
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DISENTANGLING DATA DISTRIBUTION FOR FEDER-
ATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) facilitates collaborative training of a global model whose
performance is boosted by private data owned by distributed clients, without com-
promising data privacy. Yet the wide applicability of FL is hindered by entan-
glement of data distributions across different clients. This paper demonstrates for
the first time that by disentangling data distributions FL can in principle achieve
efficiencies comparable to those of distributed systems, requiring only one round
of communication. To this end, we propose a novel FedDistr algorithm, which
employs stable diffusion models to decouple and recover data distributions. Em-
pirical results on the CIFAR100 and DomainNet datasets show that FedDistr sig-
nificantly enhances model utility and efficiency in both disentangled and near-
disentangled scenarios while ensuring privacy, outperforming traditional federated
learning methods.

1 INTRODUCTION

(a) Disentangled (b) near-disentangled
Figure 1: Disentangled and near-disentangled cases: In the Disentangled
case, two clients have data distributions on two disentangled base distribu-
tion, P1 and P2, separately. In the ξ-entangled case, each client has data
distributions across both disentangled base distribution P1 and P2, but with
one base distribution dominating the other. In both case, client k (k = 1, 2)
communicates with the server through data distribution in a single round
(upload the distribution [[Sk]] that applying the privacy preserving mechan-
ishm on Sk). The server employs different aggregation strategies for the two
scenarios: AggreA and AggreB for disentangled and near-disentangled data
distributions respectively.

Despite the extensive research in Federated
Learning (FL), its practical application re-
mains limited. A key challenge is to achieve
high efficiency while preserving both model
utility and privacy (McMahan et al., 2017;
Kairouz et al., 2021). There is a consensus
that this inefficiency stems from the entan-
glement of data distribution across clients,
where many rounds of communications are
required to ensure the convergence of the
global model (Zhao et al., 2018; Li et al.;
Tian et al., 2024). The opposite of entangle-
ment implies that client data distributions
at different dimensions are disentangled as
shown in Figure 1(a).

We believe that the ideal federated learn-
ing algorithm can achieve efficiency levels
comparable to those of ideal distributed sys-
tems that attain full parallelism (Sunderam,
1990), provided that the data distributions
across clients can be entirely disentangled,
as illustrated in Fig. 1(a) (see details in Def.
2). As shown by Theorem 1, it is actually a
sufficient condition for achieving ideal efficiency of federated learning with only one round of com-
munication being needed. Moreover, this ideal condition is often approximately fulfilled in practice
e.g., when millions of mobile device clients participate in federated learning and most client data
distributions are different from each other (Sattler et al., 2019; Tian et al., 2024). In other words,
under such a near-disentangled condition (see Def. 2 and Fig. 1(b)), there exists a federated learn-
ing algorithm capable of achieving global model utility with only one communication round, while
ensuring that the utility loss remains within a tolerable threshold (see Theorem 2).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

In order to take full advantage of the described disentangled and near–disentangled cases (see Fig.
1), we propose to first disentangle data distributions into distinct components such that each client
can launch their respective learning task independently. This disentanglement will lead to significant
reduction of required communication rounds as revealed by Theorem 1. Technology-wise, there is
a large variety of methods that can be utilized to decompose data distribution, ranging from sub-
space decomposition (Abdi & Williams, 2010; Von Luxburg, 2007) to dictionary learning (Tošić &
Frossard, 2011) etc. (see Section 2.2 for detailed review). In this work, we propose an algorithm,
called FedDistr, which leverages the stable diffusion model technique (Croitoru et al., 2023) due to
its robust ability to extract and generate data distributions effectively. In our approach, clients locally
extract data distributions via stable diffusion model, and then upload these decoupled distributions
to the server. The server actively identifies the orthogonal or parallel between the base distributions
uploaded by clients and aggregate the orthogonal distribution once.

Previous work (Zhang et al., 2022) has shown that it is impossible to achieve the optimal results
among the utility, privacy and efficiency. The proposed FedDistr offers a superior balance between
model utility and efficiency under the disentangled and near-disentangled scenarios, while still en-
suring privacy-preserving federated learning: (1) By decoupling client data distributions into the dif-
ferent base distributions, the server actively aligns the base distribution across different client, while
FedAvg does not perform this decoupling, leading to a decline in global performance, especially for
the disentangled case; (2) The proposed FedDistr requires only one round of communication, and
the amount of transmitted distribution parameters is much smaller than that of model gradients; (3)
The proposed FedDistr transmits a minimal amount of data distribution parameters, thereby miti-
gating the risk of individual data privacy leakage to some extent. Furthermore, privacy mechanisms
such as differential privacy (DP) can be integrated into FedDistr, offering additional protection for
data privacy.

