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ABSTRACT

This paper proposes an asymmetric perturbation technique for solving bilinear
saddle-point optimization problems, commonly arising in minimax problems, game
theory, and constrained optimization. Perturbing payoffs or values is known to be
effective in stabilizing learning dynamics and equilibrium computation. However,
it requires careful adjustment of the perturbation magnitude; otherwise, learning
dynamics converge to only an approximate equilibrium. To overcome this, we
introduce an asymmetric perturbation approach, where only one player’s payoff
function is perturbed. Exploiting the near-linear structure of bilinear problems,
we show that, for a sufficiently small perturbation, the equilibrium strategy of
the asymmetrically perturbed game coincides with an equilibrium strategy of the
original game. This property yields a perturbation-based learning algorithm that
achieves convergence to an equilibrium strategy in the original game without
requiring parameter adjustments. Furthermore, we empirically demonstrate fast
convergence toward equilibria in both normal-form and extensive-form games.

1 INTRODUCTION

This paper proposes an asymmetric perturbation technique for solving saddle-point optimization
problems, commonly arising in minimax problems, game theory, and constrained optimization.
Over the past decade, no-regret learning algorithms have been extensively studied for computing
(approximate) solutions or equilibria. When each player minimizes regret, the time-averaged strategies
approximate Nash equilibria in two-player zero-sum games; that is, average-iterate convergence is
guaranteed. However, the actual sequence of strategies does not necessarily converge and can cycle or
diverge even in simple bilinear cases (Mertikopoulos et al., 2018; Bailey & Piliouras, 2018; Cheung
& Piliouras, 2019). This is problematic, especially in large-scale games with neural network policies,
since averaging requires storing a separate model at every iteration.

This motivates the study of last-iterate convergence, a stronger notion than average-iterate conver-
gence, in which the strategies themselves converge to an equilibrium. One successful approach is
to use optimistic learning algorithms, which essentially incorporate a one-step optimistic prediction
that the environment will behave similarly in the next step. This idea has led to several effective
algorithms, including Extra-Gradient methods (EG) (Liang & Stokes, 2019; Mokhtari et al., 2020),
Optimistic Gradient Descent Ascent (OGDA) (Daskalakis & Panageas, 2019; Gidel et al., 2019;
Mertikopoulos & Zhou, 2019), and Optimistic Multiplicative Weights Update (OMWU) (Daskalakis
& Panageas, 2019; Lei et al., 2021a). However, in large-scale settings where the gradient must be
estimated from data or simulation, these algorithms can lose the last-iterate convergence property.
For example, Abe et al. (2022) reports empirical non-convergence behavior under bandit feedback.

Alternatively, perturbing the payoffs with strongly convex penalties (Facchinei & Pang, 2003) has
long been recognized as an effective technique for achieving last iterate convergence (Koshal et al.,
2010; Tatarenko & Kamgarpour, 2019). This line of work has also shown strong performance in
practical settings, including learning in large-scale games (Bakhtin et al., 2023) and fine-tuning large
language models via preference optimization (Ye et al., 2024), often in place of optimistic algorithms.
In prior work, the perturbation is almost always applied symmetrically, meaning both players’ payoffs
are augmented with the same strongly convex penalty, meaning both players’ payoff functions are
perturbed by a strongly convex penalty. A known limitation is that, with a fixed perturbation strength,
the solution remains only an approximation of the original game’s equilibrium, and the deviation
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scales with the strength of the perturbation (Liu et al., 2023; Abe et al., 2024). Consequently, practice
typically uses either a decreasing schedule or a horizon-dependent small value for the perturbation
strength, both of which require careful hyperparameter tuning.

To avoid these restrictions, we develop an asymmetric perturbation approach that requires no careful
hyperparameter tuning or scheduling for the perturbation strength. In this scheme, only one player’s
payoff function is perturbed while the other remains unperturbed. This simple modification yields a
qualitatively different outcome. For any sufficiently small perturbation strength within a broad and
practical range, the equilibrium strategy of the perturbed game coincides with that of the original
game (see Theorem 3.1). Intuitively, leaving player y unperturbed preserves the linearity of player z’s
original objective, so adding a strongly convex perturbation does not significantly shift the solution
(see Figure 2). Consequently, solving the asymmetrically perturbed game suffices to recover an
equilibrium strategy of the original game.

Furthermore, to demonstrate the effectiveness of our findings, we provide two applications in normal-
form and extensive-form games. First, we incorporate the technique into a gradient-based learning
algorithm, which provably converges to a saddle point with a guaranteed rate (see Theorem 4.1 and
Corollary 4.2). Empirical results on benchmark normal-form games show accelerated convergence.
Second, we apply the technique to Counterfactual Regret Minimization (CFR) (Zinkevich et al.,
2007), a widely used method in extensive-form games, and demonstrate significant improvements
in convergence speed on standard benchmarks. While our analysis focuses on bilinear games, the
structural insight behind the asymmetric perturbation may extend beyond this setting, including
two-player zero-sum Markov games, and serves as a bridge to the design of new perturbation-based
learning algorithms.

2 PRELIMINARIES

Bilinear saddle-point optimization problems. In this study, we focus on the following bilinear
saddle-point problem:

: T
minmaxz ' A 1
i ma Ys (H

where X C R™ (resp. ) C R™) represents the m-dimensional (resp. n-dimensional) convex strategy
space for player x (resp. player y), and A € R™*" is a game matrix. We assume that X and )
are polytopes. We refer to the function = " Ay as the payoff function, and write z = (z,y) as the

strategy profile. This formulation includes many well-studied classes of games, such as two-player
normal-form games and extensive-form games with perfect recall’.

Nash equilibrium. This study aims to compute a minimax or maximin strategy in the optimization

problem Eq. (1). Let X* := arg min maa);c x| Ay denote the set of minimax strategies, and let
zeXx Y€
Y* := arg max mi/{/l 2T Ay denote the set of maximin strategies. It is well-known that any strategy
yey x€

profile (z*,y*) € X* x V* is a Nash equilibrium, which satisfies the following condition:
Y(z,y) € X x Y, (") Ay < ()T Ay* < =" Ay*.

Based on the minimax theorem (v. Neumann, 1928), every equilibrium (z*,y*) € X'* x Y* attains
the identical value, denoted as v*, which can be expressed as:

v* := minmaxz ' Ay = maxminz ' Ay.
TEX yeY yeY xzeX

We refer to v* as the game value. To quantify the proximity to equilibrium for a given strategy profile
(z,y), we use NashConv, which is defined as follows:

NashC = TAj — min(z) " Ay.
ashConv(z, y) max .z Ay gél}(l(z) y

"Two-player extensive-form games with perfect recall can be expressed as bilinear problems using sequence-
form strategies (von Stengel, 1996)



Under review as a conference paper at ICLR 2026

« 0.25 N 0.12
%0.20 %0.10
S - 0.08
20.15 y
L £ 0.06
> >
5 0.10 §0.04
5 0.05 5 0.02
© ©
Z0.00 =0.00

O 1 2 3 4 5 6

u
(a) Symmetric Perturbation (b) Asymmetric Perturbation

Figure 1: The proximity of z* to * under the symmetric perturbation and the asymmetric perturbation
with varying p. The game matrix A is given by [[0, 1, —3], [—1, 0, 1],[3, —1, 0]]. The proximity to
the minimax strategy is measured by the value of max,cy(z*) ' Ay — v*.

Symmetric perturbation. Payoff perturbation is an extensively studied technique for solving
games (Facchinei & Pang, 2003; Liu et al., 2023). In this approach, the payoff functions of all players
are perturbed by a strongly convex function . For example, in bilinear games, instead of solving the
original game in Eq. (1), we solve the following perturbed game:

géig rynealic {CUTA:U + pab(x) — Wﬁ(y)} )

where p € (0, 00) is the perturbation strength. Since the perturbation is applied to both players’
payoff functions, we refer to this perturbed game as a symmetrically perturbed game. In this study,
we specifically focus on the standard case, where the perturbation payoff function v is given by the

squared ¢%-norm, i.e., ¥ (z) = |||/

. T Fonz — Eoan?
Ay+ B2 - £ } 2
2EX Yoy {x y+ 5 =l =5 Nyl @

Let 2# (resp. y*) denote the minimax (resp. maximin) strategy in the symmetrically perturbed game
Eq. (2) 2 which can be solved at an exponentially fast rate (Cen et al., 2021; 2023; Pattathil et al.,
2023; Sokota et al., 2023). It is known that the solution (z*, y*) is only an approximation of an
equilibrium of the original game, with an error bounded by O(u) (Liu et al., 2023; Abe et al., 2024).
Consequently, typical perturbation-based methods must employ a decreasing schedule for u, or use
an extremely small fixed i tuned to the number of iterations T (e.g., u = O(1/T)), which requires
careful hyperparameter tuning (Tatarenko & Kamgarpour, 2019; Bernasconi et al., 2022; Cai et al.,
2023). See Figure 1la for a biased Rock—Paper—Scissors game where the perturbed solution differs
from the original equilibrium. We provide a rigorous theoretical justification for this behavior in
Appendix B.

3 ASYMMETRIC PAYOFF PERTURBATION

In this section, we explain our novel technique of asymmetric payoff perturbation. We demonstrate
that a seemingly minor structural change—perturbing only one player’s payoff—can yield a dramati-
cally different outcome: the solution of the perturbed game exactly matches an equilibrium strategy
z* in many cases.

3.1 ASYMMETRIC PAYOFF PERTURBATION

Instead of incorporating the perturbation into both players’ payoff functions, we consider the case
where only player a’s payoff function is perturbed:

: T o 2
Ay+ 2 } 3
gg)r;r;leag{w y+ 5 llzll ()

The minimax strategy is uniquely determined because symmetrically perturbed games satisfy the strongly
convex—strongly concave property.
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Figure 2: The landscape of the objective function for player x in asymmetrically perturbed games.
The functions g(x) and g~ (x) are defined as g(x) := max z" Ayand gk (2) := g(z) + &z,
ye
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respectively.

The procedure we are going to describe in Theorem 3.1 focuses on computing the minimax strategy
x*, rather than the maximin strategy y*. To compute y*, we simply solve the corresponding maximin
problem for player y:
. T 1% 2
wegmn (v 510}
The same reasoning applies to this perturbed maximin optimization problem. Thus, hereafter, we
primarily focus on the perturbed game Eq. (3) from the perspective of player x.

