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ABSTRACT

We propose Deep Autoencoding Predictive Components (DAPC) – a self-
supervised representation learning method for sequence data, based on the intu-
ition that useful representations of sequence data should exhibit a simple structure
in the latent space. We encourage this latent structure by maximizing an estimate
of predictive information of latent feature sequences, which is the mutual infor-
mation between the past and future windows at each time step. In contrast to
the mutual information lower bound commonly used by contrastive learning, the
estimate of predictive information we adopt is exact under a Gaussian assump-
tion. Additionally, it can be computed without negative sampling. To reduce the
degeneracy of the latent space extracted by powerful encoders and keep useful
information from the inputs, we regularize predictive information learning with a
challenging masked reconstruction loss. We demonstrate that our method recovers
the latent space of noisy dynamical systems, extracts predictive features for fore-
casting tasks, and improves automatic speech recognition when used to pretrain
the encoder on large amounts of unlabeled data. 1

1 INTRODUCTION

Self-supervised representation learning methods aim at learning useful and general representations
from large amounts of unlabeled data, which can reduce sample complexity for downstream su-
pervised learning. These methods have been widely applied to various domains such as computer
vision (Oord et al., 2018; Hjelm et al., 2018; Chen et al., 2020; Grill et al., 2020), natural lan-
guage processing (Peters et al., 2018; Devlin et al., 2019; Brown et al., 2020), and speech process-
ing (Schneider et al., 2019; Pascual et al., 2019b; Chung & Glass, 2020; Wang et al., 2020; Baevski
et al., 2020). In the case of sequence data, representation learning may force the model to recover
the underlying dynamics from the raw data, so that the learnt representations remove irrelevant vari-
ability in the inputs, embed rich context information and become predictive of future states. The
effectiveness of the representations depends on the self-supervised task which injects inductive bias
into learning. The design of self-supervision has become an active research area.

One notable approach for self-supervised learning is based on maximizing mutual information be-
tween the learnt representations and inputs. The most commonly used estimate of mutual informa-
tion is based on contrastive learning. A prominant example of this approach is CPC (Oord et al.,
2018), where the representation of each time step is trained to distinguish between positive samples
which are inputs from the near future, and negative samples which are inputs from distant future or
other sequences. The performance of contrastive learning heavily relies on the nontrivial selection
∗Work done during an internship at Salesforce Research.
†Work done while Weiran Wang was with Salesforce Research.
1Code is available at https://github.com/JunwenBai/DAPC.
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of positive and negative samples, which lacks a universal principle across different scenarios (He
et al., 2020; Chen et al., 2020; Misra & Maaten, 2020). Recent works suspected that the mutual
information lower bound estimate used by contrastive learning might be loose and may not be the
sole reason for its success (Ozair et al., 2019; Tschannen et al., 2019).

In this paper, we leverage an estimate of information specific to sequence data, known as predictive
information (PI, Bialek et al., 2001), which measures the mutual information between the past and
future windows in the latent space. The estimate is exact if the past and future windows have a
joint Gaussian distribution, and is shown by prior work to be a good proxy for the true predictive
information in practice (Clark et al., 2019). We can thus compute the estimate with sample windows
of the latent sequence (without sampling negative examples), and obtain a well-defined objective for
learning the encoder for latent representations. However, simply using the mutual information as the
learning objective may lead to degenerate representations, as PI emphasizes simple structures in the
latent space and a powerful encoder could achieve this at the cost of ignoring information between
latent representations and input features. To this end, we adopt a masked reconstruction task to
enforce the latent representations to be informative of the observations as well. Similar to Wang
et al. (2020), we mask input dimensions as well as time segments of the inputs, and use a decoder
to reconstruct the masked portion from the learnt representations; we also propose variants of this
approach to achieve superior performance.

Our method, Deep Autoencoding Predictive Components (DAPC), is designed to capture the above
intuitions. From a variational inference perspective, DAPC also has a natural probabilistic interpre-
tation. We demonstrate DAPC on both synthetic and real datasets of different sizes from various
domains. Experimental results show that DAPC can recover meaningful low dimensional dynamics
from high dimensional noisy and nonlinear systems, extract predictive features for forecasting tasks,
and obtain state-of-the-art accuracies for Automatic Speech Recognition (ASR) with a much lower
cost, by pretraining encoders that are later finetuned with a limited amount of labeled data.

2 METHOD
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Figure 1: The overall framework of DAPC.

The main intuition behind Deep Autoen-
coding Predictive Components is to max-
imize the predictive information of la-
tent representation sequence. To en-
sure the learning process is tractable and
non-degenerate, we make a Gaussian as-
sumption and regularize the learning with
masked reconstruction. In the following
subsections, we elaborate on how we es-
timate the predictive information and how
we design the masked reconstruction task.
A probabilistic interpretation of DAPC is
also provided to show the connection to
deep generative models.

2.1 PREDICTIVE INFORMATION

Given a sequence of observations X = {x1, x2, ...} where xi ∈ Rn, we extract the corresponding
latent sequence Z = {z1, z2, ...} where zi ∈ Rd with an encoder function e(X), e.g., recurrent
neural nets or transformers (Vaswani et al., 2017).2 Let T > 0 be a fixed window size, and de-
note Zpast

t = {zt−T+1, ..., zt}, Zfuture
t = {zt+1, ..., zt+T } for any time step t. The predictive

information (PI) is defined as the mutual information (MI) between Zpast
t and Zfuture

t :

MI(Zpast
t , Zfuture

t ) = H(Zpast
t ) +H(Zfuture

t )−H(Zpast
t , Zfuture

t ) (1)

2In this work, the latent sequence has the same length as the input sequence, but this is not an restriction; one
can have a different time resolution for the latent sequence, using sub-sampling strategies such as that of Chan
et al. (2016).
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where H is the entropy function. Intuitively, PI measures how much knowing Zpast
t reduces the

uncertainty about Zfuture
t (and vice versa). PI reaches its minimum value 0 if Zpast

t and Zfuture
t

are independent, and it is maximized if Zfuture
t is a deterministic function of Zpast

t . Different from
the MI estimate used by contrastive learning, which measures the MI between representation at each
single time step and its future inputs, predictive information measures the MI between two windows
of T time steps collectively. The window size T used in PI estimation reflects the time resolution
for which the time series is more or less stationary.

