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Abstract

In a broad class of reinforcement learning applications, stochastic rewards have
heavy-tailed distributions, which lead to infinite second-order moments for stochas-
tic (semi)gradients in policy evaluation and direct policy optimization. In such
instances, the existing RL methods may fail miserably due to frequent statistical
outliers. In this work, we establish that temporal difference (TD) learning with
a dynamic gradient clipping mechanism, and correspondingly operated natural
actor-critic (NAC), can be provably robustified against heavy-tailed reward dis-
tributions. It is shown in the framework of linear function approximation that a
favorable tradeoff between bias and variability of the stochastic gradients can be
achieved with this dynamic gradient clipping mechanism. In particular, we prove
that robust versions of TD learning achieve sample complexities of order O(ε−

1
p )

and O(ε−1− 1
p ) with and without the full-rank assumption on the feature matrix,

respectively, under heavy-tailed rewards with finite moments of order (1 + p) for
some p ∈ (0, 1], both in expectation and with high probability. We show that a
robust variant of NAC based on Robust TD learning achieves Õ(ε−4− 2

p ) sample
complexity. We corroborate our theoretical results with numerical experiments.

1 Introduction

In this paper, we develop a framework for robust reinforcement learning in the presence of rewards
with heavy-tailed distributions. Heavy-tailed phenomena, stemming from frequently observed
statistical outliers, have been ubiquitous in decision-making applications under uncertainty. To name
a few examples, waiting times in wireless communication networks [44, 24, 58], completion times of
SAT solvers [14], numerous payoff quantities (e.g., stock prices, consumer signals) in economics and
finance [22, 35, 38, 37] exhibit heavy-tailed behavior. An important characteristic of heavy-tailed
random variables is the infinite order of higher moments, which stems from the frequently occurring
outliers.

In reinforcement learning (RL), the goal is to maximize expected total reward in a Markov decision
process (MDP) by continual interactions with the unknown and dynamic environment. Among policy
optimization methods, Natural actor-critic (NAC) method and its variants [51, 30, 46, 17, 27, 5, 29]
have become particularly prevalent due to their desirable stability and versatility characteristics,
emanating from the use of temporal difference (TD) learning as the critic for the policy evaluation
component of the NAC operation. The existing theoretical analyses for temporal difference learning
[4, 54] and natural policy gradient/actor-critic methods [62, 1, 57] assume that the stochastic gradients
have finite second-order moments, or even they are bounded. In particular, it is unknown whether
natural actor-critic with function approximation is robust for stochastic rewards of heavy-tailed
distributions with potentially infinite second-order moments. Furthermore, in practice, these methods
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are prone to non-vanishing and even increasing error under heavy-tailed reward distributions (see
Example 1). This motivates us for the following fundamental question in this paper:

Can temporal difference learning with function approximation be modified to provably achieve
global optimality under stochastic rewards with heavy tails?

We provide an affirmative answer to the above question by proposing a simple modification to the
TD learning algorithm, which yields robustness against heavy tails. In particular, we show that
incorporating a dynamic gradient clipping mechanism with a carefully-chosen sequence of clipping
radii can provably robustify TD learning and NAC with linear function approximation, leading to
global near-optimality even under stochastic rewards of infinite variance.

Example 1 (Failure of TD learning under heavy-tailed reward). In this example, we consider a
randomly-generated discounted-reward Markov reward process1 (Xt, Rt)t on a state space X with
|X| = 64 states, with the discount factor γ = 0.9 and the reward Rt(Xt) = r(Xt)+Nt−E[Nt] with
Nt

iid∼ Pareto(1, 1.4) for any t. In order to predict the value function, we use (projected) TD learning
(see [4]) with linear function approximation based on Gaussian features of dimension d = 4 and
projection radius ρ = 30. The performance results are shown in Figure 1. Since Rt is heavy-tailed

(a) Errors for TD Learning (b) Errors for Robust TD Learning (c) Comparison of the expected errors

Figure 1: Non-convergent behavior of TD learning under heavy-tailed noise with tail index 1.4. Each
faded green line is the MSE for an individual trial, and the solid lines with markers indicate the
average mean squared error for TD learning and Robust TD learning.

with infinite variance, the existing convergence results for traditional TD learning, which assume
that Rt has finite variance, do not hold. Furthermore, Figure 1 reveals that TD learning is prone to
non-varnishing and even increasing error in practice despite the projection step, iterate averaging and
small learning rate, due to the statistical outliers that cause extremely large error often as indicated by
a non-negligible fraction of green lines in Figure 1a. On the other hand, with the same learning rate,
projection radius and state-reward realizations, our robust variant of TD learning provides resilience
against outliers (see Figure 1b), and leads to convergence in the expected behavior as in Figure 1c.

Stochastic rewards with heavy-tailed distributions appear in many important applications. Below, we
briefly provide two motivating applications that necessitate robust RL methods to handle heavy tails.

Application (1): Algorithm portfolios. In solving complicated problems such as Boolean
satisfiability (SAT) and complete search problems, which appear in numerous applications [19, 43],
multiple algorithmic solutions with different characteristics are available. The algorithm selection
problem is concerned about the minimization of total execution times to solve these problems
[32, 49, 31], where different data distributions and machine characteristics, caused by recursive
algorithms, are modeled as states, algorithm choices are modeled as actions, and the execution time
of a selected algorithm is modeled as the cost (i.e., negative reward). It is well-known that the
execution times, i.e., rewards, in the algorithm selection problem have heavy-tailed distributions with
infinite-variance (e.g., Pareto(1, 1 + p) with 0 < p < 1 as in [13]) similar to the case in Example 1
[13, 15, 49]. Thus, algorithm selection problem requires robust techniques that we consider here.

Application (2): Scheduling for wireless networks. The scheduling problem considers matching
the users with random service demands to fading wireless channels (e.g., Gilbert-Elliot model) with
stochastic transmission times so as to minimize the expected delay. A widely-adopted approach to

1The details of the setup, along with other numerical examples can be found in Section 4.
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study the scheduling problem is to use MDPs (see, e.g., [40, 21, 10, 2]). It has been observed that
the transmission times follow heavy-tailed distributions of infinite variance, due to various factors
including the MAC protocol used, packet size, and channel fading [18, 58, 24, 23]. As such, solving
this by using RL approach necessitates robust methods to handle heavy-tailed execution times.

Main contributions. Our main contributions in this paper contain the following.

• Robust TD learning with dynamic clipping for heavy-tailed rewards. We propose Robust TD
learning with a dynamic gradient clipping mechanism, and prove that this TD learning variant with
linear function approximation can achieve arbitrarily small estimation error that vanishes at rates
O(T− p

1+p ) and Õ(T−p) without and with full-rank assumption on the feature matrix, respectively,
even for heavy-tailed rewards with moments of order 1 + p for p ∈ (0, 1]. Our proof techniques
make use of Lyapunov analysis coupled with martingale techniques for robust statistical estimation
in dynamical systems, and can be of independent interest in the analysis of first-order methods.

