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a b s t r a c t

In recent years, human trajectory prediction (HTP) has garnered attention in computer vision literature.
Although this task has much in common with the longstanding task of crowd simulation, there is little
from crowd simulation that has been borrowed, especially in terms of evaluation protocols. The key
difference between the two tasks is that HTP is concerned with forecasting multiple steps at a time
and capturing the multimodality of real human trajectories. A majority of HTP models are trained on
the same few datasets, which feature small, transient interactions between real people and little to
no interaction between people and the environment. Unsurprisingly, when tested on crowd egress
scenarios, these models produce erroneous trajectories that accelerate too quickly and collide too
frequently, but the metrics used in HTP literature cannot convey these particular issues. To address
these challenges, we propose (1) the A2X dataset, which has simulated crowd egress and complex
navigation scenarios that compensate for the lack of agent-to-environment interaction in existing real
datasets, (2) evaluation metrics that convey model performance with more reliability and nuance, and
(3) a guideline for future data acquisition in HTP. A subset of the proposed metrics are novel multiverse
metrics, which are better suited for multimodal models than existing metrics. The dataset is available
at: https://mubbasir.github.io/HTP-benchmark.

© 2022 Elsevier Ltd. All rights reserved.
i

1. Introduction

The study of human navigation has long been of interest to
arious research communities such as computer graphics [1],
omputer vision [2], cognitive science [3], and robotics [4]. Ad-
ancements in these areas have seen widespread practical
pplication in pandemic response, architectural design, urban
lanning, transportation engineering, crowd management, so-
ially compliant robot navigation, and entertainment. Accord-
ngly, the influence of human navigation research has reached
ountless individuals and will continue to do so in the foreseeable
uture.

Most applications rely on simulation models [5], which are
ufficiently accurate to human behavior and generalizable to
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097-8493/© 2022 Elsevier Ltd. All rights reserved.
unforeseen circumstances. However, the past five years of pre-
dictive modeling in computer vision has achieved significantly
better accuracy [6], giving it a strong potential to overtake the
longstanding models from computer graphics. This is largely
due to the transition from using unimodal, discriminative mod-
els [2] that predict a single future trajectory to using multimodal,
generative models [7–9] that predict a distribution of future
trajectories, which captures the inherent uncertainty in human
decision-making [10,11]. Despite the evolution of models, how-
ever, the accuracy metrics that were introduced with the first
unimodal models are still in use today. In order to adapt these
fundamentally unimodal metrics to multimodal models, the met-
rics are computed between each predicted trajectory and the
ground truth trajectory, and the minimum error for each metric
is reported. This results in a gross overestimation of accuracy that
we later show is not consistent with the expected accuracy, which
may misguide future research efforts. Furthermore, the minimum
value is not actionable, because while it is evident that a state-of-
the-art (SOTA) multimodal model can find an accurate trajectory,
t cannot determine which trajectory is most accurate for unseen

data. We measure this uncertainty through a decidability metric.
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Fig. 1. The above framework image shows (a) the differences between the trajectories of existing datasets (A2A) and the novel dataset (A2E), (b–c) the models
trained and tested on combinations of A2A and A2E, (d) the proposed set of metrics for evaluating the accuracy, realism, and decidability of models, and (e) a greedy
method for selecting the prediction most realistic movement.
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Generalizability cannot be maximized by solely improving
pon accuracy metrics. An inaccurate model can be robust by
roducing realistic trajectories, and an accurate model can fail
o be practicable by being undecidable. Models can exist on the
ontinuum between these two extremes, making it critical to
onsider realism and decidability metrics as well.
Furthermore, there is a stark class imbalance in existing

atasets. While datasets are abundant in instances where hu-
ans are interacting with each other in open spaces [12–17],

hey are significantly lacking in both environment information
nd instances where humans are interacting with their environ-
ent. Ultimately, this hinders generalization at a global level and
as led to some models being developed without considering
nvironments at all [2,7].
In this work, we provide an augmented human trajectory

rediction dataset that compensates for the lack of agent-to-
nvironment interaction in existing datasets with a new sim-
lated dataset. To understand model performance on this new
ataset with more reliability and nuance, we propose a com-
rehensive set of accuracy, realism, and decidability metrics. A
ubset of these metrics are novel multiverse metrics, which are
etter-suited for multimodal models than existing metrics but
re still applicable to unimodal models. The evaluation using
hese metrics decisively evidences that the new dataset facilitates
etter robustness and generalization, that current metrics can
e misleading, and that there are still remaining challenges to
odeling human trajectories. We finally showcase that realism
etrics can also be used to decide which prediction to take

rom an undecidable multimodal model through the process of
ultimodal Model Collapse. Henceforth, we refer to humans as
gents, since our conceptual framework is broadly applicable,
.g. to robotic and vehicular agents.

. Background

.1. Models for human trajectory prediction

While crowd simulation has been well-studied in computer
raphics literature [18,19], we focus on the use of machine
earning techniques for the growing field of human trajectory
rediction. Earlier methods such as Social LSTM [2] and Social
ttention [20] proposed deterministic models which predict a
131
single future trajectory per agent given the observed trajecto-
ries. These unimodal approaches are limited in their ability to
represent the inherent uncertainty in an agent’s future. Many
later studies [7–9,21–24] have assumed the multimodality of
future human behavior and learn its distribution to capture the
uncertainty. In this paper, we leverage three state-of-the-art
(SOTA) methodologies to demonstrate our dataset and evaluation
metrics: SocialGAN [7], PECNet [9], and Trajectron++ [8].

SocialGAN [7] adopts the GAN [25] framework to forecast mul-
iple possible future trajectories. The generator creates samples
imilar to the data distribution while the discriminator distin-
uishes whether the samples belong to the ground-truth or the
enerated data. SocialGAN also tackles the problem of potential
ollisions between the agents in a scenario by introducing a global
ooling mechanism. The pooling of all agents’ features allows
ocialGAN to capture the interactions between agents, which in
heory prevents collisions between neighboring agents.

PECNet [9] addresses human trajectory prediction in two
teps. First, it predicts a future goal position based on the ob-
erved trajectories by modeling the distribution of the goal posi-
ions with a Variational Autoencoder (VAE) [26]. After sampling
rom this learned distribution, PECNet predicts each step of an
gent’s future trajectory by interpolating between the observed
rajectory and the estimated future goal position.

Trajectron++ [8] proposes a graph-structured recurrent model
ased on a conditional VAE [27] to predict future trajectories.
uring training, it encodes both past and future trajectories to
btain the latent factor z from the posterior distribution, while
uring inference, it is sampled from the prior distribution based
nly on the past trajectories. Trajectron++ then leverages the
raph structure by using edge encodings to model the interaction
etween the nodes (i.e., agents) in a scene. To model the interac-
ion between agents and the environment, it encodes a local map
o avoid obstacle collisions.