2 RELATED WORK

2.1 COMMUNICATION EFFICIENT FEDERATED LEARNING

One of the earliest approaches to reducing communication overhead is the FedAvg algorithm
(McMahan et al., 2017). FedAvg enables multiple local updates at each client before averaging
the models at the server, thereby significantly decreasing the communication frequency. To further
mitigate communication costs, compression techniques such as quantization and sparsification (Rei-
sizadeh et al., 2020) and client selection strategies (Lian et al., 2017; Liu et al., 2023) have been
implemented in federated learning. However, all of these methods are less effective in Non-IID
scenarios, where the model accuracy is significantly impacted.

To address the Non-IID problem, numerous methods have been proposed (Li et al., 2020b; Ari-
vazhagan et al., 2019), which introduce constraints on local training to ensure that models trained
on heterogeneous data do not diverge excessively from the global model. However, most of these
methods require numerous communication rounds, which is impractical, particularly in wide-area
network settings.

Furthermore, some methods propose a one-shot federated learning approach (Guha et al., 2019; Li
et al., 2020a), which requires only a single communication round by leveraging techniques such
as knowledge distillation or consistent voting. However, significant challenges arise in this context
under Non-IID settings (Diao et al., 2023).

2.2 DISTRIBUTION GENERATION

This paper focus on transferring distribution instead of models. There are several distribution gener-
ation methods: Parametric Methods (Reynolds et al., 2009) assume that the data follows a specific
distribution with parameters that can be estimated from the data. Gaussian Mixture Model (GMM)
represents a distribution as a weighted sum of multiple Gaussian components. Generative Models
(Goodfellow et al., 2020; Croitoru et al., 2023) aim to learn the underlying distribution of the data so
that new samples can be generated from the learned distribution. For example, GANs Goodfellow
et al. (2020) consist of two networks, a generator G and a discriminator D. The generator learns
to produce data similar to the training data, while the discriminator tries to distinguish between real
and generated data. Principal Component Analysis (PCA) (Abdi & Williams, 2010) is a linear
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method for reducing dimensionality and capturing the directions of maximum variance. It decom-
poses the data covariance matrix Σ into eigenvectors and eigenvalues. Dictionary Learning and
Sparse Coding (Tošić & Frossard, 2011) seeks to represent data as a sparse linear combination of
basis vectors (dictionary atoms).

Table 1: Table of Notation

Notation Meaning

Dk Dataset of Client k
K the number of clients
D D1 ∪ · ∪ DK

Sk and S the distribution of Dk and D
ϵu Utility loss in Eq. (4)
Fω the federated model

{Pi}mi=1 m independent sub-distributions
π⃗k = (π1,k, · · · , πm,k) the probability vector for client k on {Pi}mi=1

ξ entangled coefficient
sk1,k2 Entangled coefficient between client k1 and k2

p learnable prompt embedding
Tc communication rounds

3 FRAMEWORK

In this section, we first formulate the problem via distribution transferring and then provide the anal-
ysis on what conditions clients can directly communicate once through a distribution entanglement
perspective.

3.1 PROBLEM FORMULATION

Consider a Horizontal Federated Learning (HFL) consisting of K clients who collaboratively train
a HFL model ω to optimize the following objective:

min
ω

K∑
k=1

nk∑
i=1

f(ω; (xk,i, yk,i))

n1 + · · ·+ nK
, (1)

where f is the loss, e.g., the cross-entropy loss, Dk = {(xk,i, yk,i)}nk
i=1 is the dataset with size nk

owned by client k. Denote D = D1 ∪ · · · ∪ DK and D follows the distribution S. The goal of the
federated learning is to approach the centralized training with data D as:

min
ω

E(x,y)∈Sf(ω; (x, y)). (2)

Numerous studies (Zhao et al., 2018; Li et al.; Tian et al., 2024) have demonstrated that Eq. (1) con-
verges to Eq. (2) under IID settings. However, significant discrepancies arise in Non-IID scenarios,
leading to an increased number of communication rounds and a decline in model utility for Eq. (1).
While data heterogeneity in extreme Non-IID settings was considered the main cause for FL algo-
rithms having to compromise model performances for reduced rounds of communication, this paper
discloses that direct optimization of Eq. (2) can actually be achieved at the cost of a single round
of communication. Both theoretical analysis and empirical studies show that data heterogeneity is a
blessing rather than a curse, as long as data distributions among different clients can be completely
disentangled (see Theorem 1). Moreover, we aim to learn the distribution S in a single communica-
tion by transferring either the distribution or its parameters, thereby mitigating the risk of individual
data privacy leakage (Xiao & Devadas, 2023) as follows:

min
S

K∑
k=1

λkf̃(S;Dk), s.t. Tc = 1 (3)
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where f̃ represents the loss function used to evaluate whether S accurately describes the dataset
Dk

1, Tc is the communication round, λk denotes the coefficient for client k, and it is required that∑K
k=1 λk = 1.

In this framework, all clients first collaborate to estimate the distribution S of the total dataset D =
D1 ∪ · · · ∪ DK . The following section discusses the conditions under which clients can directly
interact once to estimate S through a distribution entangled perspective.

