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Abstract

Occlusion is one of the fundamental challenges in crowd counting. In the commu-
nity, various data-driven approaches have been developed to address this issue, yet
their effectiveness is limited. This is mainly because most existing crowd counting
datasets on which the methods are trained are based on passive cameras, restricting
their ability to fully sense the environment. Recently, embodied navigation methods
have shown significant potential in precise object detection in interactive scenes.
These methods incorporate active camera settings, holding promise in address-
ing the fundamental issues in crowd counting. However, most existing methods
are designed for indoor navigation, showing unknown performance in analyzing
complex object distribution in large-scale scenes, such as crowds. Besides, most
existing embodied navigation datasets are indoor scenes with limited scale and
object quantity, preventing them from being introduced into dense crowd analysis.
Based on this, a novel task, Embodied Crowd Counting (ECC), is proposed to
count the number of persons in a large-scale scene actively. We then build up an
interactive simulator, the Embodied Crowd Counting Dataset (ECCD), which en-
ables large-scale scenes and large object quantities. A prior probability distribution
approximating a realistic crowd distribution is introduced to generate crowds. Then,
a zero-shot navigation method (ZECC) is proposed as a baseline. This method
contains an MLLM-driven coarse-to-fine navigation mechanism, enabling active
Z-axis exploration, and a normal-line-based crowd distribution analysis method for
fine counting. Experimental results show that the proposed method achieves the
best trade-off between counting accuracy and navigation cost. Code can be found
at https://github.com/longrunling/ECC?.

1 Introduction

Crowd counting is critical for public safety and urban planning [23]. One main challenge in this
field is occlusion. It can be categorized into two aspects: overlap and invisibility. Overlap refers to
the high density of people stacked together, making it difficult to distinguish each individual from
some viewpoints, while invisibility indicates that the current camera position is obstructed, such as
being blocked by buildings, or far from the crowds so that the target cannot be detected clearly. To
summarize, these situations are caused by a poor observation point. Existing methods try to solve
these challenges from several perspectives, such as using multi-scale feature extraction [22], body
part detection [30], or multi-camera fusion [56, 57]. Datasets are also expanded for enhancing method

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/longrunling/ECC?


251.65 m2

43804.02 m2

Robot Navigation Dataset

ECCD

Scene 1

Scene 2

Crowd Counting Dataset

ECCD

Crowd Counting Models

NN

ZECC

Scene
Model

Density

Scene
Agent

Fine Detection

(a) (b) (c)
Figure 1: (a) Comparison between ECCD and existing embodied navigation datasets. ECCD features
large-scale outdoor crowd scenes. (b) Comparison between ECCD and crowd counting datasets.
ECCD enables interactive ability. (c) Comparison between ZECC and existing crowd counting
methods. ZECC is an agentic framework with automatic camera adjusting ability.

Table 1: Comparison between ECCD and other related datasets. ECCD combines features from both
crowd counting datasets and embodied navigation datasets.

Dataset Active camera Place Max target quantity / sample Dynamic target w/o Instruction Task
NWPU-Crowd [50] × - 20,033 × - CC
SenseCrowd [26] × - 296 ✓ - CC
DukeMTMC [40] × - 2,834 ✓ - CC

R2R [1] ✓ Indoor (Ground) - × × VLN
HM3DSem [38] ✓ Indoor (Ground) - × ✓ ObjNav
AerialVLN [12] ✓ City(Aerial) - × × VLN

CityNav [25] ✓ City(Aerial) - × × VLN
Openfly [11] ✓ City(Aerial) - × × VLN

ECCD ✓ City(Aerial) 15,488 × ✓ ECC

performance [58, 21, 42, 50]. In general, these methods or datasets either try to enhance learned
model representation or expand the camera sensing range by introducing multi-view settings. Yet,
their passive camera settings do not fully solve the occlusion challenge in crowd counting, especially
in cases where crowds exceed the sensing range, or no cameras are set to detect completely obscured
crowds. These issues restrict passive-camera-based methods in practice.

Recent development in Embodied AI brings a new perspective to address the occlusion challenge
in crowd counting. It has been demonstrated to possess significant potential in enhancing scene
exploration and object detection. Aspects such as Vision-Language-Navigation (VLN) have been
directed towards equipping mobile robots with human-like perception abilities, resulting in remarkable
performance in exploring scenes and detecting objects in open environments [9, 5, 59, 8]. The active
camera settings in VLN are promising to solve the fundamental challenges in crowd counting, since
it can optimize observation points to mitigate overlap and invisibility caused by fixed camera position
settings. Yet most VLN benchmarks [51, 46, 4, 2] are indoor environments with limited exploration
space (e.g., no Z-axis action options) and relatively small object quantity. And the performance of
such methods remains unknown for detecting crowds with a large quantity and complex distribution
in large-scale scenes. This results in a significant gap between VLN and crowd counting, as in
practice, crowds often appear in large spaces with varying distribution.