PI was designed as a general measure of the complexity of underlying dynamics which persists for a
relatively long period of time (Li & Vitányi, 2008). Furthermore, PI is aware of temporal structures:
different dynamics could lead PI to converge or diverge even if they look similar. These virtues of
PI contribute to the versatility of this measure. The use of PI beyond a static complexity measure
(and as a learning objective) is done only recently in machine learning by Clark et al. (2019), which
proposes to learn a linear dimensionality reduction method named Dynamical Component Analysis
(DCA) to maximize the PI of the projected latent sequence.

One approach for estimating PI is through estimating the joint density P (Zpast
t , Zfuture

t ), which can
be done by density estimation methods such as k-NN and binning (Dayan & Abbott, 2001; Kraskov
et al., 2004). However, such estimates heavily rely on hyperparameters, and it is more challenging
to come up with differentiable objectives based on them that are compatible with deep learning
frameworks. Our approach for estimating PI is the same as that of DCA. Assume that every 2T
consecutive time steps {zt−T+1, ..., zt, ..., zt+T } in the latent space form a stationary, multivariate
Gaussian distribution. Σ2T (Z) is used to denote the covariance of the distribution, and similarly
ΣT (Z) the covariance of T consecutive latent steps. Under the stationarity assumption, H(Zpast

t )
remains the same for any t so we can omit the subscript t, and H(Zpast) is equal to H(Zfuture) as
well. Using the fact that H(Zpast) = 1

2 ln(2πe)dT |ΣT (Z)|, PI for the time series z reduces to

IT = MI(Zpast, Zfuture) = ln |ΣT (Z)| − 1

2
ln |Σ2T (Z)|. (2)

Detailed derivations can be found in Appendix A. It is then straightforward to collect samples of the
consecutive 2T -length windows and compute the sample covariance matrix for estimating Σ2T (Z).
An empirical estimate of ΣT (Z) corresponds to the upper left sub-matrix of Σ2T (Z). Recall that,
under the Gaussian assumption, the conditional distribution P (Zfuture|Zpast) is again Gaussian,
whose mean is a linear transformation of Zpast. Maximizing IT has the effect of minimizing the
entropy of this conditional Gaussian, and thus reducing the uncertainty of future given past.

Though our estimation formula for PI is exact only under the Gaussian assumption, it was observed
by Clark et al. (2019) that the Gaussian-based estimate is positively correlated with a computation-
ally intensive estimate based on non-parametric density estimate, and thus a good proxy for the full
estimate. We make the same weak assumption, so that optimizing the Gaussian-based estimate im-
proves the true PI. Our empirical results show that representations learnt with the Gaussian PI have
strong predictive power of future (see Sec 4.2). Furthermore, we find that a probabilistic version of
DAPC (described in Sec 2.3) which models (Zpast, Zfuture) with a Gaussian distribution achieves
similar performance as this deterministic version (with the Gaussian assumption).

We now describe two additional useful techniques that we develop for PI-based learning.

Multi-scale PI One convenient byproduct of this formulation and estimation for IT is to reuse
Σ2T (Z) for estimating IT/2, IT/4 and so on, as long as the window size is greater than 1. Since the
upper left sub-matrix of Σ2T (Z) approximates ΣT (Z), we can extract ΣT (Z) from Σ2T (Z) without
any extra computation, and similarly for ΣT/2(Z). We will show that multi-scale PI, which linearly
combines PI at different time scales, boosts the representation quality in ASR pretraining.

Orthogonality penalty Observe that the PI estimate in (2) is invariant to invertible linear trans-
formations in the latent space. To remove this degree of freedom, we add the penalty to encour-
age latent representations to have identity covariance, so that each of the d latent dimensions will
have unit scale and different dimensions are linearly independent and thus individually useful. This
penalty is similar to the constraint enforced by deep canonical correlation analysis (Andrew et al.,
2013), which was found to be useful in representation learning (Wang et al., 2015).

3



Published as a conference paper at ICLR 2021

2.2 MASKED RECONSTRUCTION AND ITS SHIFTED VARIATION

The PI objective alone can potentially lead to a degenerate latent space, when the mapping from
input sequence to latent sequence is very powerful, as the latent representations can be organized
in a way that increases our PI estimate at the cost of losing useful structure from the input. This
is also observed empirically in our experiments (see Sec 4.1). To regularize PI-based learning, one
simple idea is to force the learnt latent representations to be informative of the corresponding input
observations. For this purpose, we augment PI-based learning with a masked reconstruction task.

Masked reconstruction was first proposed in BERT (Devlin et al., 2019), where the input text is fed
to a model with a portion of tokens masked, and the task is to reconstruct the masked portion. Wang
et al. (2020) extended the idea to continuous vector sequence data (spectrograms). The authors
found that randomly masking input dimensions throughout the sequence yields further performance
gain, compared to masking only consecutive time steps. We adopt their formulation in DAPC to
handle continuous time series data.

Given an input sequence X of length L and dimensionality n, we randomly generate a binary mask
M ∈ Rn×L, where Mi,j = 0 indicates Xi,j is masked with value 0 and Mi,j = 1 indicates Xi,j is
kept the same. We feed the masked inputs to the encoder e(·) to extract representations (in Rd) for
each time step, and use a feed-forward network g(·) to reconstruct the masked input observations.
e(·) and g(·) are trained jointly. The masked reconstruction objective can be defined as

R = ||(1−M)� (X − g(e(X �M)))||2fro. (3)

Figure 1 gives an illustration for the masked spectrogram data. We randomly generate nT time
masks each with width up to wT , and similarly nF frequency masks each with width up to wF .
In our experiments, we observe that input dimension masking makes the reconstruction task more
challenging and yields higher representation quality. Therefore, this strategy is useful for general
time series data beyond audio.

We introduce one more improvement to masked reconstruction. Standard masked reconstruction
recovers the masked inputs for the same time step. Inspired by the success of Autoregressive Pre-
dictive Coding (Chung & Glass, 2020), we propose a shifted variation of masked reconstruction,
in which the latent state zi is decoded to reconstruct a future frame xi+s (than xi). Formally, the
shifted masked reconstruction loss Rs is defined as

Rs = ||(1−M→s)� (X→s − g(e(X �M)))||2fro (4)

where → s indicates right-shifting s time frames while the input dimensions remain unchanged.
When s = 0, Rs reduces to the standard masked reconstruction objective, and in the ASR experi-
ments we find that a nonzero s value helps. We ensure no information leakage by enforcing that the
portion to be reconstructed is never presented in the inputs. As indicated by Chung et al. (2019b),
predicting a future frame encourages more global structure and avoids the simple inference from
local smoothness in domains like speech, and therefore helps the representation learning.