We investigate these three models as the representatives of
arious SOTA works. PECNet [9] exhibits outstanding perfor-
ance for long-term trajectories while Trajectron++ [8] is highly
erformant for short-term trajectories. Meanwhile, SocialGAN [7]
s one of the earliest and most frequently referred models. To-
ether, these models envelop numerous existing models in terms
f both short- and long-term human trajectory prediction accu-
acy, which Fig. 1.b illustrates. We differentiate between pre-
ictive models of short-term and long-term trajectories on the
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asis of goal conditioning. A model that is not goal-conditioned
ill inherently increase in error as the predicted path length

ncreases, sometimes at an exponential rate [8], whereas goal-
onditioned models are expected to predict long paths without
he same trade-off between path length and error.

.2. Datasets for human trajectory prediction

Several human trajectory prediction datasets have been col-
ected by the computer vision and computer graphics communi-
ies.

ETH [28] and UCY [12] are the most commonly used datasets,
hich feature five outdoor scenes and over 1600 total trajectories
ecorded at 2.5 Hz. These datasets contain instances of collision
voidance and group movement, but the recorded trajectories are
elatively short due to a small viewing window.

Stanford drone dataset (SDD) [13] consists of eight outdoor
cenes in Stanford campus collected from a drone. The dataset
ontains more than 19,000 targets including not only pedestrians,
ut also bicyclists, skateboarders, cars and buses. The coordinates
f the trajectories are in the image coordinate system from the
ird’s eye view, instead of physical word coordinate system. In
ontrast to ETH/UCY, the larger viewing window results in longer
ecorded trajectories.

Stanford crowd dataset (CFF) [14] consists of pedestrian tra-
ectories collected within a train station building of size 25 m

100 m by a set of distributed cameras. Unlike the outdoor
nvironments of ETH/UCY and SDD, the indoor environment of
FF poses stricter constraints on pedestrian motion and the mass
ransportation setting features significantly higher pedestrian
ensity than ETH/UCY and SDD. However, the dataset is quite
oisy due to detection, tracking, and localization error, and the
ifficulty to measure the accurate positions of the non-navigable
reas.
L-CAS 3D Point Cloud People Dataset (LCAS) [15] consists of

8,002 scan frames collected within a university building by
3D LiDAR mounted on a robot that is either stationary or
oving. A scan frame contains around 30,000 3D points, based
n which pedestrians are labeled with 3D bounding boxes and
arked as either visible or partially visible. While both CFF and
CAS consider indoor environments, LCAS is characterized by low
edestrian density. Both low and high densities are essential to
onsider, because collective behaviors are known to emerge at
igh pedestrian densities, but not at low densities [29].
WILDTRACK (WT) [16] was collected with seven static HD

ameras in a public square and captured dense groups of pedes-
rians for approximately 60 min. The seven cameras’ fields of view
n large part overlap, allowing precise joint calibrations of image
equences, which ensure high-precision trajectory data. Unlike
ther datasets in which pedestrians are primarily focused on nav-
gation, WT features groups of pedestrians that are occasionally
tatic while engaged in conversation.
Some datasets, such as TrajNet++ [17] and OpenTraj [30] are

omposed of multiple constituent datasets. TrajNet++ combines
he ETH/UCY, CFF, LCAS, and WT datasets, as well as a synthetic
ataset generated by the ORCA model [31].
Existing human trajectory datasets have limitations in the

ense of embodying interactions. They either do not contain
gent-to-environment (A2E) interactions [16], or exhibit limited
gent-to-agent (A2A) interactions at small scales in simplistic
nvironments. We speculate that many self-centered pedestrians
re prone to avoid or mitigate, consciously or unconsciously,
he influence of the environments and other pedestrians during
heir navigation. In this work, we are proposing datasets that
ugment A2E and A2A interactions, which may bring benefits for
nhancing learning models by encoding more complex trajectory
ynamics.
132
2.3. Evaluation for human trajectory prediction

In computer graphics literature, trajectories are generally mea-
sured by motion statistics such as the number of collisions, aver-
age speed, average acceleration, and total distance traveled [32].
On the other hand, in machine learning literature [2,7,17], the
most commonly used evaluation metrics for trajectory forecasting
models are Average Displacement Error (ADE) and Final Displace-
ment Error (FDE). ADE is the average L2 distance between the
round truth and the predicted trajectories across all future time
teps. FDE is the L2 distance between the final positions of the
round truth and the predicted trajectories.
However, many trajectory forecasting models assume multi-

odality in the future behavior, which makes their models gen-
rate more than one prediction of the future trajectory given one
ast trajectory. The current strategy used in the prior works is re-
orting the minimum ADE/FDE results across randomly sampled
predictions where k = 20 in most cases.
In order to evaluate the multi-modal models, Trajectron [22]

ntroduces Negative LogLikelihood (NLL) which is used also in [8,
7]. Given a future time step to predict, they compute the average
LL of the ground truth trajectory under a distribution generated
y a kernel density estimate on trajectory prediction samples.
Trajnet++ [17] tackles the issue of various human trajectory

rediction models demonstrating their methods on different sub-
ets of benchmark datasets. To evaluate them on the same set
f trajectory data, Trajnet++ introduces their own benchmark.
rajnet++ is especially focused on generating data with suffi-
ient human interaction in order to evaluate the capacity for
ach model to predict plausible trajectories without collisions
ith other pedestrians. To measure the collisions, they suggest
ew metrics; Collision1 and Collision2. Collision1 computes the
ollision rate between a pedestrian’s predicted trajectory and its
eighbors’ predicted trajectories. Collision2 computes the col-
ision rate between a pedestrian’s predicted trajectory and its
eighbors’ ground truth trajectories.
ADE and FDE are applicable to unimodal methods which pre-

ict only one future sequence that can be compared with the
round truth future sequence. However, as aforementioned in
his section, many multimodal trajectory forecasting models as-
uming uncertainty and multimodality in pedestrians’ future be-
aviors predict k future sequences (usually k = 20). Most of

these models report the minimum ADE/FDE results among all
k predictions, which, in our view, is overly optimistic. Not only
is this a significant underestimation of the error, but it is also
an impossible standard in that these models are incapable of
choosing the prediction with the minimum error. In Section 4 of
this work, we propose new metrics that can tackle this issue.

3. Agent-to-agent and agent-to-environment interaction
dataset

We propose a comprehensive trajectory prediction dataset
A2X that consists of a representative set of trajectories, which will
enable better generalization under realistic circumstances that
are either complex or unsafe and out-of-distribution (OOD) with
respect to current datasets.