To address the issues, we first define a novel task, Embodied Crowd Counting (ECC), which is shown
in Figure 1. The task is defined as counting the total number of people present in a large outdoor
scene using a drone. Given the absence of an existing dataset, we have created a new dataset called
the Embodied Crowd Counting Dataset (ECCD) specifically for this task. This dataset includes 60
unique and diverse large-scale outdoor scenes. Each scene spans an area of up to 40,000 m2 and
has a target crowd size of up to 15,000 individuals. To ensure realism in our dataset, we employ a
Poisson Point Process [13] for modeling the distribution of crowd sizes, which effectively simulates
real-world crowd scenarios. The comparision of ECCD and related datasets are shown in Table 1.

In this study, we introduce a baseline method, Zero-shot Embodied Crowd Counting (ZECC) aiming
at counting individuals present in environments populated by crowds. Given the ability of interacting
dynamically with surroundings using foundation models, modern argentic methods achieve even better
performance against training-based methods while maintaining generalization ability. [9, 24, 12, 31].
Inspired by this, we aim to build a zero-shot baseline that can generate to diverse scenes leveraging
foundation models, using an argentic paradigm without a vast amount of training data. The primary
challenge lies in choosing suitable navigation points to find a balance between efficient exploration
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and effective detection. To address this, our approach consists of two main components: the Active
Top-down Exploration (ATE) method and the Normal-line Based Navigation (NLBN) system. The
ATE method serves as an efficient exploration strategy that employs a coarse-to-fine navigation
approach. It utilizes the common sense capabilities of Multi-Modal Large Language Models (MLLM)
to assess the environment, allowing for effective planning of vertical movement (Z-axis exploration).
This takes advantage of the six degrees of freedom (6-DoF), which helps to avoid obstacles at lower
altitudes and provides a broader view of the surroundings, thereby facilitating better exploration.
Following the rough estimation of crowd distribution produced by ATE, we propose the NLBN to
create precise navigation points for improved crowd detection. By using the normal lines of surfaces,
we can establish detailed observation points that achieve a balanced trade-off between exploration
efficiency and detection performance. This method addresses challenges related to overlapping
individuals and visibility issues, ultimately leading to more accurate crowd counting. Experimental
results show that the method is effective due to its interactive ability. The contributions of this work
can be summarized as follows:

• We present an innovative task called ECC, specifically designed to address the challenges of
occlusion and multi-scale complexities that are prevalent in conventional crowd counting methods.

• A new dataset called ECCD has been collected to redefine the landscape of crowd analysis. Unlike
traditional crowd counting and VLN datasets, it features large-scale outdoor crowd scenes with
interactive capabilities.

• We propose a baseline method, ZECC, using MLLM for Z-axis exploration, reducing costs while
ensuring detection performance. By utilizing normal lines to calculate navigation points, this
approach eliminates occlusion and enhances visibility in crowds.

2 Related works

2.1 Crowd Counting

Crowd-counting algorithms have greatly benefited from large-scale, high-quality datasets like UCF-
CC50 [20] and UCF-QNRF [21]. These foundational datasets have facilitated the creation of
subsequent collections focused on dense crowd imagery, such as ShanghaiTech [58], JHU-CROWD++
[42], NWPU-Crowd [50]. However, the images in these datasets are generated from fixed cameras.
In contrast, ECCD provides interactive capabilities while maintaining diverse crowd distribution.

Methods like [58, 22, 27, 6] leverage crowd distribution prior in an image, or use attention maps to
learn dependency. Recent multi-modal approaches [10, 54, 33, 48] leverage vision-language models
to transfer image-text knowledge to dense crowd prediction. While these models improve long-range
and overlapping small target detection ability, their performance is restricted if the overlap reaches
an extreme level. Recent efforts expand spatial coverage by multi-view systems [37, 19] that use
multiple cameras to capture images from large-scale scenes. Others like [17, 16] use recorded video
to conduct crowd analysis. Although these advances represent significant progress in addressing the
basic challenges of crowd counting compared to traditional methods that rely on fixed images, the
camera settings remain predetermined by the dataset. This restriction means that the settings cannot
be modified during the inference process, limiting the ability to fully examine larger environments.
ZECC allows active exploration, which is fundamentally different from existing methods.

2.2 Embodied Navigation

Many traditional robot navigation methods were developed using conventional navigation datasets
like KITTI [14] and SUN RGB-D [44]. Beyond these foundational datasets, [51, 38] provide 3D
indoor environments for navigation and interaction tasks. These datasets are limited with their small
scale size and small object quantity. Recent datasets have been created towards outdoor navigation
[29, 25, 11, 28] However, they are designed for VLN tasks without consideration of object quantity.
Compared to these datasets, ECCD simultaneously supports large-scale outdoor scenes and large
object quantity with diverse distribution.

Efficient exploration using mobile robots remains a crucial challenge in vision and robotics. [15,
18, 35, 44, 12] have developed human-like cognitive maps, enabling autonomous path learning in
unknown environments. Other approaches like [3, 7, 36] use reinforcement learning to develop
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exploration policies. Recently, [55] applied video-based visual-language models to plan sequential
actions in VLN. And [31, 60] presented zero-shot models that utilize natural language instructions
to guide agents through environments without prior environment-specific training. However, the
methods mentioned above are for indoor navigation without Z-axis moving ability. This restricts their
ability in large-scale outdoor scenes. Recently, methods like [29, 52] introduce 6-DoF in outdoor
VLN. Yet they are designed for instruction following tasks, in which the movement is restricted by
human language. Besides, they lack the ability to analyze crowds with a large quantity and complex
distribution. In contrast, ZECC is the first self-motivated agent in 6-DoF that can handle crowds.