• Robust NAC under heavy-tailed rewards. Based on Robust TD learning and the compatible
function approximation result in [27], we propose a robust NAC variant, and show that O(ε−4− 2

p )
samples suffice to achieve ε > 0 error under standard concentrability coefficient assumptions.

• High-probability error bounds. We provide high-probability (sub-Gaussian) error bounds for the
robust NAC and TD learning methods in addition to the traditional expectation bounds.

From a statistical viewpoint, our analysis in this work indicates a favorable bias-variance tradeoff: by
introducing a vanishing bias to the semi-gradient via particular choices of dynamic gradient clipping,
one can achieve robustness by eliminating the destructive impacts of statistical outliers even if the
semi-gradient has infinite variance, leading to near optimality.

1.1 Related Work

Temporal difference learning. Temporal difference (TD) learning was proposed in [50], and has
been the prominent policy evaluation method. The existing theoretical analyses of TD learning
consider MDPs with bounded rewards [4, 7], or rewards with finite variance [54], while we consider
heavy-tailed rewards. Our analysis utilizes the Lyapunov techniques in [4].

Policy gradient methods. Policy gradient (PG), and its variant natural policy gradient (NPG) have
attracted significant attention in RL [59, 52, 27]. Recent theoretical works investigate the local and
global convergence of these methods in the exact case, or with stochastic and bounded rewards
[1, 57, 34, 39, 61]. As such, heavy-tailed rewards have not been considered in these works.

Bandits with heavy-tailed rewards. Stochastic bandit variants with heavy-tailed payoffs were
studied in multiple works [6, 48, 33, 8]. The stochastic bandit setting can be interpreted as a very
simple single-state (i.e., stateless or memoryless) model-based and tabular RL problem. The model
we consider in this paper is a model-free RL setting on an MDP with a large state space, which is
considerably more complicated than the bandit setting.

Stochastic gradient descent with heavy-tailed noise. There has been an increasing interest in the
analysis of SGD with heavy-tailed gradient noise recently [56, 11, 16], following the seminal work
of [45]. In our work, we consider the RL problem, which has significantly different dynamics than
stochastic convex optimization.

Robust mean and covariance estimation. In basic statistical problems of mean and covariance
estimation [42, 41, 36] and regression [20], the traditional methods do not yield the optimal conver-
gence rates for heavy-tailed random variables, which led to the development of robust mean and
covariance estimation techniques (for reference, see [36, 28]). Our paper utilizes tools from robust
mean estimation literature (particularly, truncated mean estimator analysis in [6]), but considers the
more complicated problem of TD learning and policy optimization in a dynamic environment rather
than a static mean or covariance estimation problem with iid observations.

1.2 Notation

For a symmetric matrix A ∈ Rd×d, λmin(A) denotes its minimum eigenvalue. B2(x, ρ) = {y ∈ Rd :
∥x− y∥2 ≤ ρ} and ΠC{x} = argminy∈C ∥x− y∥22 for any convex C ⊂ Rd.
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2 Robust TD Learning for Value Prediction under Heavy Tails

First, we consider the problem of predicting the value function for a given discounted-reward Markov
reward process with heavy-tailed rewards.

2.1 Value Prediction Problem

For a finite but arbitrarily large state space X, let (Xt)t∈N be an X-valued Markov chain with the
transition kernel P : X×X → [0, 1]. We consider a Markov reward process (Xt, Rt)t∈N such that at
state Xt, a stochastic reward Rt = Rt(Xt) is obtained for all t ≥ 0. For a discount factor γ ∈ [0, 1),
the value function for the MRP (Xt, Rt)t∈N is the following:

V(x) = E
[ ∞∑

t=1

γt−1Rt(Xt)
∣∣∣X1 = x

]
, x ∈ X. (1)

Objective. The goal is to learn V without knowing the transition kernel P by using samples from the
system. In particular, for a parameterized class of functions {fΘ : X → R : Θ ∈ Rd}, the goal is to
solve the following stochastic optimization problem with mean squared error:

min
Θ∈Rd

E
x∼µ

|fΘ(x)− V(x)|2. (2)

In order to solve (2) under Assumption 1, next we propose a robust variant of temporal difference
(TD) learning with linear function approximation [50, 54].

2.2 Robust TD Learning Algorithm

For a given set of feature vectors {Φ(x) ∈ Rd : x ∈ X} with supx∈X ∥Φ(x)∥2 ≤ 1, we use
fΘ(·) = ⟨Θ,Φ(·)⟩ as the approximation architecture. For a given dataset D = {(Xt, Rt, X

′
t) ∈

X× R× X : t ∈ N} with X ′
t ∼ P(Xt, ·), let the stochastic semi-gradient at Θ ∈ Rd be defined as

gt(Θ) =
(
Rt(Xt) + γfΘ(X

′
t)− fΘ(Xt)

)
∇ΘfΘ(Xt).

Robust TD learning is summarized in Algorithm 1.

Algorithm 1: Robust TD learning
Inputs: number of steps T ≥ 1, clipping radii (bt)t∈[T ], projection radius ρ > 0, step-size η > 0
Set Θ(1) ∈ B2(0, ρ) \\ initialization
for t = 1, 2, . . . , T do
Θ(t+ 1) = ΠB2(0,ρ)

{
Θ(t) + ηt · gt

(
Θ(t)

)
· 1{∥gt

(
Θ(t)

)
∥2 ≤ bt}

}
end for
Output: fΘ̄(T )(·) =

〈
Θ̄(T ),Φ(·)

〉
where Θ̄(T ) = 1

T

∑T
t=1 Θ(t)

In the following, we will establish finite-time bounds for Robust TD learning by specifying the
sequence of dynamic gradient clipping radii (bt)t≥1, projection radius ρ and step-size η.

2.3 Finite-Time Bounds for Robust TD Learning

We make the following assumptions on the Markov reward process.
Assumption 1. The stochastic process (Xt, Rt)t∈N satisfies the following:

1. Ergodicity: (Xt)t∈N is an irreducible and aperiodic Markov chain with stationary distribution
µ = µP . Also, we assume that there are constants m > 0, ζ ∈ (0, 1) such that

max
x∈X

∥Pt(x, ·)− µ∥TV ≤ mζt, ∀t ∈ Z+. (3)

2. Heavy-tailed reward: For some p ∈ (0, 1] and constant u0 ∈ (0,∞),

E[|Rt(Xt)|1+p|Xt] ≤ u0 < ∞, a.s.,∀t ∈ N. (4)

3. Mean reward: For any t ∈ N, E[Rt(Xt)|Xt] = r(Xt) ∈ [−1, 1] a.s.
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We note that the uniform ergodicity and bounded mean reward assumptions are standard in TD
learning literature [3, 54, 4].
Assumption 2 (Sampling). We consider two types of sampling strategies in this work:

2a. IID sampling: Xt
iid∼ µ and X ′

t ∼ P(Xt, ·) for all t ≥ 1.

2b. Markovian sampling: X1 ∼ µ and X ′
t = Xt+1 ∼ P(Xt, ·) for all t ≥ 1.

