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ABSTRACT

This paper presents a spectral framework for quantifying the differentiation be-
tween graph data samples by introducing a novel metric named Graph Geodesic
Distance (GGD). For two different graphs with the same number of nodes, our
framework leverages a spectral graph matching procedure to find node correspon-
dence so that the geodesic distance between them can be subsequently computed by
solving a generalized eigenvalue problem associated with their Laplacian matrices.
For graphs of different sizes, a resistance-based spectral graph coarsening scheme
is introduced to reduce the size of the larger graph while preserving the original
spectral properties. We show that the proposed GGD metric can effectively quan-
tify dissimilarities between two graphs by encapsulating their differences in key
structural (spectral) properties, such as effective resistances between nodes, cuts,
and the mixing time of random walks. Through extensive experiments comparing
with state-of-the-art metrics, such as the latest Tree-Mover’s Distance (TMD),
the proposed GGD metric demonstrates significantly improved performance for
graph classification, particularly when only partial node features are available.
Furthermore, we extend the application of GGD beyond graph classification to
stability analysis of GNNs and the quantification of distances between datasets,
highlighting its versatility in broader machine learning contexts.

1 INTRODUCTION

In the era of big data, comparison and distinction between data points are important tasks. A graph is
a specific type of data structure that represents the connections between a group of nodes. Comparing
two graphs often involves using a pairwise distance measure, where a small distance indicates a
high structural similarity and vice versa. To understand the generalization between distribution
shifts, it is important to use an appropriate measure of divergence between data distributions, both
theoretically and experimentally (Chuang et al., 2020). Determining suitable distance metrics for
non-Euclidean data, such as graphs with or without node attributes, remains challenging. These
metrics are fundamental to many graph learning methods, such as graph neural networks (GNNs),
but are not as readily available as those for Euclidean space. The need to develop new analytical
techniques that allow the visualization, comparison, and understanding of different graphs has led to
a rich field of research (Haslbeck & Waldorp, 2018). This study dives into the exploration of a novel
framework for computing geometric distances between graphs, which can be immediately leveraged
for many graph-based machine learning (ML) tasks.

Many distance metrics for comparing graphs have previously been proposed (Borgwardt et al., 2020).
Some of them are based only on graph local structures (Tam & Dunson, 2022; Haussler et al., 1999;
Xu et al., 2013; Zhu et al., 2020; Fernández & Valiente, 2001; Bunke & Shearer, 1998), whereas
others exploit both graph structural properties and node attributes (Shervashidze et al., 2011; Morris
et al., 2019). For example, the Graph Edit Distance (GED) has been proposed to measure the distance
between graphs considering the number of changes needed to match one graph to another (Sanfeliu
& Fu, 1983; Gao et al., 2010; Li et al., 2017); Distance metrics based on the graph kernel have also
been investigated (Shervashidze et al., 2011; Vishwanathan et al., 2010), such as the Wasserstein
Weisfeiler-Leman metric (WWL) (Morris et al., 2019) and the Gromov–Wasserstein metric (Mémoli,
2011), which allow computing graph distances based on low-dimensional graph representations or
optimal transport (OT) (Titouan et al., 2019; Chapel et al., 2020), leading to the development of the
state-of-the-art graph distance metric called TMD (Chuang & Jegelka, 2022).
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However, existing graph distance metrics have notable limitations. For example, the GED metric can
capture local node or edge changes but struggles with global perturbations (Sanfeliu & Fu, 1983; Gao
et al., 2010; Li et al., 2017); the WWL and TMD metrics heavily rely on node features (attributes) for
calculating the distance between graphs, leading to degraded performance when only partial node
features are available (Rossi et al., 2022; Chen et al., 2022).

To address these limitations, we propose the Graph Geodesic Distance (GGD) metric, a novel
framework that leverages spectral graph theory, structure-preserving coarsening, and Riemannian
geometry to compute meaningful distances between graphs. Unlike prior SPD-based works (Lim
et al., 2019), our method operates directly on graph inputs, using spectral graph matching to establish
node correspondence before embedding graphs into a Riemannian manifold of modified Laplacian
matrices. This allows GGD to capture key structural (spectral) dissimilarities between graphs, such
as mismatches in Laplacian eigenvalues/eigenvectors, cuts, effective-resistance distances, etc.