We also define the utility loss for the estimated distribution Ŝ as:

ϵu = E(x,y)∈Sf(ω̂
∗; (x, y))− E(x,y)∈Sf(ω

∗; (x, y)), (4)

where ω∗ is the optimal parameter of Eq. (2) and ω̂∗ = argminωE(x,y)∈Ŝf(ω
∗; (x, y)).

Threat Model. We assume the server might be semi-honest adversaries such that they do not submit
any malformed messages but may launch privacy attacks on exchanged information from other
clients to infer clients’ private data.

3.2 DISTRIBUTION ENTANGLEMENT ANALYSIS

3.2.1 ξ-ENTANGLED

(a) ξ = 0.11 (b) ξ = 0 (Disentangled)
Figure 2: Two case of ξ-entangled: ξ > 0 (left) and
ξ = 0 (right).

Assume the data D is drawn from m dis-
tinct base distributions. Therefore, we can
decompose the complex distribution S into
simpler components, each representing a
portion of the overall distribution (Reynolds
et al., 2009; Abdi & Williams, 2010):

S =

m∑
i=1

πiPi. (5)

where Pi represents the i-th base distribu-
tion (e.g., DomaiNet has the data with dif-
ferent label and domain, the base distribu-
tion represents the distribution followed by
the data with a single label and domain), πi is the weight or probability assigned to the i-th base
distribution, such that

∑m
i=1 πi = 1 and πi > 0. In the case of Gaussian Mixture Models (GMMs)

(Reynolds et al., 2009), Pi is the Gaussian distribution N (X|µi,Σi). For each client’s dataset Dk

following a distribution Sk can be represented as:

Sk =

m∑
i=1

πi,kPi, (6)

where πi,k is the weight or probability assigned to the i-th base distribution, such that
∑

i∈Ck
πi,k =

1 and πi,k ≥ 0. Noted that πi,k = 0 if client k doesn’t have the distribution Si. We define the
Entangled coefficient between two clients based on the probability πi,k:
Definition 1. Let π⃗k = (π1,k, · · · , πm,k) denote the probability vector for client k. The Entangled
coefficient sk1,k2 between client k1 and k2 is defined as:

sk1,k2
=

< πk1 , πk2 >

∥πk1
∥2∥πk2

∥2
(7)

where < a, b > represents the inner product of two vectors and ∥ · ∥2 is the ℓ2 norm.

Definition 1 quantifies the overlap in data distribution between clients by identifying the difference
between probability on the base distribution. Obviously, 0 ≤ sk1,k2

≤ 1. We define two distributions
to be orthogonal if sk1,k2

= 0.

According to the Entangled coefficient, we define ξ-entangled across clients’ data distribution in
federated learning according to the entangled coefficient.

1For various distribution estimation methods, refer to Section 2.2
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Definition 2. We define the distributions across K clients as ξ-entangled if the Entangled coeffi-
cient sk1,k2

≤ ξ for any two distinct clients k1, k2 ∈ [K]. Moreover, when ξ = 0, we define the
distribution across K clients to be disentangled.

It is important to note that Entangled coefficient is closely related to the degree of Non-IID data
in federated learning (FL) (Li et al.). Specifically, under IID conditions, where each client follows
the same independent and identical distribution, this implies that πi,k1

= πi,k2
> 0 for any k1, k2

in Eq. (6). Consequently, ξ equals 1. In contrast, under extreme Non-IID conditions, where each
client has entirely distinct data distributions (e.g., client k1 possesses a dataset consisting solely of
’cat’ images, whereas client k2 possesses a dataset exclusively of ’dog’ images), the Entanglement
Coefficient, ξ, equates to zero.

3.2.2 ANALYSIS ON DISENTANGLED AND NEAR-DISENTANGLED CASE

Numerous studies, as referenced in the literature (Kairouz et al., 2021; Li et al.), have demonstrated
that the performance of the Federated Averaging (FedAvg) algorithm (McMahan et al., 2017) is sig-
nificantly influenced under disentangled conditions. It will be demonstrated herein that there exists
an algorithm capable of preserving model utility and efficiency within the disentangled scenario,
with the distinct advantage of necessitating merely a single communication round.
Theorem 1. If f is L-lipschitz, a data distribution across clients being disentangled is a sufficient
condition for the existence of a privacy-preserving federated algorithm that requires only a single
communication round and achieves a utility loss of less than ϵ with a probability of at least 1 −
2 exp(−2min{n1, · · · , nK}ϵ2), i.e.,

Pr(ϵu ≤ ϵ) ≥ 1− 2 exp(−2min{n1, · · · , nK}ϵ2) (8)

Theorem 1 demonstrates that if the data distribution across clients is disentangled, it is possible to
achieve an expected loss of ϵ with a probability of 1− 2 exp