Assumption 3 (Realizability). There exists Θ⋆ ∈ B2(0, ρ) such that V(·) = ⟨Θ⋆,Φ(·)⟩.
Remark 1. We note that Assumption 3 holds directly in interesting realizable problem classes,
e.g., linear MDPs [25], and allows us to obtain results on the statistical error performance of our
design. In cases when it does not hold, our results will continue to hold with an additional function
approximation error proportional to infΘ∈B2(0,ρ)

√
E[|V(x)− ⟨Θ,Φ(x)⟩|2], which is unavoidable

due to the limitation of the linear function approximation architecture.

The following lemma is important in bounding the moments of the gradient norm under Robust TD
learning in terms of the projection radius ρ > 0 and the upper bound u0 on E

[
|Rt(Xt)|1+p

∣∣Xt

]
.

Lemma 1 (Tail bounds for ∥gt
(
Θ(t)

)
∥2). Let F+

t = σ
(
Θ(1),Θ(2), . . . ,Θ(t), Xt

)
for t ∈ Z+.

Then, under Assumption 1, we have:

E[∥gt(Θ(t))∥1+p
2 |F+

t ] ≤ u < ∞, a.s., (5)

for any t ∈ Z+, where u = min{(u
1

1+p

0 + 2ρ)1+p, u0 + 22p+3ρ1+p}.

Proof. Note that we have E[∥gt(Θ(t))∥1+p
2 |F+

t ] ≤ E[|Rt(Xt) + γfΘ(t)(X
′
t)− fΘ(t)(Xt)|1+p|F+

t ]
since supx∈X ∥Φ(x)∥2 ≤ 1. The upper bounds then follow by applying Minkowski’s inequality and
the triangle inequality for Lp spaces, respectively, to this inequality.

This lemma will be useful in the analysis of both the expected (Theorems 1-2), and the high-probability
bounds (Theorem 3) on the performance of Robust TD learning.

Next, we provide the main theoretical results in this paper: finite-time bounds for Robust TD learning.
The proofs are mainly deferred to the appendix, while we provide a proof sketch for Theorem 3. In
the following, we provide convergence bounds for the expected mean squared error under Robust TD
learning with various choices of bt.
Theorem 1 (Expected error under Robust TD learning – iid sampling). Under Assumptions 1, 2a, 3,
we have the following bounds for Robust TD learning:

a) For bt = (ut)
1

1+p for any t ∈ Z+ and ηt = η = 2ρ(1−γ)

(uT )
1

1+p
, we have:

E
Θ(1),Θ(2),...,Θ(T )

x∼µ

[(
V(x)− ⟨Θ̄(T ),Φ(x)⟩

)2]
≤ 6ρu

1
1+p

(1− γ)T
p

1+p

, ∀T > 1. (6)

b) Let Λ =
∑

x∈X µ(x)Φ(x)Φ⊤(x), and Cp(u, λmin, γ, ρ) =
u

1−γ

(
4ρ + 1

(1−γ)λmin

)
. If λmin(Λ) =

λmin > 0, then with the diminishing step-size ηt =
1

(1−γ)tλmin
and bt = t for t ∈ Z+, for the average

iterate Θ̄(T ), we have2:

E
Θ(1),Θ(2),...,Θ(T )

x∼µ

(
V(x)− ⟨Θ̄(T ),Φ(x)⟩

)2

≤ Cp(u, λmin, γ, ρ)

[
1p,1T

−p

1− p
+

(1− 1p,1) log(eT )

T

]
,

(7)

and for the last iterate Θ(T + 1), we have:

E
Θ(1),...,Θ(T )

max
x∈X

|V(x)−
〈
Φ(x),Θ(T+1)

〉
|2 ≤ Cp(u, λmin, γ, ρ)

λmin

[
log(eT )(1− 1p,1)

T
+
1p,1T

−p

1− p

]
,

(8)
for any T > 1, where 1x,y = 1 if x ̸= y and 0 otherwise.

2The upper bound is Cp(u, λmin, γ, ρ)
1
T

∑T
t=1 t

−p = Õ(T−p), which is further upper bounded as (6) and
(7) by using intergral bounds.
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Remark 2. The convergence rates in Theorem 1 are O(T− p
1+p ) and Õ(T−p) without and with the

full-rank assumption λmin > 0, respectively. For p = 1, the convergence rates stated in Theorem 1
both match the existing results for TD learning with bounded rewards [4], up to a larger scaling factor
of raw second-order moment rather than variance, due to clipping centered around 0.
Remark 3 (Finite-time bounds in the unrealizable case). We note that our results hold without
Assumption 3 as well. In this general case, there will be an additional function approximation
error proportional to infΘ∈B2(0,ρ)

√
E[|V(x)− ⟨Θ,Φ(x)⟩|2] (see Remark 1). One would use a richer

function approximation scheme (e.g., larger projection radius ρ or dimension d) to reduce this function
approximation error, which will lead to an increase in the statistical error as we characterize in our
bounds. For the extension of our analysis to the general case without Assumption 3, please see
Appendix A.1.

In the following, we provide convergence bounds for Robust TD learning under Markovian sampling.
Theorem 2 (Expected error under Robust TD learning – Markovian sampling). Under Assumptions
1,2b and 3, let T > 1, ρ > 0 be given, and define the mixing time τ = min{t ∈ Z+ : mζt ≤√
2ρ(uT )−

1
1+p }. Then, with ηt = η =

√
2ρ(uT )−

1
1+p , Robust TD learning yields the following:

E
Θ(1),Θ(2),...,Θ(T )

x∼µ

(
V(x)− ⟨Θ̄(T ),Φ(x)⟩

)2

≤ 7ρu
1

1+p

(1− γ)T
p

1+p

+
2
√
2ρ(1 + 2ρ)(4ρ+ τ(1 + 6ρ))

(1− γ)T
1

1+p

. (9)

The proof of Theorem 2 is based on a similar Lyapunov technique as Theorem 1 in conjunction with
the mixing time analysis in [4] for Markovian sampling, and can be found in Appendix A.

The bounds in Theorem 1 involve expectation over the parameters Θ(t), t ∈ [T ]. In the following,
we provide a high-probability error bound on the mean squared error under Robust TD learning.
Theorem 3 (High-probability bound for Robust TD learning). For any δ ∈ (0, 1), let Lδ = log(4/δ).

Under Assumptions 1, 2a, 3, with step-size η =
√
2(1−γ)ρL

1−p
2(1+p)
δ

(uT )
1

1+p
and clipping radius bt =

(
ut
Lδ

) 1
1+p

,

∑
x∈X

µ(x)
(
V(x)−

〈
Θ̄(T ),Φ(x)

〉)2

≤ ρu
1

1+p

(1− γ)T
p

1+p

(
3L

− 1−p
2(1+p)

δ + 7L
p

1+p

δ

)
, (10)

holds with probability at least 1− δ.

In the following, we give a proof sketch for Theorem 3. The full proof can be found in Appendix A.