3 Method

3.1 Problem Definition

To ensure the interactive with environment for accurately crowd counting in vast outdoor environ-
ments, we propose an innovative task called Embodied Crowd Counting (ECC). In ECC, an agent is
first deployed in an unknown environment. At time step t, the input of the agent is RGB-D observa-
tions Ot along with its pose pt. Based on this information, the agent predicts navigation point p ⊂ R3

to a drone at time step t and the drone moves to p. During exploration, the agent is allowed to record
observations that help with crowd counting. When the agent decides to stop, it outputs an integer that
represents its crowd counting result. The counting error and travel distance are calculated to assess
the agent’s performance. ECC can be considered analogous to the Zero-Shot Object-Goal Navigation
(ZSON) task [32], since they both require an agent to detect targets in an unexplored environment
without additional assistance. However, ECC faces unique challenges: 1) The Z-axis is available,
which is not considered by most ZSON methods. 2) Complex crowd distributions exist, including
heavy occlusions, while ZSON methods only consider fewer objects. Current ZSON methods show
unknown performance under such differences, and new methods should be considered in ECC. Note
that ECC is different from the instruction following tasks in VLN such as [29, 52], since these tasks
require natural language assistance to drive the agent.

3.2 Embodied Crowd Counting Dataset (ECCD)

We propose a new dataset called ECCD to support algorithm design and evaluation for the community,
developed using Unreal Engine 4. This platform enables programmable environment construction,
allowing scene richness and scalability. The characteristics of ECCD are as follows:

Diversity. Since different environments have different layouts, crowd distributions, and quantities
reflect different challenges, ECCD is designed to contain diverse scenes. This dataset contains 60
distinct environments. Also, ECCD has an area up to 40,000 m2, reaches a height up to 50 m, and
allows for the simultaneous presence of over 15,000 targets within a single scene. This is significantly
different from existing robot navigation datasets, such as [38], which offers environments with an
average navigable space of 1,000 m2, and crowd counting datasets, such as [58], which contains
1,198 annotated images captured with static cameras and a total of 330,165 individuals.

Realism. The ECCD is designed to simulate large-scale outdoor crowd scenarios in reality, in order
to ensure practical effectiveness of systems built on ECCD, as shown in Figure 2 (a). Environments
like a city, a stadium, and a parking lot are simulated. Additionally, the environments support a
complex structure of buildings in real life, such as multiple floors and bleachers. These features allow
ECCD to reflect challenges in reality.

Crowd generation mechanism. To model real distribution in crowd counting, ECCD uses Poisson
Point Process for crowd quantity distribution modeling [13]. In ECCD, Blocks are placed in potential
areas where crowds may exist. Then, for each block U ⊂ R2, the process is defined as:

P (N(U) = k) =
(λ · |U|)k

k!
e−λ·|U|, k ∈ N, (1)

where N(U) denotes the number of individuals in block U , λ represents the crowd density set by
human experts according to the environment semantics, and |U| is the area of the block. This ensures
ECCD generates crowds that approximate real situations. By comparison, existing simulators based
on UE4, such as AirVLN and OpenUAV, do not consider object quantity and distribution.
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(a) (b)
Figure 2: (a) ECCD is designed to mimic building and crowd distribution realistically. On the left are
samples from ECCD, and on the right are the real scenes. (b) Illustration of the potential navigation
vectors, normal lines, and FBE view vectors. Zoom in for better visualization.
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Figure 3: The proposed framework. First, ATE is proposed to estimate the global crowd distribution
efficiently. Then, NLBN is proposed to generate fine observation points, alleviating crowd overlap.
The final result is generated by aggregating all fine detections.

3.3 Zero-shot Embodied Crowd Counting (ZECC)

3.3.1 Overview

Previous embodied navigation agents are designed for indoor environments [31], or relying on
language assistance [29, 52], making them restricted in large-scale outdoor scenes. Under such a
context, a zero-shot agent, ZECC, which can actively control altitude and conduct crowd analysis,
is proposed. As illustrated in Figure 3, the method consists of three components: Active Top-down
Exploration (ATE), Normal-line based Navigation (NLBN), and Fine detection. ATE is designed
for adjusting agent altitude for efficient coarse crowd distribution estimation, and NLBN estimates
normal lines on top of the crowd for accurate crowd observation, alleviating occlusion.

3.3.2 Active Top-down Exploration (ATE)

Crowds are often concentrated in specific areas, such as roads and squares, making it unnecessary to
explore every region of the environment. To address this, ATE is proposed to estimate global crowd
distribution by changing altitude. This approach aims to improve efficiency by focusing exploration
efforts on the most relevant areas. In particular, high-altitude exploration (HAE) brings a broader
field of view for decision making, as well as relatively less exploration cost since obstacles are often
sparse in high altitude. In contrast, low-altitude exploration (LAE) provides close-range observation
for precise target detection. The agent needs to plan HAE and LAE to achieve efficiency and accuracy
simultaneously. Therefore, ATE leverages the Z-axis mobility of outdoor agents and the common
sense of MLLM to switch between HAE and LAE using local environment layout reasoning. Then,
the crowd distribution is estimated by a crowd counting model to predict density maps.