To sum up, our overall loss function is defined as the combination of the losses described above:

min
e,g

Ls,T (X) =− (IT + αIT/2) + βRs + γRortho (5)

where α, β, γ are tradeoff weights and Rortho = ||Σ1 − Id||2fro is the orthonormality penalty dis-
cussed in Sec. 2.1, with Σ1 ∈ Rd×d corresponding to the top left sub-matrix of Σ2T estimated from
the latent sequence Z = e(X �M). The whole framework of DAPC is illustrated in Figure 1.

2.3 A PROBABILISTIC INTERPRETATION OF DAPC

We now discuss a probabilistic interpretation of DAPC in the Variational AutoEncoder (VAE) frame-
work (Kingma & Welling, 2014). Let X = (Xp, Xf ) and Z = (Zp, Zf ), where the subscripts p
and f denote past and future respectively. Consider a generative model, where the prior distribution
is p(Zp, Zf ) ∼ N (0,Σ). One can write down explicitly p(Zf |Zp), which is a Gaussian with

µf |p = Σf,pΣ−1
p,pZp, Σf |p = Σff − Σf,pΣ−1

p,pΣp,f .

The linear dynamics in latent space are completely defined by the covariance matrix Σ. Large
predictive information implies low conditional entropy H(Zf |Zp).
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Let (Zp, Zf ) generate (Xp, Xf ) with a stochastic decoder g(X|Z). We only observe X and would
like to infer the latent Z by maximizing the marginal likelihood of X . Taking a VAE approach, we
parameterize a stochastic encoder e(Z|X) for the approximate posterior, and derive a lower bound
for the maximum likelihood objective. Different from standard VAE, here we would not want to
parameterize the prior to be a simple Gaussian, in which case the Zp and Zf are independent and
have zero mutual information. Instead we encourage the additional structure of high predictive
information for the prior. This gives us an overall objective as follows:

min
Σ,e,g

∫
p̂(X)

{∫
− e(Z|X) log g(X|Z)dz +KL(e(Z|X)||p(Z))

}
dx− ηIT (Σ)

where p̂(X) is the empirical distribution over training data, the first term corresponds to the recon-
struction loss, the second term measures the KL divergence between approximate posterior and the
prior, and the last term is the PI defined in (2).

The challenge is how to parameterize the covariance Σ. We find that simply parameterizing it as a
positive definite matrix, e.g., Σ = AAT , does not work well in our experiments, presumably because
there is too much flexibility with such a formulation. What we find to work better is the pseudo-input
technique discussed in VampPrior (Tomczak & Welling, 2018): given a set of pseudo-sequences X∗
which are learnable parameters (initialized with real training sequences), we compute the sample
covariance from e(Z|X∗) as Σ.

This approach yields an overall objective very similar to (5), with the benefit of a well-defined
generative model (and the Gaussian assumption being perfectly satisfied), which allows us to borrow
learning/inference techniques developed in the VAE framework. For example, masking the input
for the encoder can be seen as amortized inference regularization (Shu et al., 2018). We show
experimental results on this probabilistic DAPC in Appendix B and C. In general, probabilistic
DAPC performs similarly to the deterministic counterpart, though the training process is more time
and memory intensive. On the other hand, these empirical results show that deviating from the
Gaussian assumption, as is the case for deterministic DAPC, does not cause significant issues for
representation learning in practice if proper regularization is applied.

Related to this interpretations are VAE-base sequential models (Chung et al., 2015; Hsu et al., 2017;
Li & Mandt, 2018) that also use reconstruction and enforce different structures/dynamics in the
latent space. Most of them are designed for the purpose of generating high quality sequence data,
while the qualities of their latent representations are mostly not shown for downstream tasks.

3 RELATED WORK

Mutual information (MI) maximization is a principal approach for representation learning (Bell &
Sejnowski, 1995), where the objective is to maximize the MI estimate between learnt representations
and inputs. The currently dominant approach for estimating MI is based on contrastive learning. For
sequence data, CPC (Oord et al., 2018) uses representations at current time as a classifier to discrim-
inate inputs of nearby frames (positive samples) from inputs of far-away steps or inputs from other
sequences (negative samples) with a cross-entropy loss; this leads to the noise-contrastive estimation
(NCE, Gutmann & Hyvärinen, 2010). Deep InfoMax (DIM, (Hjelm et al., 2018)) generalizes the
NCE estimator with a few variants, and proposes to maximize MI between global summary features
and local features from intermediate layers (rather than the inputs as in CPC). SimCLR (Chen et al.,
2020) extends the contrastive loss to use a nonlinear transformation of the representation (than the
representation itself) as a classifier for measuring MI. Contrastive Multiview Coding (Tian et al.,
2019) generalizes the contrastive learning frame to multiple views. Momentum Contrast (He et al.,
2020) saves memory with a dynamic dictionary and momentum encoder.

Meanwhile, there have been concerns about the contrastive learning framework. One concern is that
postive and negative sample selection is sometimes time and memory consuming. To address this
issue, BYOL (Grill et al., 2020) proposes to get rid of negative samples by learning a target network
in an online fashion and gradually bootstrapping the latent space. Another concern is regarding the
MI estimation. Though contrastive learning has an MI backbone, Tschannen et al. (2019) suggests
that the inductive bias of the feature extractor and parametrization of estimators might contribute
more than the MI estimate itself. Ozair et al. (2019); McAllester & Stratos (2020) raise the concern
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Figure 2: Left panel. Top: the ground-truth 3D Lorenz attractor. Middle: the 30D non-linearly
lifted trajectory. Bottom: corrupted 30D trajectory by white noise with SNR=0.3. Right Panel. 3D
trajectories extracted by different methods for three SNR levels: 0.3, 1.0, 5.0.

that the MI lower bound used by contrastive learning might be too loose, and propose to use an
estimate based on Wasserstein distance.