Proof sketch. Let L(Θ) = ∥Θ−Θ⋆∥22 be the Lyapunov function, and χt = 1− χ̄t = 1{∥gt∥2 ≤ bt}.
Then, the Lyapunov drift can be decomposed as follows:

L(Θ(t+ 1))− L(Θ(t)) ≤ 2ηEt[g
⊤
t (Θ(t)−Θ⋆)] + η2Et[∥gt∥22χt] + 2ηB(t) + η2Z(t), (11)

where

B(t) = g⊤t (Θ(t)−Θ⋆)χt − Et[g
⊤
t (Θ(t)−Θ⋆)χt]− Et[g

⊤
t (Θ(t)−Θ⋆)χ̄t],

is the bias in the stochastic semi-gradient, and

Z(t) = ∥gt∥22χt − Et[∥gt∥22χt].

We can decompose B(t) further into a martingale difference sequence

B0(t) = g⊤t (Θ(t)−Θ⋆)χt − Et[g
⊤
t (Θ(t)−Θ⋆)χt],

and a bias term
B⊥(t) = −Et[g

⊤
t (Θ(t)−Θ⋆)χ̄t].

By Freedman’s inequality for martingales [12, 53], we have 1
T

∑T
t=1 B0(t) ≤

7ρu
1

1+p L
p

1+p
δ

T
p

1+p
, and by

Azuma inequality, we have 1
T

∑t
t=1 Z(t) ≤ u

2
1+p T

1−p
1+p

L
1−p
1+p
δ

, each holding with probability at least 1−δ/2.
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By Hölder’s inequality and Lemma 1, we can bound B⊥(t) ≤ ub−p
t and Et[∥gt∥22χ̄t] ≤ ub1−p

t , both
with probability 1. Finally, by Lemma 2 in [54], we have the negative drift term

Et[g
⊤
t (Θ(t)−Θ⋆)] ≤ −(1− γ)

∑
x

µ(x)(fΘ(t)(x)− V(x))2.

By telescoping sum of (11) and rearranging the terms, we have:

1

T

T∑
t=1

∥fΘ(t)−V∥2µ ≤ L(Θ(1))

2η(1− γ)T
+

1

(1− γ)T

T∑
t=1

B(t)+
η

2(1− γ)T

T∑
t=1

(
Z(t)+Et[∥gt∥22χ̄t]

)
.

The proof is concluded by substituting the above high probability bounds on the sample means
of B(t), Z(t) and Et[∥gt∥22χ̄t] (via union bound and integral upper bounds), and using Jensen’s
inequality on the left side of the above inequality.

Most notably, this important theorem establishes that, by appropriately controlling the bias term of
dynamic gradient clipping to yield a vanishing sample mean with high probability as the number of
iterations increases, one can limit the variance of the semi-gradient, thereby resulting in the provided
global near-optimality guarantee.

3 Robust Natural Actor-Critic for Policy Optimization under Heavy Tails

In this section, we will study a two-timescale robust natural actor-critic algorithm (Robust NAC, in
short) based on Robust TD learning, and provide finite-time bounds.

3.1 Policy Optimization Problem

We consider a discounted-reward Markov decision process (MDP) with a finite but arbitrarily
large state space S, finite action space A, transition kernel P and discount factor γ ∈ (0, 1). The
controlled Markov chain {(St, At) ∈ S × A : t ∈ N} has the probability transition dynamics
P(St+1 ∈ s|St

1, A
t
1) = PAt(St, s), for any s ∈ S. Taking the action At ∈ A at state St ∈ S

yields a random reward of Rt(St, At) at any t ∈ Z+. For a given stationary randomized policy
π = (π(a|s))(s,a)∈S×A, the value function Vπ and the state-action value function (also known as
Q-function) Qπ are defined as:

Vπ(s) = Eπ
[ ∞∑

t=1

γt−1Rt(St, At)
∣∣∣S1 = s

]
, s ∈ S (12)

Qπ(s, a) = Eπ
[ ∞∑

t=1

γt−1Rt(St, At)
∣∣∣S1 = s,A1 = a

]
, (s, a) ∈ S× A. (13)

Remark 4 (From MDP to MRP). Under any stationary randomized policy π, the process
(St, At)t>0 =: (Xt)t>0 is a Markov chain over the state-space X = S × A, thus (Xt, Rt) with
Rt(Xt) = Rt(St, At) is a Markov reward process of the kind that we analyzed in Section 2. As such,
we can use Robust TD learning to evaluate V(x) = Qπ(x) for any x = (s, a) ∈ S× A.

Heavy-tailed reward. We assume that the process (Xt, Rt)t>0 with the Markov chain Xt = (St, At)
and the reward Rt = Rt(Xt) satisfies Assumption 1. We denote the stationary distribution of
Xt = (St, At) under π as µπ .

Objective. For an initial state distribution λ, the objective in this work is to find the following:

π⋆ ∈ argmax
π

∫
S
Vπ(s)λ(ds) =: Vπ(λ), (14)

over the class of stationary randomized policies.

Policy parameterization. In this work, we consider a finite but arbitrarily large state space S, and for
such problems, the tabular methods do not scale [51, 3]. In order to address this scalability issue, we
consider widely-used softmax parameterization with linear function approximation: for a given set of
feature vectors {Φ(s, a) ∈ Rd : s ∈ S, a ∈ A} and policy parameter W ∈ Rd,

πW (a|s) = exp(W⊤Φ(s, a))∑
a′∈A exp(W⊤Φ(s, a′))

, (s, a) ∈ S× A. (15)

In the following subsection, we will describe the robust natural actor-critic algorithm.
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3.2 Robust Natural Actor-Critic Algorithm

For any iteration k ≥ 1, we denote πk := πW (k) throughout the policy optimization iterations.

For samples D(k) = {(St,k, At,k, Rt,k, S
′
t,k, A

′
t,k) : t ≥ 1}, given (bt,k)t,k∈Z+ and ρ > 0, Robust

NAC Algorithm is summarized in Algorithm 2.

Algorithm 2: Robust Natural Actor-Critic Algorithm
Inputs: clipping radii (bt)t≥1, projection radius ρ > 0, learning rate α > 0, Lδ > 0
for k = 1, 2, . . . ,K do

Set Θk(1) = 0 // initialization: max-entropy policy
for t = 1, 2, . . . , T do

Set g(k)t (Θk(t)) =
(
Rt,k + γfΘk(t)(S

′
t,k, A

′
t,k)− fΘk(t)(St,k, At,k)

)
Φ(St,k, At,k).

Θk(t+ 1) = ΠB2(0,ρ)

{
Θk(t) + ηt · g(k)t

(
Θk(t)

)
· 1{∥g(k)t

(
Θk(t)

)
∥2 ≤ bt}

}
end for
W (k + 1) = W (k) + α · 1

T

∑T
t=1 Θk(t)

end for

Remark 5. The optimal solution Θ⋆
k ∈ argmin

Θ∈Rd

E
x=(s,a)

∣∣∣⟨Θ,Φ(x)⟩ − Qπk(x)
∣∣∣2 is a good approxi-

mation of the natural policy gradient:

uk = [G(πk)]
−1∇WVπk(λ) ∈ argmin

w∈Rd

E
(s,a)∼d

πk
λ ⊗πk(·|s)

∣∣∣⟨w,∇W log πk(a|s)⟩ − Aπk(s, a)
∣∣∣2,

which follows from Jensen’s inequality and leads to the Q-NPG [1]. For a detailed discussion, refer
to Appendix B.