Specifically, the agent collects observations Ot =
{
o1t , . . . , o

c
t

}
and pose pt at time step t, where c

indicates the camera number of the agent. Then, an MLLM is prompted using observations and text
prompts to conduct environment layout reasoning. The MLLM is asked to predict whether the current
location is valuable for LAE, by referring to the current crowd appearance and obstacle layout. This
process is formulated as:

st = MLLM (Ot; I) , (2)
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where MLLM (·) is the inference process and I is the prompt. st ∈ [0, 1]. If st > 0.5, the agent
will adjust its altitude for LAE. After switching the altitude strategy, the agent will conduct regular
exploration. For HAE, one of the frontiers between explored and unknown areas is selected as a
navigation point. For LAE, the agent keeps exploring until areas within its field of view during HAE
are fully explored. During LAE, once the agent reaches a navigation site f , it gathers observations
Of =

{
o1f , . . . , o

c
f

}
, and a crowd counting model predicts crowd density maps on the observations.

Then, the density maps are projected onto the global point cloud to form a global crowd distribution:

df = P (G (Of ) , pf ) , (3)

where P (·) is the projection operation, G (·) is a crowd counting model, and pf is the agent pose at f .

3.3.3 Normal-line based Navigation (NLBN)

NLBN is designed to analyze overlapping structures in dense crowds by converting the crowd
detection task into surface detection, which helps identify optimal observation points. While random
viewpoints may impair visibility, vantage points located above the center of the crowd provide
clearer views for individual identification. This top-down perspective enables the distinction of
overlapping individuals and maintains targets within the field of view (FOV). Initially, NLBN clusters
the crowd point cloud into subregions using a clustering method, simplifying the analysis by breaking
the large point cloud into manageable parts, as navigating to each point can be resource-intensive.
Surfaces are then fitted to derive normal lines, thus transforming complex crowd analysis into a more
straightforward surface analysis. Finally, optimized navigation points are generated based on these
normal lines, ensuring they are elevated to facilitate accurate crowd detection while employing a
viewpoint-based approach to avoid overlaps with obstacles.

In particular, GMM [41] is used to divide the global crowd distribution into manageable subregions.
It can divide any crowd distribution into patches. A parameter ϵ is used to determine the size of each
GMM cluster. Surfaces are fitted for each patch afterwards. Then, for the N -th cluster, the normal
is obtained and represented by dcluster

N . Candidate view directions {dview
N1 , ...,d

view
Nm}N are sampled

under angular constraints:
dcluster
N · dview

Nm

∥dcluster
N ∥∥dview

Nm∥
= ζ, (4)

where ζ is a hyper parameter. These candidate view directions can bring the agent to optimized
observation points by selecting a position along the vector. However, there are two issues: 1) The
position may be located on obstacles; 2) The crowd cluster may be out of the agent’s FOV. Since the
propagation of light naturally points to unobstructed areas, the ATE viewpoints are used to generate
the final navigation points, which are calculated as:

dATE
N = xATE

N − xcluster
N , (5)

where xATE
N is the navigation point from which the agent finds the cluster center xcluster

N during ATE.
Then, the potential navigation directions that are at the minimum angles to the ATE view vectors are
selected as the final navigation directions:

dview
N = argmin

m

dATE
N · dview

Nm

∥dATE
N ∥∥dview

Nm∥
, (6)

and the final navigation point xview
N is calculated by

xview
N = xcluster

N + η · dview
N , (7)

where η is a hyper parameter representing the distance between the agent and the crowd cluster.
NLBN ensures close-range, precise target observation and safe navigation, even in complex and
unfamiliar environments. The potential navigation vectors, normal lines, and ATE view vectors are
illustrated in Figure 2 (b).

3.3.4 Fine Detection and Counting (FDC)

Using the navigation points generated by NBLN, the agent travels from one point to another through
path planning algorithms. Close-range and high-resolution RGB observations can be conducted upon
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Table 2: Comparison with ZSON methods. ZECC
achieves a trade-off between MAPE and TD.

Method MAPE (%) TD (m)
FBE [45] + GL [47] 57.19 ± 1.83 2513.06 ± 247.35
FBE [45] + GD [39] 53.38 ± 1.26 2513.06 ± 247.35
CoW [9] + GL [47] 52.75 ± 1.52 3449.51 ± 127.2
CoW [9] + GD [39] 46.01 ± 0.96 3449.51 ± 127.2

OpenFMNav [24] + GL [47] 60.57 ± 2.43 5069.64 ± 183.23
OpenFMNav [24] + GD [39] 49.41 ± 2.35 5069.64 ± 183.23

ZECC 18.71 ± 1.41 3722.45 ± 73.78

Table 3: Comparison with MVC methods. ZECC
achieves a trade-off between MAPE and cost.

