
GUI-Shift-Mimo-SFT (k = 3) 45.7 18.8 48.1 12.4 45.5 12.6 70.1 28.2 65.5 39.6 35.5 19.1 39.6J0:2
GUI-Shift-Mimo-SFT (k = 4) 45.7 18.8 51.3 12.4 46.5 12.6 71.5 282 62.7 41.5 37.4 169 39.910.1
Mimo-VL-7B-RL 48.2 14.1 46.8 11.0 47.0 14.0 71.5 27.3 66.7 39.6 39.3 19.1 40.2
GUI-Shift-Mimo-RL (k = 1) 48.7 15.6 46.1 13.8 51.0 13.3 72.2 30.0 66.7 434 42.1 21.3 41.7115
GUI-Shift-Mimo-RL (k = 2) 46.7 14.1 47.4 13.8 49.0 12.6 70.1 27.3 65.5 39.6 41.1 21.3 40.5103
GUI-Shift-Mimo-RL (k = 3) 49.7 125 474 11.0 47.0 11.2 70.8 26.4 65.5 453 35.5 20.2 39.9,03
GUI-Shift-Mimo-RL (k = 4) 46.7 14.1 46.1 13.8 47.0 147 69.4 273 644 41.5 36.4 21.3 39.8)04
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Table 10: Performance on GUI grounding benchmark: ScreenSpot-Pro. Model-specific data
filtering is applied to InternVL3-8B, MimoVL-7B-SFT, and MimoVL-7B-RL. For each model, we
select 2K k-step UI Transition samples for each k € {1, 2, 3,4} from a pool of candidates.

CAD Dev Creative Scientific  Office 0OS
Model Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.
InternVL3-8B 8.6 47 273 41 273 07 243 45 322 38 112 34 150
GUI-Shift-Intern (k = 1) 11.2 3.1 26.6 55 28.8 0.7 20.1 45 339 75 13.1 1.1 154104
GUI-Shift-Intern (k = 2) 8.1 16 260 4.1 263 0.7 257 18 31.1 57 140 1.1 14505
GUI-Shift-Intern (k = 3) 8.6 16 273 41 253 07 215 18 333 57 140 1.1 14406
GUI-Shift-Intern (k = 4) 81 16 279 48 268 0.0 229 27 328 38 103 22 14505
Mimo-VL-7B-SFT 47.2 234 48.7 9.0 48.0 13.3 70.8 27.3 64.4 39.6 36.4 157 39.8

GUI-Shift-Mimo-SFT (k = 1) 49.2 14.1 50.0 9.0 48.0 11.9 73.6 29.1 54.3 43.4 383 15.7 40.7t09
GUI-Shift-Mimo-SFT (k = 2) 46.2 17.2 46.8 11.0 47.5 10.5 74.3 30.9 65.5 43.4 35.5 16.9 40.0t0:2
GUI-Shift-Mimo-SFT (k = 3) 50.8 15.6 47.4 13.8 47.0 12.6 69.4 24.5 65.0 41.5 383 19.1 40.2t04
GUI-Shift-Mimo-SFT (k = 4) 44.2 18.8 539 11.0 439 11.2 722 264 62.1 47.2 40.2 12.4 394,04

Mimo-VL-7B-RL 48.2 14.1 46.8 11.0 47.0 14.0 71.5 27.3 66.7 39.6 393 19.1 40.2
GUI-Shift-Mimo-RL (k = 1) 48.7 14.1 519 13.1 50.0 154 70.8 28.2 67.2 39.6 37.4 21.3 41.6114
GUI-Shift-Mimo-RL (k = 2) 47.2 18.8 47.4 145 49.0 154 722 29.1 66.1 43.4 393 19.1 41.3t09
GUI-Shift-Mimo-RL (k = 3) 45.7 17.2 46.1 11.7 49.5 14.0 70.8 29.1 66.1 39.6 37.4 21.3 40.4t0:2
GUI-Shift-Mimo-RL (k = 4) 47.7 18.8 48.1 13.8 52.5 12.6 72.2 282 67.2 453 40.2 20.2 41.8t16

E REWARD DISTRIBUTION OF MODEL-SPECIFIC DATA FILTERING

To examine the relationship between the K value, task difficulty, and model capability, we analyze
the reward distributions obtained during the data filtering stage. Our analysis is based on 7,783 shared
samples. For fair comparison, we use exactly the same samples for each K across all models, and
the current state S(¢) and ground-truth actions remain identical across different / values. Figure
presents the reward distributions for each model across different K values.

InternVL3-8B Mimo-VL-7B-SFT Mimo-VL-7B-RL
—— K=1 K=3 —— K=1 K=3 —— K=1 K=3
—=— K=2 K=4 —— K=2 K=4 —— K=2 K=4

#Samples (x1000)

N 4

o 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8
#Fully-Correct Predictions (total reward=2)

Figure 4: Comparison of reward distributons during model-specific data filtering. The x-axis
represents the number of fully-correct predictions, where = = 0 indicates all 8 rollouts are incorrect
and = = 8 indicates all 8 rollouts are correct. The y-axis reports how many K-step GUI Transition
samples fall into each fully-correct count.

We provide detailed analysis from two perspectives:

o From the perspective of K. (1) At x = 0, where all 8 rollouts are incorrect, the sample counts
follow K =4 > 3 > 2 > 1, indicating that larger K values correspond to higher difficulty. (2) At
x = 8, where all 8 predictions are correct, the trend reverses to K = 1 > 2 > 3 > 4, showing that
smaller K values are easier for the models.

e From the perspective of model capability. As shown in Table[T]and Table 2] Mimo-VL-7B-SFT
and Mimo-VL-7B-RL perform better than InternVL3-8B on four GUI-related benchmarks. We may
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reasonably consider the Mimo models to have stronger GUI capability. A similar pattern appears in
Figure[E] both Mimo models have noticeably more samples at = 8 than InternVL3-8B, suggesting
that models with stronger GUI capability perform better on the K-step GUI Transition task.

Overall, these findings reflects that the K-step GUI Transition task becomes more challenging as
K increases, and that models with stronger GUI capability achieve better performance on this task,
which aligns with intuition.

F INTERNVL3-8B PERFORMANCE SCALING WITH TRAINING DATA S1ZE

To investigate how training data size affects GUI-Shift performance, we scale the training set from
2K to 6K samples using K-step GUI Transition data (X’ = 1). Figure [Fillustrates the results on
AndroidControl-Low and AndroidControl-High.

AndroidControl-Low AndroidControl-High
8861 57.0 1
E 881 565 ]
g .
Q
g
3 8761 56.0
Q
<
87.11 55.5 1
86.6 55.0 4= T T T T
2 3 4 5 6 2 3 4 5 6

#Training Samples (x1000)

Figure 5: Performance on AndroidControl with InternVL3-8B trained on 1-step GUI Transition data.
Training samples are scaled from 2K to 6K. Accuracy exhibits an overall upward trend with only
minor fluctuations.

Specifically, relative to the 2K setting, GUI-Shift-Intern shows an additional gain of 1.7% when
trained with 6K samples on AndroidControl-Low, and a further 2.0% improvement when trained with
3K samples on AndroidControl-High. In general, we observe an overall upward trend in accuracy as
the data size increases, with only small fluctuations across different scales.
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