3.3 Finite-Time Bounds for Robust Natural Actor-Critic

In this subsection, we will provide finite-time bounds for Robust NAC.

We assume that the resulting Markov reward process under πk for each k satisfies Assumptions 1-3
with stationary distribution µπk and uk ≥ E[|Rt,k(St,k, At,k)|1+p|St,k, At,k]. We assume that the

dataset D(k) is obtained independently at each iteration k ≥ 1 for simplicity, with (St,k, At,k)
iid∼ µπk

and S′
t,k ∼ PAt,k

(St,k, ·) and At,k ∼ πk(·|St,k) according to Assumption 2a under the stationary
distribution µπk = [µπk(s, a)]s∈S,a∈A under πk. We make the following standard assumption for
policy optimization, which is common in the policy gradient literature [1, 57, 34].

Assumption 4 (Concentrability). For any k ≥ 1, we assume that there exists Cconc < ∞ such that:

max
(s,a)∈S×A

dπ
⋆

λ (s)π⋆(a|s)
µπk(s, a)

≤ Cconc, (16)

where µπk is the stationary distribution of (St,k, At,k)t≥1 under πk.

Theorem 4 (Finite-time bounds for Robust NAC). Under Assumptions 1-4 for any k ≥ 1, for any

δ ∈ (0, 1) and T,K > 1, Robust NAC with ρ ≥ maxk ∥Θ⋆
k∥2, bt,k =

(
ukT

log(4T/δ)

) 1
1+p

, learning rates

η =
√
2(1−γ)ρL

1−p
2(1+p)
δ

(max1≤k≤K ukT )
1

1+p
and α =

√
log |A|
ρ
√
K

achieves the following with probability at least 1− δ:

min
1≤k≤K

{Vπ⋆

(λ)− Vπk(λ)} ≤
2ρ

√
log |A|

(1− γ)
√
K

+

√√√√√ ( max
1≤k≤K

uk)
1

1+pCconcρ

(1− γ)3T
p

1+p

(
3L

− 1−p
2(1+p)

δ + 7L
p

1+p

δ

)
,

where Lδ = log(4T/δ).
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The proof of Theorem 4 can be found in Appendix B.
Remark 6 (Sample complexity of Robust NAC). An immediate consequence of Theorem 4 is as
follows: the best iterate error decays at a rate Õ( 1√

K
) + Õ( 1

T
p

2(1+p)
) after K iterations of natural

policy gradient, which contains T steps of Robust TD learning per iteration. As such, in order to
achieve ε > 0 error, one needs T ×K = Õ(ε−2−2(1+p)/p) samples.
Remark 7. Theorem 4 can be easily extended to expected error bounds and the full-rank case, where
we would have Õ(K−1/2 + T−p) by using Theorem 1. By extending the analysis in Theorem 2, one
can prove results for Markovian sampling as well.
Remark 8 (Exploration in Robust NAC). Assumption 4 implies that the stationary state-action
distribution under πk should be sufficiently exploratory so that it should have a nonzero probability at
each state-action pair that is visited by the optimal policy π⋆. This assumption on the exploratory
behavior of policy gradient methods is standard in reinforcement learning literature [1, 57, 34, 63].
Alternatively, entropy regularization can be used for natural policy gradient methods to encourage
exploration, which would imply weaker conditions at the expense of an additional bias term in the
function approximation setting [47, 9].

4 Numerical Results

In this section, we present numerical results for Robust TD learning and its non-robust counterpart.

(1) Randomly-Generated MRP. In the first example, we consider a randomly-generated MRP with
|X| = 256. The transition kernel is randomly generated such that P(x, x′)

iid∼ Unif(0, 1), and row-
wise normalized to obtain a stochastic matrix. The feature dimension is d = 128, random features are
generated according to the χ-squared distribution Φ(x) = Φ0(x)/∥Φ0(x)∥2 with Φ0(x) ∼ N (0, Id)

for all x ∈ X, Θ⋆ ∼ 3U/
√
d for U ∼ Unifd(0, 1) and Ψ = [ Φ⊤(x) ]x∈X. The discount factor is

γ = 0.9, and the reward is Rt(Xt) = r(Xt)+Nt−E[Nt] with Nt
iid∼ Pareto(1, 1.2). Mean squared

error (2) under Robust TD learning and TD learning with the clipping radius bt = t and diminishing
step-size ηt =

1
λmin(1−γ)t in Theorem 1 and projection radius ρ = 30 are shown in Figure 2. Despite

(a) Errors for TD Learning (b) Errors for Robust TD Learning (c) Comparison of the expected errors

Figure 2: Performance of TD learning and Robust TD learning under heavy-tailed rewards of tail
index 1.2. Each faded green line is the MSE for an individual trial, and the solid lines with markers
indicates the average error performance for TD learning and Robust TD learning.

diminishing step-size and projection, TD learning fails miserably often and in expectation due to
the outliers in the reward that lead to extremely large errors (Figure 2a). On the other hand, for the
same feature vectors, state and reward realizations, Robust TD learning effectively eliminates them in
every sample path, and achieves good and consistent performance despite extremely heavy-tailed
reward and gradient noise with tail index 1.2 (Figure 2a).

(2) Circular Random Walk. In this example, we consider a circular random walk for X =
{1, 2, . . . , 256}, where each state x is modulo-|X| [60]. The transition matrix is generated as
P(x, x′) = 1/3 if x = x′ and P(x, x′) = 1/24 if 0 < |x− x′| ≤ 8. The reward and random feature
generation is the same as the first example. The performances of TD learning and Robust TD learning
in this structured case after 1000 trials are given in Figure 3.
A similar behavior as the randomly-generated MRP is observed in this example: due to outliers, TD
learning fails miserably, while Robust TD learning achieves good performance consistently.

9



(a) Errors for TD Learning (b) Errors for Robust TD Learning (c) Comparison of the expected errors

Figure 3: Performances of Robust TD learning and TD learning for the circular random walk under
heavy-tailed reward with tail index 1.2. Each faded green line is the error trajectory for an individual
trial, and the solid lines indicate the expected errors for TD learning and Robust TD learning.

5 Conclusion

In this paper, we considered RL problem with heavy-tailed rewards, and proposed robust TD learning
and NAC variants with a dynamic gradient clipping mechanism with provable performance guarantees,
both in expectation and with high probability. Motivated by the results in this work, it would be
interesting to explore single-timescale robust NAC and off-policy NAC for future work.
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A Proofs for Robust TD Learning

The following lemma will be critical in our proofs.

Lemma 2 (Lemma 4 in [54]). For any two vectors V̂ , V ∈ R|X|,

∥T V̂ − T V ∥µ ≤ γ · ∥V̂ − V ∥µ,
where

(T V )(x) = r(x) + γ
∑
x′∈X

P(x, x′)V (x′), (17)

is the Bellman operator.

