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Abstract: Reinforcement learning often suffer from the sparse reward issue in
real-world robotics problems. Learning from demonstration (LfD) is an effec-
tive way to eliminate this problem, which leverages collected expert data to aid
online learning. Prior works often assume that the learning agent and the expert
aim to accomplish the same task, which requires collecting new data for every
new task. In this paper, we consider the case where the target task is mismatched
from but similar with that of the expert. Such setting can be challenging and we
found existing LfD methods can not effectively guide learning in mismatched new
tasks with sparse rewards. We propose conservative reward shaping from demon-
stration (CRSfD), which shapes the sparse rewards using estimated expert value
function. To accelerate learning processes, CRSfD guides the agent to conserva-
tively explore around demonstrations. Experimental results of robot manipulation
tasks show that our approach outperforms baseline LfD methods when transfer-
ring demonstrations collected in a single task to other different but similar tasks.

Keywords: Sparse Reward Reinforcement Learning, Learn from Demonstration,
Task Mismatch

1 Introduction

Reinforcement learning has been applied to various real-world tasks, including robotic manipulation
with large state-action spaces and sparse reward signals [1]. In these tasks, standard reinforcement
learning tends to perform a lot of useless exploration and easily fall into local optimal solutions.
To eliminate this problem, previous works often use expert demonstrations to aid online learning,
which adopt some successful trajectories to guide the exploration process [2, 3].

However, standard learning from demonstration algorithms often assume that the target leaning task
is exactly same with the task where demonstrations are collected [4, 5, 6]. Under this assumption,
experts need to collect the corresponding demonstration for each new task, which can be expensive
and inefficient. In this paper, we consider a new learning setting where expert data is collected
under a single task, while the agent is required to solve different new tasks. For instance as shown
in Figure 1, a robot arm aims to solve peg-in-hole tasks.The demonstration is collected on a certain
type of hole while the target tasks have different hole shapes (changes in environmental dynamics)
or position shifts (changes in reward function). This can be challenging as agents cannot directly
imitate those demonstrations from mismatched tasks due to dynamics and reward function changes.
However, compared to learning from scratch, those demonstrations should still be able to provide
some useful information to help exploration.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Demonstrations

for task 0
Task 0 Task 0

Trajectories

Collect Transfer

Shape change    Position shift

New tasks…         

Figure 1: Illustration of our motivation. Demonstrations collected on a single original task are
transferred to other similar but different tasks with either environmental dynamics changes (shape
change) or reward function change (position shift), and aid the learning of these tasks.

To address the issue of learning with demonstrations from mismatched task, previous works in
imitation learning consider agent dynamics mismatch and rely on state-only demonstrations [7, 8, 9].
However, this approach has an implicit assumption that the new task share the same reward function
as the original task [10]. Hester et al. and Vecerik et al. [11, 3] receive sparse rewards in the
environment and add demos into a prioritized replay buffer. Sparse reward signal can be backward
propagated during the Bellman update and thus guide the exploration. However, this propagation
flow may be blocked due to the mismatch in new tasks. Another class of work [12, 13, 14] also
considers that we have expert data on multitasks and utilize meta-learning methods to obtain diverse
skills, and then transfer skills to new tasks. However, such a strategy requires to collect a huge
expert dataset, which is expensive and inefficient. In our setting, we are only provided with a few
demonstrations collected under a single task.

In this paper, we propose Conservative Reward Shaping from Demonstration (CRSfD), which learns
policies for new tasks accelerated by demonstrations collected in a single mismatched task. We use
reward shaping [15, 16] to incorporate future information into single-step rewards while keeping
the optimal policy unchanged. Moreover, we explicitly deal with out-of-distribution problem to
encourage agent to explore around demonstrations. Experimental results of robot manipulation
tasks show that our approach outperforms baseline LfD methods when learning in new tasks with
mismatched demonstrations.

Our contributions can be summarized as follows:

• We proposed a reward shaping scheme for reinforcement learning with demonstration from
mismatched task, which use estimated value function from expert demonstrations to re-
shape sparse reward in new tasks.

• Built upon such scheme, we propose the conservative reward shaping from demonstration
(CRSfD) algorithm to overcome the out-of-distribution problem, we regress value function
of OOD states to zero and use a larger discount factor in new tasks, which guides the agent
to conservatively explore around expert data.