In order to understand what the shortcomings of current
datasets are (Section 2), we first taxonomize the characteristics of
human trajectories. The TrajNet++ benchmark [17] proposed an
initial taxonomy that only considers short-term characteristics,
e.g., standing still, moving linearly, or avoiding collisions (Fig. 1.a).
While the original taxonomy is sufficient for describing the tra-
jectories in many real datasets and their agent-to-agent (A2A)
interactions, models that learn exclusively from these types are
insufficient for most applications, which consider environments
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ith obstacles and time frames longer than 5 s, which is the
ractical limit for most models before they become exponen-
ially erroneous [8]. We have improved upon this by considering
ong-term characteristics (Fig. 1.a), i.e., pathfinding alone and
avigating through crowded bottlenecks. These types of trajecto-
ies emerge from agent-to-environment (A2E) interactions, which
nfold over a longer time frame than A2A interactions and are
ssential for navigation within any environment [33].

.1. Agent-to-agent interactions

For representing A2A interactions, we make use of each prior
ataset described in Section 2.2: ETH [28], UCY [12], SDD [13],
FF [14], LCAS [15], WT [16], and TrajNet++ [17]. These datasets
eature transient interactions between agents and little interac-
ion with the environment, which is made difficult to measure by
he frequent unavailability of environment information. There-
ore, we approximate environment information based on the
rinciple of stigmergy [34,35], which observes the self-
rganization of human navigation along trails. For each position
hat agents have traveled through in either the training or testing
ets of the ground truth, a 1-meter radius around the position
s considered to be navigable. This guarantees that predictions
ith less than 1 meter of displacement from the ground truth
t all times will never intersect with the environment. Although
his technique has been applied to all datasets for consistency,
e recommend using environment information from datasets
henever possible. Additionally, in order to compensate for the

mbalance between A2A and A2E interactions in prior datasets,
e propose the generation of synthetic data in addition to that of
rajNet++. While real datasets are valuable for their veridicality,

there are logistical limitations that prevent the acquisition of real
data in OOD scenarios that are unsafe for human participants or
prohibitively expensive from an organizational standpoint.

3.2. Agent-to-environment interactions

Two such scenarios are used to sample trajectories exhibiting
2E interactions: (1) pathfinding alone in a large, complex envi-
onment, which has prohibitive logistical cost and (2) navigating
hrough bottlenecks of varied width with a dense crowd, which
an be unsafe. Though simulation models are normally less accu-
ate than predictive models in predicting human trajectories [2],
he prevalent Social Force model [1] currently outperforms pre-
ictive models in terms of robustness, has been used in several
pplication domains [4,36,37], and has adequate ecological va-
idity in these A2E scenarios, which lack sufficient real data for
raining predictive models until A2X. Although there are differ-
nces between synthetic and real data, the Social Force Model
perates on a much simpler set of dynamics to navigate than real
umans regardless of its parameterization. In fact, all visual [38],
uditory [39], and olfactory [40] stimuli used by humans for nav-
gation are abstracted away in HTP datasets. Therefore, synthetic
ata makes it uniquely feasible to learn a perfect model using
rajectory data alone. However, in light of the differences, we
ecommend that during analysis, A2A-trained predictive models
re primarily evaluated on A2E not with accuracy metrics, but
ith realism and decidability metrics instead.
We leverage the Social Force model to simulate 236 scenarios

f a single agent navigating between random points in complex
12 × 112 m2 environments from [33] (Fig. 2). This produces
ong-term isolated interactions between single agents and the
nvironment. We then use the same model to simulate well-
tudied bottleneck scenarios [41,42] in a 25 × 7 m2 room that
ary in terms of (a) the density of agents (Level of Service)

2
rom {0.2, 0.4, 0.6, 0.8, 1.0} agents/m and (b) the ratio between

133
Fig. 2. The above images show the exact dimensions of environments from the
bottleneck and pathfinding scenarios in A2E.

the width of the bottleneck and the width of the room (Exit–
Entrance Ratio) from {0.2, 0.3, 0.4, 0.6, 0.7} (Fig. 2). A total of
398 scenarios have been generated across all combinations of
Level of Service and Exit–Entrance Ratio. This produces long-
term interactions between agents as a result of the constricting
environment. Exact environment information has been provided
for both types of scenarios. We later show that current models
trained on existing A2A datasets are unable to generalize to these
critical scenarios, but with the addition of training data on these
scenarios, the accuracy of predictions significantly improves.

4. Accuracy, realism, and decidability of human trajectory pre-
diction

We propose a total of 15 accuracy, realism, and decidabil-
ity metrics (Fig. 1.d). These metrics are either borrowed from
computer vision and computer graphics literature [2,28,32,43] or
newly developed multiverse metrics, which assess the A2A and
A2E interactions of both multimodal models with k > 1 and
unimodal models with k = 1.

4.1. Preliminaries

In accordance with both unimodal and multimodal predictive
models, we utilize the following notation for their predictions. A
prediction scenario is defined by a set of n agents present in an
environment E at the same time. Each agent a has tp frames of
past position data as input and tf frames of future position data
for ground truth Ya,0 ∈ Rtf ×2 and for each prediction Ŷa,j ∈ Rtf ×2,
where 0 ≤ j < k. All position data is in meters and has a frame
rate of 1/∆t Hz based on the dataset. The position at the tth
frame is Ya,0,t ∈ R2 for the ground truth and Ŷa,j,t ∈ R2 for
prediction j, where 0 ≤ t < tf . We then compute the velocities
corresponding to the ground truth Va,0 ∈ R(tf −1)×2 and each
prediction V̂a,j ∈ R(tf −1)×2.

Many of the following metrics make use of aggregate func-
tions. For any d-dimensional vector v ∈ Rd, we denote the
minimum value by Ω(v), the mean value by Θ(v), and the maxi-
mum value by O(v). For a matrix of d-many 2D vectors D ∈ Rd×2,
function Ξ (D, b) transforms the 2D vectors into a probability
distribution p ∈ Rb over b-many equiangular bins, which radiate
from the origin (Fig. 3). Finally, we denote the L norm by ∥ · ∥.
2
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Fig. 3. This images shows how b = 8 bins would be arranged in 2D space.

4.2. Accuracy metrics: Comparison to ground truth

Accuracy metrics from computer vision literature are respon-
sible for comparing the ground truth with the predictions based
on the displacement error.

Average Displacement Error (ADE). ADE is computed for each
prediction j as aj, the average distance between a position in the
ground truth and a position in the prediction across tf frames
(Eq. (1)) [28]. It is then aggregated across the k predictions in
three ways: minimum, mean, and maximum, which offers a more
reliable expectation of a model’s accuracy than the minimum
alone.