Method MAPE (%) # of Cameras
MVF-10 [56] 15.13 ± 0.00 1735.32 ± 0.00
MVF-20 [56] 39.92 ± 0.00 747.32 ± 0.00
MVF-30 [56] 61.43 ± 0.00 333.32 ± 0.00

CountFormer-10 [34] 12.8 ± 0.00 1735.32 ± 0.00
CountFormer-20 [34] 35.26 ± 0.00 747.32 ± 0.00
CountFormer-30 [34] 56.76 ± 0.00 333.32 ± 0.00

ZECC 18.71 ± 1.41 5 ± 0.00

reaching each navigation point. These observations are then utilized for detection models to perform
precise target detection. The detection results are projected onto the global point cloud using the
depth sensor and the agent’s pose. To prevent repetitive detections, only one target is retained for
each region within a specific scale. Ultimately, the result is calculated by counting the number of
filtered targets.

4 Experiments

Baselines. We compare ZECC with exploration methods: Frontier-based exploration (FBE) [45],
ZSON methods: CoW [9] and OpenFMNav [24], and multi-view counting (MVC) methods [56, 34].

Metrics. Mean Absolute Percentage Error (MAPE) is used to evaluate the counting performance:
MAPE = 1

M

∑M
i=1

∣∣∣yi−ŷi

yi

∣∣∣× 100% where M is the quantity of testing environments, ŷi and yi are
the estimated count and the ground truth count, respectively.

For ZSON methods, the sum of Euclidean distance between adjacent navigation points along the
agent traveling path is used to evaluate the travel distance (TD), which is defined as: TD =
n−1∑
i=1

∥xi+1 − xi∥, where n is the quantity of navigation points in one episode, xi and xi+1 are the

coordinates of the two adjacent navigation points, respectively. For the multi-view crowd counting
method, we report the number of cameras required to achieve comparable performance to the proposed
approach.

Implementation Details. MLLM used in ATE is GPT-4V [53]. [43] is used as path planning method.
Altitude is 80m for HAE and 10m for LAE. The crowd density estimator in ATE is Generalized Loss
(GL) [47], and the detection model in FDC is Grounding DINO (GD) [39]. For hyper parameters,
navigation vector deg ζ is 15 °, density threshold κ is 0.7, navigation point range η is 8 m, and cluster
size ϵ is 40. For the ZSON methods, the exploration step limitation is removed. When the methods
finish an exploration step, they additionally get RGB-D captures of the environment. As exploration
stops, they are equipped with GD or GL to conduct crowd counting using the projection method in
FDC upon their captured images. For MVC, the scenes are divided into grids with diverse intervals,
which are 10m, 20m, and 30m. Four cameras at poses of 0°, 90°, 180°, and 270° are placed on
each grid intersection to obtain RGB captures. Then the captured images are sent to the MVC to get
counting results. All methods are proceeded on a platform with IntelCorei9-14900KF, 128GBRAM,
and NVIDIA GeForce RTX 4090 GPU.

5 Results

5.1 Overall Performance

Comparison with ZSON methods. We report performance in Table 2. ZECC offers the optimal
balance between counting performance and cost. In contrast, FBE delivers the best TD but cannot
perform a target detection function, which limits its capacity for fine observation. ZSON methods
come with perception modules; however, they do not select a 3D fine observation point as NLBN,
which means they cannot fully observe each individual in the crowd.

Agents utilizing counting models for crowd counting tend to perform slightly lower than agents using
detection models. This is due to the increased sparsity of crowd observations as the agents get closer
to the crowd. Crowd counting models are mainly trained on images depicting dense crowds, which
results in limited generalization capability for scenarios with sparser crowds.
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Figure 4: Performance and cost of ZECC and the baselines under different crowd density levels.
L1-L5 refers to increasing density level. The figure demonstrates that ZECC achieves a balance
between performance and exploration cost.

Table 4: The ablation study for ATE. ZECC
achieves a better trade-off between performance
and exploration efficiency (reducing 17% cost with
8% performance decline).

Method MAPE (%) TD (m)
w/o HAE 17.46 4633.67
w/o LAE 88.08 1738.84

ZECC 18.91 3804.63

Table 5: The results of the ablation study for com-
ponents in NLBN. ZECC achieves the best perfor-
mance and success rate.

Method MAPE (%) Successful rate (%)
w/o NLBN 65.19 100.00

w/o NL 98.44 8.33
w/o VPS 92.55 100.00

w/o ATE-VPS 99.49 1.45
ZECC 18.91 100.00

We analyze various environments with different crowd density levels and visualize the average perfor-
mance and cost of the methods using the GD detector in these scenarios. The results are presented in
Figure 4. Among the methods evaluated, ZECC demonstrates the best average performance across
different density levels. As crowd density increases, the MLLM in ATE with NLBN becomes more
effective at identifying and observing high-density crowds, resulting in improved performance. In
contrast, other methods struggle to detect high-density crowds.

In terms of cost, ZECC’s navigation points are influenced by crowd distribution and density. As the
density level increases, the cost also rises. Although ZECC falls short of achieving the lowest cost
in the last two density levels, its costs are still comparable to the baseline while ensuring effective
counting performance. In contrast, other methods do not actively adjust navigation points. Their
costs remain relatively stable, yet their performance is limited.