Since the function max,cy x| Ay is convex with respect to 2 (Boyd & Vandenberghe, 2004), the
perturbed objective maxycy x " Ay + & ||z||? is p-strongly convex. Therefore, the minimax strategy
for the perturbed game Eq. (3) is unique. We denote it by 2* and denote the set of maximin strategies
in Eq. (3) by V*. Since both the minimax and maximin strategies constitute a Nash equilibrium of the
perturbed game, the pair (z#, y*) with y* € V" satisfies the following conditions: for all g* € Y*
andx € X,

(@) A + o <2 A+ 5 ] @
and forall y € ),
()" Ay > (a#) " Ay. 5)

3.2 EQUILIBRIUM INVARIANCE UNDER THE ASYMMETRIC PERTURBATION

In this section, we discuss the properties of the minimax strategies for asymmetrically perturbed
games. Surprisingly, we can show that x* in Eq. (3) does correspond to a minimax strategy in the
original game Eq. (1) for all ; smaller than a certain positive constant:

Theorem 3.1. Assume that the perturbation strength p is set such that p € (0, m) where

a > 0 is a constant depending only the game instance. Then, the minimax strategy x* in the
corresponding asymmetrically perturbed game Eq. (3) satisfies x# € X*.

Thus, whenever p is below a certain positive constant, z* coincides with the minimax strategy of
the original game. Figure 1b illustrates this feature in a simple example (in that example, invariance
holds for p < 2.5).

Remark 3.2 (Limitation of small fixed ). The invariance result above holds in the small-y regime:
specifically, it requires y € (0, a/ maxzcx ||z[|), where a > 0 is a problem-dependent constant
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Figure 3: Trajectories of strategies for player x using AsymP-GDA, SymP-GDA, and GDA. The
game matrix A is set to A = [[0, 1, —3],[-1,0,1],[3,—1,0]], and the strategy spaces are set to
X =) = A3, The red point represents the minimax strategy in the original game. The trajectories
originate from different initial strategies, demonstrating the learning dynamics under each method.

determined by the geometry of X'*. In instances with a small «, the allowable y can be quite small.
Empirically, we did not observe such cases in our experiments (see Figures 1b and 4). Moreover,
this sensitivity can be mitigated in practice by introducing an adaptive perturbation (Perolat et al.,
2021; Abe et al., 2024). Note that the scheme is different from arbitrarily scheduling the perturbation
strength mentioned in Section 1 and does not require careful hyperparameter tuning; see Remark 4.3
and Appendix D.

The key ingredient in proving Theorem 3.1 is the near-linear behavior of the objective function
g(x) = maxycy x T Ay for player z in the original game. Specifically, according to Wei et al. (2021),
there exists a constant o > 0 such that:

Va* e X*, g(x) — g (%) > a|lr — y-(z)]],
where I14(a) = arg min ||a — a’|| represents the projection operator onto a given closed convex set
a’c€A

A. This inequality implies that deviating from the minimax strategy set X'* results in an increase in
the objective function proportionally to the distance ||« — ITx« (z)||. In contrast, the variation (i.e.,
the gradient) of the perturbation payoff function 4 ||9c||2 can always be bounded by O(u) over X.
Hence, by choosing p sufficiently small, we can ensure that the perturbation payoff function does not
significantly incentivize player x to deviate from x*. In Figure 2, we illustrate this fact intuitively.
The addition of the strongly convex function 4 |||? does not shift the optimum x* of the original
g(x) if p is sufficiently small, as the kink of the lines through g(x) dominates. The detailed proof of
Theorem 3.1 is provided in Appendix F.

In summary, to compute a minimax strategy z* € X'* in the original game, it is sufficient to solve
the asymmetrically perturbed game Eq. (3) with a small perturbation strength ¢ > 0. Note that,
as mentioned above, one can also compute a maximin strategy y* € Y* by solving the game

max mi}(l {xTAy -5 ||yH2} where the payoff perturbation is applied only to player y.
yey x€

4 ASYMMETRICALLY PERTURBED GRADIENT DESCENT ASCENT

This section proposes a first-order method, Asymmetrically Perturbed Gradient Descent Ascent
(AsymP-GDA), for solving asymmetrically perturbed games Eq. (3). At each iteration ¢ € [T7,
AsymP-GDA updates each player’s strategy according to the following alternating updates”:

e =1y (¢! —n (Ay' + pa')),

(6)
Yyt =Ty (yf + gAT 2t

3 AsymP-GDA employs alternating updates rather than simultaneous updates, as recent work has demonstrated
the advantages of the former over the latter (Lee et al., 2024).
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where 17 > 0 is the learning rate. In AsymP-GDA, player z’s strategy x* is updated based on the
gradient of the perturbed payoff function z " Ay + & Hx||2, while player 3’s strategy y* is updated
using the gradient of the original payoff function 2" Ay. AsymP-GDA adds only negligible per-

iteration runtime or memory overhead relative to standard alternating GDA, with the only additional
operation being a single vector addition.

Since the perturbed payoff function of player x is strongly convex, it is anticipated that AsymP-GDA
enjoys a last-iterate convergence guarantee. By combining this observation with Theorem 3.1, when
is sufficiently small, the updated strategy x* should converge to a minimax strategy =* in the original
game. We confirm this empirically by plotting the trajectory of z* updated by AsymP-GDA in a
sample normal-form game, as shown in Figure 3. We also provide the trajectories of GDA and SymP-
GDA; in the latter, the squared £2-norm perturbs both players’ gradients. For both AsymP-GDA
and SymP-GDA, the perturbation strength is set to u = 1. As expected, AsymP-GDA successfully
converges to the minimax strategy (red point) in the original game, whereas SymP-GDA converges to
a point far from the minimax strategy, and GDA cycles around the minimax strategy. Further details
and additional experiments in normal-form games can be found in Appendix A.3.

4.1 LAST-ITERATE CONVERGENCE RATE

In this section, we provide the convergence result of AsymP-GDA. Let || A|| denote the largest
singular value of a given matrix A, and D := max, , cxxy ||z — 2’|| denote the diameter of X' x Y.
Theorem 4.1 demonstrates that AsymP-GDA converges to the minimax/maximin strategies in the
asymmetrically perturbed game at a rate of O(1/t):

Theorem 4.1. For an arbitrary perturbation strength 1 > 0, if the learning rate satisfies n <

. n 8(u+lAl) t t oo gi .
, th d t t>1:
min <2(u"‘+A2)’ Dmin(u,ﬁ)> en x' and y* satisfy for any t >

2 _ 256D%(p + || A])
~ p2min (/ﬂ, 5—2) ¢t

where 3 > 0 is a positive constant depending only on Y*.

et = [* + My (') — o'

Note that the statement of Theorem 4.1 holds for any fixed x > 0. Thus, by combining Theorems 3.1
and 4.1, we can conclude that if p is sufficiently small (which does not need to depend on the number
of iterations  or T'), player x’s strategy x* updated by AsymP-GDA converges to a minimax strategy
in the original game Eq. (1):

Corollary 4.2. Assume that the perturbation strength y is set such that p € (0 ), and the

o«
* maxeex el

learning rate is set such that n < min (2(H2+/L|A|2) , jjfﬁ;l(‘jlg) ) Then, AsymP-GDA ensures the
e

convergence of x* to an equilibrium x* in the original game at a rate of O(1/t):
256D Al))?
|2 - xtH2 < 56D (p + ”52 ) _
7?2 min (/12, P) t

X

Corollary 4.2 provides an O(1/t) last-iterate convergence rate for AsymP-GDA. By contrast, opti-
mistic methods such as OGDA and OMWU are known to achieve linear last-iterate convergence in
certain settings (e.g., bilinear games) (Wei et al., 2021). Accordingly, our rate can be weaker in those
regimes. Empirically, however, AsymP-GDA exhibits faster convergence in our experiments (see
Figure 6 in Appendix A). We expect that a sharper analysis will yield a linear last-iterate convergence
rate for AsymP-GDA. Establishing such a rate is a promising direction for future work. Furthermore,
Corollary 4.2 shows that the constant in the O(1/t) scales as O(1/u2). This dependency aligns with
the trade-off between accuracy and convergence speed observed in Figure 8 in Appendix A.

Remark 4.3 (1 can be chosen freely with an anchoring mechanism). Recent perturbation-based
methods for equilibrium learning (Perolat et al., 2021; Abe et al., 2024) adopt an anchoring mechanism
and demonstrate strong empirical performance, together with theoretical support. In the anchoring
mechanism, the perturbation term 4 ||z ||? is replaced with £ ||z — o, where the anchor point o is
periodically updated to the current strategy =°. AsymP-GDA can incorporate this mechanism; doing so
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mitigates the small-y requirement discussed above while preserving an O(1/t) last-iterate guarantee
of the same form as Theorem 4.1. We provide the formal statement and proof in Appendix D.

4.2 PROOF SKETCH OF THEOREM 4.1

This section outlines the proof sketch for Theorem 4.1. The complete proofs are provided in Appendix
G.

(1) Monotonic decrease of the distance function. Firstly, leveraging the strong convexity of the
perturbation payoff function, £ ||z||®, we can show that the distance between the current strategy

profile 2! = (2!, y*) and any equilibrium 2# = (z*, y*) monotonically decreases. Specifically, we
have for any ¢t > 1:

1

l2# = 27 = [l = 2 < = [l = 2t = Sl =2 )
(2) Lower bound on the path length. The primary technical challenge is deriving the term related
to the distance between y' ™! and the maximin strategies set V¥, i.e., ||TIyu (y*+1) — yt+1| ? which
leads to the last-iterate convergence rate. To this end, we first derive the following lower bound on the

path length ||2"+1 — 2!|| by the distance [|z* — *™!||? and || A(y* — y'*')||? (as shown in Lemmas
G.3 and G.4):

241 — 2] > 0 (qu _ xt+1H2 + A" - yt+1>H2) . ®)

One might think that the term of || A(y* — y*™) ||2 can be 0 even if y**1 ¢ V¥, However, by proving
that Ay* attains a unique vector b* € R™ for all y* € Y*, and this vector cannot be achieved by any

strategy y ¢ Y*, we demonstrate that HA(y“ - yt‘H)H2 # 0 as long as y ¢ V*. Using this fact, we

2 .
demonstrate that the term of || A(y* — y'*1)||” can be lower bounded by the distance between 3"
and the maximin strategy set:

A" =y P 2 @ (i ) - 7). ©)

By combining Eq. (8) and Eq. (9), we obtain the following lower bound on ||z*! — 2¢|| by the
distance between the current strategy profile and the equilibrium set:

e el [ | SRS B WY 1

(3) Last-iterate convergence rate. Putting Eq. (10) into Eq. (7), we have for any ¢t > 1:
anﬂ(ztﬂ) _ Zt+1H2 < HHZH(Zt) _ ZtH2 _Q (HHZH(ZH_l) _ Zt+1H4) 7

where Z# := {z#} x Y*. Finally, utilizing an auxiliary lemma on recursive formulas by (Wei et al.,
2021), we obtain the following upper bound on the distance ||[Tz (2) — z*||*:

Tz (1) — 2" < O(1 /).