Final Displacement Error (FDE). FDE is computed for each pre-
diction j as bj, the distance between the final positions of the
ground truth and the prediction (Eq. (2)) [2]. It is aggregated
across the k predictions in the same ways as ADE for better
reliability.

ADE
(
Ya, Ŷa

)
=

[
Ω(a), Θ(a),O(a)

]
s.t. aj =

1
tf

tf −1∑
t=0

⏐⏐⏐⏐⏐⏐Ya,0,t − Ŷa,j,t

⏐⏐⏐⏐⏐⏐ , 0 ≤ j < k

(1)

FDE
(
Ya, Ŷa

)
=

[
Ω(b), Θ(b),O(b)

]
s.t. bj =

⏐⏐⏐⏐⏐⏐Ya,0,tf −1 − Ŷa,j,tf −1

⏐⏐⏐⏐⏐⏐ , 0 ≤ j < k

(2)

.3. Realism metrics: Motion and interaction statistics

Realism metrics are used to describe the movement and inter-
ctions within the ground truth and the predictions separately.
hese metrics can then be used to uncover more nuanced dif-
erences between the ground truth and predictions. While they
annot ensure that predictions are accurate, they can ensure that
redictions are realistic in their movement and plausible. Every
ealism metric is computed in the same way for both the ground
ruth and predictions, so Y is interchangeable with Ŷ and V with
. For generality, we consider the ground truth as a unimodal
odel with k = 1, but we refer to it as having k paths instead of
redictions.
The following motion statistics are used to describe the move-

ent of agent a in either the ground truth or averaged across the
predictions. They have been used to evaluate crowd simulations
n computer graphics research [32], but have not yet been used
o evaluate predictive models in computer vision.

L(Ya) =

[
1
k

k−1∑ tf −2∑⏐⏐⏐⏐⏐⏐Ya,j,t+1 − Ya,j,t

⏐⏐⏐⏐⏐⏐] (3)

j=0 t=0

134
S(Va) =

[
1
k

k−1∑
j=0

Θ
(
Sj

)
,

1
k

k−1∑
j=0

O
(
Sj

)]
(4)

s.t. Sj,t =

⏐⏐⏐⏐⏐⏐Va,j,t

⏐⏐⏐⏐⏐⏐ , 0 ≤ t < tf − 1

A(Va) =

[
1
k

k−1∑
j=0

Θ
(
Aj

)
,

1
k

k−1∑
j=0

O
(
Aj

)]
s.t. Aj,t =

⏐⏐⏐⏐⏐⏐(Va,j,t+1 − Va,j,t
)
/∆t

⏐⏐⏐⏐⏐⏐ , 0 ≤ t < tf − 2

(5)

Path Length. The average path length (m) for an agent a is
computed by first finding the length of each path j and then
averaging the values across all k paths (Eq. (3)).

Speed. In order to report the speed (m/s), the magnitudes S ∈

Rk×(tf −1) of velocities in Va are first computed for each agent a.
Next, two values are reported for speed: the mean speed averaged
across k paths and the maximum speed averaged across k paths.
For each path j of agent a, the mean and maximum speed are
computed across tf − 1 frames (Eq. (5)).

Acceleration Magnitude. Similar to speed, we first compute the
magnitudes A ∈ Rk×(tf −2) of the difference between every pair
of consecutive velocities in Va for each agent a. The acceleration
magnitude (m/s2) A(Va) is then reported in the same way as
speed: the mean acceleration magnitude averaged across k paths
and the maximum magnitude averaged across k paths (Eq. (5)).

Traditional measures of collision are unsuitable for multi-
modal models in which an agent a may be colliding with agent
b when it takes the direction of path j, but not when it takes the
direction of path j + 1. We therefore propose multiverse metrics
such as Agent Collision-Free Likelihood (ACFL) and Environment
Collision-Free Likelihood (ECFL) to measure the A2A and A2E
interactions of multimodal models respectively.

ACFL(Y, a) =

[
1
k

k−1∑
j=0

n−1∏
b=0

k−1∏
i=0

tf −1∏
t=0

1R>0

(Ya,j,t − Yb,i,t
 − r

)]
s.t. a ̸= b

(6)

ECFL(Ya, E) =

[
1
k

k∑
j=1

tf −1∏
t=0

E
[ ⌊

s · Ya,j,t,1
⌋
,
⌊
s · Ya,j,t,0

⌋ ] ]
(7)

MVE(Ya) = −

∑
p∈p

p · log2(p) s.t. p = Ξ
(
D, 20

)
,

Dj =
1

tf − 1

(tf −1∑
t=1

Ya,j,t

)
− Ya,j,0 , 0 ≤ j < k

(8)

Agent Collision-Free Likelihood (ACFL). In order to assess the
quality of A2A interaction under the kn possible futures for n
agents, we propose ACFL, which computes the probability that
agent a has a path that is free of collision in all of the k(n−1)

possible futures with other agents (Eq. (6)). The indicator function
1R>0 returns 1 when the distance between agents a and b is
greater than r meters at time t , and 0 otherwise. This means
that if their centers of mass are within r meters of each other,
they are considered to be colliding. For analysis, r has been set to
0.3 m (∼1 foot), because it is unlikely that humans passing each
other within 0.4 m would not collide [44]. While both real and
synthetic data are expected to have an ACFL of ∼1.00 for r = 0.3
m, predictive models are not limited by physical rules and can
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Table 1
This table showcases the evaluation results of Social GAN (SGAN), PECNet (PECN), and Trajectron++ (T++) after training on either A2A, A2E, or both A2A and A2E
nd testing on A2A and A2E separately. For every metric in a testing set, the best value has been made bold for each model. Models where minimum accuracy
etrics disagree with the averages are red.
Test Model Train Accuracy metrics Realism metrics Decidab.

ADE↓ FDE↓ Length Speed Accel. ACFL ECFL %Diff.↓ MVE↓
min/mean/max min/mean/max mean/max mean/max

Agent-to-Agent
Interaction

GT N/A 0.00/0.00/0.00 0.00/0.00/0.00 4.43 1.01/1.32 0.29/1.04 0.95 1.00 0 0.00

SGAN
A2A 0.36/0.77/1.50 0.62/1.61/3.33 4.22 0.96/1.42 0.09/0.56 0.30 0.98 48 0.90
A2E 2.21/2.48/2.81 4.02/4.65/5.48 3.15 0.72/1.38 0.12/0.40 0.58 0.97 51 0.70
Both 0.37/0.74/1.35 0.65/1.55/2.97 4.13 0.94/1.32 0.06/0.33 0.33 0.98 51 0.84