Proof of Theorem. 1. The proof follows the Lyapunov approach in [4]. Let L(Θ) = ∥Θ−Θ∗∥22 be
the Lyapunov function for any Θ ∈ Rd. Then, by the non-expansivity of ΠB2(0,ρ), we have:

L(Θ(t+ 1)) ≤ L(Θ(t)) + η2∥gt(Θ(t))∥221{∥gt(Θ(t))∥2 ≤ bt}
− 2ηgt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 ≤ bt}. (18)

Taking conditional expectation given Ft and using the fact that 1{∥gt(Θ(t))∥2 > bt} = 1 −
1{∥gt(Θ(t))∥2 ≤ bt}, we get:

E[L(Θ(t+ 1))|Ft] ≤ L(Θ(t)) + 2ηEt[g
⊤
t (Θ(t))(Θ(t)−Θ⋆)]

− 2ηE[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft] + η2ub1−p
t , (19)

where we used

E[∥gt(Θ(t))∥221{∥gt(Θ(t))∥2 ≤ bt}|Ft] ≤ E[∥gt(Θ(t))∥1+p
2 b1−p

t |Ft],

≤ ub1−p
t ,

(20)

in the last term. Now, for Et[g
⊤
t (Θ(t))(Θ(t)−Θ⋆)], we have the following inequality:

Et[g
⊤
t (Θ(t))(Θ(t)−Θ⋆)] = Et[(Rt + γfΘ(t)(X

′
t)− fΘ(t)(Xt))(fΘ(t)(Xt)− V(Xt))],

= Et

[(
(T fΘ(t))(Xt)− fΘ(t)(Xt)

)(
fΘ(t)(Xt)− V(Xt)

)]
,

where T is the Bellman operator (17). By using the fact that the value function V is the fixed point of
the Bellman operator T , we have the following:

Et[
(
(T fΘ(t))(Xt)− fΘ(t)(Xt)

)(
fΘ(t)(Xt)− V(Xt)

)
]

= Et

[(
T fΘ(t)(Xt)− T V(Xt)

)(
fΘ(t)(Xt)− V(Xt)

)]
− Et

[(
fΘ(t)(Xt)− V(Xt)

)2]
. (21)

By using Lemma 2, we conclude that:

E[g⊤t (Θ(t))(Θ(t)−Θ⋆)] ≤ −(1−γ)
∑
x∈X

µ(x)
(
fΘ(t)(x)−V(x)

)2

= −(1−γ)∥fΘ(t)−V∥2µ. (22)

Then, we can rewrite (19) as follows:

E[L(Θ(t+ 1))|Ft] ≤ L(Θ(t))− 2(1− γ)η∥fΘ(t) − V∥2µ
− 2ηE[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft] + η2ub1−p

t , (23)

The bias introduced by using the gradient clipping can be bounded as follows:

E[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft]

≤ 2ρE[∥gt(Θ(t))∥21{∥gt(Θ(t))∥2 > bt}|Ft], (24)

which follows from Cauchy-Schwarz inequality, triangle inequality and the fact that
max{∥Θ(t)∥2, ∥Θ∗∥2} ≤ ρ due to projection. Using Hölder’s inequality on the RHS of (24),
we obtain:

E[gt(Θ(t))⊤(Θ(t) − Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft] ≤ 2ρu
1

1+p [P(∥gt(Θ(t))∥2 > bt|Ft)]
p

1+p .
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Using Markov’s inequality, we bound the bias due to using the clipped stochastic gradient as:

E[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft] ≤ 2ρub−p
t . (25)

Substituting (25) into (19), and taking expectation over the trajectory Ft, we obtain:

E[L(Θ(t+ 1))− L(Θ(t))] ≤ −2η(1− γ)∥fΘ(t) − V∥2µ + 4ηρub−p
t + η2ub1−p

t .

Telescoping sum over t = 1, 2, . . . , T yields:

EL(Θ(T + 1))− L(Θ(1)) ≤ −2η(1− γ)

T∑
t=1

(
E∥fΘ(t) − V∥2µ

)
+ 4ηρu

∫ T

0

b−p
s ds+ η2u

∫ T

0

b1−p
s ds. (26)

Rearranging the terms, using Jensen’s inequality and L(Θ(1)) ≤ 4ρ2, and substituting the step-size
η yields the result.

(b) For the full-rank case, note that

∥fΘ − V∥2µ = (Θ−Θ⋆)⊤
(∑

x∈X
µ(x)Φ(x)Φ⊤(x)

)
(Θ−Θ⋆),

≥ λmin∥Θ−Θ⋆∥22,

which implies (together with (23)) that:

E∥Θ(t+1)−Θ⋆∥22 ≤ (1−ηtλ(1−γ))∥Θ(t)−Θ⋆∥22−ηt(1−γ)E∥fΘ(t)−V∥2µ+4ηtρub
−p
t +η2t b

1−p
t u.

With the step-size choice ηt =
1

(1−γ)λt , we obtain by induction:

E∥Θ(t+ 1)−Θ⋆∥22 ≤ − 1

λt

t∑
k=1

E∥fΘ(k) − V∥2µ +
4ρu

λmint

t∑
k=1

b−p
k +

u

λ2
mint

t∑
k=1

b1−p
k

k
.

By rearranging the terms and using the integral bound for the summations above, and using the
Jensen’s inequality for the µ-norm, we obtain the result.

Proof of Theorem 2. Let F++
t = σ(Θ(1), . . . ,Θ(t), Xt, Xt+1) and E++

t [·] = E[·|F++
t ]. Also, let

ĝ(Θ) = E++
t gt(Θ),

ḡ(Θ) =
∑

x,x′∈X
µ(x)P(x, x′)(r(x) + γfΘ(x

′)− fΘ(x))Φ(x).

The bias due to Markovian sampling is:

Zt(Θ) =
(
ĝt(Θ)− ḡ(Θ)

)⊤
(Θ−Θ⋆).

With the above definitions, the Lyapunov drift at time t ≥ 1 can be bounded as follows:

E++
t ∥Θ(t+ 1)−Θ⋆∥22 ≤ ∥Θ(t)−Θ⋆∥22 − 2η(1− γ)∥V − fΘ(t)∥2µ + η2E++

t [∥gt(Θ(t))∥22χt]

+ 2ηĝ⊤(Θ(t)−Θ⋆)χ̄t + 2ηZt(Θ(t)),

where χt = 1− χ̄t = 1{∥gt(Θ(t))∥2 ≤ bt}. Compared to the case of iid sampling in Theorem 1, the
difference is Zt(Θ(t)). In the following, we bound EZt(Θ(t)) by using the mixing time analysis in
[4]. First, we provide two essential properties of Zt(Θ) to verify the conditions in Lemma 10 in [4].