One distinct advantage of the proposed GGD metric is its capability to compute distances between
graphs based on their spectral (structural) properties, while including node features can further
improve its accuracy. This makes GGD suitable for analyzing real-world graphs with partial or no
node features. Moreover, the proposed framework for computing GGD metric is more computationally
efficient than existing OT-based metrics, such as the TMD metric.

Our empirical results show that GGD can effectively measure the dissimilarities between graphs: (1)
support vector classifiers (SVC) using GGDs perform competitively with state-of-the-art GNN models
and graph kernels on graph classification benchmarks; (2) we demonstrate that the GGD metric
allows us to quantify the stability of GNN models for graph classification tasks by checking whether
two graphs with a small GGD will lead to a significant dissimilarity in the GNN output embeddings;
(3) quantify distance between datasets to evaluate the transferability of domain knowledge. We
also show that the GGD metric has a better correlation with established GNN outputs compared
to the state-of-the-art TMD metric (Chuang & Jegelka, 2022) when only partial node features are
available: up to a 10% accuracy gain and a 9× runtime speedup have been achieved in various graph
classification tasks. The key contributions of this work can be summarized as:

• We propose Graph Geodesic Distance (GGD), a novel metric combining spectral graph
theory and Riemannian geometry.

• We leverage a spectral graph matching method to establish node correspondences to ensure
well-defined distance computation in the Riemannian manifold.

• We use a resistance-based spectral coarsening method to compare graphs of different sizes.

• We validate GGD through experiments, demonstrating improved classification accuracy
with partial/no features and applications in GNN stability and dataset distance analysis.

2 EXISTING GRAPH DISTANCE METRICS

Graph Edit Distance (GED) For non-attributed graph data, a common and simple distance metric
is GED. (Sanfeliu & Fu, 1983; Gao et al., 2010). Given a set of graph edit operations, also known as
elementary graph operations, the GED between two graphs G1 and G2, can be defined as:

GED(G1, G2) = min
(e1,...,ek)∈P(G1,G2)

k∑
i=1

c(ei), (1)

where P (G1, G2) denotes the set of edit operations transforming G1 into a graph isomorphism of
G2, c(ei) is the cost of edit operation ei. The set of elementary graph edit operators typically includes
node insertion, node deletion, node substitution, edge insertion, edge deletion, and edge substitution.

Tree Mover’s Distance (TMD) TMD is a pseudometric for measuring distances between simple
graphs, extending the concept of WWL to multisets of tree structures (Chuang & Jegelka, 2022).
Graphs are represented by depth-L node computation trees; unequal multiset sizes are equalized via
augmentation function σ. The pairwise tree distance TDw is defined recursively by combining the
root-feature discrepancy with a depth-weighted OT over subtrees. The TMD between G1, G2 is:

TMDL
w(G1, G2) = OTTDw

(σ(TL
G1

,TL
G2

)). (2)

Further details on TMD is described in Appendix A.2.
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3 GGD: GEODESIC DISTANCE BETWEEN GRAPHS

Modified Laplacian matrices on the Riemannian manifold One way to represent a simple
connected graph is through its Laplacian matrix, which is a Symmetric Positive Semidefinite (SPSD)
matrix. Graph representation using adjacency and Laplacian matrices is briefly discussed in Appendix
A.3. Adding a small positive value to each diagonal element allows us to transform the original
Laplacian matrix into a Symmetric Positive Definite (SPD) matrix, which is referred to as the
Modified Laplacian Matrix in this work. In Appendix A.10, we describe the effect of this small
value on the GGD calculation. We can then consider the cone of such modified Laplacian matrices as
a natural Riemannian manifold (Lim et al., 2019), where each modified Laplacian, having the same
dimensions (same number of rows/columns), can be regarded as a data point on this Riemannian
manifold (Vemulapalli & Jacobs, 2015; Pennec et al., 2006). Details about the Riemannian manifold
are provided in Appendix A.4. The geodesic distance is defined as the shortest path on the Riemannian
manifold, providing a more appropriate comparison than Euclidean space (Lim et al., 2019; Crane
et al., 2020; Huang et al., 2015). We will later demonstrate (Section 4.3) that such a geodesic distance
metric can effectively capture structural (spectral) mismatches between graphs.