Unlike prior work, our principle for sequence representation learning is to maximize the MI between
past and future latent representations, rather than the MI between representations and inputs (or shal-
low features of inputs). Partially motivated by the above concerns, our mutual information estimate
requires no sampling and is exact for Gaussian random variables. To keep useful information from
input, we use a masked reconstruction loss which has been effective for sequence data (text and
speech), with an intuition resembling that of denoising autoencoders (Vincent et al., 2010).

Note that by the data processing inequality, methods that maximize mutual information between
current representation and future inputs also implicitly maximizes an upper bound of mutual in-
formation between high level representations, since MI(Zpast, Zfuture) ≤ MI(Zpast, Xfuture).
Our method explicitly maximizes the mutual information between high level representations itself,
while having another regularization term (masked reconstruction) that maximizes information be-
tween current input and current representations. Our results indicate that explicitly modeling the
trade-off between the two can be advantageous.

In the audio domain where we will demonstrate the applicability of our method, there has been sig-
nificant interest in representation learning for reducing the need for supervised data. Both contrastive
learning based (Schneider et al., 2019; Baevski et al., 2019; Jiang et al., 2019) and reconstruction-
based (Chorowski et al., 2019; Chung et al., 2019a; Song et al., 2019; Wang et al., 2020; Chung &
Glass, 2020; Ling et al., 2020; Liu et al., 2020) methods have been studied, as well as methods that
incorporate multiple tasks (Pascual et al., 2019a; Ravanelli et al., 2020). Our work promotes the use
of a different MI estimate and combines different intuitions synergistically.

4 EXPERIMENTS

4.1 NOISY LORENZ ATTRACTOR

Lorenz attractor (“butterfly effect”, see Appendix B) is a 3D time series depicting a chaotic sys-
tem (Pchelintsev, 2014), as visualized in Figure 2. We design a challenging dimension reduction
task for recovering the Lorenz attractor from high dimensional noisy measurements. We first lift the
3D clean signals to 30D with a neural network of 2 hidden layers, each with 128 elu units (Clevert
et al., 2015). This lifting network has weights and biases drawn randomly from N (0, 0.2). In addi-
tion, we corrupt the 30D lifted signals with white noise to obtain three different signal-to-noise ratio
(SNR) levels, 0.3, 1.0, and 5.0, and use the noisy 30D measurements (see bottom left of Figure 2)
as input for representation learning methods to recover the true 3D dynamics.

We generate a long Lorenz attractor trajectory using the governing differential equations, and chunk
the trajectory into segments of 500 time steps. We use 250, 25 and 25 segments for training, val-
idation, and test splits respectively. After the model selection on the validation split based on the
R2 regression score which measures the similarity between recovered and ground truth trajectories,
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Figure 3: Different models’ R2 score improvements over PCA for three forecasting tasks, each with
three different lag values. Left: temperature. Middle: dorsal hippocampus. Right: motor cortex.

Table 1: The R2 scores for full reconstruction (FR), full reconstruction with PI (FR+PI), masked
reconstruction (MR) and DAPC (MR+PI). We also demonstrate the improvements in percentage
brought by adding PI. On average, PI improves full reconstruction by 4.09% and masked recon-
struction by 17.22%. Additionally, in the last column, we show PI objective alone is not powerful
enough to learn predictive components (R2 scores are low).

dataset lag FR FR+PI Improvement MR MR+PI Improvement PI only

Temp
5 0.721 0.725 0.58% 0.705 0.724 2.68% 0.698

10 0.672 0.685 1.99% 0.672 0.691 2.85% 0.645
15 0.675 0.686 1.64% 0.673 0.707 4.99% 0.632

HC
5 0.252 0.260 3.24% 0.251 0.304 21.25% 0.169

10 0.222 0.231 4.46% 0.222 0.271 21.72% 0.137
15 0.183 0.194 5.97% 0.205 0.232 13.28% 0.085

M1
5 0.390 0.405 4.03% 0.352 0.519 47.45% 0.239

10 0.372 0.394 5.83% 0.369 0.422 14.64% 0.156
15 0.268 0.293 9.10% 0.241 0.304 26.10% 0.076

our model is applied to the test split. The optimal model uses T = 4, s = 0, α = 0, γ = 0.1, and
β = 0.1 is set to balance the importance of PI and the reconstruction error.

We compare DAPC to representative unsupervised methods including DCA (Clark et al., 2019),
CPC (Oord et al., 2018), pure PI learning which corresponds to DAPC with β = 0, and masked
reconstruction (MR, Wang et al., 2020) which corresponds to DAPC without the PI term. Except
for DCA which corresponds to maximizing PI with a linear feedforward network, the other methods
use bidirectional GRUs (Chung et al., 2014) for mapping the inputs into feature space (although uni-
GRU performs similarly well). A feedforward DNN is used for reconstruction in MR and DAPC.

We show the latent representations of different methods in Figure 2 (right panel). DCA fails com-
pletely since its encoder network has limited capacity to invert the nonlinear lifting process. CPC
is able to recover the 2 lobes, but the recovered trajectory is chaotic. Maximizing PI alone largely
ignores the global structure of the data. MR is able to produce smoother dynamics for high SNRs,
but its performance degrades quickly in the noisier scenarios. DAPC recovers a latent representa-
tion which has overall similar shapes to the ground truth 3D Lorenz attractor, and exhibits smooth
dynamics enforced by the PI term. In Appendix B, we provide the R2 scores for different methods.
These results quantitatively demonstrate the advantage of DAPC across different noise levels.

4.2 FORECASTING WITH LINEAR REGRESSION

We then demonstrate the predictive power of learnt representations in downstream forecasting tasks
on 3 real-world datasets used by Clark et al. (2019), involving multi-city temperature time series data
(Temp, Beniaguev (2017)), dorsal hippocampus study (HC, Glaser et al. (2020)), and motor cortex
(M1, O’Doherty et al. (2018)). For each model, unsupervised representation learning is performed
on the training set with a uni-directional GRU, which prevents information leakage from the future.
After that, we freeze the model and use it as a feature extractor. The representations at each time
step are used as inputs for predicting the target at a future time step. As an example, we can extract
a representation for today’s weather based on past weather only (as the encoder is uni-directional),
and use it to predict future temperature which is lag days away (a larger lag generally leads to
a more difficult forecasting task). Following Clark et al. (2019), the predictor from the extracted
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feature space to the target is a linear mapping, trained on samples of paired current feature and
future target, using a least squares loss. We use the same feature dimensionality as in their work, for
each dataset. These forecasting tasks are evaluated by the R2 regression score, which measures the
linear predictability. More details can be found in Appendix C.