• We conduct simulation and real world experiments of robot insertion tasks with mis-
matched demonstrations. The results show that CRSfD effectively guide the exploration
process in new tasks and reach a higher sample efficiency and convergence performance.

2 Related Works

Learning from demonstration A prominent research subject is how to leverage expert data to as-
sist reinforcement learning. Imitation learning (IL) is a broad family of such algorithms that enforce
agents to directly imitate the expert. Behavior cloning (BC) is the simplest IL algorithm which
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greedily imitates the step-wise action of the expert and can fall into the problem of distributional
shift [17]. Inverse reinforcement learning [18, 4] and adversarial imitation learning [6] infer the ex-
pert’s reward function and learn the corresponding optimal policy jointly. The above IL algorithms
assume environment rewards are not available, hence their performances are upper-bounded by that
of experts [19]. Another line of work makes use of reward feedback from environment and lever-
ages expert demonstration data to overcome the sparse reward issue or learn more natural behaviors.
Vecerik et al. [3] add demonstration into a prioritized replay buffer. Rajeswaran et al. [20] add
a behavioral cloning loss to the policy to speed up exploration and learn more natural and robust
behaviors. Chen et al. [21] use generative models on single step transition to reshape reward of the
original task. However, standard learning from demonstration algorithms always requires demon-
strations to be collected under the same task and act nearly optimal under this task, which is not
suitable for our setting.

Generalization of demonstrations There are a few works relaxing the requirements for demonstra-
tions to achieve generalization of demonstrations from different aspects. Some works assume that
demonstrations are collected by a sub-optimal policy under the same task [22, 23], early work [23]
requires manually ranking of trajectories and later works [24, 25] move the needs for rankings by
actively adding noise to demonstrations along with automatical ranking. Cao et al. [26, 27] assume
that the demonstrations are a mixture of different experts and use a classifier to separate out the
more feasible expert data for the new task. Other works [10, 28, 29] assume that the target task
has different agent dynamics to the task where demonstrations are collected, so they only match the
state sequence of demonstrations or use an inverse dynamic model to recover the action between two
states in the new task. In our work, we further consider new tasks with the environment dynamics
mismatch as well as reward function mismatch. Another branch of related works are meta imitation
learning algorithms, which assume that we have expert data on multitasks and utilize meta-learning
methods to solve new tasks in zero-shot or few shots adaption [12, 13]. However, such a strategy
usually necessitates a huge expert dataset which may be expensive and inefficient. Differently, we
consider the problem where only a small number of demonstrations collected in a single task are
provided, and the agent needs to use them to accelerate the learning of other similar but different
tasks.

3 Problem Statement

In our problem setting, we have collected a few demonstrations under a single task and want to utilize
these data in reinforcement learning for other similar but different tasks. A task can be formalized
as a standard Markov decision process MDP, which is modeled as Mi = (S,A, Pi, Ri, γi). The
task where demonstrations are collected is denoted as M0 = (S,A, P0, R0, γ0), and the new tasks
we target to solve are denoted as Mi = (S,A, Pi, Ri, γi), i ≥ 1. S and A are the shared state
space and action space for each task. Pi : S × A × S → [0, 1] are state transition probability
functions of each task, Ri : S × A × S → R are reward functions for task Mi, describing the
natural reward signal in each task. Due to differences of environment and agent dynamics, Pi
and Ri often varied between different tasks. γi is discounted factor of Mi which reflects how
much we care about future, typically set to a constant slightly lower than 1. A policy πi : S →
A defines a probability distribution in action space. For a task Mi and a policy πi, state value
function V πi

i (s) = Es0=s,πi [Σγ
t
iRt(st, a, st+1)] estimates the discounted cumulative reward of the

task under this policy πi. V ∗i (s) estimates the discounted cumulative rewards for state s under the
optimal policy πi.

As many works [30, 31] point out, directly applying RL in a sparse reward environment can be
sample inefficient and fail to find a good solution. In this work, we want to make use of the demon-
strations D : (τ0, τ1, ...) collected in task M0 to facilitate reinforcement learning for the different
but similar new tasks Mi. Note each trajectory τk contains a sequence of state action transitions
[s0, a0, s1, a1, ...st, at] in task M0.