PECN
A2A 0.63/0.65/0.68 1.12/1.28/1.45 4.50 1.02/2.15 0.48/3.41 0.56 0.98 56 0.07
A2E 1.25/1.28/1.31 1.83/2.00/2.20 4.50 1.02/4.16 1.13/8.80 0.59 0.98 166 0.10
Both 0.73/0.76/0.79 1.44/1.59/1.74 4.78 1.08/2.61 0.49/4.57 0.57 0.98 85 0.10

T++

A2A 0.22/0.66/1.85 0.42/1.51/4.16 4.38 1.00/2.32 0.36/3.09 0.22 0.98 47 1.08
A2E 0.56/1.06/1.77 1.13/2.29/3.90 4.22 0.96/1.79 0.29/2.18 0.25 0.98 46 1.41
Both 0.23/0.64/1.76 0.43/1.48/4.02 4.35 0.99/2.27 0.35/2.96 0.22 0.98 47 1.13

Agent-to-Env.
Interaction

GT N/A 0.00/0.00/0.00 0.00/0.00/0.00 5.51 1.25/1.40 0.18/0.51 1.00 1.00 0 0.00

SGAN
A2A 0.28/0.66/1.33 0.50/1.48/3.14 5.42 1.23/1.70 0.08/0.45 0.29 0.90 47 0.82
A2E 0.19/0.41/0.96 0.27/0.86/2.17 4.19 0.95/1.33 0.09/0.28 0.35 0.94 48 0.64
Both 0.19/0.56/1.25 0.32/1.28/3.02 5.03 1.14/1.57 0.08/0.40 0.32 0.92 49 0.65

PECN
A2A 0.47/0.49/0.51 0.98/1.12/1.27 5.35 1.22/1.72 0.32/2.79 0.64 0.92 117 0.03
A2E 0.29/0.31/0.34 0.63/0.75/0.90 5.64 1.28/2.44 0.40/3.50 0.60 0.94 148 0.04
Both 0.32/0.34/0.37 0.70/0.81/0.92 5.64 1.28/2.29 0.34/3.41 0.60 0.93 157 0.06

T++

A2A 0.17/0.81/2.43 0.34/1.86/5.54 5.48 1.25/3.10 0.53/4.41 0.18 0.90 43 1.24
A2E 0.10/0.29/0.64 0.19/0.69/1.61 5.41 1.23/1.63 0.18/1.38 0.47 0.95 40 0.73
Both 0.12/0.37/1.11 0.23/0.87/2.55 5.41 1.23/2.00 0.27/2.04 0.42 0.93 40 0.76
ˆ
ˆ
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achieve lower values of ACFL. Increasing r will decrease the ACFL
s the number of A2A interactions increases.

nvironment Collision-Free Likelihood (ECFL). ECFL comple-
ents ACFL in that it measures the quality of A2E interaction
nder the k possible futures that agent a can interact with the
nvironment (Eq. (7)). Namely, it reports the probability that
gent a has a path that is free of collision with the environment.
he environment is represented by a binary matrix E, in which
ach cell corresponds to a square space and is equal to 1 if that
pace is navigable and 0 otherwise. E[0, 0] is aligned with the
rigin of the position data Y, but E has a scale of 1/s meters
er unit as opposed to 1 meter per unit like Y. This means that
he position [x, y] = Ya,j,t of agent a taking path j at time t
aps to E

[
⌊s · y⌋, ⌊s · x⌋

]
. For analysis, s has been set to 2 based

n the dataset. When agent a’s center of mass is intersecting a
non-navigable region of the environment like a wall, the agent is
considered to be colliding with the environment.

4.4. Decidability metric: Certainty in movement direction

Decidability is a measure of a model’s uncertainty in the move-
ment direction of agents, and it is not strictly opposite between
unimodal and multimodal models. If a multimodal model has
low enough uncertainty in an agent’s direction of movement, we
consider it to be decidable.

Multiverse Entropy (MVE). We compute MVE to measure the
decidability for agent a. We first transform each path j into an
average direction vector Dj ∈ R2 as the vector from the initial
position Ya,j,0 to the average position of the tf − 1 subsequent
points (Eq. (8)). The average direction vectors D are then trans-
formed into a probability distribution p ∈ Rb over a vector of
b-many equiangular bins (Fig. 3). Finally, the entropy of p is
reported as MVE. High values of ACFL and ECFL are contingent
on low MVE (high decidability), because high certainty in the
direction that an agent will travel along will cause fewer potential
collisions with other agents (ACFL) and the environment (ECFL).
For experimental purposes, b has been set to k, so that MVE is
maximized when every prediction is in a different direction.
 t
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4.5. Comparing realism metrics

In order to compare realism metrics between the ground
truth and predictions for an agent a, we first compute a feature
vector for the ground truth Fa =

⟨
L(Ya,0), S(Va),A(Va),ACFL(Y, a),

ECFL(Ya, E)
⟩
, where ⟨·, ·⟩ denotes vector concatenation. The same

vector concatenation is used to compute the feature vector F̂a,j ∈

R7 for each prediction j. Eq. (9) returns the percent differences
Ca ∈ Rk between the feature vectors of each prediction j and the
ground truth of agent a.

Ca,j =
100
7

6∑
f=0

⏐⏐⏐̂Fa,j,f − Fa,0,f
⏐⏐⏐

Fa,0,f
s.t. Fa,0,f > 0 , 0 ≤ j < k (9)

. Results

In order to understand the limits of not only the SOTA but
lso the models that paved the way towards the SOTA, we eval-
ate three critical multimodal models that are capable of either
hort-term or long-term trajectory prediction and provide a large
overage over the performance of prior models (Fig. 1.b). In
articular, we have selected (1) Social GAN (SGAN) [7], one of
he earliest models; (2) Trajectron++ (T++) [8], a SOTA model
or short-term trajectory prediction; and (3) PECNet (PECN) [9], a
OTA model for long-term trajectory prediction.

.1. Training protocol

Each of the three models was trained on 3 combinations
rom the A2X Dataset: A2A interaction, A2E interaction, and both
Fig. 1.b), producing a total of 9 models. We denote that either
model has been trained on a particular combination using a

ubscript, e.g., SGANBoth. Each trained model was then evaluated
n the testing sets of the 3 combinations (Fig. 1.c). The results of
he evaluations on A2A and A2E are reported in Table 1, while the
esults on both A2A and A2E combined and corresponding visual-
zations are reported in the Supplementary Materials. According

o the dataset, the following parameters have been set for the
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e
valuation: k = 20, tp = 8, tf = 12, and ∆t = 0.4, meaning that
each agent is receiving 3.2 s of input data and predicting 4.8 s
into the future.