Figure 1: A high-level illustration of the GGD pipeline, including spectral graph coarsening, (Phase
1) spectral graph matching, and (Phase 2) geodesic distance calculation for the Riemannian manifold
of modified Laplacian matrices.

A two-phase spectral framework for computing GGDs Before computing GGDs, it is necessary to
establish the node-to-node correspondence between two graphs. This can be achieved by leveraging
existing graph-matching techniques (Livi & Rizzi, 2013; Emmert-Streib et al., 2016; Caetano et al.,
2009). The proposed GGD metric can be computed in the following two phases. Phase 1 consists of
a spectral graph matching step, using combinatorial optimization with the eigenvalues/eigenvectors
of the graph adjacency matrices to identify the approximate node-to-node correspondence. Phase 2
computes the GGD between the modified Laplacian matrices of the matched graphs by exploiting
generalized eigenvalues. A high-level overview of the pipeline is illustrated in Figure 1, and a
detailed algorithmic flow is provided in Appendix A.1 to ensure a clear understanding of the process.
The proposed GGD metric differs from previous OT-based graph distance metrics in its ability to
accurately represent structural discrepancies between graphs, enabling us to uncover the topological
variations between them more effectively.

Table 1: Normalized distance between graphs with
simple perturbations.

GRAPH
PAIRS

GGD TMD W/
NF, L = 4

TMD W/O
NF, L = 4

GED

G1, G2 0.623 0.689 0.970 1.000

G1, G3 0.855 0.711 1.000 1.000

G2, G3 1.000 1.000 0.333 1.000

A motivating example Let’s consider a sim-
ple graph G1, characterized by an almost
ring-like topology, as shown in Figure 2. We
also create two other graphs G2 and G3 by
inserting an extra edge into G1 in different
ways. Note that the additional edge in G3

will have a greater impact on G1’s global
structure since it connects two further nodes.

We compute the normalized distances (the
largest distance always equals one) between
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the aforementioned three graphs using different metrics (GED, TMD, and GGD) and report the
results in Table 1. As observed, G2 and G3 have distances similar to G1 when the TMD metric is
adopted without using node features (NFs). On the other hand, the TMD metric can produce similar
results as the proposed GGD metric when node features are fully utilized. Not surprisingly, the GED
always produces the same distances since only one edge has been added. The above results imply
that the GED and TMD (without using NFs) metrics may not properly capture the dissimilarities in
the spectral properties of the graphs.

4 COMPUTING GGDS BETWEEN GRAPHS OF THE SAME SIZE

4.1 PHASE 1: SPECTRAL GRAPH MATCHING FOR FINDING NODE CORRESPONDENCE

Figure 2: Graphs with simple perturbations

Computing the GGD metric between two input
graphs requires solving a graph-matching prob-
lem in advance, to ensure the minimum possi-
ble distance between modified Laplacian matri-
ces. In this work, we aim to find the infimum
between two SPD matrices on the Riemannian
manifold, which can be accomplished through
a graph-matching phase. Graph matching tech-
niques can be used to establish node-to-node correspondence by seeking a bijection between node
sets to maximize the alignment of edge sets (Livi & Rizzi, 2013; Emmert-Streib et al., 2016; Caetano
et al., 2009). This combinatorial optimization problem can be cast into a Quadratic Assignment
Problem, which is NP-hard to solve or approximate (Fan et al., 2020; Wang et al., 2020).

In this study, we exploit a spectral graph matching method called GRAMPA (GRAph Matching by
Pairwise eigen-Alignments) (Fan et al., 2020) to find the approximate node correspondence between
two graphs. GRAMPA starts with comparing the eigenvectors of the adjacency matrices of the
input graphs. Instead of comparing only the eigenvectors corresponding to the largest eigenvalues, it
considers all pairs of eigenvectors/eigenvalues to generate a similarity matrix. This similarity matrix
can be constructed by summing up the outer products of eigenvector pairs, weighted by a Cauchy
kernel (Fan et al., 2020). Subsequently, a rounding procedure will be performed to determine the
optimal match between nodes employing the similarity matrix.
Definition 4.1 (Similarity Matrix). Let G1 and G2 be two undirected graphs with n nodes, and
let their weighted adjacency matrices be A1 and A2, respectively. The spectral decompositions
of A1 and A2 are expressed as follows: A1 =

∑n
i=1 ζiuiu

⊤
i and A2 =

∑n
j=1 µjvjv

⊤
j , where

the eigenvalues are ordered such that ζ1 ≥ . . . ≥ ζn and µ1 ≥ . . . ≥ µn. The similarity matrix
X̂ ∈ Rn×n is defined as:

X̂ =

n∑
i,j=1

w (ζi, µj) · uiu
⊤
i Jvjv

⊤
j , w(x, y) =

1

(x− y)2 + η2
. (3)

Here, J ∈ Rn×n denotes an all-one matrix and w is the Cauchy kernel of bandwidth η.