Challenges There are two key issues when leveraging demonstrations from mismatched tasks. First,
how to get effective guidance from these mismatched demonstrations? Although we should not
purely imitate these demonstrations, we do need to obtain some useful guidance from them to ac-
celeration exploration in new tasks with sparse rewards. Second, since our goal is to maximize the
reward defined under the new task, guidance from mismatched demonstrations should not influence
the optimality of the learned policy in new tasks.
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4 Conservative Reward Shaping from Demonstrations
Provided with demonstrations in a particular task M0 : (S,A, P0, R0, γ0), we aim to help the re-
inforcement learning process of different tasks M1,M2...MK , which may have different transition
functions Pk(s′|s, a) and reward functions Rk(s, a, s′). In this work, we use SAC [32] as our base
reinforcement learning algorithm as it holds an excellent exploration mechanism which leads to
higher sample efficiency than policy gradient algorithms [33, 34] and is shown to perform well on
continuous action tasks [32]. Nevertheless, it is also possible to base our method on other RL al-
gorithms including on-policy ones. To make use of expert demonstrations, DDPGfD [3] proposes
a mechanism compatible with the off-policy method, which adds the demonstration data into the
replay buffer with prioritized sampling. Under such framework, the sparse reward signal can prop-
agate back along the expert trajectory to guide the agent. By combining SAC and DDPGfD [3], we
obtain the backbone of our method and labeled as SACfD, which is also our best baseline method.

4.1 Reward Conflict under Mismatched Task Setting
Although LfD methods such as SACfD benefit from demonstrations in sparse reward reinforcement
learning, they may not benefit from demonstrations when the target tasks are mismatched from that
of the expert. When following the demonstrations, agent may consistently fail and can not get any
sparse rewards signals. As failure time increases, agent may consider expert trajectories to have
low value since few rewards are received. The agent will then avoid following the expert and the
demonstrations cannot provide effective guidance, resulting in inefficient exploration in the whole
free space.

Although totally following the demonstrations may not be able to receive any sparse reward in new
tasks, it can still provide useful exploration directions since in our settings the new tasks are similar
to the original one. We formally introduce our method as conservative reward shaping from demon-
stration (CRSfD). Intuitively, CRSfD assigns appropriate reward signals along the demonstrations
to efficiently guide the agent towards the goal, and allows exploration around the goal to maintain
optimally. Details are described in the following subsection.

4.2 Conservative Reward Shaping from Demonstrations(CRSfD)
Reward Shaping with Value Function Reward shaping [15] provides an elegant way to modify re-
ward function while keeping the optimal policy unchanged. Given original MDPM and an arbitrary
potential function Φ : S → R, we can reshape the reward function to be:

R′(s, a, s′) = R(s, a, s′) + γΦ(s′)− Φ(s), s′ ∼ P (.|s, a) (1)

Denote the new MDP asM ′ = (S,A, P,R′, γ) obtained by replacing reward functionR inM toR′.
Ng et al. [15] proved that the optimal policy π∗M ′ on M ′ and the optimal policy π∗M on the original
MDP M0 are the same: π∗M ′ = π∗M . Furthermore, the optimal state-action function Q∗M ′(s, a) and
value function V ∗M ′(s) are shifted by Φ(s):

Q∗M ′(s, a) = Q∗M (s, a)− Φ(s), V ∗M ′(s) = V ∗M (s)− Φ(s) (2)

In particular, Ng et al. [15] pointed out that when the potential function is chosen as the optimal
value function of the original MDP Φ(s) = V ∗M (s), then the new MDP M ′ becomes trivial to solve.
What remained for the agent is to choose each time-step’s action greedily, because the transformed
single-step reward already contains all the long-term information for decision making.

Conservative Value Function Estimation The reward shaping method provides a principled way
to guide the agent with useful future information and keep the optimal policy unchanged. Ideally,
an accurate Φi(s) = V ∗Mi

(s) will lead to simple and optimal policy in new MDP M ′, but a perfect
Φi(s) = V ∗Mi

(s) is unavailable in advance. Practically, we estimate a Ṽ DM0
≈ V ∗M0

(s) using demon-
strations from task M0 by Monte-Carlo regression and treat Ṽ DM0

(s) as a prior guess of V ∗Mi
(s). We

then shape the sparse reward in the new task Mi to:

R′i(s, a, s
′) = Ri(s, a, s

′) + γṼ DM0
(s′)− Ṽ DM0

(s) (3)