Each row of Table 1 reports the accuracy, realism, and decid-
ability metrics of a model averaged across the agents of every
testing scenario for a given dataset. The first 5 columns of realism
metrics correspond to the dimensions of F and F̂, the feature vec-
tors used to compute the percent difference between the ground
truth (GT) and predictions. The mean percent difference Θ (̂Ca)
of each agent a is averaged across all agents and reported in the
final column of the realism metrics. For all accuracy metrics, the
realism percent difference, and the decidability metric, a lower
value is favorable, while for the remaining realism metrics, a
value closer to the ground truth is favorable.

5.2. Analysis

5.2.1. Training on both types of interaction consistently has near-
best accuracy

As expected, we find that in terms of all accuracy metrics,
models trained on a single type of interaction perform very poorly
on test scenarios that feature the other type of interaction. By
training any of the three models (SGAN, PECN, or T++) on both
types of interactions, we find that the accuracy is consistently
near-best among all three training datasets by a small margin.
For testing on A2A, a model trained on both types is closer in
accuracy to the same model trained on A2A, and for testing on
A2E, it is closer to the same model trained on A2E. In fact, when
testing on A2A, training SGAN and T++ on both types achieves
the best mean/maximum ADE and mean FDE among all training
datasets. This makes training on both types of interactions an
excellent compromise for balancing accuracy between real-world
cases from A2A and critical synthetic cases from A2E.

5.2.2. Existing evaluation metrics can misjudge model accuracy
When testing on A2A, SGANA2A and T++A2A are misjudged as

being better than SGANBoth and T++Both according to minimum
ADE and minimum FDE (highlighted in red). Reliance on these
overly optimistic existing metrics will lead to choosing models
that are less accurate than others on average.

5.2.3. Realism metrics influence model choice based on the use case
We cannot rely only on the accuracy of models to determine

which is best, since anything short of perfect accuracy carries
risk. The realism metrics allow us to better understand a model’s
performance in the context of its application. For example, we
find that the maximum speed and acceleration for T++Both are
significantly higher than the ground truth, which for an appli-
cation in socially compliant robot navigation can discomfort or
potentially harm surrounding humans [45]. In contrast, SGANBoth
has lower average accuracy by a small margin, but it boasts higher
realism by a large margin in terms of maximum speed, maximum
acceleration magnitude, and ACFL. We attribute SGANBoth’s higher
ACFL to the tighter spread of its predictions than T++Both accord-
ing to MVE. Ultimately, the choice of a model depends on the
application, but without the joint consideration of the proposed
accuracy and realism metrics, a practitioner may be led to choose
an unsuitable model.

5.2.4. A2E is essential for learning collision avoidance
Models trained exclusively on A2E interactions tend to have

lower likelihoods of A2A collision (higher ACFL) than models
trained on A2A interactions alone or on both types of interactions.
This highlights the importance of A2E for improving robustness
even in real-world scenarios such as A2A.
136
5.2.5. ECFL indicates that A2A scenarios have trivial A2E interactions
Models trained on A2E achieve the lowest likelihood of A2E

collision (highest ECFL) when testing on A2E, but still have some
room to improve. In contrast, we find that ECFL is nearly perfect
for A2A scenarios, indicating that A2A scenarios do not challenge
models with A2E interactions.

5.2.6. Multimodal models can be decidable
Although PECN is a multimodal model, it has a near-zero MVE,

which is significantly lower than SGAN and T++. This indicates
that PECN has certainty in the direction that agents will travel
along (regardless of whether the direction is correct). PECN also
achieves the highest ACFL owing to its low MVE, which is low
enough to consider PECN as being decidable and likely helps it in
performing long-term trajectory prediction.

5.2.7. T++ is a significant indicator of SOTA performance
According to the three latest SOTA works in HTP [46–48],

T++ has used to represent the existing SOTA. As it is the best
representation of the SOTA, we examine it more closely. In terms
of accuracy, T++ achieves the overall best mean ADE on A2A and
the overall best minimum/mean ADE and minimum/mean FDE on
A2E. In terms of realism, T++ achieves the overall best percent
difference in realism metrics on both A2A and A2E, achieving the
best percent difference when trained on A2E alone. Regarding de-
cidability, the MVE for T++A2A is marginally better than T++Both
when testing on A2A, but on A2E, the MVE for T++A2A is almost
twice worse than T++Both. These findings reveal a comprehen-
sive improvement in accuracy, realism, and decidability for T++

when training either jointly on both A2A and A2E or exclusively
on the critical synthetic cases in A2E.

5.2.8. Open challenges in HTP
Models trained on both types of interactions do not yet gener-

alize to A2E better than models trained on A2E alone as SGANBoth
and T++Both have for A2A, meaning that there is still much room
for improvement.

5.3. Multimodal Model Collapse (MMC)

Accuracy metrics cannot be computed on never-before-seen
data, because the ground truth is unknown. Consequently, it
becomes impossible to find the predicted path with minimum
error in accuracy and selecting an arbitrary prediction risks the
maximum error. We therefore propose MMC, a baseline greedy
method which can make use of the realism metrics to collapse the
k predictions of an undecidable multimodal model into the single
most socially compliant prediction. In particular, we rely on the
proposed comparison of realism metrics (Section 4.5), but instead
of computing Fa from ground truth testing data Ya,0 for each agent
a, we compute it as the average across all agents in the ground
truth training data from the same environment. We then replace
the k predictions Ŷa with the single prediction j that minimizes
the percent difference Ĉa,j for each agent a. This prediction is
the closest in realism to prior ground truth for the same type
of scenario (Eq. (9)). Table 2 shows the result of applying this
technique to all 9 models. Across all models, we find that the
ADE/FDE of the collapsed prediction is only ∼15.76% worse than
the mean ADE/FDE of the uncollapsed predictions, and ∼31.63%
better than the maximum ADE/FDE. Although the accuracy of the
most realistic prediction is lower than the average accuracy over
20 predictions, its performance is consistently much better than
the worst-case. Furthermore, the social compliance of models is
drastically improved through MMC, making them less likely to
produce collisions with other agents.
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Table 2
This table reports the results of MMC on each of the 9 trained models. On average, MMC produces predictions that are consistently better than the worse case
prediction prior to MMC. Only one value is reported for ADE and FDE, because the minimum, mean, and maximum are equal when k = 1. The MVE is always 0
hen k = 1.
Test Model Train Accuracy metrics Realism metrics Decidab.