Besides DCA, CPC and MR, we further include PCA and SFA (Wiskott & Sejnowski, 2002) (similar
to DCA with T = 1 for PI estimation), which are commonly used linear dimension reduction
methods in these fields. PCA serves as the baseline and we report R2 score improvements from
other methods. Figure 3 gives the performances of different methods for the three datasets, with three
different lags (the number of time steps between current and future for the forecasting task): 5, 10,
and 15. DAPC consistently outperforms the other methods. In Table 1, we show how PI helps DAPC
improve over either full reconstruction (e.g., classical auto-encoder) or masked reconstruction, and
how reconstruction losses help DAPC improve over PI alone on this task. These results demonstrate
that the two types of losses, or the two types of mutual information (MI between input and latent,
and MI between past and future) can be complementary to each other.

4.3 PRETRAINING FOR AUTOMATIC SPEECH RECOGNITION (ASR)

A prominent usage of representation learning in speech processing is to pretrain the acoustic model
with an unsupervised objective, so that the resulting network parameters serve as a good initial-
ization for the supervised training phase using labeled data (Hinton et al., 2012). As supervised
ASR techniques have been improved significantly over the years, recent works start to focus on
pre-training with large amounts of unlabeled audio data, followed by finetuning on much smaller
amounts of supervised data, so as to reduce the cost of human annotation.

We demonstrate different methods on two commonly used speech corpora for this setup: Wall Street
Journal (Paul & Baker, 1992) and LibriSpeech (Panayotov et al., 2015). For WSJ, we pretrain on
si284 partition (81 hours), and finetune on si84 partition (15 hours) or the si284 partition itself. For
Librispeech, we pretrain on the train 960 partition (960 hours) and finetune on the train clean 100
partition (100 hours). Standard dev and test splits for each corpus are used for validation and testing.

In the experiments, we largely adopt the transformers-based recipe from ESPnet (Watanabe et al.,
2018), as detailed in Karita et al. (2019), for supervised finetuning. We provide the details regarding
model architecture and data augmentation in Appendix D. Note that we have spent effort in building
strong ASR systems, so that our baseline (without pretraining) already achieves low WERs and
improving over it is non-trivial. This can be seen from the result table where our baseline is often
stronger than the best performance from other works. In the pretraining stage, we pretrain an encoder
of 14 transformer layers, which will be used to initialize the first 14 layers of ASR model. For
masked reconstruction, we use 2 frequency masks as in finetuning, but found more time masks
can improve pretraining performance. We set the number of time masks to 4 for WSJ, and 8 for
LibriSpeech which has longer utterances on average.

The hyperparameters we tune include T, s, α, β and γ from our learning objective. We select hy-
perparameters which give the best dev set WER, and report the corresponding test set WER. In the
end, we use T = 4 for estimating the PI term, γ = 0.05, β = 0.005 and set s = 2 for WSJ and
s = 1 for LibriSpeech if we use shifted reconstruction. Since the pretraining objective is a proxy
for extracting the structure of data and not fully aligned with supervised learning, we also tune the
number of pretraining epochs, which is set to 5 for WSJ and 1 for LibriSpeech. Other parameters
will be shown in the ablation studies presented in Appendix D.

We perform an ablation study for the effect of different variants of DAPC (MR+PI) on the WSJ
dataset, and give dev/test WERs in Table 2. We tune the hyperparameters for multi-scale PI and
shifted reconstruction for the 15-hour finetuning setup, and observe that each technique can lead to
further improvement over the basic DAPC, while combining them delivers the best performance.
The same hyperparameters are used for the 81-hour finetuning setup, and we find that with more
supervised training data, the baseline without pretraining obtains much lower WERs, and pure
masked reconstruction only slightly improves over the baseline, while the strongest DAPC variant
still achieves 7.9% and 11.7% relative improvements on dev93 and eval92 respectively.

In Table 3, we provide a more thorough comparison with other representation learning methods on
the LibriSpeech dataset. We compare with CPC-type mutual information learning methods including
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Table 2: Ablation study on different variants
of DAPC. We give WERs (%) of ASR mod-
els pretrained with different variants on WSJ.
Models are pretrained on 81 hours, and fine-
tuned on either 15 hours or 81 hours. All re-
sults are averaged over 3 random seeds.

Methods dev93 eval92
Finetune on 15 hours

w.o. pretrain 12.91±0.36 8.98±0.44
PI only 12.54±0.32 9.02±0.43

MR 12.27±0.23 8.15±0.34
DAPC 12.31±0.36 7.74±0.20

DAPC +
multi-scale PI 12.15±0.35 7.64±0.15

DAPC +
shifted recon 11.93±0.16 7.68±0.05

DAPC + both 11.57±0.22 7.34±0.13
Finetune on 81 hours

w.o. pretrain 6.34±0.13 3.94±0.33
MR 6.24±0.14 3.84±0.09

DAPC 5.90±0.16 3.58±0.08
DAPC + both 5.84±0.04 3.48±0.08

Table 3: WERs (%) obtained by ASR models pre-
trained with different representation learning meth-
ods on the test clean partition of Librispeech. Mod-
els are pretrained on 960h unlabeled data and fine-
tuned on 100h labeled data. Our results are averaged
over 3 random seeds.