The permutation estimate matrix π̂ can be obtained by rounding X̂ , typically achieved by solving the
Linear Assignment Problem (LAP):

π̂ = argmax

n∑
i=1

X̂i,π(i), (4)

which can be efficiently solved using the Hungarian algorithm (Fan et al., 2020). However, one
simpler rounding procedure was advocated in (Fan et al., 2020) with theoretical results supporting
the rounding procedure, which is given by the following equation:

π̂(i) = argmax
j

X̂ij , (5)

here the permutation estimate matrix is constructed by selecting the largest index from each row.
While LAP provides optimal matching, its computational complexity can become expensive for very
large graphs. By carefully choosing η, the same match recovery holds if rounding is performed using
equation 4 instead of solving the LAP in equation 5 (Fan et al., 2020).

4
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Lemma 4.2 (Graph Matching Recovery). Given symmetric matrices A1, A2 and Z from the Gaussian
Wigner model, where A2π∗ = A1 + σZ, there exist constants c, c′ > 0 such that if 1/n0.1 ≤ η ≤
c/ logn and σ ≤ c′η, then with probability at least 1− n−4, GRAMPA Algorithm correctly recovers
the permutation matrix π∗ from the Similarity matrix X̂ (Fan et al., 2020). Its proof can be found in
the supporting documents A.8.

Once π̂ is obtained, the best-matched mirrors of the input graphs are:

Best Match to A2 = π̂A1π̂
⊤, Best Match to A1 = π̂⊤A2π̂ (6)

In practice, the graph matching performance is not too sensitive to the choice of tuning parameter
η. For small-sized graphs, such as the MUTAG dataset(Morris et al., 2020), setting η = 0.5
yields satisfactory results in matching. In A.16, the effect of η for computing GGDs has been
comprehensively analyzed.

4.2 PHASE 2: COMPUTING GEODESIC DISTANCES BETWEEN GRAPH LAPLACIANS

The GGD metric can be formally defined as the infimum length of geodesics connecting two data
points in the Riemannian manifold formed by the cone of the modified graph Laplacian matrices
(Lim et al., 2019). This distance metric can be imagined as a matrix representation of the geometric
distance | log(a/b)| between two positive numbers a, b (Bonnabel & Sepulchre, 2010; Shamai &
Kimmel, 2017; Owen & Provan, 2010).

Definition 4.3 (Graph Geodesic Distance). Let L1 and L2 ∈ Sn++ denote two modified Laplacian
matrices corresponding to two matched graphs G1 and G2 both having n nodes, then their Graph
Geodesic Distance denoted by GGD(G1, G2) : Sn++ × Sn++ → R+, is defined as:

GGD(G1, G2) =

[
n∑

i=1

log2(λi(L−1
1 L2))

]1/2

, (7)

where λi are the generalized eigenvalues computed with the matrix pencil (L1, L2).

The above GGD formulation for computing distances between SPD matrices is based on an Affine-
Invariant Riemannian Metric (AIRM) (Lim et al., 2019), while another well-known metric, the
Log-Euclidean Riemannian Metric (LERM) (Ilea et al., 2018; Thanwerdas & Pennec, 2023; Chen
et al., 2024) is also discussed in Appendix A.14.

4.3 CONNECTION BETWEEN GGD AND GRAPH STRUCTURAL MISMATCHES

Figure 3: The cut mismatch (for the node
set S) between two graphs is 6

2 = 3

Consider two graphs, G1 and G2, that have the same node
set V , with a known correspondence between their nodes.
Let L1 and L2 be the Laplacian matrices of these graphs,
respectively. Suppose we take a subset of nodes, denoted
by S and its complement, S′. We assign the value 1 to the
nodes in S and the value 0 to those in S′. This defines the
set S as:

S
def
= {v ∈ V : x(v) = 1}.