ADE↓ FDE↓ Length Speed Accel. ACFL ECFL %Diff.↓ MVE↓
min = mean = max min = mean = max mean/max mean/max

Agent-to-Agent
Interaction

GT N/A 0.00 0.00 4.43 1.01/1.32 0.29/1.04 0.95 1.00 0 0.00

SGAN
A2A 0.91 1.99 4.28 0.97/1.20 0.16/0.41 0.69 0.99 37 0.00
A2E 2.57 4.97 3.75 0.85/1.32 0.20/0.37 0.79 0.97 40 0.00
Both 0.86 1.86 4.25 0.97/1.15 0.11/0.23 0.70 0.99 41 0.00

PECN
A2A 0.65 1.27 4.44 1.01/1.56 0.33/1.79 0.66 0.98 56 0.00
A2E 1.28 2.03 4.33 0.98/3.23 1.02/6.37 0.68 0.98 166 0.00
Both 0.76 1.55 4.70 1.07/2.12 0.44/3.18 0.64 0.98 85 0.00

T++

A2A 0.81 1.83 4.51 1.03/1.31 0.44/0.98 0.66 0.99 26 0.00
A2E 1.05 2.27 4.53 1.03/1.32 0.42/0.97 0.63 0.98 30 0.00
Both 0.81 1.84 4.51 1.03/1.31 0.44/1.00 0.65 0.99 26 0.00

Agent-to-Env.
Interaction

GT N/A 0.00 0.00 5.51 1.25/1.40 0.18/0.51 1.00 1.00 0 0.00

SGAN
A2A 0.76 1.84 5.00 1.14/1.44 0.15/0.33 0.63 0.96 38 0.00
A2E 0.69 1.60 4.73 1.08/1.30 0.13/0.23 0.68 0.98 40 0.00
Both 0.73 1.77 4.55 1.03/1.36 0.16/0.27 0.66 0.97 40 0.00

PECN
A2A 0.49 1.11 5.39 1.22/1.45 0.25/1.10 0.69 0.93 117 0.00
A2E 0.30 0.71 5.54 1.26/1.71 0.31/1.41 0.62 0.93 148 0.00
Both 0.34 0.78 5.60 1.27/1.97 0.32/1.41 0.64 0.94 157 0.00

T++

A2A 0.90 2.06 4.99 1.13/1.48 0.57/1.27 0.46 0.97 31 0.00
A2E 0.34 0.86 5.36 1.22/1.44 0.29/0.85 0.61 0.98 24 0.00
Both 0.52 1.20 5.34 1.21/1.48 0.41/0.99 0.57 0.97 28 0.00
8
r
a
m
i
a
h
t
a
t
s
c
a
b
c
e

t
t
o
s
5
l
a
h
a
a
2
i

6. Temporal resolution of human trajectory prediction
datasets

The proposed dataset and evaluation metrics have been made
onsistent with existing datasets and metrics to ensure compati-
ility with prior work and applicability to future work. The most
revalent HTP datasets, ETH [28] and UCY [12], were collected at
/∆t = 2.5 Hz, which has been adopted by many HTP models
hat have downsampled other datasets to similar temporal reso-
utions [17,49]. These models are learning the dynamics of human
avigation, but only those which can be measured at 1/∆t Hz or
ower. While 2.5 Hz exceeds the preferred human step frequency
f ∼2 Hz [50], we show in the following simulation experiment
hat for scenarios with many A2 A interactions, realism metrics
e.g., speed, acceleration, turning, speed change, and ACFL) can
uickly degrade in accuracy as temporal resolutions decreases.

.1. Simulation experiment protocol

In order to investigate the loss of information as temporal
esolution decreases, we considered several additional realism
etrics for capturing more dynamics: (1) the average radians

urned per second, (2) the maximum radians turned per second,
3) the average number of turning direction changes per sec-
nd, (4) the average positive or negative change in speed per
econd, (5) the maximum change in speed per second, and (6)
he average number of changes from increasing to decreasing
peed (or vice versa) per second [32]. This superset of realism
etrics was recorded for two simulations (interactionless and

nteracting) using the same model and parameterization as A2E,
ach with 448 agents. In the interactionless simulation, each
gent was tasked with linearly navigating to a goal by itself in an
bstacle-less environment. In the interacting simulation, agents
ere initialized with a density of 1 agent per meter2 in the
.5-meter bottleneck scenario (Section 3.2, Fig. 2). Interactionless
cenarios are characterized as having no A2A or A2E interactions,
nd interacting scenarios are characterized as having an abun-
ance of these types of interactions. The trajectories of all agents
ere recorded at 80 Hz and divided into 4.8-second scenarios
137
(Section 5.1) amounting to 23,180 for the interactionless simula-
tion and 34,187 for the interacting simulation. All scenarios were
then resampled at 40, 20, 10, 5, and 2.5 Hz.

6.2. Analysis

For each simulation, the average values of realism metrics
at each temporal resolution have been reported in Table 3. In
both simulations, trajectory length decreased by ∼0.5 m from
0 Hz to 2.5 Hz, indicating nonlinear motion at higher temporal
esolutions. Despite the lack of A2A and A2E interactions in inter-
ctionless scenarios, which should have produced perfectly linear
otions, the quantization of pathfinding instructions resulted

n miniscule values for mean and max turning. However, since
gents were otherwise uninterrupted, interactionless scenarios
ad higher values of length, mean speed, max speed, and ACFL
han the interacting scenarios. These agents were also better
ble to maintain their desired speed of 1.5 m/s and direction
oward the goal, causing the mean and max speeds to be highly
imilar and the acceleration, turning, and speed change to be
onsiderably low. The ECFL was maximal in all interactionless
nd interacting scenarios, because unlike the predictions made
y HTP models, it is nearly impossible for a simulated agent’s
enter of mass to intersect an obstacle. Therefore, ECFL has been
xcluded from this analysis.
For interacting scenarios, the mean and max for acceleration,

urning, and speed change were significantly higher at 80 Hz
han at 2.5 Hz, indicating that agents were jerking away from
ther agents or walls after nearing them. Furthermore, the mean
peed change notably switched from negative to positive between
Hz and 10 Hz, meaning that agents were slowing down at

ower temporal resolutions (i.e., larger scales) but speeding up
t higher temporal resolutions (i.e., smaller scales). Although a
igh initial temporal resolution can always be downsampled to
nalyze data at multiple scales, it is currently not possible to
ccurately upsample a low initial temporal resolution, such as
.5 Hz. The disparity between low and high temporal resolutions
s also apparent with ACFL. At 2.5 Hz, ACFL is overestimated by
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Table 3
This table reports the average value for realism metrics at different temporal resolutions for the interactionless and interacting simulations. On average, all metrics
tend to diverge from their measurements at 80 Hz.
Type Hz Length Mean

speed
Max
speed

Mean
Accel.

Max
Accel.