O

Remark 4.4 (Technical challenge in proving Theorem 4.1). The main technical challenge in proving
Theorem 4.1 arises from the asymmetric nature of the perturbation, which is applied only to player x.
Unlike the symmetric case, where strong convexity in both players’ payoff functions directly yields
contraction, the asymmetric setting requires a more subtle analysis since player y’s payoff function
remains linear. Our proof establishes a last-iterate convergence rate by lower bounding the projection
error of 4/* through the gap in payoff vectors Ayt — Ay*, as shown in Eq. (9), rather than relying on
strong convexity. This contrasts with techniques for unconstrained linear-quadratic games (Zhang
et al., 2022), where the dynamics reduce to a linear system; in our constrained setting, projections
alter the dynamics fundamentally. See Appendix G for details.
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Figure 4: Performance in extensive-form games. Compared to the baselines, AsymP-CFR+ performs
twice as many game-tree traversals per iteration to compute both players’ equilibrium strategies.
For a fair comparison, the x-axis reports the cumulative number of traversals: four per iteration for
AsymP-CFR+ and two per iteration for the baselines.

5 ASYMMETRICALLY PERTURBED CFR+

We introduce the concept of asymmetric perturbation into learning algorithms for extensive-form
games, which involve sequential decision-making and imperfect information, making them a more
complex and realistic setting for strategic interactions. Here, we provide only empirical simulations,
unlike in Section 4, as analyzing extensive-form games is significantly more difficult than analyzing
normal-form games.

Extensive-form games are commonly solved using Counterfactual Regret Minimization (CFR)
(Zinkevich et al., 2007) and its variants, such as CFR+ (Tammelin, 2014). In CFR+, the cumulative
counterfactual regret R, (I, a) of player « is updated to ensure it does not fall below zero:

REFY(I,a) = max (RL(L,a) + (1), 0),

where rt (I, a) denotes the immediate counterfactual regret for information set I and action a at
iteration ¢, computed from the original payoff function w,. To investigate the impact of perturbations
in extensive-form games, we propose Asymmetrically Perturbed CFR+ (AsymP-CFR+), and for
comparison, we also evaluate a symmetrically perturbed counterpart (SymP-CFR+) that we use as a
baseline. In AsymP-CFR+, we perturb only player . Let the perturbed payoff at history i be

ubt (h, a) = ug(h, a) — pa'*(alI(h)),

where I(h) is the information set containing h, and z*(a|I(h)) is player z’s probability of choosing
action a at that information set. Using u/-!, we compute the corresponding immediate counterfactual
regret in the standard way and denote it by r*(I, a). The cumulative counterfactual regret for player
x is then updated as:

RUFN(I,a) = max (RL(I,a) + r'(1,a),0).

In contrast, SymP-CFR+ applies perturbation symmetrically to both players. See Appendix A.4 for
the notations for extensive-form games and the pseudocode of AsymP-CFR+ (Algorithm 1). As with
AsymP-GDA, AsymP-CFR+ adds only negligible per-iteration runtime or memory overhead relative
to CFR+.

We compare the NashConv of the last-iterate strategy for AsymP-CFR+ against SymP-CFR+ and
baseline algorithms, including CFR, CFR+, LCFR, and DCFR (both from Brown & Sandholm
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(2019)). Our experiments focus on six different extensive-form games: Kuhn Poker, Leduc Poker,
Goofspiel (with four-card and five-card variants), and Liar’s Dice (with four-sided and six-sided dice),
all of which are implemented using OpenSpiel (Lanctot et al., 2019). For both AsymP-CFR+ and
SymP-CFR+, we set 4 = 0.01. For DCFR, we use OpenSpiel’s default parameters.

Figure 4 shows the NashConv values for each game. As indicated by these results, AsymP-CFR+ not
only converges faster than any other method in all games but also directly reaches an equilibrium
strategy, whereas SymP-CFR+ converges near the equilibrium. These results confirm that the
asymmetric perturbation leads to convergence in extensive-form games.

6 RELATED LITERATURE

Saddle-point optimization problems have attracted significant attention due to their applications in
machine learning, such as training generative adversarial networks (Daskalakis et al., 2018). No-regret
learning algorithms have been extensively studied with the aim of achieving either average-iterate or
last-iterate convergence. To attain last-iterate convergence, many recent algorithms incorporate opti-
mism (Rakhlin & Sridharan, 2013a;b), including optimistic multiplicative weights update (Daskalakis
& Panageas, 2019; Lei et al., 2021b; Wei et al., 2021), optimistic gradient descent ascent (Daskalakis
et al., 2018; Mertikopoulos et al., 2019; de Montbrun & Renault, 2022), and extra-gradient meth-
ods (Golowich et al., 2020; Mokhtari et al., 2020).

As an alternative approach, payoff perturbation has gained renewed attention. In this approach,
players’ payoff functions are regularized with strongly convex terms (Cen et al., 2021; 2023; Pattathil
et al., 2023), which stabilizes the dynamics and leads to convergence. Some existing works have
shown convergence to an approximate equilibrium under fixed perturbation (Sokota et al., 2023; Tuyls
et al., 2006; Coucheney et al., 2015; Leslie & Collins, 2005; Abe et al., 2022; Hussain et al., 2023). To
recover equilibria of the original game, later studies have employed a decreasing schedule or iterative
regularization (Facchinei & Pang, 2003; Koshal et al., 2013; Yousefian et al., 2017; Bernasconi et al.,
2022; Liu et al., 2023; Cai et al., 2023), or have updated the regularization center periodically (Perolat
et al., 2021; Abe et al., 2023; 2024). In contrast to these approaches, our algorithms converge without
decaying or modifying the perturbation.

Extensive-form games, which model sequential and imperfect-information interactions, have also
been studied from both theoretical and empirical perspectives. Strategy representations can be broadly
classified into sequence-form (von Stengel, 1996) and behavioral-form. Under the sequence-form,
optimistic algorithms have been shown to enjoy last-iterate convergence guarantees (Lee et al., 2021).
Under the behavioral-form, perturbation-based approaches have also been applied successfully (Pero-
lat et al., 2021; Sokota et al., 2023; Liu et al., 2023). Our asymmetric perturbation is compatible with
both representations. Notably, our theoretical results in Theorem 4.1 and Corollary 4.2 hold under the
sequence-form, and we empirically demonstrate strong performance under the behavioral-form too.

7 CONCLUSION AND LIMITATIONS

This paper introduces an asymmetric perturbation technique for solving saddle-point optimization
problems, addressing key challenges in learning dynamics and equilibrium computation. Unlike
symmetric perturbation methods that yield only approximate equilibria, our approach guarantees last-
iterate convergence to the exact equilibrium without requiring parameter adjustment. This structural
insight suggests new algorithmic designs that further exploit the asymmetric perturbation.

Our theoretical results target bilinear two-player zero-sum games. The key insight of equilibrium
invariance in Theorem 3.1 relies on the near-linear growth of the objective function. We believe
that an analogous formulation can be posed beyond bilinear games, including two-player zero-sum
Markov games.

The invariance result in Theorem 3.1 holds in the small-x regime and depends on a problem-dependent
constant & > 0 (Remark 3.2). When « is small, the admissible ;2 may be very small. We conjecture
that, in such cases, using a larger ;4 does not drive the solution far from an equilibrium strategy of
the original game. Finally, the provided rate of O(1/t) in Corollary 4.2 can be slower than the rates
known for optimistic or decaying symmetric perturbation methods (Wei et al., 2021; Liu et al., 2023).
We expect that a sharper analysis can yield a linear rate for AsymP-GDA.
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Figure 5: The proximity of z* to * under the symmetric perturbation and the asymmetric perturbation

with varying p. The game matrix A is given by [[%, —%], [—%, 1]].

A EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS

A.1 INFORMATION ON THE COMPUTER RESOURCES

All experiments in this paper were conducted on macOS Sonoma 14.4.1 with Apple M2 Max and
32GB RAM.

A.2 PROXIMITY TO EQUILIBRIUM UNDER SYMMETRIC AND ASYMMETRIC PERTURBATIONS IN
BIASED MATCHING PENNIES

This section investigates the proximity of z* to the equilibrium z* in the Biased Matching Pennies
(BMP) game under the symmetric/asymmetric payoff perturbation, with varying perturbation strength
. The game matrix for BMP is provided in Table 1.

Table 1: Game matrix in BMP

Y1 Y2
To —2/3 1

BMP has a unique equilibrium z* = y* = (3, %), and the game value is given as v* = — .

Figure 5 exhibits the proximity of z* to =* as y varies. Notably, under the symmetric perturbation, x*
() a(3)-

21
le 1" =

coincides with * when p is set to u = = %. This result underscores the statement

1m \ T 1n\_ %
in Theorem B.1, that z* does not coincide with z* as long as p # %

A.3 ADDITIONAL EXPERIMENTS IN NORMAL-FORM GAMES

In this section, we experimentally compare our AsymP-GDA with SymP-GDA, GDA, and OGDA
(Daskalakis et al., 2018; Wei et al., 2021). We conduct experiments on two normal-form games:
Biased Rock-Paper-Scissors (BRPS) and Multiple Nash Equilibria (M-Ne). These games are taken
from Abe et al. (2023) and Wei et al. (2021). Tables 2 and 3 provide the game matrices for BRPS and
M-Ne, respectively.

Figure 6 illustrates the logarithm of NashConv averaged over 100 different random seeds. For each
random seed, the initial strategies (2", y°) are chosen uniformly at random within the strategy spaces
X =A™ and Y = A™. We use a learning rate of = 0.01 for each algorithm, and a perturbation
strength of 1 = 1 for both AsymP-GDA and SymP-GDA. We observe that AsymP-GDA converges
to the minimax strategy in the original game, while SymP-GDA converges to a point far from the
minimax strategy.
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Table 2: Game matrix in BRPS Table 3: Game matrix in M-Ne
Y1 Y2 Ys hn Y2 Ys Y4 Ys
T 0 1 -3 1 0 -1 1 0 0
xIo -1 0 1 ) 1 0 -1 0 0
T3 3 -1 0 r3 —1 1 0 0 0
ry —1 1 0 2 -1
rs —1 1 0 -1 2
0 0
s s
C C
8 -5 § -5
< <
© @
2 2
2—101 — cpa S—101 — cpa
g OGDA g OGDA
—— SymP-GDA —— SymP-GDA
—— AsymP-GDA —— AsymP-GDA
-15 -15 ]
10° 10! 102 103 104 10° 10° 10! 102 103 10% 10°
Iterations Iterations
(a) BRPS (b) M-Ne

Figure 6: Performance of AsymP-GDA, SymP-GDA, GDA, and OGDA in normal-form games. The
shaded area represents the standard errors.