(
−2min{n1, . . . , nK}ϵ2

)
with only a

single communication round. It is noteworthy that as the number of datasets nk or the expected loss
tends to infinity, this probability approaches one. The implication of Theorem 1 is that when the
distributions of individual clients are disentangled, clients can effectively transfer their distributions
to the server. Subsequently, the server can aggregate the disentangled distributions uploaded by
the clients in a single step to obtain the overall dataset distribution D. Additionally, we provide an
analysis of the small ξ condition, referred to as near-disentangled.
Theorem 2. When the distributions of across K clients satisfy near-disentangled condition, specifi-
cally, ξ < 1

(K−1)2 , if f is L-lipschitz, then there exists a privacy-preserving federated algorithm that
requires only one communication round and achieves a utility loss of less than ϵ with a probability
of at least 1− 2 exp(− (1−(K−1)

√
ξ)nϵ2

2mL2 ), i.e.,

Pr(ϵu ≤ ϵ) ≥ 1− 2 exp(− (1− (K − 1)
√
ξ)nϵ2

2mL2
) (9)

Theorem 2 demonstrates that, within the framework of the near-disentangled scenario, the proba-
bility of achieving an expected loss of ϵ is given by 1 − 2 exp(− (1−(K−1)

√
ξ)nϵ2

2mL2 ). Specifically, as
the entanglement coefficient ξ increases, the probability decreases. For instance, in the disentangled
case where ξ = 0, the probability equals one (see proof in Appendix).

4 THE PROPOSED ALGORITHM

This section introduces the proposed algorithm, called FedDistr, achieving one communication
round while maintaining the model utility by leveraging the Latent Diffusion Model (LDM) Ho
& Salimans (2022) due to its fast inference speed and the wide availability of open-source model
parameters. FedDistr is mainly divided into the following three steps (see Fig. 3 and Algo. 1):

4.1 DISTRIBUTION DISENTANGLING

The first step is to disentangle the local data distribution into several base distribution for each
client by leveraging the autoencoder part of the LDM. The autoencoder Van Den Oord et al. (2017);

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Private 
Data

Client 1 Client k Client K

Server

Activate Distribution Alignment

Local Training Images
CLIP

(Contrastive Language-Image 
Pre-Training)

Cross Attention

Denoising U-Net

Private 
Data

Gen 
Data Distribution 

Disentangle

Base 
Distribution 
GenerationData 

Generation

Encoder

Images
SubClass 1

Images
SubClass 2

Images
SubClass 3

Cross Attention

Cross Attention

Cross Attention

Conditioning

Prompt Word Embedding Distribution Embedding
Server

Distribution 
Upload

Private 
Data

Local Training

Private 
Data

Gen 
Data Distribution 

Disentangle

Base 
Distribution 
GenerationData 

Generation

Private 
Data

Local Training

Private 
Data

Gen 
Data Distribution 

Disentangle

Base 
Distribution 
GenerationData 

Generation

Figure 3: Overview of the proposed algorithm FedDistr.

Agustsson et al. (2017) consists of an encoder, E, and a decoder, D. The encoder, E, maps input
images x to a spatial latent code, denoted as z = E(x), while the decoder D is trained to perform
the inverse mapping of the encoder, achieving an approximation x ≈ D(E(x)).

Specifically, each client k initially encodes the private data into the latent feature embeddings as:

zk,i = E(xk,i), xk,i ∈ Dk (10)

To disentangle the data distribution for client k, the data is segregated based on these latent feature
embeddings. Furthermore, client k performs clustering on the set zk,ink

i=1 to derive mk clusters by
optimizing the objective function:

min
∑

zk,i∈Cj

mk∑
j=1

∥zk,i − ēj∥, (11)

where Cj represents the set of points assigned to cluster j and ēj is the centroid (mean) of cluster
j. Thus, {zk,i}nk

i=1 is separated into mk datasets as {Bk,i}mk
i=1. According to the separation result

based on the clustering, we learn the disentangled distribution in the next section for each separated
dataset.

4.2 DISTRIBUTION GENERATION

To estimate the base distribution P , each client learns their distribution parameters v(P ) by lever-
aging the embedding inversion technique in the diffusion model of LDM Ho & Salimans (2022);
Liang et al. (2024). Specifically, a fixed prompt, such as “a photo of”, is encoded using a frozen
text encoder into a word embedding p. A learnable distribution parameter (prompt embedding) v is
then randomly initialized and concatenated with p to form the guiding condition [p; v]. This com-
bined condition is employed to compute the LDM’s loss function. Our optimization goal to learn
the distribution parameter vk,i of ith base distribution for client k is formulated as:

vk,i =argmin
v

Ez∼E(Bk,i),p,ϵ∼N (0,1),t[∥ϵ−

ϵθ(
√
αtz +

√
1− αtϵ, t, [p; v])∥22],

(12)

where z is the latent code of the input image Bk,i generated by the encoder E, ϵ refers to noise
sampled from the standard normal distribution N (0, 1), t denotes the timestep in the diffusion pro-
cess, αt is a hyperparameter related to t and ϵθ is the model that predicts the noise. Therefore, we
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derive the mk data representations vk,i by solving the optimization problem in Eq. (12). These
representations are then fed into the diffusion model to generate the corresponding datasets for each
disentangled base distribution i. In the federated learning setting, each client uploads their respective
set of representations vk,imk

i=1 and corresponding data number to the server.