For graph G1, the cut for the node subset S (which is
the number of edges that cross between S and S′) can be
computed as: cutG1(S, S

′) = xTL1x.

As shown in Figure 3, for a node subset S, six edges cross between S and S′ in graph G1, whereas
two edges cross in graph G2. This ratio of edge counts in the two graphs is referred as a cut mismatch.
The relationship between this cut mismatch and the generalized eigenvalue problem for the matrix
pair (L1, L2) can be formalized using the Generalized Courant-Fischer Minimax Theorem (Golub &
Van Loan, 2013; Feng, 2020).
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Lemma 4.4 (The Generalized Courant-Fischer Minimax Theorem). Given two Laplacian matrices
L1, L2 ∈ Rn×n such that null (L2) ⊆ null (L1), the k-th largest generalized eigenvalue of L1 and
L2 can be computed as follows for 1 ≤ k ≤ rank (L2):

λk = min
dim(U)=k
U⊥null(L2)

max
x∈U

x⊤L1x

x⊤L2x
. (8)

This theorem provides a method for bounding the maximum cut mismatch between two graphs by
calculating the largest generalized eigenvalue. Specifically, we can use the following optimization
problem to compute the dominant eigenvalue λmax (Feng, 2020):

λmax = max
|x|̸=0

x⊤⊮=0

x⊤L1x

x⊤L2x
≥ max

|x|̸=0
x(v)∈{0,1}

x⊤L1x

x⊤L2x
= max

cutG1
(S, S′)

cutG2
(S, S′)

(9)

From equation (9), we can see that the dominant generalized eigenvalue λmax corresponds to the
most significant cut mismatch between G1 and G2. In particular, λ1 = λmax sets an upper bound on
the cut mismatch between G1 and G2, while λn = λmin defines the upper bound of the mismatch in
the reverse direction, between G2 and G1. Appendix A.9 illustrates this relationship with practical
examples. Additionally, we illustrate the relationship between the approximate GGD values with
extreme eigenvalues, compared with the accurate GGD values in Appendix A.12.

5 COMPUTING GGDS FOR GRAPHS WITH DIFFERENT SIZES

Submatrix selection methods To calculate geodesic distances between SPD matrices of different
sizes, prior studies have proposed a submatrix adaptation method (Lim et al., 2019). In this approach,
a principle submatrix with the same size as the smaller matrix is obtained from the larger matrix
(Ye & Lim, 2016), and subsequently used to calculate the GGD. Furthermore, this method can be
extended to project the smaller matrix into a larger one with the same size as the larger matrix (Lim
et al., 2019). While these methods are efficient for handling SPD matrices, for our application taking
the submatrix of the modified Laplacian can lose important nodes/edges, compromising critical graph
structural properties.
Graph coarsening methods Spectral graph coarsening is a widely adopted process (Loukas, 2019;
Aghdaei & Feng, 2022) for reducing graph sizes while preserving key spectral (structural) properties,
such as the Laplacian eigenvalues/eigenvectors. Recent spectral graph coarsening methods aim to
decompose an input graph into many distinct node clusters, so that a reduced graph can be formed
by treating each node cluster as a new node, with a goal of assuring that the reduced graph will
approximately retain the original graph’s structure (Loukas, 2019; Han et al., 2024; Aghdaei & Feng,
2022). Therefore, when computing GGDs for graphs of different sizes, we can first adopt spectral
graph coarsening to transform the bigger graph into a smaller one, so that our framework in Section 4
can be subsequently utilized. However, existing state-of-the-art graph coarsening methods do not
allow us to precisely control the size of the reduced graphs.

5.1 OUR APPROACH: SPECTRAL GRAPH COARSENING BY EFFECTIVE RESISTANCES

In this work, we exploit a spectral graph coarsening method leveraging effective-resistance clustering
(Aghdaei & Feng, 2022), specifically designed to reduce graph size while preserving key spectral
characteristics. Unlike prior work (Lim et al., 2019), which addresses dimension mismatch directly
in SPD space, our coarsening method operates at the structural level before transformation into SPD
matrices, making it more suitable for computing distances between graphs with unequal sizes. Our
approach begins by estimating the effective resistances of all edges in the original graph. If node
features are available, we also incorporate feature differences as an additional parameter. During
coarsening, edges are ranked by resistance distance, and only the top few edges with the smallest
effective resistances are merged into new nodes. This strategy enables precise control over the size of
the reduced graph while preserving crucial spectral properties, essential for the subsequent spectral
graph matching step (Phase 1 in Section 4.1).