Methods WER (%)
wav2vec (Schneider et al.,

2019) 6.92

discrete BERT+vq-wav2vec
(Baevski et al., 2019) 4.5

wav2vec 2.0 (Baevski et al.,
2020) 2.3

DeCoAR (Ling et al., 2020) 6.10
TERA-large (Liu et al., 2020) 5.80

MPE (Liu & Huang, 2020) 9.68
Bidir CPC (Kawakami et al.,

2020) 8.70

w.o. pretrain 5.11±0.20
MR 5.02±0.09

DAPC 4.86±0.08
DAPC+multi-scale PI+shifted

recon 4.70±0.02

wav2vec (Schneider et al., 2019), vq-wav2vec which performs CPC-type learning with discrete
tokens followed by BERT-style learning (Baevski et al., 2019), and wav2vec 2.0 which incorporates
masking into contrastive learning (Baevski et al., 2020). We also compare with two reconstruction-
type learning approaches DeCoAR (Ling et al., 2020) and TERA (Liu et al., 2020); comparisons
with more methods are given in Appendix D. Observe that DAPC and its variant achieve lower WER
than MR: though our baseline is strong, DAPC still reduces WER by 8%, while MR only improves
by 1.76%. This shows the benefit of PI-based learning in addition to masked reconstruction. Our
method does not yet outperform vq-wav2vec and wav2vec 2.0; we suspect it is partly because our
models have much smaller sizes (around 30M weight parameters) than theirs (vq-wav2vec has 150M
weight parameters, and wav2vec has 300M weight parameters for the acoustic model, along with
a very large neural language model) and it is future work to scale up our method. In Appendix D,
we provide additional experimental results where the acoustic model targets are subwords. DAPC
achieves 15% relative improvement over the baseline (without pretraining), showing that our method
is generally effective for different types of ASR systems.

5 CONCLUSIONS

In this work, we have proposed a novel representation learning method, DAPC, for sequence data.
Our learnt latent features capture the essential dynamics of the underlying data, contain rich infor-
mation of both input observations and context states, and are shown to be useful in a variety of
tasks. As future work, we may investigate other predictive information estimators that further alle-
viate the Gaussian assumption. On the other hand, more advanced variational inference techniques
may be applied to the probabilistic version of DAPC to boost the performance. DAPC provides a
general alternative for mutual information-based learning of sequence data and we may investigate
its potential usage in other domains such as NLP, biology, physics, etc.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathematical
modeling of neural systems. Computational Neuroscience Series, 2001.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Joshua I Glaser, Ari S Benjamin, Raeed H Chowdhury, Matthew G Perich, Lee E Miller, and Kon-
rad P Kording. Machine learning for neural decoding. eNeuro, 2020.

A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classification:
Labelling unsegmented sequence data with recurrent neural networks. In ICML, 2006.

10

www.kaggle.com/selfishgene/historical-hourly-weather-data
www.kaggle.com/selfishgene/historical-hourly-weather-data


Published as a conference paper at ICLR 2021

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
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A DERIVATION OF PREDICTIVE INFORMATION

In this section, we give a self-contained derivation of the predictive information.

A multivariate Gaussian random variable X ∈ RN has the following PDF:

p(x) =
1

√
2π

N√|Σ| exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
where µ is the mean and Σ is the covariance matrix with Σ = E[(X − E[X])(X − E[X])].

From the definition of entropy

H(X) = −
∫
p(x) ln p(x)dx

we can derive the entropy formula for multivariate Gaussian

H(X) = −
∫
p(x) ln

1
√

2π
N√|Σ| exp(−1

2
(x− µ)T Σ−1(x− µ))dx

= −
∫
p(x) ln

(
1

(
√

2π)N
√
|Σ|

)
dx−

∫
p(x)

(
−1

2
(x− µ)T Σ−1(x− µ))

)
dx

=
1

2
ln((2πe)N |Σ|). (6)

Consider the joint Gaussian distribution
(
X
Y

)
∼ N (µ,Σ) = N

((
µX

µY

)
,

(
ΣXX ΣXY

ΣY X ΣY Y

))
where X ∈ Rp, and Y ∈ Rq . We can plug in the entropy in (6) and obtained

MI(X,Y ) = H(X) +H(Y )−H(X,Y )

=
1

2
ln((2πe)p|ΣXX |) +

1

2
ln((2πe)q|ΣY Y |)−

1

2
ln((2πe)p+q|Σ|)

= −1

2
ln

|Σ|
|ΣXX ||ΣY Y |

.

For a latent sequence Z = {z1, z2, ...} where zi ∈ Rd, we define Zpast
t = {zt−T+1, ..., zt}, and

Zfuture
t = {zt+1, ..., zt+T }. Based on our stationarity assumption, all the length-2T windows of

states within the range are drawn from the same Gaussian distribution with covariance Σ2T (Z), and
similarly for all the length-T windows. As a result and under the stationary assumption,H(Zpast

t ) =

H(Zfuture
t ) = 1

2 ln((2πe)Td|ΣT (Z)|), H(Zpast
t , Zfuture

t ) = 1
2 ln((2πe)2Td|Σ2T (Z)|), and

IT = MI(Zpast
t , Zfuture

t )

= H(Zpast
t ) +H(Zfuture

t )−H(Zpast
t , Zfuture

t )

=
1

2
ln((2πe)Td|ΣT (Z)|) +

1

2
ln((2πe)Td|ΣT (Z)|)− 1

2
ln((2πe)2Td|Σ2T (Z)|)

= ln |ΣT (Z)| − 1

2
ln |Σ2T (Z)|

The predictive information IT only depend on T but not specific time index t.

B LORENZ ATTRACTOR

The Lorenz attractor system (also called “butterfly effect”) is generated by the following differential
equations: (Strogatz, 2018; Clark et al., 2019):

dx = σ(y − x)

dy = x(ρ− z)− y
dz = xy − βz

(7)
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where (x, y, z) are the 3D coordinates, and we use σ = 10, β = 8/3, ρ = 28. The integration step
for solving the system of equations is 5× 10−3.

We lift the 3D trajectory into 30D using a nonlinear neural network with 2 hidden layers, each with
128 neurons and the Exponential Linear Unit (Clevert et al., 2015). We further perturb the 30D
trajectory with additive Gaussian noise to obtain datasets of three different Signal-to-Noise Ratios
(SNRs, ratio between the power of signal and the power of noise): 0.3, 1.0, and 5.0. The smaller the
SNR is, the more challenging it is to recover the clean 3D trajectory (see the left panel of Figure 2
for the comparison between noisy 30D trajectory and the clean 30D trajectory).

Table 4: The R2 scores of recovered 3D trajectory of noisy Lorenz attractor by different methods.

SNR DCA CPC PI MR DAPC-det DAPC-prob
0.3 0.084 0.676 0.585 0.574 0.865 0.816
1.0 0.153 0.738 0.597 0.885 0.937 0.943
5.0 0.252 0.815 0.692 0.929 0.949 0.949

0.3

1.0

5.0

DCA CPC DAPC	(det) DAPC	(prob)MRSNR

Figure 4: Recovery of 3D trajectory of noisy Lorenz attractor by different methods.