Comparison with MVC. The comparison with MVC is shown in Table 3. "-10" refers to MVC
methoods using a grid interval of 10m. CountFormer-10 achieves the best performance, while ZECC
still provides a close performance by reducing the camera used significantly. This illustrates the
advantage of the active method over the multi-view method.

5.2 Ablation Study

ATE. We conducted ablation studies by removing specific components from ATE. The results are
presented in Table 4. w/o HTE refers to using FBE + NLBN results for crowd counting. w/o LAE
refers to fix the agent’s altitude to HAE. w/o HAE performs best by exploring environments greedily,
but results in a higher TD. ZECC achieves a better balance by conducting both HAE and LAE
simultaneously. To further illustrate this trade-off, we conducted an experiment by fixing TD for FBE
in w/o ATE and ATE in ZECC. Once the agent reaches a TD threshold, it will conduct NLBN using
partial estimated crowd distribution. The result is shown in Figure 5 (a). ZECC demonstrates better
performance with less cost when TD is limited in most cases, illustrating that ZECC can efficiently
estimates global crowd distribution. On the other hand, w/o ATE is not effective when TD is limited.

NLBN. We then conducted ablation studies on NLBN and the results are presented in Table 5. w/o
NLBN refers to using ATE results for crowd counting. w/o NL refers to not using normal line (NL)
to calculate navigation points but use the cluster centers as navigation points. w/o VPS refers to not
using view point selection (VPS) but select a point along the normal vector with η. w/o ATE-VPS
refers to not using the ATE-view-vector-based view point selection (ATE-VPS), but randomly select
a navigation vector from the potential navigation vectors. Successful rate indicates the ratio of the
reachable navigation point reported by path planning algorithm. The findings indicate that omitting
any component of NLBN results in a significant drop in either performance or the success rate.
Without NLBN, the absence of optimized viewpoints causes ZECC to revert to a ZSON method.
When both NL and FBE-VPS are removed, most navigation points end up being located on obstacles.
Additionally, without VPS, the navigation points are positioned directly above the targets, causing
the targets to fall out of the field of view.
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(a) (b)
Figure 5: (a) Comparison of performance-cost trade-off. ZECC achieves a better trade-off when TD
is limited. (b) The effect of four hyper parameters in ZECC. It shows that ZECC is effecive when the
hyper-parameters are set in reasonable scopes.

(a) (b) (c)
Figure 6: Navigation point (green) and trajectory (red) of different methods. Blcak dots are ground-
truth. (a) ZECC. (b) OpenFMNAV. (c) MVC. ZECC shows less exploration in non-crowded areas
while setting navigation points actively based on crowd distribution. Zoom in for a better view.

5.3 Hyper parameter Study

The influence of hyper parameters is studied, which include cluster size, navigation vector degree,
navigation point range, and density map threshold. A gym-like scene featuring a densely packed
crowd is utilized to test these parameters. The results are illustrated in Figure 5 (b).

Cluster size. Larger ϵ generates fewer observation with coarser detection, while low ϵ generates
more navigation points and reduces efficiency (TD is 5125.44m for ϵ = 30, 4065.02m for ϵ = 40).

Navigation vector degree. The agent has a limited field of view for large ζ and is obstructed for low
ζ. This highlights the importance of the NLBN since the method generates robust navigation points
for different scenes.

Navigation point range. At close range, the agent’s field of view is restricted, and at long range,
the agent is unable to gather detailed observations, which negatively impacts the subsequent target
detection phase.

Density map threshold. A lower density map threshold leads to an expansion of the target area,
resulting in an increased number of navigation points. However, this also raises the associated costs.
For instance, when κ = 0.5, TD is 6408.02 m, increasing to 7272.02 m when κ = 0.4. This is a
significant degradation in efficiency, yet the improvement in performance is not significant.

Generally, the influence of hyper parameter is consist with tuition. ZECC provides effective perfor-
mance if they are not set to extreme value.

5.4 Case Study

We qualitatively illustrate how ZECC can alleviate occlusion and overlap while improving efficiency
by comparing trajectory in two scenes with OpenFMNav and MVC-30. The results are shown in
Figure 6. It shows that ZECC can effectively explore a complex occlusion environment, reduce
exploration in low crowd density areas, and set navigation points based on crowd distribution. These
features result in a trade-off between performance and cost.