4.3 ACTIVE DISTRIBUTION ALIGNMENT

After each client k uploads the distribution parameters {vk,i}mk
i=1, the server first distinguishes be-

tween orthogonal and parallel data base distributions for different clients based on these parameters.
Specifically, when the distance between distribution parameters, such as ∥vk1,i − vk2,j∥22, is small,
it indicates that clients k1 and k2 share the same data base distribution.

Algorithm 1 FedDistr
Input: Local training epochs Tl, # of
clients K, learning rate η, the dataset
Dk = {xk,i, yk,i}nk

i=1 owned by client k,
pretrained latent diffusion model includ-
ing a encoder E and a generator G.
Output: v

1: ▷ Clients perform:
2: for Client k in {1, . . . ,K} do:
3: Sample xi from Dk;
4: zk,i = E(xk,i)
5: Clustering Dk into mk datasets

{Bk,i}mk
i=1} according to zk,i as Eq. (11).

6: Initialize {vk,i}mk
i=1.

7: for i in [mk] do:
8: Learn the base distribution pa-

rameter vk,i by optimizing Eq. (12)
9: Upload {vk,i}mk

i=1 to the server;
10: ▷ The server performs:
11: Build the binary assignment ek1,k2

i,j via
Eq. (13)

12: Obtain multiple parallel set Ip =

{(k, i)|ek1,k2

i1,i2
= 1, k ∈ [K], i ∈ [mk]}

13: Obtain the orthogonal set Io =
{(k, i)|k ∈ [K], i ∈ [mk]} − Ip

14: Obtain vo =
⋃

(k,i)∈Io
vk,i

15: Select the distribution parameter vp in Ip
with the maximum trained data number;

16: Distribute v = [vp, vo] to all clients;
17: return v

Moreover, since the server does not have access to
the sequence of the distribution parameters, match-
ing these parameters across different clients presents
a challenge. This matching problem can be framed
as an assignment problem in a bipartite graph Dul-
mage & Mendelsohn (1958). To address this assign-
ment problem, we utilize the Kuhn-Munkres algo-
rithm (KM) Zhu et al. (2011), which is designed to
find the maximum-weight matching in a weighted
bipartite graph, or equivalently, to minimize the as-
signment cost. Specifically, the goal is to optimize
the following expression for matching prompt em-
beddings between client 1 and k:

min

mk1∑
i1=1

mk2∑
i2=1

∥vk1,i1 − vk2,i2∥e
k1,k2

i1,i2
(13)

where ek1,k2

i1,i2
represents the binary assignment vari-

able, which equals 1 if cluster i1 is assigned to clus-
ter i2, and 0 otherwise. Therefore, the server ob-
tains multiple parallel sets Ip = {(k, i)|ek1,k2

i1,i2
=

1, k ∈ [K], i ∈ [mk]}. The orthogonal sets Io =
{(k, i)|k ∈ [K], i ∈ [mk]} − Ip consist of other
pairs that are not part of the parallel sets.

Next, for the orthogonal sets, the server sim-
ply concatenates the parameters as follows vo =⋃

k∈Io
vk,i.

For the parallel sets, the server selects one of the
dominant distribution parameters (trained with the
data number is the maximum) to represent all param-
eters in that set, which only requires a single com-
munication round.

Finally, the server distributes the consolidated distribution parameters v = [vp, vo] to all clients.

5 EXPERIMENT RESULTS

In this section, We present empirical studies to compare FedDistr with existing methods on utility,
privacy and communication efficiency. Due to the page limit, please see the ablation study on more
clients and large ξ in Appendix B.

5.1 EXPERIMENTAL SETTINGS

Models & Datasets. We conduct experiments on two datasets: x‘CIFAR100 has the 20 superclass
and each superclass has 5 subclass (Krizhevsky et al., 2014), thus, total 100 subclass; DomainNet
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(Wu et al., 2015) has the 345 superclass (label) and each superclass has 5 subclass (style), thus,
total 1725 subclass. We adopt ResNet (LeCun et al., 1998) for conducting the classification task to
distinguish the superclass2 on CIFAR100 and DomainNet. Please see details in Appendix A.

Federated Learning Settings. We simulate a horizontal federated learning system with K = 5,
10, 20 clients in a stand-alone machine with 8 Tesla V100-SXM2 32 GB GPUs and 72 cores of
Intel(R) Xeon(R) Gold 61xx CPUs. For DomainNet and CIFAR10, we regard each subclass follow
one sub-distribution (Pi). For the disentangled extent, we choose the averaged entangled coefficient
s = 2

K(K−1)

∑
k1,k2

dk1,k2
over all clients as 0, .... The detailed experimental hyper-parameters are

listed in Appendix A.