However, demonstration trajectories only cover a small part of the state space. For out-of-
distribution states, estimated Ṽ DM0

may output random values and lead to random single-step re-
ward after reward shaping, which may mislead the agent. We make two improvements over the
above reward shaping method to encourage the agent to explore around the demonstrations conser-
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vatively: (1) Regress value function Ṽ ∗M0
(s) of the out-of-distribution states to 0, thus discouraging

exploration far from demonstrations. The OOD states are sampled randomly from free space. (2) In-
creasing the discount factor γi in new tasks. From equation 3, we can find that increasing γi will give
higher single-step reward for state with large Vθ(s′) in the original task, thus encourages exploration
around demonstrations. Our method can be summarized as follows: (D stands for demonstration
buffer, S stands for free space, γi > γ0):

Algorithm 1 Conservative Value Function Estimation
Input: Demonstration transitions, demo discount factor γ0, new task discount factor γk(γk >
γ0), regression steps nr,scale factor λ.
Initialization: Initialize value function Vθ(s)
Monte-Carlo policy evaluation on demonstrations, Calculate cumulative reward for states in de-
mos using γ0: V DM0

(s) = ΣTi=tγ
i−t
0 ri

for n in regression steps nr do
Sample minibatch B1 from demo buffer D with regression target V DM0

(s) = ΣTi=tγ
i−t
0 ri. Sam-

ple minibatch B2 from whole free space S with regression target 0.
perform regression: θ = arg min

θ

[
Est∼B1

(
Vθ(st)− ΣTi=tγ

i−t
0 ri

)2
+ λEst∼B2 (Vθ(st)− 0)

2
]

end for
Shaping reward with γk: R′i(s, a, s

′) = Ri(s, a, s
′) + γkVθ(s

′)− Vθ(s).
Perform SACfD update. (detalis can be found in appendix.)

Conservative Properties In the last paragraph, we introduced some conservative techniques and
give some intuitively explanations why those improvements can encourage exploration around
demonstrations under the proposed reward shaping framework. The following theorem can quantize
the benefits of proposed methods.

Theorem 1 For task M0 with transition T0 and new task Mk with transition Tk, define to-
tal variation divergence DTV (s, a) = Σs′ |T0(s′|s, a) − Tk(s′|s, a)| = δ. If we have δ <
(γk − γ0)ET2(s′|s,a)[V

D
M0

(s′)]/γ0 maxs′ V
D
M0

(s′), then following the expert policy in new task will
result in immediate reward greater then 0:

Ea∼π(.|s)r′(s, a) ≥ (γk − γ0)ETk(s′|s)[V
D
M0

(s′)]− γ0δmax
s′

V DM0
(s′) > 0 (4)

Detailed proof can be found in Appendix 7.5. The above theorem indicates that for similar but
different tasks (δ smaller than the threshold), exploration along demonstrations will lead to positive
immediate rewards which guide the learning process.

Conservative Reward Shaping from Demonstrations After reward shaping by demonstrations
from mismatched task, we perform online learning based on SACfD as described in Section 4. Pseu-
docode can be found in supplementary materials. Although the estimated Ṽ DM0

(s) can be inaccurate,
it still provides enough future information, thus facilitates exploration for the agent. Moreover, nice
theoretical properties of reward shaping guarantees that we will not introduce bias to the learned
policy in new tasks.
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Figure 2: Evaluation of algorithms on 4 new tasks with demonstrations from task “0”. The solid line
corresponds to the mean of success rate over 5 random seeds and the shaded region corresponds to
the standard deviation. Y-axis reflects success rate range in [0, 1], X-axis reflects interaction steps
range in [0, 3e5].
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5 Experimental Results

We perform experimental evaluations of the proposed CRSfD method and try to answer the follow-
ing two questions: Can CRSfD help the exploration of similar sparse-rewarded tasks with demon-
strations from a mismatched task? Will CRSfD introduce bias to the learned policy in new tasks?

We choose the robot insertion tasks for our experiments, which has natural sparse reward signals:
successfully inserting peg into hole get a reward +1, otherwise 0. We perform both simulation and
real world experiments. The simulation environment is built under robosuite framework [35] pow-
ered by Mujoco physics simulator [36]. We construct a series of similar tasks where the holes have
different shapes and unknown position shifts, reflecting changes in dynamics and reward functions
respectively, as shown in Figure 1. Then we verify the effectiveness of CRSfD under the following 2
settings: (1) Transfer collected demonstrations to similar insertion tasks with environment dynamics
mismatch. (2) Transfer collected demonstrations to similar tasks with both environment dynamics
and reward function mismatch. Finally, we address the sim-to-real issue and deploy the learned pol-
icy on a real robot arm to perform insertion tasks with various shapes of holes in the real world. We
use Franka Panda robot arm in both simulation and real world. The comparison baseline algorithms
are chosen as follows:

• Behavior Cloning [17]: Just ignore the task mismatch and directly perform behavior
cloning of the demonstrations.