Lemma 3. Under Assumption 1, we have:

|Zt(Θ)| ≤ (1 + 2ρ)2, Θ ∈ B2(0, ρ), (27)

|Zt(Θ)− Zt(Θ
′)| ≤ 6(1 + 2ρ)2∥Θ−Θ′∥22, Θ,Θ′ ∈ B2(0, ρ). (28)
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Thus, we have:

EZt(Θ(t)) ≤ E[Zt(Θ(t− τ))] + 6(1 + 2ρ)2E∥Θ(t)−Θ(t− τ)∥2. (29)

We have the following inequality:

∥Θ(t)−Θ(t− τ)∥2 ≤
t−1∑

k=t−τ

∥Θ(k + 1)−Θ(k)∥2 ≤ η

t−1∑
k=t−τ

∥gt(Θ(t))∥2χt.

Taking the expectation above, and using Hölder’s inequality:

E∥Θ(t)−Θ(t− τ)∥2 ≤
t−1∑

k=t−τ

(
E[∥gk(Θ(k))∥1+p

2 ]
) 1

1+p ≤ ητu
1

1+p .

By using the information theoretic bound in Lemma 9 in [4], we obtain

EZt(Θ(t− τ)) ≤ 2(1 + 2ρ)2η,

under the uniform ergodicity assumption in Assumption 1. Using the last two inequalities in (29), we
obtain:

EZt(Θ(t)) ≤ 2(1 + 2ρ)2
(
1 + 6τu

1
1+p

)
η. (30)

By using the above result, we obtain the ultimate inequality for the Lyapunov drift as follows:

E∥Θ(t+1)−Θ⋆∥22 ≤ E∥Θ(t)−Θ⋆∥22−2η(1−γ)E∥V−fΘ(t)∥2µ+η2E[∥gt∥22χt]+4ηρE[∥gt∥2χt]

+ 4η2(1 + 2ρ)2
(
1 + 6τu

1
1+p

)
.

The proof follows from identical steps as Theorem 1.

Proof of Theorem 3. The main idea in the proof is to establish a centering argument for both the bias
(due to using clipped stochastic gradients) and the variability (controlled by bt), and to use martingale
concentration arguments based on Freedman’s inequality and Azuma-Hoeffding inequality to bound
the sample mean for the bias and variability, respectively. This strategy extends the approach in [6]
for robust mean estimation to reinforcement learning, which has a dynamic behavior unlike the mean
estimation problem. Namely, for any t ∈ {1, 2, . . . , T}, we have:

L(Θ(t+ 1)) ≤ L(Θ(t))− 2η(1− γ)∥fΘ(t) − V∥2µ
+ η2E[∥gt(Θ(t))∥221{∥gt(Θ(t))∥2 ≤ bt}|Ft]

+ 2ηB(t) + η2V (t),

where the first line follows from Lemma 2, and

B(t) = −E[gt(Θ(t))⊤(Θ(t)−Θ∗)|Ft] + gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 ≤ bt}, (31)

is the bias term, and

Z(t) = ∥gt(Θ(t))∥221{∥gt(Θ(t))∥2 ≤ bt} − E[∥gt(Θ(t))∥221{∥gt(Θ(t))∥2 ≤ bt}|Ft]

is the variability. By telescoping sum over t = 1, 2, . . . , T and some algebraic manipulations, we
have:

L(Θ(T + 1))

T
− L(Θ(1))

T
≤ −2η(

1

T

T∑
t=1

f(Θ(t))− f(Θ∗))

+η2
u

T

T∑
t=1

b1−p
t +

2η

T

T∑
t=1

B(t) +
η2

T

T∑
t=1

Z(t),

(32)

where we used (20) in the second line. In the following, we will bound the empirical processes
1
T

∑
t=1 Z(t) and 1

T

∑
t=1 B(t).

Note that {Z(t) : t ∈ N} is a martingale difference sequence (MDS) adapted to the filtration
{Ft : t ∈ N}. Furthermore, note that

|Z(t)| ≤ 2b2t ≤ 2b2T ,
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almost surely for any t ≤ T . Thus,
∑n

t=1 V (t)1{n ≤ T} forms a martingale with bounded
differences, and by using Azuma-Hoeffding inequality [55], we have:

1

T

T∑
t=1

Z(t) ≤ bT

√
Lδ

T
=

u
1

1+pT
1−p

2(1+p)

L
1−p

2(1+p)

δ

≤ u
2

1+pT
1−p
1+p

L
1−p
1+p

δ

, (33)

with probability at least 1− δ/2 where the last inequality holds since T > Lδu
− 2

1−p .

We decompose B(t) into predictable and non-predictable components as follows:

B(t) = E[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft] +B0(t), (34)

where the martingale difference sequence B0(t) is defined as follows:

B0(t) = −E[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 ≤ bt}|Ft]

+ gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 ≤ bt}. (35)

By (25) (with bt replaced by bt), the first term on the RHS of (34) is bounded by 2ρuc−p
t,δ . Thus, we

have:
1

T

T∑
t=1

B(t) ≤
2ρu

1
1+pL

p
1+p

δ

T
p

1+p

+
1

T

T∑
t=1

B0(t). (36)

In order to upper bound 1
T

∑T
t=1 B0(t), we use Freedman’s inequality for martingales [12]. To use

Freedman’s inequality, we verify the following conditions.

1. For any t ≤ T , we have:

|gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 ≤ bt}| ≤ 2ρbt ≤ 2ρbt,

almost surely.

2. The normalized quadratic variation process satisfies:

1

T

T∑
t=1

|B0(t)|2

≤ 1

T

T∑
t=1

E[|gt(Θ(t))⊤(Θ(t)−Θ∗)|21{∥gt(Θ(t))∥2 ≤ bt}|Ft],

≤ 4ρ2

T

T∑
t=1

E[∥gt(Θ(t))∥221{∥gt(Θ(t))∥2 ≤ bt}|Ft],

≤ 4ρ2

T

T∑
t=1

ub1−p
t ≤ 4ρ2

u
2

1+pT
1−p
1+p

L
1−p
1+p

δ

,

where the first inequality is due to V ar(Z) ≤ E[Z2] for any random variable Z with a
finite variance, the second inequality follows from Cauchy-Schwarz inequality and triangle
inequality with max{∥Θ(t)∥2, ∥Θ∗∥2} ≤ ρ due to projection, the third inequality follows
from (20) with bt replaced by bt.

Thus, by Freedman’s inequality, we have:

1

T

T∑
t=1

B0(t) ≤
2
√
2ρu

1
1+pL

p
1+p

δ

T
p

1+p

+
4ρLδbt
3T

,

≤ (2
√
2 + 4/3)ρ

u
1

1+pL
p

1+p

δ

T
p

1+p

,
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with probability at least 1− δ/2. Therefore, from (36) and the above inequality, with probability at
least 1− δ/2, we have:

1

T

T∑
t=1

B(t) ≤
7ρu

1
1+pL

p
1+p

δ

T
p

1+p

(37)

Hence, by substituting (33) and (37) into (32) with union bound, and using the specified step-size
together with the facts that L(Θ(1)) ≤ 4ρ2 and L(Θ(T + 1)) ≥ 0, we conclude the proof.