Baseline Methods. Four existing methods i.e., FedAvg (McMahan et al., 2017): FedProx (Li et al.,
2020b), SCAFFOLD (Karimireddy et al., 2020), MOON (Li et al., 2021) and the proposed method
FedDistr are compared in terms of following metrics.

Evaluation metric. We use the (1 - model accuracy) to represent the utility loss, the rounds of re-
quired communication and the number of transmitted parameters to represent communication con-
sumption, and the privacy budget in (Abadi et al., 2016) to represent the privacy leakage.

5.2 COMPARISON WITH OTHER METHODS

We first evaluate the tradeoff between utility loss and communication rounds in Fig. 4. Our
analysis leads to two conclusions: 1) The proposed FedDistr achieves the best tradeoff between
utility loss and communication rounds compared to other methods across various entangled cases
(ξ = 0, 0.003, 0.057). For instance, in the disentangled case, FedDistr achieves a 40% utility loss
with only one communication round, whereas MOON incurs approximately a 60% utility loss while
requiring 100 communication rounds on CIFAR-100. 2) As the entanglement coefficient increases,
other methods, such as FedProx, demonstrate improved performance, while FedDistr remains stable,
consistently achieving a 40% utility loss on CIFAR-100 across different entangled scenarios.

(a) Disentangled for CIFAR100 (b) 0.003-entangled for CIFAR100 (c) 0.057-entangled for CIFAR100

(d) Disentangled on DomainNet (e) 0.003-entangled for DomainNet (f) 0.057-entangled for DomainNet

Figure 4: Tradeoff between utility loss and communication round for different methods under dif-
ferent ξ-entangled scenario on CIFAR100 and DomainNet.

Moreover, we add random noises (Abadi et al., 2016) to protect transmitted parameters to evaluate
the tradeoff between privacy leakage and utility loss in Fig. 5 . From this analysis, we can draw the
following two conclusions: 1) The proposed FedDistr achieves the best tradeoff between utility loss

2each client only know the label of the superclass but doesn’t know the label of subclass
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(a) Disentangled (b) 0.003-entangled (c) 0.057-entangled

Figure 5: Tradeoff between utility loss and privacy leakage for different methods under different
ξ-entangled scenario on CIFAR100.

and privacy leakage; for instance, FedDistr (red line) is positioned in the lower-left region compared
to other methods on both DomainNet and CIFAR-100. 2) As the noise level (privacy leakage)
increases, the utility loss of different methods also increases.

Finally, we evaluate communication consumption, encompassing both the number of communi-
cation rounds and the amount of transmitted parameters, for five existing methods alongside our
proposed method under disentangled and various ξ-entangled scenarios. The results summarized
in Table 2 lead us to the following two conclusions: 1) Under near-disentangled or disentangled
settings, the communication rounds required by FedDistr is only one, while FedAvg necessitates
80 rounds; 2) The number of transmitted parameters for the proposed FedDistr is merely 30K, in
contrast to the 11.7M required by FedAvg for model transmission.

Table 2: Comparison on communication consumption until convergence (including communication
rounds and number of the transmission parameters) for different methods under different ξ-entangled
scenario.

ξ Method Communication rounds Transmission parameters

0 (Disentangled) FedAvg 150 11.7M
FedDistr 1 30K

0.003 FedAvg 100 11.7M
FedDistr 1 30K

0.057 FedAvg 80 11.7M
FedDistr 1 30K

(a) Flip Flops (b) Garden (c) Grapes

Figure 6: Distribution Disentangling Visualization: clustering the encoded embedding zk,i illus-
trated in Sect. 4.1 of six subclass for each three superclass: Flip Flops, Garden, an Grapes
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5.3 VISUALIZATION FOR DISTRIBUTION DISENTANGLING

We also present the distribution disentangling result (clustering zk,i illustrated in Sect. 4.1) in Fig. 6.
It shows that clustering on encoded embedding can separate the data with different base distribution
well. Therefore, our disentangling method has a good effectiveness.

6 DISCUSSION AND CONCLUSION

In this study, we have addressed the critical inefficiencies inherent in Federated Learning (FL) due
to the entanglement of client data distributions. By analyzing the distribution entanglement, we
demonstrated that achieving a disentangled data structure significantly enhances both model utility
and communication efficiency. Our theoretical analysis shows that under near-disentangled condi-
tions, FL can achieve optimal performance with a single communication round, thus aligning closely
with the efficiency of traditional distributed systems.

Furthermore, we propose the FedDistr algorithm by leveraging the diffusion model. The integration
of stable diffusion models for data decoupling proves to be a robust solution, paving the way for
future explorations in privacy-preserving machine learning. Ultimately, this work contributes to
the advancement of FL by providing a clear pathway toward more efficient and effective federated
learning.