We compare both deterministic and probabilistic DAPC against representative unsupervised meth-
ods including DCA (Clark et al., 2019), CPC (Oord et al., 2018), pure PI learning which corresponds
to DAPC with β = 0, and masked reconstruction (MR) (Wang et al., 2020). Except for DCA which
corresponds to maximizing PI with a linear orthogonal feedforward net, the other methods use bidi-
rectional GRU (Chung et al., 2014) for mapping the inputs into feature space (although uni-GRU
performs similarly well). A feedforward DNN is used for reconstruction in MR and DAPC.

More specifically, CPC, MR, DAPC all use the bidirectional GRU where the learning rate is 0.001,
and dropout rate is 0.7. Our GRU has 4 encoding layers with hidden size 256. The batch size is (20,
500, 30). For CPC, the temporal lag k=4. For DAPC, β = 0.1, T = 4, s = 0, α = 0, γ = 0.1.
For masked reconstruction, we use at most 2 masks on the frequency axis with width up to 5, and
at most 2 masks on the time axis with width up to 40. The DNN decoder has 3 hidden layers, each
with size 512. DCA’s setup is completely adopted from Clark et al. (2019). The same architectures
are used in the forecasting tasks in Appendix C.

Figure 4 provides qualitatively results for the recovered 3D trajectories by different methods (Fig-
ure 2 in the main text contains a subset of the results shown here). Observe that DCA fails in
this scenario since its feature extraction network has limited capacity to invert the nonlinear lifting
process. CPC is able to recover the 2 lobes, but the recovered signals are chaotic. Masked recon-
struction is able to produce smoother dynamics for high SNRs, but its performance degrades quickly
in the more noisy scenarios. Both deterministic and probabilistic DAPC recover a latent representa-
tion which has overall similar shapes to the ground truth 3D Lorenz attractor, and exhibits smooth
dynamics enforced by the PI term.

We quantitatively measure the recovery performance with the R2 score, which is defined as co-
efficient of determination. R2 score normally ranges from 0 to 1 where 1 means the perfect fit.
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Negative scores indicate that the model fits the data worse than a horizontal hyperplane. The R2

results are given in Table 4. Our results quantitatively demonstrate the clear advantage of DAPC
across different noise levels.

Table 5: The R2 scores for the ablation study of (deterministic) DAPC for Lorenz attractor.

SNR Full Recon uni-GRU Regular
0.3 0.803 0.857 0.865
1.0 0.812 0.905 0.937
5.0 0.852 0.903 0.949

Table 6: The R2 scores for full reconstruction only and full reconstruction with PI.

SNR Full Recon only Full Recon with PI
0.3 0.441 0.803
1.0 0.737 0.812
5.0 0.802 0.852

Full	recon	only Full	recon	+	PI DAPC	(MR	+	PI)MRSNR

0.3

1.0

5.0

PI	only

Figure 5: Illustration of how PI can improve both full reconstruction and masked reconstruction
(MR). We can observe that PI can greatly improve the recovery quality, especially when SNR is low
(very noisy).

Table 7: The R2 scores for CPC with different temporal lags (k).

SNR k=2 k=4 k=6 k=8 k=10
0.3 0.477 0.676 0.663 0.658 0.608
1.0 0.556 0.738 0.771 0.721 0.642
5.0 0.652 0.815 0.795 0.775 0.717

We also give an ablation study on several components of DAPC in Table 5, where we attempt full
reconstruction without masking, masked reconstruction with unidirectional encoder uni-GRU, and
the regular setup (masked reconstruction + bi-GRU). Using full reconstruction yields worse results
than using masked reconstruction at all noise levels, while uni-GRU degrades the performance less.

We show in Table 6 and Figure 5 how PI can improve both full reconstruction and masked recon-
struction. In Table 6, when SNR=0.3, PI can greatly boost the performance of full reconstruction.
We also tuned the temporal lag parameter k w.r.t. both quantitative and qualitative results (Table 7
and Figure 6). CPC performance starts to deteriorate after k=8, while k=4, 6, 8 have similar results.
Based on the R2 scores, we select k=4 as our final temporal lag. Similar tuning is also performed
for CPC on the downstream forecasting experiments in Appendix C.
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k=2 k=4 k=10k=8k=6SNR

0.3

1.0

5.0

Figure 6: Qualitative recovery results by CPC w.r.t. different temporal lags (k).

C DOWNSTREAM FORECASTING WITH LINEAR REGRESSION

For each of the three datasets used in downstream forecasting tasks, we divide the original dataset
into training/validation/testing splits. Unsupervised representation learning is performed on the
training split, validated on the validation split and learns an encoder e(·).

Denote the test sequence X = {x1, x2, ..., xL}. The learnt e(·) transforms X into a sequence
Z = {z1, z2, ..., xL} of the same length. Note that we use uni-directional GRU for representation
learning so that and no future information is leaked. For the forecasting tasks, zi will be used
to predict a target yi which corresponds to an event of interest. For the multi-city temperature
dataset (Beniaguev, 2017), yi represents future multi-city temperatures, i.e., yi = xi+lag with lag >
0. For the hippocampus study (Glaser et al., 2020), xi is the multi-neuronal spiking activity of
55 single units recorded in rat hippocampal CA1 and yi is a future location of the rat. In the motor
cortex dataset (O’Doherty et al., 2018), xi’s are collected from multi-neuronal spiking activity of 109
single units recorded in monkey primary motor cortex (M1), and yi’s are future behavior variables
such as cursor kinematics. The problems tend to be more challenging with larger lag.

Figure 7: Different models’ R2 score improvements over PCA: Left) temperature, Middle) dorsal
hippocampus and Right) motor cortex datasets. Lag is the number of time steps the future event is
ahead of the current latent state.

d = 5 d = 10 d = 15 d = 20

Figure 8: On temperature dataset, we analyze the performances of different latent dimensions (di-
mension of zi): 5, 10, 15, 20. ∆R2 corresponds to R2 score improvement over PCA.