SymP-GDA (11 =0.5) SymP-GDA (11 =1.0) SymP-GDA (11 =2.0) SymP-GDA (11 = 4.0)

X o 2

AsymP-GDA (u=1.0)

Figure 7: Trajectories for SymP-GDA (top row) and AsymP-GDA (bottom row) under different
perturbation strengths i € {0.5,1.0,4.0} in BRPS.

Figure 7 illustrates the trajectories of SymP-GDA (top row) and AsymP-GDA (bottom row) under
varying perturbation strengths p € {0.5,1.0,2.0,4.0} in BRPS. For SymP-GDA, the trajectories
do not converge directly to the equilibrium even for small values of ;1 = 0.5,1.0. Instead, they
follow circuitous and elongated paths, resulting in slower convergence. Conversely, as y increases
(n = 2.0,4.0), the trajectories become more direct, leading to faster convergence, but they remain
farther from the equilibrium. In contrast, AsymP-GDA leads to direct convergence to the equilibrium
with small perturbation strengths. For 1 values up to 2.0 the trajectories converge directly to the
equilibrium. However, as p increases beyond a threshold (¢ = 4.0), the trajectory deviates from
the equilibrium. These results provide a more detailed understanding of the trends observed in
Figures la and 1b, further illustrating the differences in convergence dynamics between symmetric
and asymmetric perturbations.
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Figure 8: Sensitivity to the perturbation strength for AsymP-GDA with = 0.01 in BRPS and M-Ne.

Figure 8 illustrates the performance of AsymP-GDA on BRPS and M-Ne with p© €
{0.01,0.1,1.0,2.0,4.0} and n = 0.01. For sufficiently small p, the limit point coincides with
an equilibrium of the original game. However, decreasing p also slows convergence. Overall, these
results highlight a trade-off between accuracy and convergence speed.

A.4 PSEUDO CODE FOR EXPERIMENTS IN EXTENSIVE-FORM GAMES

In this section, we present the pseudocode for AsymP-CFR+. First, we formally define a two-player
extensive-form zero-sum game with imperfect information as a tuple (N, ¢, H, Z, A, P, w.,u,T).
N = {z,y,c} is a finite set of players and a chance player c. H = |, vy Hp is the set of all
possible histories, where each history is a sequence of actions and H), is the set of histories of player
p’saction. Z C H is the set of terminal histories where the game has ended and the player has no
available actions. At each history h € H \ Z, the current player chooses an action a € A(h). We
denote A(h) as the set of actions available at history h that lead to a successor history (ha) € H. A
player function P : H\ Z — N U {c} maps each history h to the player that chooses the next action
at h. The chance player ¢ acts according to the defined distribution 7.(-|h) € A(A(h)). A payoff
function ug(h, a) (resp. u,(h,a)) maps each history h € H and action a € A(h) to a real value for
player z (resp. player y).

For player z (resp player y), the collection of information sets I, € T are information partitions
of the histories {h € H|P(h) = z}. Player z (resp player y) does not observe the true history h,
but only the information set I € Z, (resp player y) corresponding to h. This implies that for each
information set I, if any two histories h, i/ belong to I, these histories are indistinguishable to the
player: A(h) = A(h') for any h,h’ € I, which we then denote A(I). We also denote I(h) as an
information set containing history h.

Using these notations, the pseudocode for AsymP-CFR+ is provided in Algorithm 1.

B IMPOSSIBILITY RESULTS FOR SYMMETRIC PERTURBATION

As we stated in Section 2, existing works (Liu et al., 2023; Abe et al., 2024) have shown that the
distance between the solution of the symmetrically perturbed game (z#, y*) and the solution in the
original game (z*,y*) is upper bounded by O(u). However, they do not guarantee that the two
solutions coincide, even for a small ¢z > 0. In contrast, the following theorem provides the first
formal impossibility result, proving that (z#, y*) almost never coincides with (z*, y*).

Theorem B.1. Consider a normal-form game with a unique interior equilibrium. Assume that at this
equilibrium, neither player chooses their actions uniformly at random, i.e., (x*,y*) # ( LY, %1,1)

m

1m \ T 1n\_, *
Then, for any > 0 such that jn # (MH)IH% the minimax strategy x* in Eq. (2) satisfies
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Algorithm 1: AsymP-CFR+

1 Ry[I,a] < 0and Ry[I,a] < O for all information set I and action a.
,') as a uniform distribution for all I and a.

» Initialize both players’ strategy (z

sfort=1,---,Tdo

4
5

10

11

e

10

11
12
13
14
15
16
17
18
19
20
21

end for

b

Update cumulative counterfactual regret for player x by

Compute counterfactual value for player = by (Q[I,a]);,, < VALUECOMPUTE, (!, y*, 11).
Compute immediate counterfactual regret for player x by

r[l,a] < Q[I,a] =Yz (b NQII,

bl

R.[I,a] < max (Ry[I,a] +r[I,a],0)

Update player z’s strategy by zt+1(a|l) =

2 R[ [I]b]

b

for all I and a.

Update cumulative counterfactual regret for player y by

Compute counterfactual value for player y by (Q[,a]);,, + VALUECOMPUTE, (z'!, y').
Compute immediate counterfactual regret for player y by

r[l,a] < Q[I,a] = x(b|)QII,

0]

Ry[I,a] + max (Ry[I,a] + r[I,a],0)

Update player y’s strategy by '+ (a|l) =

Ry[I,a]
32, By[L,0]

for all I and a.

Algorithm 2: VALUECOMPUTE,(x, y, 1) for player

QII, a] < 0 for all information set I and action a.

TRAVERSE((), 1)
return (Q[I,a))r.q

subroutine TRAVERSE (h, p_;)

if h € Z then
| return 0

elseif P(h) = ¢
| return }°

| return }_
end if

q[h] <0
qlh] <

end for
return g[h]

acA(h
elseif P(h) =y then

ac€A(h

then

glh,a] <~ Oforalla € A(h)
for a € A(h) do
q[h,a] < TRAVERSE(ha, p_
Q[I? a] « Q[Ia a] +p—i- QVM a]

qlh] + x(alI) - g[h, a]

Let I be the information set containing h
if P(h) = « then

i)+

Uz (h,a)

ny Te(alh) - (TRAVERSE (ha, mc(alh) - p—

— pa(all)

i) + ux(h, a))

yy(alI(h)) - (TRAVERSE (ha,y(alI(h)) - p—i) + us(h, a))
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Algorithm 3: VALUECOMPUTE,(x, y) for player y

QII,a] «+ 0 for all information set I and action a
TRAVERSE((), 1)
return (Q[I,a))r.q

subroutine TRAVERSE (h, p_;)
if h € Z then
| return 0
else if P(h) = c then
‘ return ) 4 ) e(alh) - (TRAVERSE (ha, me(alh) - p—i) + uy(h, a))
else if P(h) = « then
‘ return . 4, z(all(h)) - (TRAVERSE (ha, z(alI(h)) - p—;) + uy(h,a))
end if
Let I be the information set containing h
if P(h) = y then
qlh] <0
qlh,a) < O0forall a € A(h)
for a € A(h) do
glh, a] <~ TRAVERSE(ha, p—;) + uy(h, a)
QL,a] « Q,a]l + p—i - qlh,a]
q[h] < q[h] +y(all) - q[h, d]
end for
return g[h]

1n

m n
2_ 1

lly=11* ==

(1,,,, T 1

xt # x*. Furthermore, for any p > 0 such that j # ~—
Eq. (2) satisfies y* # y*.

, the maximin strategy y* in

The proof is provided in Appendix E. Additionally, we extend our analysis to the case where both
players have different perturbation strengths, i.e., p1; > 0 and p,, > 0, as shown in Appendix C.

() a(2) v
[
difference between the equilibrium (z*,y*) and the uniform random strategy profile (1 1,,, 11,,).

Specifically, the numerator (172") A (17") — v* represents the difference in the payoffs, while the

Discussion on Theorem B.1. The term can be interpreted as a measure of the

denominator ||z* H2 - % represents the difference in the squared ¢/2-norms, respectively. A promis-
o (B) T A(%)
: - ) L P
the corresponding equilibrium coincides exactly with the equilibrium in the original game, i.e.,
(xt,y*") = (x*,y*). We have experimentally confirmed this, and the results are presented in the
Appendix A.2.

ing direction for future research is to theoretically demonstrate that, when p =

When the game is symmetric. Next, let us consider the case when AT = — A, as in Rock-Paper-
Scissors. In this scenario, the equilibrium strategies z* and y* are not identical to the minimax or
maximin strategies of the original game, regardless of the choice of ;1 > 0.

Corollary B.2. Assume that AT = —A. Under the same setup as Theorem B.1, the equilibrium
(z#,y*) in Eq. (2) always satisfies x* # x* and y* # y* for any p > 0.

This is because it always holds that v* — (%)T A (%) =0when AT = — A. Figure 1a shows the
proximity of x* to x* with varying perturbation strength p in a simple biased Rock-Paper-Scissors
game. We observe that as long as 1 > 0, 2* remains distant from x*. This observation supports the
theoretical results in Theorem B.1 and Corollary B.2.
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C INDEPENDENTLY PERTURBED GAME

Let us consider the perturbed game where players x and y choose independently their perturbation
strengths f1; and g,

. T B 2 My 2}
A — - = . 11
i%lfvl%aa)i({x Y+ 5 [l 9 lyll (1D

We establish a theoretical result similar to Theorem 3.1 for this perturbed game.

Theorem C.1. Assume that the original game is a normal-form game with a unique interior equilib-
rium, and that (x*,y*) # (1—’" 1—") i.e., the equilibrium is not the uniform random strategy profile.

m’ n

1m \ T A(Ln ) _gp*
Then, for any p, > 0 such that p # M, the minimax strategy x* in the corresponding

[T

symmetrically perturbed game Eq. (11) satisﬁgs at # x*. Furthermore, for any i > 0 such that

v —(im) T A(1n) . . . .
Wy # ——em—r—, the maximin strategy y" in Eq. (11) satisfies y* # y*.

ly= 1" =5
D ADAPTIVELY ASYMMETRIC PERTURBATION

As noted in Remark 3.2, AsymP-GDA may require a very small value of 4 to ensure convergence to an
equilibrium in the original game. To address this limitation, this section introduces an enhanced variant
called Adaptively AsymP-GDA (Ada-AsymP-GDA), which incorporates an adaptive anchoring
strategy o € X (Perolat et al., 2021; Abe et al., 2024).