• SAC [32]: A SOTA standard RL method which does not use the demonstrations and di-
rectly learn from scratch in the target tasks.

• GAIL [6]: Use adversarial training to recover the policy that generates the demonstrations,
which allieviates the distributional shift problem of behavior cloning.

• GAIfO [8]: A variant of GAIL which trains a discriminator with state transitions (s, s′)
instead of (s, a) in GAIL to alleviate dynamics mismatch.

• POfD [37]: A variant of GAIL which combines the intrinsic reward from discriminator
and extrinsic reward from the new task.

• SQIL [38]: An effective off-policy imitation learning algorithm that adds demonstrations
with reward +1 to the buffer and assign reward 0 to all agent experiences.

• SACfD [32, 3]: Incorporate effective demonstration replay mechanism from [3] with SAC
as described in Section 4, which is also the best baseline as well as the backbone of our
method.

• RS-GM [21]: Reward Shaping using Generative Models, which is an extension on discrete
reward shaping methods [39, 40]. After learning a discriminator Dφ(s, a), they shape the
reward into R′(s, a) = R(s, a) + γλDφ(s′, a′)− λDφ(s, a).

5.1 Simulation experiments

We set a nominal hole position as the original-point of our Cartesian coordination. Observable states
include robot proprioceptive information such as joint and end-effector position and velocity. Action
space includes the 6d pose change of the robot end-effector in 10 Hz, followed with a Cartesian
impedance PD controller running at a high frequency. Only a sparse reward +1 is provided when
the peg is totally inserted inside the hole. Demonstrations are collected by a sub-optimal RL policy
trained with SAC in task M0 under carefully designed dense reward, where the hole has shape ”0”.
This process can be replaced by manual collection in the real world. Then demonstrations are tagged
with the corresponding sparse reward. We collected 40 demonstration trails with 50 time steps each.

Setting 1: Tasks with environment dynamics mismatch. To reflect environment dynamics
changes of the tasks, we create experiments domain on insertion tasks with holes of various shapes
in the simulator, represented by different digit numbers, as shown in Figure 1. Different shapes
of holes will encounter different contact mode thus lead to different environmental dynamics. We
collect demonstrations from hole ”0”, and our method use them to help training similar new tasks
with various hole shapes from digit 1 to 4.

Analysis 1: The comparison results of CRSfD and baseline algorithms under the above setting are
show in Figure 2. As we expected, the simplest BC algorithm simply imitates the expert action of
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the original task and can only complete the insertion with a small chance. The SAC algorithm does
not make use of the demonstration data and conducts a lot of useless exploration, which leads to
poor performance. GAIL algorithm and its variants GAIfO, POfD also fail for most of times as
they try to purely imitate the demonstration collected in the mismatched task. SQIL ignores the
reward in the new task and only obtains a limited success rate. SACfD can not be effectively guided
by demonstrations from the mismatched task under sparse reward. Our proposed CRSfD provide
guidance through reward shaping, and consistently achieves the best performance on all the four
insertion tasks with different hole shapes.

Setting 2: Tasks with both dynamics and reward function mismatch Next, we consider more
challenging scenarios where we aim to transfer the demonstrations to new tasks with both environ-
mental dynamics mismatch and reward function mismatch. We assume that the hole has unknown
random shifts relative to the nominal position, thus the reward function changes. At the beginning
of each episode, the hole is uniformly initialized in a square area centered at the nominal position.
This can be challenging because the robot is ‘blind’ to these unknown offsets and requires further
search for the entrance of the hole. Practically, we collected demonstrations from task with hole ”0”
with fixed hole position, and transfer to new tasks with random hole shifts and different hole shapes.