Consider a connected, weighted, undirected graph G = (V,E,w) with |V | = n. The effective
resistance between nodes (p, q) ∈ V plays a crucial role in various graph analysis tasks including

6
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Figure 4: Correlation between graph distance metrics and GNN model outputs.

spectral sparsification algorithms (Spielman & Teng, 2011). The effective resistance distances can be
accurately computed using the equation:

Reff (p, q) =

n∑
i=2

(u⊤
i bpq)

2

σi
, (10)

where bp ∈ Rn denote the standard basis vector with all zero entries except for the p-th entry being 1,
and bpq = bp−bq . ui ∈ Rn for i = 1, . . . , n denote the unit-length, mutually-orthogonal eigenvectors
corresponding to Laplacian eigenvalues σi for i = 1, . . . , n. Background on effective resistance is
presented in Appendix A.5, with its estimation detailed in Appendix A.6.

6 GGD AS A DISTANCE METRIC

Assuming the graph matching problem can always find the exact correspondence between nodes,
we prove that the GGD metric (based on AIRM) between any two nonempty graphs is a metric that
satisfies the following conditions (Detailed proofs these properties are provided in Appendix A.7.):

• The distance between a graph and itself or between two isomorphic graphs is zero:
GGD(G,G) = 0.

• (Positivity) The distance between two distinct graphs is positive: GGD(G1, G2) ≥ 0.

• (Symmetry) The distance between G1 and G2 is the same of the one between G2 and G1:
GGD(G1, G2) = GGD(G2, G1).

• The triangle inequality: GGD(G1, G3) ≤ GGD(G1, G2) +GGD(G2, G3).

7 EXPERIMENTS

7.1 APPLICATION OF GGDS IN GNN STABILITY ANALYSIS

To analyze the stability of GNN models (Bronstein et al., 2017; Garg et al., 2020; Duvenaud et al.,
2015), we conducted multiple experiments with the GGD and TMD metrics. GNNs typically operate
by a message-passing mechanism (Gilmer et al., 2017), where at each layer, nodes send their feature
representations to their neighbors. The feature representation of each node is initialized to its
original features and is updated by repeatedly aggregating incoming messages from neighbors. In
our experiment, we relate GGD to the Graph Isomorphism Networks (GIN) (Xu et al., 2019), one of
the most widely applied and powerful GNNs, utilizing the MUTAG dataset (Morris et al., 2020) as
our reference graph dataset. The objective is to analyze the relationship between the input distance
GGD(G1, G2) and the distance between the output GIN vectors, ∥h(G1)− h(G2)∥ for randomly
selected pairs of graphs.

We employed a three-layer GIN network as described in (Xu et al., 2019). This network uses GIN
convolutional layers to update tensors of nodes based on their neighboring nodes and then aggregates
those outputs in a vector representation, followed by linear layers for classification tasks. Thus it
outputs a single vector h(G) for the entire graph G. The result is illustrated in Figure 4.

We observe a strong correlation between GGD and the output distance, as indicated by a high
Pearson correlation coefficient. This finding implies the effectiveness of the proposed GGD metric for
analyzing the stability of GNN models (Chuang & Jegelka, 2022). To compare GGD with existing

7
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Table 2: Classification accuracies for various models on graph datasets.

DATASET MUTAG PC-3H SW-620H BZR

GGD 86.24±7.89 78.34±1.60 77.6±3.50 83.23±6.25
TMD, L = 2 76.19±5.26 – – –
TMD, L = 3 77.34±5.26 71.24±2.45 70.22±2.29 73.43±2.44
TMD, L = 4 78.20±5.26 71.37±1.42 70.84±2.29 73.96±4.88
TMD, L = 5 78.20±5.26 71.89±2.40 71.20±1.88 75.13±2.44
GCN (KIPF & WELLING, 2017) 77.37±3.95 70.56±1.66 69.44±0.94 72.56±3.66
GIN (XU ET AL., 2019) 82.60±4.60 75.34±1.10 73.36±2.32 77.09±3.66
DGCNN (ZHANG ET AL., 2018) 76.66±3.19 73.79±0.75 74.37±1.54 72.38±1.08
WWL (TOGNINALLI ET AL., 2019) 72.39±2.63 65.46±1.11 68.06±0.86 72.37±1.22
WL SUBTREE (SHERVASHIDZE ET AL., 2011) 76.81±6.30 68.43±0.76 69.36±1.20 N/A
FGW (TITOUAN ET AL., 2019) 88.33±5.26 61.77±1.11 58.28±1.02 51.03±2.63