In Ada-AsymP-GDA, instead of using the perturbation term pz¢ as in the original algorithm, we
apply the gradient of the squared distance between x? and the anchor o, namely p(x! — o). The
anchoring strategy o is updated periodically: it is reset to the current strategy =* every T, iterations.

Let k(t) denote the number of times o has been updated up to iteration ¢, and let **) denote
the anchoring strategy after k(¢) updates. Since o is updated every T}, iterations, we have k(t) =

|(t —1)/T,] + 1 and o*®) = zT-(EO=D+1 1n summary, Ada-AsymP-GDA updates each player’s
strategy at iteration ¢ € [T] according to:

T =TIy (:vt -7 (Ayt + p(z' — U““)) ,
yt—l—l — Hy (yt _|_ ,',]ATxt—I—l) .

(12)

D.1 LAST-ITERATE CONVERGENCE RATE

We now establish the last-iterate convergence rate of Ada-AsymP-GDA. In particular, we show that
the final strategy =7 ! converges to an equilibrium of the original game at a rate of O(1/T)).

Theorem D.1. Let > 0 be an arbitrary perturbation strength. If we set
: I 8(u+llAl) _
n < min (2(1L2+|A|2)’Dmin(u,‘L”Q)> and T, = T for some constant ¢ <
min ].7 W), then the Strategy xT+1 satisﬁes;
T+1 T+1]|2 1
||HX*(3: )—x H <O 7

Notably, Ada-AsymP-GDA achieves a last-iterate convergence rate of O(1/T") even when using a
relatively large value of (.

D.2 EMPIRICAL PERFORMANCE IN NORMAL-FORM GAMES

In this section, we empirically evaluate the performance of Ada-AsymP-GDA on the same normal-
form games presented in Appendix A.3. We compare Ada-AsymP-GDA against AsymP-GDA,

SymP-GDA, and Ada-SymP-GDA, where Ada-SymP-GDA applies perturbations p (2t — U’;(t)) and
t k(t) > :
u(yt — oy") to both players’ gradients.
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For all algorithms, we use a learning rate of 7 = 0.01 and a perturbation strength of ;1 = 5. The
update interval for the anchoring strategy is set to 7, = 10,000 for both Ada-AsymP-GDA and
Ada-SymP-GDA.

Figure 9 illustrates the logarithm of NashConv averaged over 100 random seeds. Ada-AsymP-GDA
exhibits substantially faster convergence to an equilibrium compared to the other methods.

0 B — 01

z z
_LCOJ -5 —— SymP-GDA _Lco) -5 —— SymP-GDA
w0 —— AsymP-GDA 0 —— AsymP-GDA
§ —— Ada-SymP-GDA g —— Ada-SymP-GDA
\é Ada-AsymP-GDA \é Ada-AsymP-GDA
2-10 a—10
o o

—15 -15

0 50000 100000 0 50000 100000
Iterations Iterations
(a) BRPS (b) M-Ne

Figure 9: Performance of Ada-AsymP-GDA in normal-form games. The shaded area represents the
standard errors.

D.3 EMPIRICAL PERFORMANCE IN EXTENSIVE-FORM GAMES

We also extend our method to extensive-form games through a variant called Adaptive AsymP-
CFR+ (Ada-AsymP-CFR+), which integrates the adaptive anchoring strategy into AsymP-CFR+.
Specifically, in Ada-AsymP-CFR+, the cumulative counterfactual regret R!, for player = under the
following perturbed payoff function:

wl (h,a) = (@) = p (' @I(R) = O (al1(h)) )

We compare Ada-AsymP-CFR+ with AsymP-CFR+, SymP-CFR+, and Ada-SymP-CFR+ in the same
extensive-form games in Section 5. Note that Ada-SymP-CFR+ applies symmetric perturbations
with the adaptive anchoring strategy. For all algorithms, we use a perturbation strength of p = 0.05.
The update interval for the anchoring strategy is set to 7, = 2, 500 for both Ada-AsymP-CFR+ and
Ada-SymP-CFR+.

Figure 10 illustrates the NashConv values for each game. The results indicate that Ada-AsymP-CFR+
consistently achieves lower NashConv values, demonstrating superior convergence performance.

E PROOF OF THEOREM B.1

: . *—(im)TA(2e
Proof of Theorem B.1. First, we prove that y* # y* under the assumption that p # w
by contradiction. We assume that y* = y*. Since (z*, y*) is in the interior of A™ x A", we have:

(ATx*); = v*, Vi € [m]

13
(Ay*): = v*, Vi € [n]. 49
Then, from Eq. (13), we have for any x € A™:
oAyt + 5 2l = 2T Ay 4 5 lalP = v+ G el (14)
On the other hand,
T 2 T 2 2
1, 1, 1, . 1, N 1,
) ATy BZml  (2m) g Ty B I e B Im (15)
m 2| m m 21 m 21 m
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Figure 10: Performance of Ada-AsymP-CFR+ in extensive-form games.

By combining Eq. (14) and Eq. (15), we have for any x € A™:
2

i
1,,

AP+ B> () ATy 4 E

2 m 2

Hence, from the property of the player x’s equilibrium strategy in the perturbed game, x* must satisfy
gh = 1m,

&

On the other hand, from the property of the player y’s equilibrium strategy y* in the perturbed game,
y* is an optimal solution of the following optimization problem:

max { ()T Ay - £ IyI*}

yeEA™

Let us define the following Lagrangian function L(y, x, \) as:
u n
L(y,k,\) = (z") " Ay — 5 Iyl* =" kigi(y) — Ah(y),
i=1

where g;(y) = —y; and h(y) = Y., y; — 1. Then, from the KKT conditions, we get the stationarity:

n
ATzt — pyt — Z kiVgi(y") — AVh(y*) = 0y, (16)
i=1
and the complementary slackness:
Vi € [n], kigi(y*) = 0. (17)
Since y* = y* and y* is in the interior of A™, we have g(y*) = —y! < 0 for all ¢ € [n]. Thus, from
Eq. (17), we have x; = 0 for all ¢ € [n]. Substituting this into Eq. (16), we obtain:
ATk — py* — A\Vh(y") = ATz# — py* — \1,, = 0,,. (18)
Hence, we have:
1TAT o+ —
N nf T TR (19)
n

Putting Eq. (19) into Eq. (18) yields:

1 1T AT zH —
y#:u<AT£#_ n :; M1n>:

==
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where the second equality follows from z# = 1= Multiplying this by —*"A we have:

1 /71 2 1 1
v == (2 AT " = (1, A1) +M1;A1n> , (20)
n\m mn
where we used the assumption that y* = y* and Eq. (13). Here, we have:
1 1
T TAT1 T
m2 ||A mH - (1 A ) +,u 17nA1

1 1 2 1,
- (12 <v*1n pATIm v*1n>) 4 BT ( 1, +AT=™ v*1n>
n m n m
2 1,,
+20%1) (AT *1n)
*\2 1 T "b * T Tl’m * T T m *
—n(v*)* — — A —Uln -20"1, (A — —0v"1, —|—,Lw+ 1 A —v*1,
n m m
1 1, 2 1,
<1T (AT )) T (AT - v*1n>
n m n m
* T1n * T T m v*1 HoT T1m *
:,LL’U + A E—’U 17’L 17L1 A — + 1 A E—’U 171,

2

1
v*1, +ATﬁ —v*1,

1,
= TL(U*)Q + HATm 'U*ln

S

1
= uv* + HATm —v*1,
m

1A1

1, TaAT x“ n—HK *
e — B #ln + py* from Eq. (18) and Eq. (19), we

Here, since AT 1z = 1, 4 pyt =

get:

T
1, 1 1, . 1, .
(AT — v*1n> (11 — 1n1;> (AT —v 1n) + BT (AT —v 1n)
m n m n m
T
4T AL, —p 1. .+ 9T AL, —p
= A =" | 1, + py” I--1,1, A =" | 1, + py”
n n n
14T
=1, A1, —
+ le ((mmﬂ — U*) 1, +My*>
n n
14T 2 14T
n n n n
14T
=1_A1, — 1 1
+p (m“ - v*) ()" (H - ml) L+ i (y)" (H - ml) v
n n n
=u<’" el R
n
T
Lo 1 1, L) .
u(u(lly ||2>+() A()v). (22)
n m n
By combining Eq. (20), Eq. (21), and Eq. (22), we have:

+
R 1 1, 1, *
w(e=2)+ (32) a(32)-v=o
n m n
Therefore, if y* = y*, then p must satisfy:

v () A )

m

()
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and this is equivalent to:

* mT n
v () AG)

W # <||y*||2711) =yl £ y*.

By a similar argument, in terms of player z, we can conclude that:
1m) ! 4 (la
() A(G) —v

(I = &)

7

=zt # z*.

F PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Let us define the function g&  : X — R:

asym

T H 2
ggsym(m) = gleaj}}(x Ay + 5 HCL’” .

Here, we introduce the following property of the function max,cy 2T Ay

Lemma F.1 (Claim 1-5 in Theorem 5 of Wei et al. (2021)). There exists a positive constant o > (
such that:

Vo € X maxz' Ay —v* > oz — - (z)],
yey

where « depends only on X'*.
By using Lemma F.1, we have for any x € X:

T T * T
max (Ily«(z)) Ay —maxz Ay =v" —maxx Ay < —al|lz — Iy« ()] .
yeff(’“()) y—maxz Ay maxy Ay < | x+ ()

On the other hand, for any z* € X* and x € X' \ X'*, we have:

H * (|12 M 2 M *
e P R (A
:%(m*—m,—x*+m+2x*)

< pla* —a,2%)
< pille* — =

il

Summing up these inequalities, we obtain:
Gasym v+ () = Gy () < —a o = M- ()] + p [z — Ty (2) || [T+ (2)
= —(a = p|[Mx- (@)[]) [z = - (2)
< - (o= wmaglel ) o = M- )]

Hence, under the assumption that 1 < we have for any x € X'\ A'™*:

[ ©
maxze x|z’
ggsym (HX* ((E)) < ggsym(x)'

Thus, every x € X \ X* is dominated by some equilibrium strategy z* € X* with respect to the
value of gh, .. Therefore, we conclude that:

r# € arg min ghy,, (7) < o¥ € arg min max {xTAy +£ Hx||2} &t e X
zeX ' vex YeY 2
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G PROOFS FOR THEOREM 4.1

G.1 PROOF OF THEOREM 4.1
Proof of Theorem 4.1. First, we have for any vectors a, b, c:
Slla =~ Llla— el + 5 b~ cl* = {c—b,a—b)
From Eq. (23), we have for any ¢ > 1:
3 llo# = a1 = St = ot + 3 et — ot = Gttt — o)
Here, we can rewrite the update rule as follows:

It+1 = arg min {7}<Ayt —+ Mxt,p> + 1 Hp - xtHZ} 5
peEX 2

. 1 2

y't! = arg min {—n <ATxt+1,p> + 5 Hp — ytH } .
peEY

From the first-order optimality condition for z'*! in Eq. (25), we have for any ¢ > 1:

<77Ayt +nuat + T — gt 2t — x“) <0.