6 Conclusion

In this study, we propose a task that enables interactive crowd counting: Embodied Crowd Counting
(ECC). A simulator, the Embodied Crowd Counting Dataset (ECCD), is developed to enable related
research for ECC. This dataset includes 60 diverse virtual environments with crowd density modeled
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by a prior probability distribution, approximating reality. A method, Zero-shot Embodied Counting
(ZECC), is proposed to verify this task. This is an active agent that can explore unknown environments
without additional assistance. Active Top-down Exploration (ATE) is proposed to utilize Z-axis
moving ability for exploration planning. This module is equipped with MLLM to enable active high
altitude exploration (HAE) or low altitude exploration (LAE), balancing crowd counting performance
and exploration cost. Normal-line based Navigation (NLBN) is proposed to select an optimized
navigation point for crowd observation. This module generates a navigation point from the top-down
view and maintains an angle, alleviating the overlap of the crowd. Simultaneously, the estimated
navigation points enable obstacle avoidance and ensure that the crowd is in FOV. Experiment results
show that ZECC achieves a balance between performance and cost compared to recent navigation
agents. As the first work to propose ECC, we leave expending ECCD and ZECC to dynamic targets
and real world application to future work, which are not considered by existing methods.
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or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risk in this work.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Airsim: https://paperswithcode.com/paper/airsim-high-fidelity-visual-and-
physical
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets. The data and models used in our work
are publicly released.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have carefully read the NeurIPS LLM policy and have determined that our
approach adheres to the relevant ethical guidelines.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.
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Appendix

A Broader Impacts

Further research and careful consideration are necessary when utilizing this technology, as the
presented proposed method relies on the simulator, which may possess biases and could potentially
result in negative societal impacts.

B Visualization of ECCD

Visualization of several scenes in ECCD is shown in Figure 7 and Figure 8. ECCD offers a diverse
range of scenarios, encompassing both large-scale outdoor settings and indoor environments. It
provides a hierarchical 3D structure, with crowds distributed across various positions within the 3D
space, posing challenges for algorithms.

Figure 7: Visualization of environments sampled from ECCD.

Figure 8: 3D structure of samples from ECCD. Colorful dots represent crowd ground truth. Different
colors represent different heights.
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C Details of ZECC

C.1 ATE

During HAE, the ATE receives RGB images captured from the bottom and surrounding areas of
the agent. These images are organized into a panoramic view and transmitted to an MLLM in the
form of a prompt. The image prompt and the text prompt are shown in Figure 9. The prompt utilizes
the Chain of Thought mechanism to improve MLLM perception ability. Once the agent decides to
switch to LAE, it will select a spare space directly under its horizontal location and conduct a landing
operation. The pseudo-code is shown in Algorithm 1.

Algorithm 1 Pseudo-Code of ATE
Require: Global distribution D, HAE map MH , LAE map ML, Prompt I
Ensure:

1: t← 0;
2: done1← False;
3: D ← None
4: MH ← None
5: ML ← None
6: while not done1 do
7: Ot, pt ← getState();
8: st ← MLLM (Ot; I);
9: MH ← updateMap (Ot; pt);

10: if st > 0.5 then
11: toLAE();
12: done2← False;
13: while not done2 do
14: Of , pf ← getState();
15: df ← P (G (Of ) , pf );
16: ML ← updateMap (Of ; pf );
17: D ← updateDistribution(D, df );
18: done2← toUnexplored(ML);
19: end while
20: toHAE();
21: end if
22: done1← toUnexplored(MH);
23: t← t+ 1;
24: end while
25: return D

C.2 NLBN

The method used to estimate the normal line of the crowd cluster plane is the Open3D package. The
global crowd distribution is first divided into subareas using GMM cluster. Then, on each cluster,
Open3D is used to estimate the normal line for each cluster. The normal lines are aligned with the
vector (0,0,1). Then, the normal line at the cluster center is selected as the normal line of the cluster.
Based on this representation, the navigation points can be obtained. The pseudo-code is shown in
Algorithm 2.

C.3 FDC

During FDC, the center of each detection box can be projected to the global crowd distribution by
using the depth information. To re-identify targets, the space is divided into 3D voxels with size of
0.25 m. All the target with in a voxel is regared as the same target. This configuration is set for ZECC
and all comparison methods.
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Algorithm 2 Pseudo-Code of NLBN
Require: Cluster size ϵ, Navigation vector degree ζ , Navigation point range η, Density map threshold

κ, Global distribution D
Ensure:

1: D ← ATE(D);
2: {xcluster

i , ...,xcluster
N } ← Cluster(D);

3: done← False;
4: for i = 1 to N do
5: dcluster

i ← FitPlane(xcluster
i );

6: xATE
i ← getViewpoint(D);

7: Compute {dview
i1 , ...,dview

im }i using Eq. (4);
8: Compute dATE

i using Eq. (5);
9: Compute dview

i using Eq. (6);
10: Compute xview

i using Eq. (7);
11: end for
12: while not done do
13: done← toNextNaviPoint({xview

i , ...,xview
N })

14: end while

As an intelligent agent, you will control a drone to detect crowds in an environment. 

You will receive a panoramic view in "Image:" about your current location. The image 
shows the environment around the drone. You need to output a float in range [0, 1], 
indicating the score of whether current area is valuable for crowd or people detection. 
The higher the score, the higher the probability of crowd or people existing in this 
area. You need to particularly focus on the top-down image, which is Direction 3. This 
image indicates your surroundings.

You need to think about what is in the image, analyze the environment layout, and 
analyze whether crowds may exist in this area. Note that if crowds are absolutely not in 
the image, the score should be very low. Output your thought in "Thoughts:". Then output 
your answer in "Answer:".