A.1 Finite-Time Analysis of Robust TD Learning without Realizability

In the following, we release the realizability assumption, and show that an additional function
approximation error appears in the bounds for the general case.

Theorem 5 (Performance of Robust TD learning – without realizability). Let

ϵapp = inf
Θ∈B2(0,ρ)

√
E|V(x)− ⟨Θ,Φ(x)⟩|2.

Then, under Assumptions 1 and 2a we have the following bounds for Robust TD learning:

For bt = (ut)
1

1+p for any t ∈ Z+ and ηt = η = 2ρ(1−γ)

(uT )
1

1+p
, we have:

E
Θ(1),Θ(2),...,Θ(T )

x∼µ

[(
V(x)− ⟨Θ̄(T ),Φ(x)⟩

)2]
≤ 6ρu

1
1+p

(1− γ)T
p

1+p

+ (ρ+
1

1− γ
)
2ϵapp
1− γ

, (38)

for any T > 1.

Proof of Theorem 5. Note that we define

Θ⋆ ∈ arg min
Θ∈B2(0,ρ)

E[|V(x)− ⟨Θ,Φ(x)⟩|2].

By (19), we have:

E[L(Θ(t+ 1))|Ft] ≤ L(Θ(t)) + 2ηEt[g
⊤
t (Θ(t))(Θ(t)−Θ⋆)]

− 2ηE[gt(Θ(t))⊤(Θ(t)−Θ∗)1{∥gt(Θ(t))∥2 > bt}|Ft] + η2ub1−p
t , (39)

To eliminate the realizability assumption (Assumption 3), we make the following decomposition:

Et[g
⊤
t (Θ(t))(Θ(t)−Θ⋆)] = Et[(Rt + γfΘ(t)(X

′
t)− fΘ(t)(Xt))(fΘ(t)(Xt)− ⟨Θ⋆,Φ(Xt)⟩)],

= Et

[(
(T fΘ(t))(Xt)− fΘ(t)(Xt)

)(
fΘ(t)(Xt)− ⟨Θ⋆,Φ(Xt)⟩

)]
,

= Et

[(
(T fΘ(t))(Xt)− fΘ(t)(Xt)

)(
fΘ(t)(Xt)− V(Xt)

)]
+ Et

[(
(T fΘ(t))(Xt)− fΘ(t)(Xt)

)(
V(Xt)− ⟨Θ⋆,Φ(Xt)⟩

)]
.

Note that the last term corresponds to the approximation error, and we can bound its expectation as:

E
[(

(T fΘ(t))(Xt)− fΘ(t)(Xt)
)(

V(Xt)− ⟨Θ⋆,Φ(Xt)⟩
)]

≤ (1− γ + 1)∥V − fΘ(t)∥µ · ϵapp.

Since |V(x)| ≤ 1
1−γ and |fΘ(t)(x)| ≤ ρ for all x, and γ ∈ (0, 1), we have:

E
[(

(T fΘ(t))(Xt)− fΘ(t)(Xt)
)(

V(Xt)− ⟨Θ⋆,Φ(Xt)⟩
)]

≤ 2(ρ+
1

1− γ
)ϵapp,

for any t. Using this result, and following identical steps as Theorem 1 with the same step-size yields
the result.
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B Proofs for Robust Natural Actor-Critic

Proof of Theorem 4. We use the following Lyapunov function for the analysis [1, 57, 34]:

L(π) =
∑
s∈S

dπ
⋆

λ (s)
∑
a∈A

π⋆(a|s) log π⋆(a|s)
π(a|s)

. (40)

For the Lyapunov drift, at any iteration k, we have:

L(πk+1)− L(πk) =
∑
s,a

dπ
⋆

λ (s)π⋆(a|s) log πk(a|s)
πk+1(a|s)

. (41)

Since sups,a ∥Φ(s, a)∥2 ≤ 1, ∇W log πW (a|s) is 1-Lipschitz continuous [1]. Thus, we have:

| log πk+1(a|s)−log πk(a|s)−∇⊤ log πk(a|s)(W (k+1)−W (k))| ≤ 1

2
∥W (k+1)−W (k)∥22. (42)

Since W (k + 1) = W (k) + αΘ̄k(T ), we have:

L(πk+1)− L(πk) ≤
η2

2
∥Θ̄k(T )∥22 − η · dπ

⋆

λ (s)π⋆(a|s)∇⊤ log πk(a|s)Θ̄k(T ). (43)

By performance difference lemma [26], we have:

Vπ(s)− Vπ′
(s) =

1

1− γ
E

s∼dπλ
a∼π(·|s)

[Aπ′
(s, a)]. (44)

Using the last two inequalities, we have the drift inequality:

L(πk+1)−L(πk) ≤
η2

2
∥Θ̄k(T )∥22 − η

∑
s,a

dπ
⋆

λ (s)π⋆(a|s)
(
∇⊤ log πk(a|s)Θ̄k(T )−Aπk(s, a)

)
− η

(
Vπ⋆

(λ)− Vπk(λ)
)
.

For the log-linear policy parameterization, we have

∇ log πW (a|s) = Φ(s, a)−
∑
a′∈A

πW (a′|s)Φ(s, a′).

Also, from the definition of Aπ(s, a) = Qπ(s, a)−
∑

a′∈A π(a′|s)Qπ(s, a′),

E
[(

∇⊤ log πk(a|s)Θ̄k(T )−Aπk(s, a)
)2]

≤ E
[(

⟨Φ(s, a), Θ̄k(T )⟩ − Qπk(s, a)
)2]

,

=
∑
s,a

dπ
⋆

λ (s)π⋆(a|s)
(
⟨Φ(s, a), Θ̄k(T )⟩ − Qπk(s, a)

)2

,

≤ Cconc

∑
s,a

µπk(s, a)
(
⟨Φ(s, a), Θ̄k(T )⟩ − Qπk(s, a)

)2

,

where the first line follows from the fact that V ar(X) ≤ E[X2] for any random variable X with
finite second-order moments, and the last line follows from a change of measure argument. Then, by
Theorem 3, we have:∑

s,a

µπk(s, a)
(
⟨Φ(s, a), Θ̄k(T )⟩ − Qπk(s, a)

)2

≤
ρu

1
1+p

k

(1− γ)T
p

1+p

(
3L

− 1−p
2(1+p)

δ + 7L
p

1+p

δ

)
,

with probability at least 1− δ/K. Furthermore, we have:
∥Θ̄k(T )∥22 ≤ ρ2,

for any k, T by the projection. As such, we can bound the drift inequality as follows:

L(πk+1)− L(πk) ≤
η2

2
ρ2 + η

√√√√
Cconc

ρu
1

1+p

k

(1− γ)T
p

1+p

(
3L

− 1−p
2(1+p)

δ + 7L
p

1+p

δ

)
− η(1− γ)

(
Vπ⋆

(λ)− Vπk(λ)
)
, (45)

with probability at least 1−δ/K. By telescoping sum of the above inequality, using union bound, and
noting that π0(a|s) = 1

|A| for any s, a, which leads to L(π1) = log |A|, we conclude the proof.
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