Combining Eq. (24) and Eq. (26) yields:

2

2 1| t+1

1 2 1

Lot — a2 = L =t L
<n(Ay' + pa', 2" — ")
=n (Ay"™ + patT = 2 o (Ayt — Ay 4 (et — 2t 2t — 2t
= <Ay“ + pxt, h — xt+1> +n <Ayt — Ay (2t — 2t 2t — xt+1>

+n <Ayt+1 — Ayt ot — xt+1> —nu Hx” — J;tHHQ .

2’|

On the other hand, from the first-order optimality condition for z* in Eq. (4), we get:
<Ay” + pat xt — wt+1> <0.

By combining Eq. (27) and Eq. (28), we have for any ¢t > 1:

2 1 2
5 e =" = 5 fla" =2

2
: [

1 1t
F ot ot

< —nu qu _ xt+1H2 +77<Ayt _ Ayt gt xt+1> T <$t gt e xt+1>

+n <Ayt+1 — Ayt — xt+1> .

Similar to Eq. (24), we have for any ¢ > 1:
1 2 1 2 1 2
sl =y =5l =o'+ 5 ™ =o'l = ' =y =y,
and from the first-order optimality condition for **! in Eq. (25), we have for any ¢ > 1:
<_77AT:L,t+1 + ytJrl o ytvytJrl o yu> S 0.
By combining Eq. (30) and Eq. (31), we get:
1 2 1 2 1 2
L 2 Lyt L ot
Sl =y =Sy =y T+ 5y =
< —n <AT$t+17yu o yt+1>
=7 <AT$#,ZI/'M _ yt+1> _ 77<AT$t+1 _ ATJ?H,y# _ yt+1>
S —n <AT£Ct+1 _ AT.’L'M,yH _ yt—‘,-1>7

23

(23)

(24)

(25)

(26)

27

(28)

(29)

(30)

&1y

(32)
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where the last inequality stems from Eq. (5).

Summing up Eq. (29) and Eq. (32), we have for any ¢ > 1:
Dl = 2P e 2
< —np | — TP (ot — 2t et — Y o (Ayt — Ayt et — ot

o = 2P gl = e [l 2t g AR e 2t

1
= (= 25 4+ AI) [l = 247+ ][0 = 2

Hence, under the assumption that n < W, we have for any y* € V*:
Sl =2 = S = < T o -t - - 3

In terms of the path length ||2* — z**!||, we can we derive the following lower bound:

Lemma G.1. Foranyt > 1, we have:

t t+1 n B 1 yttly — yttl 2
o = 240 2 s (G et =P ) - ).

where 3 > 0 is a positive constant depending only on Y*.

From Eq. (33) and Lemma G.1, we obtain for any y* € Y*:

1 ot 2_1 2
e — st = - )

< o= gl
nu 2 n? I 1
—‘2||x”“”t+1|"zwa+vﬂp4n2(4||x“ g 4 =)

7’ min (’uz’ ﬁ2) t+1 as t+14
<= 16D2 1+77||A|| (qufz ” +||H )*y ” )

)?
1% min (/ﬂ, 52)
< —
T 32D%(1+nlAl)?
where the second inequality follows from the fact that (a + b)? > a? + b? for any a, b > 0, and the
fourth inequality follows from the fact that a* + b* > 1 (a + b)? for any a,b > 0. Then, under the

assumption that < W, we have for any y* € Y*:

2 2\ 2
x“ _ xt+1H 4 HHyu(yt+1) _ yt+1H ) )

B i1 e &

2P + | AIP) min (122,

" 32D2(2( + [A[P) + [ A])?

72 (u+ || A])” min (u%%
12802 (i + || A]))*

n? min (M27i§) , .
8D+ HMAH)? (lla = a1 + [y (1) = 7))

) (qu _ wt+1H + [Ty (1) — yt+1H2)2

) (Nl = a1 4 [Ty (y"+) — yt“HQ)2

24



Under review as a conference paper at ICLR 2026

By choosing y* = Ty (y'), we get for any ¢ > 1:

ot = 2 [T (4 =

<l ==+ iy () — )

7% min (/‘27,672)

128D2 (pu + || Al)

w2 ]2 w12 t+1_t+122
<l =27 + [Ty (') = '] 7 ([lo =2 + [ () = 1)

To obtain the convergence rate of ||2* — 2||* + || Iy (y) — 3|, we introduce the following lemma
from Wei et al. (2021):

Lemma G.2 (Lemma 12 of Wei et al. (2021)). Consider a non-negative sequence {B;};>1 that
satisfies for some q > 0,

Bi1 < By — C]B,?er t>1

and
2qB; < 1.
Then, B, < ™(Bv3)
, < T
. SuA[lAD .
Under the assumption that < Dmin(p,2)

. 2
7* min (uz, %)

128D (1 + | Al

n?D? min (,uQ, 5—2)
2
64 (1 + [[Al])

2
2 (o = 2| + ) - o)) <

2
n’ min(u27%)

N k=7 .
o802 (A and then we have:

Therefore, we can apply Lemma G.2 with ¢ =

(e R L R e )
I3

ot — 7+ [Ty () =o'

IN

t
D2 1, 256Gt A*®
max ( " min(;ﬂ,f—g)
t
25602 (1 + || A])*

7%t min (uQ, 5—2)

IN

G.2 PROOF OF LEMMA G.1
Proof of Lemma G.1. We first derive the lower bound on the path length ||zt — 2ttt H by the subopti-
mality gap:
Lemma G.3. Foranyz € X, y* € V", andt > 1, we have:

N (At et ) (AT g g

t+1 _ ot
Ll [t — 2l + [yt — o] <[l =2

We also derive the lower bound on the suboptimality gap for any strategy profile (x,y) € X x V:
Lemma G.4. Foranyx € X, y € Y, and y* € Y*, we have:

1
mae (dy + = o') = (ATay = 9)) 2 § o = o 4+ oo A~ ).

25



Under review as a conference paper at ICLR 2026

By combining Lemmas G.3, and G.4, we have:

(B
t+1 t+1 1 N AT 1 ot o
S B (Ay"™ 4 pa™ 2 ) —(A'z"y )
L+ n[|Al| zex [+t — 2| + [yttt — |
n t+1 t+1 41 T ot+1  t+1
> A —x)— (A —yt
> D(1+n||A||)I§1ea§(< Y 4t x)y — (Alz"y y"))

n o e+ )2 1 w12
s (31 =1+ 5 14 -y *).

Here, for any maximin strategy y* € Y* in the perturbed game, Ay can be written as Ay* = b* by
using some vector b*:

Lemma G.5. There exists a vector b* such that b* = Ay* for all y* € Y*. Furthermore, for any
strategy y € Y, we have:

geY* & Ay =10b".

From Lemma G.5, we can rewrite || A(y* — yt“)H2 = ||Ay**Tt — b ?. The following lemma

demonstrates that this term can be lower bounded by the distance between y'*! and the set of
maximin strategies J*:

Lemma G.6. There exists a positive constant 8 > 0 such that for any y € Y:
* (12 2
[ Ay = b*[I” = Blly — Lyx (y)II”-

Therefore, we conclude that:

t+1 ot n Mo e+1 2 ﬁ t4+1y 412
7 = 2 ey (G et = o 2 i) = 1)

G.3 PROOF OF LEMMA G.3
Proof of Lemma G.3. From the first-order optimality condition for 2¢*!, we have for any z € X and
t>1:
<77Ayt +npat + 2t — 2t — xt+1> > 0.

Rearranging the terms yields:

<xt+1 —at - xt+l>

> n(Ay" + pat, 2™ - x)

_ 77<Ayt+1 + M$t+1,zt+1 _ ZL’> +’I7<Ayt _ AytJrl,xtJrl _ £L‘> + 77M<xt _ xt+1,xt+1 _ £E> (34)

Similarly, from the first-order optimality condition for y'*!, we have for any ¢ > 1:
<_nATxt+1 I yt+1> > 0.
Rearranging the terms yields:
(U =yt =y T = (AT Ty ), (35)

By combining Eq. (34) and Eq. (35) and Cauchy-Schwarz inequality, we have for any ¢ > 1:

n(Ay™ 4 pat 2 —z) — (AT — )

<Ay’ — Ay e — 2 + (1 - np)(et — 2 atT —a) 4 (YT =yl gt -yt

< ullAlly" =y | lz =« + @ = ma) [|l2* = 2] o =2 + [ly™ =y [ly* - v
< @l Ally* =y [+ @ =) 2" = 2"H]) [l = 2] + g™ = [l =y
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Therefore, we have for any ¢ > 1:

<Ayt+1 + Mxt+17$t+1 — ) — <AT$t+1,yt+1 — Yk

! 74T — 2] + [yt — g7

_ (Al =y + 0 =) [|2* = 2] [lo — 2] g™ — g [l -y
= 4T — 2] + Iy — 7] | — 2] + [y — g ]
<nll Al |lgt =y + (1 = np) [l — 2| + [y — o

< (L+nlA ||t = 2.