The performance for forecasting tasks is measured by the linear predictability from zi to yi. Specif-
ically, we solve the linear regression problem with inputs being the (zi, yi) pairs, and measure the
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R2 score between the prediction and ground-truth target. We use the R2 score from the PCA pro-
jection as a baseline, and provide the improvements over PCA obtained by different representation
learning methods in Figure 7 (so PCA’s ∆R2 is 0). Both deterministic and probabilistic DAPC con-
sistently outperform other methods across all three datasets, with the deterministic version slightly
outperforming the probabilistic one. Additionally, we provide sensitivity study of the latent dimen-
sionality for all methods in Figure 8, and DAPC outperforms others consistently across different
dimensionalities. Table 8 shows the temporal lag tuning for CPC on the temperature dataset.

Table 8: The R2 scores for CPC with different temporal lags (k) on the temperature dataset.

d k=2 k=4 k=6 k=8 k=10
5 0.685 0.701 0.690 0.687 0.681
10 0.661 0.663 0.675 0.631 0.622
15 0.633 0.645 0.637 0.634 0.617

D ADDITIONAL RESULTS FOR AUTOMATIC SPEECH RECOGNITION (ASR)

The acoustic model is trained with a multi-task objective (Watanabe et al., 2017) which combines
attention Chorowski et al. (2015); Chan et al. (2016) and CTC (Graves et al., 2006) losses, for
predicting the output character sequence. We extract 80D fbank features plus 3D pitch features from
audio, with a frame size of 25ms and hop size of 10ms. Every 3 consecutive frames are stacked to
obtain the input sequence for the acoustic model. During ASR finetuning, the encoder shared by both
attention and CTC consists of 14 transformer layers for WSJ and 16 layers for LibriSpeech, while
the decoder consists of 6 transformer layers. All attention operations use 4 heads of 64 dimensions
each, and the output of multi-head attention goes through a one-hidden-layer position-wise feed-
forward network of 2048 ReLU units, before it is fed into the next layer. During finetuning, we
apply SpecAugment (Park et al., 2019) to reduce overfitting, with max time warp set to 5 (frames),
two frequency masks of width up to 30 frequency bins, and two time masks of width up to 40 frames.
We use the Adam optimizer with a warmup schedule for the learning rate. Weight parameters of the
last 10 finetuning epochs is averaged to obtain the final model. For word-level decoding, we use a
word RNNLM trained on the language model training data of each corpus, with a vocabulary size of
65K for WSJ, and 200K for LibriSpeech. We use the lookahead scores derived from word RNNLM
during beam search, for selecting promising character tokens at each step, as done by Hori et al.
(2018). A beam size of 20 is used for decoding.

In Table 9, we provide a thorough comparison with other representation learning methods on the
LibriSpeech dataset. We compare with CPC-type mutual information learning methods including
wav2vec (Schneider et al., 2019), vq-wav2vec which performs CPC-type learning with discrete to-
kens followed by BERT-stype learning (Baevski et al., 2019), and a more recent extension wav2vec
2.0 (Baevski et al., 2020). We also compare with two reconstruction-type learning approaches De-
CoAR (Ling et al., 2020) and TERA (Liu et al., 2020). Note that TERA is quite similar to MR (Wang
et al., 2020) in performing masked reconstruction, although it adds recurrent layers to transformer-
learnt representations for finetuning, while our implementation of MR uses a pure transformer-based
architecture throughout. We believe the advantage of MR over TERA mainly comes from the acous-
tic model (attention vs. CTC) and a stronger language model (RNNLM vs. n-gram). Observe that
DAPC and its variant achieve lower WER than MR: though our baseline is strong, DAPC still re-
duces WER by 8%, while MR only improves by 1.76%. This shows the benefit of PI-based learning
in addition to masked reconstruction. Compared to Table 3, Table 9 includes more recent works that
are related to our DAPC. Futhermore, to show our improvement is robust to details of ASR recipe,
we include the comparison between baseline (without pretraining), MR, and DAPC when the ASR
recipe uses 5000 unigrams as token set and decodes with token-level RNNLM. These results are de-
noted with “(sub-word)” in Table 9. The relative merits between methods are consistent with those
observed for the character recipe. DAPC obtains a relative improvement of 15% over the baseline
on test clean (6.81%→ 5.79%).

Furthermore, we compare DAPC with other state-of-the-art methods on WSJ in Table 10. Compar-
isons among different methods based on their key features are shown in Table 11.
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Table 9: WER results of different methods on LibriSpeech. All representation methods are pre-
trained on the full corpus (960h) and finetuned on train clean 100 (100h). For MR and DAPC, the
default ASR recipe uses characters as token set and decodes with word RNNLM. For results denoted
with “(sub-word)”, the ASR recipe uses 5000 unigrams as token set and decodes with token-level
RNNLM. All the results are averaged over 3 seeds.

Methods dev clean test clean
wav2vec (Schneider et al., 2019) - 6.92

discrete BERT+vq-wav2vec (Baevski et al., 2019) 4.0 4.5
wav2vec 2.0 Baevski et al. (2020) 2.1 2.3

DeCoAR (Ling et al., 2020) - 6.10
TERA-large (Liu et al., 2020) - 5.80

MPE (Liu & Huang, 2020) 8.12 9.68
Bidir CPC (Kawakami et al., 2020) 8.86 8.70

MR (Wang et al., 2020) 4.66 5.02
MR (sub-word) 5.57 6.18

w.o. pretrain 4.84 5.11
DAPC 4.52 4.86

DAPC+multi-scale PI 4.46 4.77
DAPC+shifted recon 4.50 4.80

DAPC+multi-scale PI+shifted recon 4.42 4.70
w.o. pretrain (sub-word) 6.16 6.81

DAPC (sub-word) 5.50 5.79

Table 10: WERs of models pretrained on 81h split si284 and finetuned on 81h split si284.

Methods dev93 WER (%) eval92 WER (%)
DeCoAR (Ling et al., 2020) 8.34 4.64
MPE (Liu & Huang, 2020) 6.79 4.26

MR (Wang et al., 2020) 6.24 3.84
w. o. pretrain (Attention+CTC) 6.34 3.94

DAPC + both 5.84 3.48

Table 11: We compare different methods based on their key features: generative/discriminative,
contrastive/non-contrastive, whether using past-future mutual information estimation (p-f MI), and
masking.

generative contrastive p-f MI masking
SFA n n y n
DCA n n y n

wav2vec n y n n
vq-wav2vec n y n y

DeCoAR n n n y
TERA n n n y
MPE n n n y

bidir CPC n y n n
DAPC y n y y
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