 Environmental
     dynamics 
      changes

Reward function
       changes

     Shape “2”

     Shape “0”

4mm*4mm 
random shift

6mm*6mm
random shift

8mm*8mm
random shift

     Original task

     Original task      New tasks

10mm*10mm
random shift

12mm*12mm
random shift

CRSfD(ours)

SACfD

Figure 3: Evaluations of CRSfD and the best baseline SACfD. The solid line corresponds to the
mean of success rate over 3 random seeds and the shaded region corresponds to the standard de-
viation. X-coordinate reflects changes in reward functions and Y-coordinate reflects changes in
environmental dynamics. Our algorithm outperforms baseline with increasing margins as the task
changes become larger.

Analysis 2: We compare our algorithm with the best baseline algorithm SACfD under varying de-
grees of environmental dynamics and reward function changes, as shown in the Figure 3. Due to
space limit, more comparison can be found in Figure ?? in appendix. The x-coordinate represents
the increasing changes of the reward function, where the random range of the holes becomes larger
(from 4mm*4mm, 6mm*6mm, to 8mm*8mm). The y-coordinate represents increasing environmen-
tal dynamics change, from hole ”0” in its original shape to hole ”2” in a different shape. Straight-
forwardly, coordinate origin can represent the original task where demonstrations are collected, and
a 2d coordinates [x, y] represents a new task with varying degree of mismatch.

From Figure 3, we can observe that when applying to the original task or very similar task such as
[4mm, shape ’0’], our method has a similar performance to the SACfD baseline. When the task
changes become greater (e.g, [8mm, shape ’0’], [4mm, shape ’2’], [6mm, shape ’2’], [8mm, shape
’2’]), SACfD gradually lose the guidance from original demonstrations as task mismatched more
significantly, while CRSfD achieves significant performance gains with help of the conservative
reward shaping using estimated value function.

Ablation study As mentioned in section 4.2, we make two improvements over the reward shap-
ing method to encourage the agent to explore around the demonstrations conservatively. (1)
Regress value function of OOD states to zero. (2) Use a larger discount factor in new tasks.
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Figure 4: Ablation stud-
ies of the conservative-
ness techniques. (1)
means regressing value
function to zero for OOD
states. (2) means setting
larger discount factors.

We ablate these 2 improvements and compare their performance. Ab-
lations are tested under new task with hole shape “3”, results for other
shapes can be found in the supplementary materials. As shown in Figure
4, compared to original CRSfD algorithm, moving away either of these
2 techniques will lead to a performance drop, where the agent needs to
take more effort in exploration.

5.2 Real World Experiments

After completing the insertion tasks of various-shaped holes in the sim-
ulator, we deploy the policy to the real robotic arm. To overcome the
sim-to-real problem, we use domain randomization in the simulation.
The initial position of the robot arm end-effector and holes are random-
ized in a 6cm*6cm*6cm space and 2mm*2mm plane respectively, and
the friction coefficient of the object is also randomized in [1, 2]. We
use a real Franka Panda robot arm and 3d print the holes corresponding
to digit numbers “0-4”. Holes are roughly in sizes of 4cm*4cm, with a
1mm clearance between the peg and the hole. We performed 25 insertion
trials under each shape of hole, and counted their success rates separately, as shown in the table 1.
The robot achieves high success rate in all tasks.

3D Print Initial

  Start 
 contact

 During 
insertion

Finish

Hole in simulation

Figure 5: Real world robot insertion experiments.

Hole Success
Shape Rate

Digit ”0” 1.0
Digit ”1” 1.0
Digit ”2” 0.92
Digit ”3” 0.92
Digit ”4” 0.96

Table 1: Success rate
for real world robot in-
sertion tasks.

6 Conclusion

Summary. In this paper, we studied the problem of reinforcement learning with demonstrations
from mismatched tasks under sparse rewards. Our key insight is that, although we should not purely
imitate the mismatched demonstrations, we can still get useful guidance from the demonstrations
collected in a similar task. Concretely, we proposed conservative reward shaping from demonstra-
tions (CRSfD) which uses reward shaping by estimated value function of a mismatched expert to
incorporate useful future information to augment the sparse reward, with conservativeness tech-
niques to handle out-of-distribution issues. Simulation and real world robot insertion experiments
show the effective of proposed method under tasks varied in environmental dynamics and reward
functions.