With advancements in computational capabilities during the era of large language models (LLMs)
(), the time consumption for local training has significantly decreased. Consequently, our focus
is on enhancing communication efficiency. Moreover, the communication efficiency is especially
important particularly in Wide Area Network scenarios (McMahan et al., 2017; Palmieri & Pardi,
2010).

Whether transferring data distribution leaks privacy is also an intriguing problem. Some studies
(Xiao & Devadas, 2023) regard the underlying data distribution as a non-sensitive attribute, assum-
ing that sharing insights into the distribution of data across users does not compromise individual
privacy. However, other work indicates that using generative models to estimate the distribution still
poses a risk of privacy leakage (Wu et al., 2021).
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A EXPERIMENTAL SETTING

This section provides detailed information on our experimental settings.

A.1 DATASET & MODEL ARCHITECTURES

Models & Datasets. We conduct experiments on two datasets: CIFAR100 Krizhevsky et al. (2014)
and DomainNet Wu et al. (2015). For CIFAR100, we select 10 out of 20 superclasses, and 2 out of
5 subclasses in each superclass. For DomainNet Wu et al. (2015), we select 10 out of 345 super-
classes (labels), and 3 out of 5 subclasses (domains) in each superclass. We adopt ResNet LeCun
et al. (1998) for conducting the classification task to distinguish the superclass3 on CIFAR100 and
DomainNet.

Federated Learning Settings. We simulate a horizontal federated learning system with K = 5, 10,
20 clients in a stand-alone machine with 8 NVIDIA A100-SXM4 80 GB GPUs and 56 cores of dual
Intel(R) Xeon(R) Gold 6348 CPUs. For DomainNet and CIFAR10, we regard each subclass follow
one sub-distribution (Pi). For the disentangled extent, we choose the averaged entangled coefficient
s = 2

K(K−1)

∑
k1,k2

dk1,k2 over all clients as 0, .... The detailed experimental hyper-parameters are
listed in Appendix A.

Baseline Methods. Four existing methods i.e., FedAvg McMahan et al. (2017): FedProx Li et al.
(2020b), SCAFFOLD Karimireddy et al. (2020), MOON Li et al. (2021) and the proposed method
FedDistr are compared in terms of following metrics.

Evaluation metric. We use the model accuracy on the main task to represent the utility, the commu-
nication rounds and transmission parameters to represent communication efficiency, and the standard
derivation of noise level to represent the privacy leakage.

B ABLATION STUDY

We evaluate the different methods for a large ξ = 0.385 in Figure 7. It shows that even for a large ξ,
FedDistr achieves the best tradeoff between the communication rounds and utility loss. Moreover,
compared to small ξ, other methods such as MOON converges to a better utility while it still requires
beyond 100 communication rounds. Finally, we test the robustness of FedDistr for different number
of clients in Figure 8. It illustrates FedDistr still achieve the better utlity than FedAvg with 20 clients.

(a) DomainNet (b) CIFAR100

Figure 7: Comparison on model accuracy for different methods under different ξ-entangled scenario.

3each client only know the label of the superclass but doesn’t know the label of subclass
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(a) DomainNet

Figure 8: Comparison on model accuracy for different number of clients

C THEORETICAL ANALYSIS

C.1 PROOF FOR THEOREM 1

Consider D ∼ S has total n samples {X1, · · · , Xn}. We first demonstrate the estimated error of the
distribution parameter on different data number n. In simplify for the analysis, we assume the S is
the Truncated normal distribution ϕ(µ, σ, a, b) and only need to estimated parameter is µ.

Lemma 1. Hoeffding inequality. If X1, X2, . . . , Xn are independent random variables such that
Xi is bounded by [a, b] (i.e., a ≤ Xi ≤ b), and let X̄ = 1

n

∑n
i=1 Xi be the sample mean, then for

any ϵ > 0:

P
(
|X̄ − µ| ≥ ϵ

)
≤ 2 exp

(
− 2nϵ2

(a− b)2

)
where µ = E[Xi] is the expected value of the random variables.

According to Hoeffding inequality, the probability of the estimated error for the distribution param-
eter µ is smaller than 2 exp

(
− 2nϵ2

(a−b)2

)
. And this probability tends to zero if the n tends to infinity.

We estimate the distribution mean µ via µ̂ according to the D. Let the µ̂ be the mean of the estimated
distribution Ŝ. Define the loss function f(ω, z) on the model ω and data z. Define expectation loss
function F (ω) and F ′(ω) on data S and Ŝ as:

F (ω) = Ez∈Sf(ω, z) and F̂ (ω) = Ez∈Ŝf(ω, z) (1)

Lemma 2. Define ω∗ = argminωF (ω) and ω̂∗ = argminωF̂ (ω). If f is L-lipschitz, then the
following holds with the probability 2 exp

(
−2nϵ2

)
:

0 ≤ Ez∈Sf(ω̂
∗, z)− Ez∈Sf(ω

∗, z) ≤ 2Lϵ (2)