metrics, we repeat this experiment using TMD without considering node attributes (features). As
shown in Figure 4, GGD demonstrates a better correlation with GIN outputs than the TMD metric
across different levels. These findings indicate that when dealing with graphs without node features,
GGD should be adopted for the stability analysis of graph learning models. The performance of GGD
under partially missing node features is further discussed in Appendix A.11.

7.2 APPLICATION OF GGDS IN GRAPH CLASSIFICATION TASKS

We evaluate whether the GGD metric aligns with graph labels in graph classification tasks using
datasets from TUDataset (Morris et al., 2020). We employ a Support Vector Classifier (SVC) (C = 1)
with an indefinite kernel e−γ∗GGD(G1,G2), which can be viewed as a noisy observation of the true
positive semidefinite kernel (Luss & d’Aspremont, 2007). The parameter γ is selected through
cross-validation from the set {0.01, 0.05, 0.1}. For comparative analysis with existing methods, we
include graph kernels based on graph subtrees: the WL subtree kernel (Shervashidze et al., 2011);
and two widely adopted GNNs: graph isomorphism network (GIN) (Xu et al., 2019) and graph
convolutional networks (GCN) (Kipf & Welling, 2017).

Table 2 presents the mean and standard deviation over five independent trials with a 90%-10%
train-test split. For most cases, GGD consistently outperforms the performance of state-of-the-art
GNNs, graph kernels, and metrics when node attributes are missing. Additionally, we observe that
GGD allows us to obtain better results for larger datasets than smaller ones.

7.3 APPLICATION OF GGDS IN DATASET DISTANCE

To extend the application of GGD beyond structured graph datasets, we explore its utility in measuring
distances between datasets. In transfer learning, finding the distance between datasets helps to quantify
how similar or dissimilar the source and target domains are, guiding the adaptation of knowledge
from one domain to another (Alvarez-Melis & Fusi, 2020). We calculated this distance by first
converting standard datasets into graph representations and then computing distances between these
graphs using GGD framework.

To construct a graph from a dataset, we treat data points as nodes and establish edges based on a k-
nearest neighbor (k-NN) approach. Nodes representing similar data points are connected, forming an
initial dense graph. To further refine the structure, we apply a spectral graph sparsification procedure
to reduce the number of edges while preserving key connectivity properties. The process of creating
graphs from the dataset is further explained in Appendix A.18.

Once the graphs are obtained, we apply the GGD framework to compute pairwise distances. These
distances are then compared with established dataset distance measures based on Optimal Transport
(Alvarez-Melis & Fusi, 2020). We also explore how these distances correlate with dataset Transfer-
ability, which is the improvement in model performance when pretrained on a source dataset and
fine-tuned on a target dataset. Transferability T of a source domain DS to a target domain DT is
defined as the relative decrease in classification error when adapting compared to training only on the
target domain (Alvarez-Melis & Fusi, 2020).
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T (DS → DT ) = 100× error (DS → DT )− error (DT )

error (DT )
. (11)

Our results indicate that GGD-based dataset distances provide meaningful insights into dataset
relationships and transfer learning ability, matching the performance of conventional distance metrics,
demonstrated in Figure 5.

7.4 RUNTIME COMPLEXITY ANALYSIS AND COMPARISON

Figure 5: Dataset distance vs. Adaptation for *NIST
datasets (M: MNIST, K: KMNIST, F: Fashion-MNIST,
U: USPS).