G.4 PROOF OF LEMMA G .4

Proof of Lemma G.4. From the strongly convexity of the function % (1S
XxYandz' € X:

, we have for any (z,y) €
T p 2
e Ay + 5 Hxll = (@) Ay = 51717 < (Ay + p, o — ') = T Jlo = 27

Moreover, from the linearity of the function " Ay with respect to y € ), we get for any (z,y)
X x Y and y* € YH:

2T Ay + Sl — T Ay = £ flo)* = (AT y — ).
Summing up the above two inequalities, we get for any y* € Y*:
(Ay + p,x — x’> — (A2, — o)
>aT Ay + L lel* - @) Ay = & 2'* + & o - ')

> " Ay + & o) - ((x“WAyu IIx“H)
+(<x“>TAy“+ o)) = (@) Ay + 5 11a’]%)

H 2 L 2
> Do =t + (@) Ay + 5 lo¥)*) - (< ) Ay + 2.
Hence, we obtain:

max(Ay + .o — ') = (AT, — ")
. 2
> Llle =2 + (@) T4y + £ o)) = min ()7 4y + 5 [12'))

= Ll —o#)* + maxmin ((#)7 A7+ 5 12)°) - min (@) T4y + 5 1)) .

yeY TEX r’eX

Here, the suboptimality gap of the strategy for player x can be lower bounded as follows:

Lemma G.7. Foranyy € Y and y* € V", we have:

1
3 T _ . T ’ b 2
masc mmin () T4+ 5 121) = min (@) Ty + 5 10')F) 2 oo A )l

Combining this inequality with Lemma G.7, we have:

A 2y = (AT g — ) > B — Aly" —y)|?.
glgﬁ( y+pr,x—a') — (A z,y—y') > Qllx a|) + u” " =yl
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G.5 PROOF OF LEMMA G.5

Proof of Lemma G.5. Let us define B := { Ay |y € Y}. We also define h(z) := ||ac||2 and its
convex conjugate h*(p) := max,ex { x' p—h(x } Since h is a p-smooth functlon the convex
conjugate h* is - strongly convex (Shalev-Shwartz, 2011, p. 149). Thus, arg mln h*(b) is a singleton,

and then we can write b* = arg min h*(b). Hence, every § € V¥ must satlsfy Agy = b*. Thus, we
have §j € V" = Ay = b*. v
Next, we show that Ay = b* = § € Y*. We have for any § € ) satisfying Ay = b*:
vy e, (a) Ay = («") " > (a*) Ay,
since (z#)Tb* = (z*) T Ay* > (2*)" Ay. Thus, 7 is the best response against z* in the perturbed

game. Moreover, since Ay* = b* for any y* € Y* and z* is an equilibrium in the perturbed game,
we have:

Vo ey, (@) + £ llat | <aTb + £ all®.
Hence, since b* = Ay, we have:
Vee X, (z")TAj+ 5 IIw"H <z Aj+ 5 Hxll

and then x* is also a best response against §. Consequently, it holds that (z*, §) is an equilibrium in
the perturbed game, and y € V*. O

G.6 PROOF OF LEMMA G.6

Proof of Lemma G.6. Since the statement clearly holds for y € }*, we consider an arbitrary strategy
y € Y\ Y*. First, we have for any convex set S:

s’ —s€Ns(s) e s=1s(s).
Thus, defining y* = ITyu (y), we get:
Nyu(") ={g— 9" |5 €R", §" = yu(7)}. (36)

On the other hand, since ) is a polytope and also a polyhedron, we can write )V =
{y € R" | {d;,y) < e;fori=1,--- L} for some {d;} 2, and {e;}~_,. Hence, from Lemma G.5,
YH can be represented as:

YV ={yeR"|{d;,y) <e;fori=1,--- L, {a;,y) =bf fori =1,--- ,m},

where A = (aq,- - ,am)T. Thus, V* is also a polytope. Hence, from Theorem 6.46 in Rockafellar
& Wets (2009), Ay (y*) can be written as:

Nyu(y {szd —&—qual Zrlal | pi > 0fori € I(y"), p;, = 0fori ¢ I(y"),
g; > 0fori e I*(y“),qz =0fori ¢ I'"(y"),
r; > 0forie I"(y*), r; =0fori ¢ I"(y")},
where I(y*) = {i € [1,L]]| (d;,y") = el} and I*(y*) = {i € [l,m]]| {a;,y*) = b}}. Since
yH € YH, it holds that i € I *(y“) for all ¢ € [1,m]. Furthermore, without loss of generality, we

assume that (d;, y*) = e; fori =1,--- |l and (d;,y*) < e; fori =1+ 1,--- , L with some | < L.
Then, we obtain:

Ny“ {szd +Z az |pz Z 0 q; Z O T ZO} (37)
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Combining Eq. (36) and Eq. (37):
Nyu(yh) ={g— 9" | § € R", §" =Tyu(9)}

{szd +Z i —ri)a; | pi >0, ¢ >0, n>0} (38)

Since y* € Tlyu(y), we have y — y* € Nyu(y#). Thus, we can write y — y* = Zizﬂ%di +
Z;’;l(qi —ri)a; with p; > 0, ¢; > 0, and r; > 0. Moreover, we have forany i = 1,--- I

(diyy —y") = (di,y) —e; <0.
Hence, from Eq. (38), we obtain:

m
Yy— y EM {Zpld‘l'z _rzaz|pz>0 g >0, 1, >0,

< uijd —l—z g —Tj)a 4>§Ofori6[l,l]

Since M (y*) is a cone, we also have ” “” € M(y*). Then, we have:
y— yH
”y_i/!ylull {szd +Z _Tzaz|p120 g >0, 1 >0,

<z72p]d +Z g —Tj)a >§Ofori€[l,l],
szd +Z ¢ —Ti)a; <1}.

Since P(y*) is a bounded polyhedron, it is also a polytope. Now, let us take an arbitrary vertex v of
P(y*) and consider the following optimization problem:

min _ C,, s.t., U—szd +Z ri)ai, 0 <p; < Cy,0< g <0y, 0 <1 <O,

Pi,qi,Ti,Co

Since v € M(y*), this optimization problem is always feasible and admits a finite solution
C, < oo. Let us denote the optimal value of this optimization problem as C7, and define
Cyu = max,cy(p(yny) Ci, where V(P (y*)) is the set of all vertices of P(y*). Since any v € P(y*)
can be expressed as a convex combination of some points in V(P (y")), v can be written as
Zé:l piti + Y i1 (g — 1i)a; with 0 < p; < Cyu, 0 < ¢; < Cyu,and 0 < r; < Cyu. Thus, since
= oyt 1 .
ﬁ € P(y"), % can be expressed as Y., pid; + Yo (i — i)a; with 0 < p; < Cyu,
0 S q; S C’yu,andO S r; S Cyu.

From the above discussion, we can write y — y* as Zlizl pid; + Y v (g — ri)a; with 0 < p; <
Cyu ly =9, 0 < ¢; < Cyu |ly — y*[|, and 0 < r; < Cyu [ly — y*||. Then,

sz (divy —y") +Z )aiy — y")
<Zp7,d "l_z azay Yy > = ”y_yM”2 (39)

Here, since y — y* € M(y*) and y — y* = ZZ (pidi + > (g — 7;)a;, we have:

l
> pildiy—y*) = sz<dz,zp]d +Z g —rj)a ><0 (40)
1=1
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Moreover, since 0 < g; < Cye

y—y*||and 0 < r; < Cyu ||ly — y*||, we have:

> (o = oy~ ) < (o (o~ o )Z gi — 7
=1
<m <Zg[11‘cmx] aiy —y >|> Cyully — "l - (41)

Combining Eq. (39), Eq. (40), and Eq. (41), we obtain:
o= 91 < (s K = )1 o
i€[1,m]

Moreover,

m

1AW — )2 =S any — )2 > ( max [{aiy — v >|) .

— i€[1,m]

Thus, we finally get:

ly —y H
A J— H > —_—
Ay —y™)|l o

Note that C,. only depends on the set of tight constraints I(y*), and there are only finitely many
different sets of tight constraints. Therefore, we conclude that there exists a positive constant 5 > 0
such that:

Yy € VAYH, |4y = b*|1* = Blly — Ty (y)II”

O
G.7 PROOF OF LEMMA G.7
Proof of Lemma G.7. Let us define h(x) := § ||||*. Then, we have for any y# € V*:
max min (o) T4y’ + 5 [/)17) — min, ()7 Ay + 5 /|1
= min (@) Ay + & Hx’ll ?) — min (@) T4y + 5 ||a:’|| )
~ — max (—(m’mw — £ 11a’|I*) + max (—(m’my AN
= h*(—Ay) — h"(—Ay"). (42)

Since h is a u-smooth function, the convex conjugate h* is l%-strongly convex (Shalev-Shwartz, 2011,

p. 149). Hence, defining P := {—Ay | y € YV} and p* := arg min h*(p), we have for any p € P:
peP

* * [ % 1 *
B (o) = W (") 2 5 llp -p|*.

Furthermore, it holds that — Ay* = arg min h*(—Ay*) = arg min h*(p) & —Ay* = p*. Thus, we
yey pEP
have:

* % 1
B (= Ay) = W (= Ay") = oo A" - )l 43)
By combining Eq. (42) and Eq. (43), we finally obtain for any y* € Y*:

1
. T . . T L nwo 2
max min (o) 74y’ + 5 ') = min ()7 Ay + S 12'1) 2 o 146" - 9)|*.
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H PROOF OF THEOREM C.1

*_(1m \T 4(1ln
Proof of Theorem C.1. First, we prove that y* # y* under the assumption that p # voCir) AC)

YRR
by contradiction. We assume that y* = y*. From Eq. (13), we have for any x € A™: R
2T Ay + B all’ = 2T Ay + B2 Ja)® = v+ B2 ) (44)
On the other hand,
() o o - () o o o] o
By combining Eq. (44) and Eq. (45), we have for any x € A™:
1,2

.
xT 1m T
mTAyu+i‘|x||2 > ATyzq_/L
2 m 2

Hence, from the property of the player x’s equilibrium strategy in the perturbed game, x* must satisfy

:rl‘:]-ier_
m

On the other hand, from the property of the player 4’s equilibrium strategy y* in the perturbed game,
y* is an optimal solution of the following optimization problem:

MTA _@ 2}‘
ma { () T Ay = £ o]

Let us define the following Lagrangian function L(y, k, ) as:
1 n
2
L(y, 5, \) = (z") " Ay — 72”’ Iyl =" rigi(y) — Ah(y),

i=1
where g;(y) = —y; and h(y) = >, y; — 1. Then, from the KKT conditions, we get the stationarity:
A" — pyyt = kiVgi(y") — AVh(y") = 0,, (46)

i=1

and the complementary slackness:
Vi € [n], kigi(y") = 0. (47)

Since y* = y* and y* is in the interior of A", we have g(y*) = —y!' < 0for all i € [n]. Thus, from
Eq. (47), we have x; = 0 for all ¢ € [n]. Substituting this into Eq. (46), we obtain:

ATk — tyy* — AVRh(y") = ATk — gyt — A1, = 0y, (48)
Hence, we have:

1A M — p,
A= # (49)

Putting Eq. (49) into Eq. (48) yields:

TAT TAT1m
yu_l(ATxu_lnA x“—ﬂyln) :1<AT1m_1"A mﬂy1n>7

N Ly n jy m n
T
where the second equality follows from z# = 1;”7 Multiplying this by 17;’; A, we have:
1 1 1 1
v = — <2 AT 1,7 = == (1] AT1,,)2 + uy1;A1n> , (50)
Hy \'M m?n mn
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where we used the assumption that y* = y* and Eq. (13). Here, we have:

1 2 1 1
— AT 1" — %(HLATL”)Q + uy%lfn/mn

Lt . T1ln g Hy 7 [ & Tln
—=(1, (v, +A — =271, + =1, (v, + A — —2"1,
n m n m
2 1.,
=n(v*)? + HATm — v L, || +2v71) (AT v*ln)
1 m * 1'm % * 1m *
—n(v*)? - — ( (AT —v 1n>> —20*1,) (AT—’U 1n> + gV —&—@12 (AT—U 1n)
n m n m
S 1 2 1
- <1,TL (AT m v*1n>> g HugT (AT’” - v*1n>
n n m

1 T 1 1 1
= pyv* + (AT;: —v*ln) <11— n1n11> <AT£ v*1, > +HBugT <AT£ —v*1”> :

61y

2

1
v*1, +ATﬁ —v*1,

1

1
g+ HATT: 0,

.
L1 A1l,—

Here, since AT 1z = WI,L + py Yt = “Y 1, + pyy* from Eq. (48) and Eq. (49),

we get:

Tlm * ! 1 T Tlm * T m *
AT ¥, I—-1,1) ) (AT —v*1, +— A —0*1,
m n m m
T
11T A1, — 1 11T A1, —
— ((MU* 1, + pyy* <]11n111'> M—v* 1, + pyy*
n n n
L1741, —
+“y1TL<<m mALy =y ) g
n
14T 2 14T
1A, — 1ir A1, — . 1
= [y (m Hy —v*) + ] + iy (m Hy —v ) 11 (I[— 1n11) y*
n n n n
14T
L1l A1, —p R 1 . 1 .
+ py (n Y —v ) ()" (H— nlnlrf) L, +p2(y*)" (H— nln]-I) y

1AL,
= Ly <7n m - — My —’U*> +,U/§ Hy*||2

1 1,,\" . /1, i
= 11y (uy (Ily*IQ—n>+<m> A(n>—v). (52)

n

By combining Eq. (50), Eq. (51), and Eq. (52), we have:

* 1 1m T 1TL *
-2+ (32) a()-v-o
n m n

Therefore, if y* = y*, then u, must satisfy:
1\ T 4 (1n
vt = () A(GE)

Hy = o
(1 - 1)

and this is equivalent to:

- A5 =yt Fy
(T
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By a similar argument, in terms of player z, we can conclude that:

T *
o)A

I

=zt #£ z”.

I PROOFS FOR THEOREM D.1

1.1 PROOF OF THEOREM D.1

Proof of Theorem D.1. Let us define the total number of anchoring strategy updates as K := Tl For

k € [K] and the k-th anchoring strategy o, we also define the stationary point z*-*, which satisfies
the following condition:

"% = arg min {g(x)—i—HHx—crkHz}, (53)
reX 2
From the first-order optimality condition for z'*, we can derive the following lemma for k such that
P At
Lemma L1. For any k € [K| such that z** ¢ X*, we have for any * € X*:

1
d

2 o D?%? 2
Il 2% = o7

2
v — o < - oEt

|z* — o
Here, we derive the following upper bound on Hx“’k — ghtt ||2:

Lemma 1.2. For an arbitrary perturbation strength p > 0, if we use the learning rate n <

min <2W2_~FA2)’ Di?:(l\fg) >, then o**+1 satisfies for any k € [K]:
o

256D°(u + || A])?
72 min (,uQ, ﬁ—é) T(,7

||x“vk . Jk+1H2 <

where By, > 0 is a positive constant depending only on Y*F := arg max(z#*) T Ay.
yey
Note that since 8 < ||A||? for any k € [K], Lemma L.2 holds under the assumption that <

0 i 8(ut|| Al
2 HTAT) D min (4, A

and k € [K] such that x#F ¢ X*:

mi . By combining Lemmas 1.1 and 1.2, we have for any z* € X*

e P D
2

Jr
4p2 a? T,

*7gk+1||2 SEHIE**U
2

256D (u+||A|])*
52

where vy 1= . Setting #* = Iy~ (c*) in this inequality, we get:

i k
n? min (u?p

e (4 = 041 < L ity 08) ot
1 2 D2 2
§5\|HX*(U’“)*0’C|]27;?+ — ;—’; (54)

We now consider two cases depending on whether 2% ¢ X* for all k € [K].
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Case 1: In the first case, we suppose that 2% ¢ X'* for all k € [K]. In this case, we can iteratively
apply Eq. (54). Thus, we obtain:
_ Kao? KD?*u? R

4y a2 T,

) = < L) - o1 P

1

where v := maxy¢ (k] 7x- Since o = x!, we have:

1 2 1 o Kao® KD22 v
3 M (") =" < 5 e (2 = 2| = T + =557
Thus,if & > 27102 "
1 D2 2 K
S e (o741) — o1 < P

Case 2: Next, we consider the case where there exists k¥ € [K] such that /% € X*. Defining
Fmax 1= maxe(k] {k | ok € X*}, we have z#* ¢ X* for any k € {kmax + 1,--- , K'}. Hence,
we can apply Eq. (54) fromk = K, K — 1, -+, kpax + 1.

kmax+1H2 -~ (K — kmax)o? " (K — kmax)D? 12 v
4p? a? T,

% ”HX* (UK-H) — gK+1H2 < HHX* (O-kmax"rl) .

1
2
Since ITy+ (z#-Fmax) = pt-kmax in this case, it holds that:

1 1 1
§ M (gtmertt) = et < [Ty (o) = o = L b gttt

Combining these two inequalities, we have:

kmax—i-le o (K - k‘max)O‘2 + (K - kmax)DQUQ l

kmax _
" g 452 a2 T,

e (074 - o1 <

N | =

By applying Lemma 1.2 to this inequality, we have:

1 K+1 K+1(2 Y (K — kmaX>0‘2 (K — kmaX)D2M2 2
5 [T (o) = o ST " 12 + o? T
<2 Dk () Dt K
=T T T, o )T,

2 1y 1|2
20 HHXOE: il , then we have:

Therefore, in either case, if K >

1 K+1 K+1]|2 D*p*\ K D*p?\ T
5 [ () = T[T <y {14+ —3 =7t ) (55)
; — ; a? : - T _1
Setting T,, = cT for a constant ¢ < min (17 2u2|\Hx*(01)—01H2)’ it holds that K = — =3 >

2;1,2”1_[)(* (01)701“2
)

. Therefore, the condition for Eq. (55) is satisfied, and we obtain:

1 2 D22\ 1
§||HX*(O_K+1)_O_K+1H <’Y(1+ — )CT

Since oK1 = T-K+1 — ;T+1 e have finally:

1 2 D22\ 1
e - o (10 22 £
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1.2 PROOF OF LEMMA 1.1

Proof of Lemma I.1. Since g is a convex function on X' (Boyd & Vandenberghe, 2004), we can utilize
the first-order optimality condition for z*-*. Specifically, there exists a subgradient h**1 € 9g(x*F)
such that:

Vo € &, (WP 4 p(att — of), 2 — 2Py > 0.
From the definition of the subgradient, we have for any = € &
(AP 2t — ) > g(ahF) — g(a").
Combining these inequalities, we get for any x € X:
g@"*) = g(x) < p(ah* — o,z —ath).
By taking = = x* for an arbitrary * € A'*, we obtain:
glah) —v" = g(a™h) — g(a™) < plat — o w —ahF). (56)

On the other hand, from Eq. (23), we have for any k£ > 1:

1 Lo o2, Yk k2 ok ke oak
5 llz" —o H —I—QHx“ o H —<x“ o, " T > (57)

2
o — k|| -
2

By combining Eq. (56) and Eq. (57), we get:
* k
1 x*—ac”’k|}2—1 vt —g(@*”)
2 2 n

Thus, from Cauchy-Schwarz inequality and Young’s inequality, we have for any p > 0:

A N P <0.

5 ot — o)

1 * _ _k 2_1 * k 2
< Lo oh P - L — )
TP YT ATHR S N W R ATE:
§2 T o H 5 T o +o M H
D TP TE- RS R THN AT RTINS T I Ry AT S VW R SIS S o
§2 T o H 5 T o H 2HU * ‘ <x oo x >
1 . 2 1, 2 1 2 p 2 1, ., 2
|y R S N e
Hence,
1, ., 2 1, ., 2 1 . 2 1 , 12
o = < g o = H 7 = ot - et o)
Pl k41 k)2 L e k12
+2Ha x H +2p f—o H . (58)
Here, we derive the lower bound on the distance between o and z*:*:
Lemma L3. For any k € [K| such that z** ¢ X*, we have:
= < Jlatk — ot
1
By combining Eq. (58) and Lemma 1.3, we have for any k € [K] such that 2% ¢ X*:
. 2 1, ., 2 a® p 2 1, L2
e e P 1 [
1, . 2 a®> p 2 D?
<5 fler =l _272+§H0—k+1_xmk” 5

Taking p = 2D22“2 , we finally have for any x* € X* and k € [K] such that 2% ¢ X'*:

e}

1 2 1 2 042 D2/'L2 9
9 HI* - UkJrlH < ) ||“T* - Uk” - m o2 HCT]CJrl — x“’kH .
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1.3 PROOF OF LEMMA 1.2

Proof of Lemma 1.2. By applying the same proof technique as in Theorem 4.1, under the assumption

that < min (2(u2f|A|2)’ Di(::l:}/l}l}))’ we have for any k € [K] and t € {(k — 1)T, +
1, kT, }:

256D° (u + || A])?
n? min (uQ 5—’2) t—(k-1DT,+ 1)’

T

o — a1 <

where 3 > 0 depends only on the set Y** := arg max(z#*) " Ay.
yeX

Taking t = kT,,, we have 't = 2*To+1 = g*+1 from the definition of **1. Thus, we have:
256D (1 + || A])? < 256D (1 + || A])?

[ UkHHQ < 52 = 52 :
7? min (/ﬂ f"‘) (To +1)  n?min (/ﬂ ,7") T,

u?
O
I.4 PROOF OF LEMMA 1.3
Proof of Lemma 1.3. By taking z* = [y~ (z*¥) in Eq. (56), we have:
gah) v < (aF — oF Ty () — k)
By combining this inequality and Lemma F.1, we get:
«a ||x”k — Iy~ (x“k)H <u <x”’k - ok,HX*(x“’k) — x“’k>
<nu qu,k B JkH HHX*(Iu,k) _ I#kH )
Therefore, as long as pHok ¢ X*, it holds that:
© < Jlat o).
I
O
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