Proof. According to definition of ω∗ and ω̂∗, we have

Ez∈Ŝf(ω̂
∗, z) ≤ Ez∈Ŝf(ω

∗, z) (3)

and

Ez∈Sf(ω
∗, z) ≤ Ez∈Sf(ω̂

∗, z). (4)

Therefore, we can obtain

Ez∈Sf(ω̂
∗, z)− Ez∈Sf(ω

∗, z) ≥ 0 (5)
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Furthermore, the following holds with the probability 1− 2 exp
(
−2nϵ2

)
based on Lemma 1:

Ez∈Sf(ω̂
∗, z)− Ez∈Sf(ω

∗, z)

≤ [Ez∈Sf(ω̂
∗, z)− Ez∈Ŝf(ω̂

∗, z)] + [Ez∈Ŝf(ω
∗, z)− Ez∈Sf(ω

∗, z)]

≤
∫
z∈S

|f(ω̂∗, z1)− f(ω̂∗, z1 + ϵ)|dp(z) +
∫
z∈S

|f(ω∗, z1)− f(ω∗, z1 + ϵ)|dp(z)

≤ L(z1 + ϵ− z1) + L(z1 + ϵ− z1)

= 2Lϵ,

(6)

where p(z) is the probability density function. The last inequality is due to the L-lipschitz of f .

Lemma 2 demonstrates the utility loss when transferring the estimated distribution. Consider K
clients participating in federated learning with their data Dk = {(xk,i, yk,i)}nk

i=1. Denote D =
D1 ∪ · · · ∪DK and D follows the distribution S. Then we prove Theorem 1 according to Lemma as
follows:
Theorem 1. A data distribution across clients being disentangled is a sufficient condition for the
existence of a privacy-preserving federated algorithm that requires only a single communication
round and achieves the ϵ utility loss with the probability 1− 2 exp(−min{n1,··· ,nK}ϵ2

2L2 ).

Proof. If the data distribution across clients is disentangled, it means each client k can use their
own nk data to estimate their data distribution. Therefore, according to Lemma 2, when achiev-
ing utility loss ϵ for distribution Sk (i.e., Ez∈Sk

f(ω̂∗, z) − Ez∈Sk
f(ω∗, z) ≤ ϵ, the probability is

2 exp(− nk}ϵ2
2L2(a−b)2 ).

Then each clients can transfer estimated Ŝk to the server, thus,
Ez∈Sf(ω̂

∗, z)− Ez∈Sf(ω
∗, z)

=
1

K

K∑
k=1

Ez∈Sk
f(ω̂∗, z)− Ez∈Sk

f(ω∗, z)

≤ 1

K
Kϵ = ϵ.

(7)

And the probability to achieve ϵ utility loss is 1− 2 exp(−min{n1,··· ,nK}ϵ2
2L2 ).

C.2 ANALYSIS ON NEAR-DISENTANGLED CASE

Lemma 3. Consider K unit vectors a⃗k = (a1,k, · · · , am,k) such that
∑K

k=1 ai,k = 1 for any i, if
< a⃗i, a⃗j >≤ ξ for any i ̸= j and ξ < 1

(K−1)2 , then max{ai,1, · · · , ai,K} ≥ 1− (K − 1)
√
ξ

Proof. Since < a⃗i, a⃗j >≤ ξ for any i ̸= j, min{ai,k1 , ai,k2} ≤
√
ξ for any i, k1 ̸= k2. Therefore,

we have

max{ai,1, · · · , ai,K} ≥ 1−
∑
k ̸=1

min{ai,1, ai,k}

≥ 1− (K − 1)min{ai,1, ai,k}

≥ 1− (K − 1)
√
ξ

(8)

For the near-disentangle case (that small ξ), we have the following theorem:
Theorem 2. When the distributions of across K clients satisfy near-disentangled condition,
specifically, ξ < 1

(K−1)2 , then there exists a privacy-preserving federated algorithm that re-
quires only one communication rounds and achieves the ϵ expected loss error with the probability
2 exp(− (1−(K−1)

√
ξ)nϵ2

2mL2 ).
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Proof. In simplify the analysis, we assume π⃗k to be unit vector and the number of data for each base
distribution to be the same (mn ), i.e.,

∑K
k=1 πi,k = 1. According to the Lemma 3, we have

max{ai,1, · · · , ai,K} ≥ (1− (K − 1)
√

ξ (9)

which means for each base distribution, there exists one client has at least the (1−(K−1)
√
ξm

n data.
Thus, the probability when achieving the utility loss less than ϵ for any base distribution Pi, 1 ≤ i ≤
m is

exp(− (1− (K − 1)
√
ξ)nϵ2

2mL2
)

according to the lemma 2.

Therefore, the probability when achieving the utility loss on S less than ϵ is

min
k∈[K]

{2 exp(− (1− (K − 1)
√
ξ)nϵ2

2mL2
)} = 2 exp(− (1− (K − 1)

√
ξ)nϵ2

2mL2
).
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