Limitations and Future works. Provided with demonstrations from a mismatched task, our pro-
posed method aids the online learning process for each new task separately. However, one may need
to learn a policy to solve multiple new tasks at the same time, and exploration in these tasks may
benefit each other. So future works include using demonstrations to accelerate the joint learning pro-
cess of multiple tasks. Another limitation is that our method is only applicable to new tasks similar
to original task. The effectiveness of CRSfD gradually decays when the tasks differ too much from
the original task so that the demonstrations do not contain any useful information. It also worth to
mention that the whole algorithm pipeline should be able to be implemented directly on hardware,
which is a promising research direction.

8



Acknowledgments

This work is supported by the Ministry of Science and Technology of the People’s Republic of
China, the 2030 Innovation Megaprojects “Program on New Generation Artificial Intelligence”
(Grant No. 2021AAA0150000).

References
[1] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,

A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[2] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration
in reinforcement learning with demonstrations. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[3] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[4] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforce-
ment learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[5] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[6] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[7] Y. Schroecker and C. L. Isbell. State aware imitation learning. Advances in Neural Information
Processing Systems, 30, 2017.

[8] F. Torabi, G. Warnell, and P. Stone. Generative adversarial imitation from observation. arXiv
preprint arXiv:1807.06158, 2018.

[9] W. Sun, A. Vemula, B. Boots, and D. Bagnell. Provably efficient imitation learning from
observation alone. In International conference on machine learning, pages 6036–6045. PMLR,
2019.

[10] T. Gangwani and J. Peng. State-only imitation with transition dynamics mismatch. arXiv
preprint arXiv:2002.11879, 2020.

[11] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[12] V. H. Pong, A. Nair, L. Smith, C. Huang, and S. Levine. Offline meta-reinforcement learning
with online self-supervision. arXiv preprint arXiv:2107.03974, 2021.

[13] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S. Schaal, and S. Levine.
Offline meta-reinforcement learning for industrial insertion. arXiv preprint arXiv:2110.04276,
2021.

[14] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094–1100. PMLR, 2020.

[15] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pages 278–287, 1999.

[16] C.-A. Cheng, A. Kolobov, and A. Swaminathan. Heuristic-guided reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

9



[17] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Pro-
ceedings, 2011.

[18] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[19] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai. Reinforcement
learning with sparse rewards using guidance from offline demonstration. arXiv preprint
arXiv:2202.04628, 2022.

[20] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstra-
tions. arXiv preprint arXiv:1709.10087, 2017.

[21] Y. Wu, M. Mozifian, and F. Shkurti. Shaping rewards for reinforcement learning with imperfect
demonstrations using generative models. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 6628–6634. IEEE, 2021.

[22] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell. Reinforcement learning from imperfect
demonstrations. arXiv preprint arXiv:1802.05313, 2018.

[23] D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from observations. In International conference on
machine learning, pages 783–792. PMLR, 2019.

[24] L. Chen, R. Paleja, and M. Gombolay. Learning from suboptimal demonstration via self-
supervised reward regression. arXiv preprint arXiv:2010.11723, 2020.

[25] D. S. Brown, W. Goo, and S. Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. In Conference on robot learning, pages 330–359.
PMLR, 2020.

[26] Z. Cao and D. Sadigh. Learning from imperfect demonstrations from agents with varying
dynamics. IEEE Robotics and Automation Letters, 6(3):5231–5238, 2021.

[27] Z. Cao, Y. Hao, M. Li, and D. Sadigh. Learning feasibility to imitate demonstrators with
different dynamics. arXiv preprint arXiv:2110.15142, 2021.

[28] I. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-only imitation learning for dexterous
manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7865–7871. IEEE, 2020.

[29] F. Liu, Z. Ling, T. Mu, and H. Su. State alignment-based imitation learning. arXiv preprint
arXiv:1911.10947, 2019.

[30] J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning. In International Conference on
Machine Learning, pages 3878–3887. PMLR, 2018.

[31] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by playing solving sparse reward tasks from scratch. In
International conference on machine learning, pages 4344–4353. PMLR, 2018.

[32] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[33] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

10



[35] Y. Zhu, J. Wong, A. Mandlekar, and R. Martı́n-Martı́n. robosuite: A modular simulation
framework and benchmark for robot learning. arXiv preprint arXiv:2009.12293, 2020.

[36] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[37] B. Kang, Z. Jie, and J. Feng. Policy optimization with demonstrations. In International con-
ference on machine learning, pages 2469–2478. PMLR, 2018.

[38] S. Reddy, A. D. Dragan, and S. Levine. Sqil: Imitation learning via reinforcement learning
with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

[39] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé. Reinforcement
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