Mean
turning

Max
turning

Turning
direction
changes

Mean
speed
change

Max
speed
change

Speed
Inc./Dec.
changes

ACFL ECFL

Interactionless

80 7.1570 1.4949 1.5004 0.0512 0.1751 0.0000 0.0018 0.0010 0.0050 0.0831 0.0338 1.0000 1.0000
40 7.1383 1.4949 1.5002 0.0193 0.1172 0.0003 0.0036 0.0023 0.0069 0.0903 0.0271 1.0000 1.0000
20 7.1008 1.4949 1.5001 0.0126 0.0990 0.0004 0.0043 0.0035 0.0080 0.0899 0.0322 1.0000 1.0000
10 7.0258 1.4948 1.5000 0.0106 0.0864 0.0005 0.0042 0.0044 0.0085 0.0811 0.0336 1.0000 1.0000
5.0 6.8758 1.4947 1.5000 0.0096 0.0697 0.0005 0.0037 0.0051 0.0086 0.0673 0.0439 1.0000 1.0000
2.5 6.5758 1.4945 1.5000 0.0087 0.0478 0.0005 0.0028 0.0065 0.0078 0.0460 0.0483 1.0000 1.0000

Interacting

80 5.0899 1.0632 1.3599 1.0175 8.2408 1.6271 32.0681 3.7244 0.0084 3.0623 3.8904 0.9020 1.0000
40 5.0755 1.0629 1.3578 0.9657 4.8384 1.5736 20.0786 2.9963 0.0071 2.3942 3.7266 0.9116 1.0000
20 5.0464 1.0624 1.3526 0.9074 3.5220 1.4933 12.1472 2.5194 0.0042 2.0362 3.1515 0.9236 1.0000
10 4.9864 1.0609 1.3387 0.7723 2.4646 1.2693 6.8014 2.0949 0.0018 1.5361 2.3962 0.9347 1.0000
5.0 4.8645 1.0575 1.3051 0.5386 1.4400 0.8758 3.2959 1.5445 −0.0001 0.9145 1.6417 0.9442 1.0000
2.5 4.6279 1.0518 1.2500 0.3105 0.6923 0.4888 1.3383 1.0231 −0.0033 0.4299 1.0067 0.9572 1.0000
Fig. 4. The above plots show the distribution of each realism metric sampled at 80 Hz from the interacting simulation.
Fig. 5. The above plots show the Jensen–Shannon Divergence of different temporal resolutions with respect to 80 Hz for every realism metric.
lmost 6% compared to the ACFL at 80 Hz, which is a notable
ifference.
It is evident that as the temporal resolution decreases, the

verage values of all realism metrics diverge in both simulations.
e complement this analysis by comparing the distributions of

alues instead of their averages. These distributions sampled at
0 Hz from the interacting simulation are visualized in Fig. 4. To
uantify the changes in a realism metric from 80 Hz to 2.5 Hz,
he distribution at each temporal resolution is compared with the
0 Hz distribution using Jensen–Shannon Divergence (JSD) [51]
Table 3). These distributions are represented as histograms, and
or each metric, the same bin size is used across both simulations
nd all temporal resolutions. Since the simplistic agent dynamics
n the interactionless simulation are effectively the same between
0 Hz and 2.5 Hz, the bin size of each metric is calibrated as the
mallest size from

{
α · 10β

⏐⏐ α ∈ 1..9, β ∈ −3..1
}

at which
ll temporal resolutions have zero JSD with respect to 80 Hz in
nteractionless scenarios. This ensures that the distributions are
either too sensitive to minute differences nor too insensitive
138
to notable differences. Fig. 5 depicts the JSD values of realism
metrics at different temporal resolutions for interacting scenar-
ios. For all metrics, there is still a clear divergence as temporal
resolution decreases. In fact, a large majority of metrics increase
monotonically in JSD as temporal resolution decreases and below
20 Hz, they increase faster than a linear rate. Fig. 6 shows the
average JSD across the superset of realism metrics at each tem-
poral resolution. The average JSD grows approximately linearly
from 80 Hz to 20 Hz and at a significantly faster rate from 20 Hz
to 2.5 Hz.

6.3. Discussion

These results convey that particularly in scenarios with many
A2A and A2E interactions, having a temporal resolution of 2.5 Hz
likely degrades the realism metrics measured on real data given
its effect on synthetic data. Since most current datasets do not
feature this level of interaction [12,13,13–17,28], we believe there
is no immediate issue with their temporal resolutions. Moving
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Fig. 6. The above plot shows the average Jensen–Shannon Divergence (JSD)
across all realism metrics. Between 80 Hz and 20 Hz, the JSD increases at an
approximately linear rate, but below 20 Hz, the JSD increases at a significantly
faster rate.

forward, we recommend the acquisition of data using a temporal
resolution of at least 20 Hz, i.e., the point at which the average
JSD starts to decrease linearly as temporal resolution increases.
This would encourage the future modeling of HTP at higher tem-
poral resolutions and thereby allow models to more accurately
learn motion statistics and collision avoidance, which current
datasets sampled at 2.5 Hz limit (Table 3). Furthermore, the ac-
curacy gained from increasing the temporal resolution of datasets
and models would improve the interpretation of realism metrics
when making the choice between two models for a specific use
case.

The Social Force model used to simulate the synthetic data
n both the A2E dataset (Section 3.2) and the simulation exper-
ment (Section 6.1) was parameterized according to the original
ork [1] to produce realistic results. However, it is known that
ost realistic parameterizations tend to produce oscillating be-
avior [52], which is registered by changes in speed from increas-
ng to decreasing (or vice versa) and turning direction changes. In
rder to prevent insignificant oscillations from influencing these
wo metrics, instantaneous changes in turning direction under
.01 rad/s and instantaneous changes in speed from increasing
o decreasing (or vice versa) under 0.01 m/s2 were ignored.

Although synthetic data exhibits deviations from real data, it
niquely captures minute details in motion without any noise and
t a high temporal resolution. This allows for the investigation
f temporal resolution without considering the effects of spatial
esolution. However, for future data acquisition in the real world,
his must be carefully considered so as not to negate the benefits
f a high temporal resolution with a low spatial resolution.

. Conclusion

With the growing attention toward human trajectory predic-
ion, it has become more important than ever to unify future
esearch efforts in the right direction in terms of datasets and
valuation. In this work, we have brought to light the short-
omings of existing datasets, which hinder generalization, and
xisting evaluation metrics, which misrepresent model perfor-
ance. By augmenting existing datasets with critical scenarios

hat feature substantial interactions between pedestrian agents
nd the environment, we have evidenced that models can gen-
ralize better. By proposing a comprehensive set of novel and
xisting evaluation metrics, we have not only proven the unre-
iability of existing evaluation metrics, but also highlighted the
ubtle factors that are essential for choosing the best trajectory
rediction model for a particular application. Finally, we have
139
proposed a guideline for future data acquisition in HTP to ensure
that in the long term, researchers can tackle the learning of
dynamics not only at a low temporal resolution, but at high
temporal resolutions and multiple scales of temporal resolution,
which comes with a different set of complexities. Together, these
contributions show that there is still much room for improvement
even among the SOTA models.
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