For examples:

Image:
Thoughts: 
The image shows an open area with no obstacles, and there are absolutely no crowds.
Answer: 0.1

Image:
Thoughts: 
The image shows an area with heavy obstacles, although crowds or people cannot be 
clearly seen, under obstacles may exist crowds.
Answer: 0.4

Image:
Thoughts: 
The image shows an area with clear people or crowds.
Answer: 0.8

Now start your answer.
Image:

Figure 9: Prompt template used in ATE.
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D Occlusion analysis on ZECC

In this section, we further test the ability of ZECC to alleviate occlusion in the complex environments.
For each ground truth person, we first select the navigation point which has the minimal Euclidean
distance to it, and then test whether occlusion occurs between the navigation point and the person.
This is implemented by first projecting the global point cloud to the vector from navigation point to
the person. Then, if the minimal distance between the global point cloud and the projected points is
lower than a threshold, the person is obstructed. To formulate this, the unit vector from a person to its
nearest navigation point is calculated as:

vnavi
i =

Pnavi
i −Pcrowd

i∥∥Pnavi
i −Pcrowd

i

∥∥ , (8)

where Pnavi
i is coordinate of the navigation point and Pcrowd

i is the coordinate of the person. The
vector from a global point cloud to the person is:

vglobal
ij = Pnavi

i −Pglobal
j , (9)

where Pglobal
j is a random coordinate from the global point cloud. The projected length is:

lij = vglobal
ij · vnavi

i , (10)

and the projected point is:

Pproj
j = Pcrowd

i + lij ∗ vnavi
i s.t. lij ≥ 0 ∧ lij ≤

∥∥∥vglobal
ij

∥∥∥ . (11)

The condition of determining the person is obstructed is:

min
j

∥∥∥Pproj
j −Pglobal

j

∥∥∥ ≤ λ. (12)

In the experiment, λ is set to 0.5 m. We compare ZECC with OpenFMNav and MVC-30. The ratio
between the number of obstructed person and the number of ground truth person of the three methods
are shown in Table 6. It shows that ZECC suffers from the less occlusion, which benefits the crowd
counting results.

E Failure case study

ZECC fails when MLLM makes wrong decision. This is mainly due to occlusion by buildings. Figure
10 shows an example of MLLM planning failure, where the agent does not choose to conduct LAE at
a crowd area.

(a)

--------------------------------------
Thoughts:
The image shows a top-down view of a rooftop area 
with some structures and a parking lot with a few 
cars. There are no visible people or crowds in the 
image. The environment appears to be mostly empty, 
with no significant signs of human activity.

Answer: 0.2
--------------------------------------

(b) (c)
Figure 10: A case of ZECC failure. (a) Agent trajectory. (b) Top-down RGB. (c) MLLM reasoning.
Blue box: ground truth crowd. Because of occlusion, MLLM failed to perceive the crowd during
HAE.

F Quantitative results in real environment

To test ZECC in the real environment, we use two outdoor crowd scene to verify the proposed method.
The drone model used is the Taobotics Q300. The captured images are transmitted back to a ground
server using a remote communication protocol and fed into VGGT [49] to estimate relative point
clouds and poses. The proposed NLBN is then employed to calculate relative navigation points. The
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Table 6: Obstructed person ratio.
Method Ratio (%)

OpenFMNav 42.81
MVC-30 21.77

ZECC 4.52

Table 7: Performance of real scenarios.
Methods MAPE (%)

Scenario 1 Scenario 2
w/o NLBN + GL 41.41 57.76
w/o NLBN + GD 73.74 78.44

NLBN + GL 22.50 29.31
NLBN + GD 15.17 19.83

drone’s absolute geographic coordinates and poses are recorded in real-time by its GPS. By leveraging
the relationships between absolute and relative geographic coordinates and poses, the navigation
points calculated by NLBN are mapped to absolute navigation points. After the ground server controls
the drone to fly to these absolute navigation points, it captures images of the crowd. We utilize
Grounding DINO and the crowd counting model Generalized Loss to perform crowd detection or
counting on images captured from both distant and close-up perspectives, respectively. The ground
truth for crowd annotations is manually labeled. The visualization of the drone observation before
and after adjusting its position to the NLBN navigation point is shown in Figure 11. The quantitative
results are shown in Table 7. Before applying NLBN, the drone can not obtain a clear view of the
crowds in the target area. The GL estimation result is fuzzy, and due to crowd overlap, people in
the back rows are obstructed by those in the front rows. This results in the corrupted detection
of GD. By adjusting to the NLBN navigation point, the drone is able to observe the target area
from a top-down perspective, alleviating occlusion of people in back rows and improving counting
performance significantly. This demonstrates how NLBN addresses occlusion.

(a) (b) (c) (d) (e) (f)

Figure 11: Quantitative results in real environment. (a), (d) Output of GL. The marked areas indicate
the target zone. (b), (e) Point cloud of the scene. Red lines: candidate view vector. Green lines:
the drone view vector. Orange lines: selected view vector. (c), (f) GD detection results. Red boxes:
detected crowds. Green boxes: ground truth crowds. First row: before applying NLBN. Second row:
after applying NLBN. (a), (b) and (c) are Scenario 1 and (d), (e) and (f) are Scenario 2. By adjusting
the camera position to the NLBN navigation point, the target detection result is improved.
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