When comparing various graph distance
metrics, a primary consideration is their
computational complexity. Conventional
approaches usually require intricate compu-
tations that frequently have cubic or higher
complexities. For our problem, the spec-
tral graph matching step requires the eigen-
value decomposition of adjacency matri-
ces and solving the linear assignment prob-
lem (LAP). Eigenvalue decomposition of
an n×n matrix has a complexity of O(n3)
(Borodin & Munro, 1975; Flamary et al.,
2021), while solving the LAP using the
Hungarian algorithm also has a runtime
complexity of O(n3). Similarly, calculat-
ing the generalized eigenvalue of two SPD matrices entails a cubic complexity. Consequently, the
overall complexity of GGD calculation is O(n3). On the other hand, TMD is an OT-based distance
metric with a complexity of O(n3 log(n)) (Chuang & Jegelka, 2022; Flamary et al., 2021). Therefore,
GGD exhibits slightly better (lower) runtime complexity than TMD.

Table 3: Runtime comparison for different distance
metrics on various datasets.

MUTAG PC-3H SW-620H BZR
GGD 4.87S 31.89S 45.37S 5.80S
TMD, L = 3 5.29S 88.60S 98.69S 7.22S
TMD, L = 4 7.90S 112.12S 134.38S 10.34S
TMD, L = 6 11.27S 273.31S 287.92S 14.98S

To evaluate runtime performance, we com-
pare GGD and TMD on both small graphs
(MUTAG, BZR) and large graphs (PC-3H,
SW-620H) from the TUDataset (Morris et al.,
2020). Table 3 reports the average time (in
seconds) to compute 100 pairwise distances,
averaged over five runs. GGD consistently
outperforms TMD across all datasets, es-
pecially on larger graphs with more nodes.
Since TMD requires deeper levels to capture
structural information, its runtime increases
rapidly. In contrast, GGD is approximately 6-9 times faster, making it significantly more efficient,
particularly on large graphs. More details are provided in Appendix A.20 and Appendix A.13.

8 CONCLUSION

In this work, we introduce Graph Geodesic Distance (GGD), a novel spectral graph distance metric
based on graph matching and the infimum on a Riemannian manifold. GGD captures key structural
mismatches crucial for graph classification tasks, and we demonstrate its effectiveness for analyzing
GNN model stability as well as for graph classification, delivering superior performance even with
partial node features. Additionally, GGD can evaluate transferability by calculating distances between
datasets. Despite some limitations (Appendix A.19), GGD offers a principled and practical tool for
comparing graphs across tasks and domains.

LLM USAGE

We used LLM-based tools to improve the clarity of a few sentences and to correct grammatical errors.
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A APPENDIX

A.1 ALGORITHM FLOW

Algorithm 1 GGD: Geodesic Graph Distance

1: Input: Graphs G1 = (V1, E1, w1), G2 = (V2, E2, w2), tuning parameter η > 0, small diagonal value
0 < ϵ ≪ 1, node feature weight α

2: Output: GGD Value
3: Compute the adjacency matrices A1, A2

4: if shape(A1) ̸= shape(A2) then
5: Assign the larger graph to G1, and the smaller graph to G2

6: while shape(A1) ≥ shape(A2) do
7: Compute the effective resistance Reff(p, q) of each edge (p, q) ∈ E1

8: Compute the modified effective resistance R∗
eff(p, q) = Reff(p, q) + α∥NFp −NFq∥

9: Coarsen the edge with the lowest R∗
eff(p, q)

10: Update A1

11: end while
12: end if
13: Compute eigenvectors ui, vi and eigenvalues ζi, µi of A1 and A2, respectively
14: Compute the similarity matrix X̂ ∈ Rn×n

15: Solve Linear Assignment Problem to compute the permutation estimate matrix π̂
16: Update A2 by multiplying with π̂ to get best match with A1

17: Derive L1 and L2 from A1 and A2

18: Add ϵ to diagonal values of L1 and L2

19: Compute GGD value using Equation 7
20: return GGD

A.2 TREE MOVER’S DISTANCE

By progressively adding neighboring nodes of the graph, to the previous node at each level, one
obtains the computation tree of a node. These tree structures are crucial in graph analysis (Weisfeiler
& Leman, 1968; Pearson, 1905) and graph kernels (Ramon & Gärtner, 2003; Shervashidze et al.,
2011). TMD uses hierarchical optimal transport (OT) to analyze these computational trees from input
graphs. For a graph G = (V,E) with node features fv ∈ Rs for node v ∈ V , let T 1

v = v, and TL
v

be the depth-L computation tree of node v. The multiset of these trees for G is TL
G = {TL

v }v∈V .
The number and shape of trees must match to calculate optimal transport between two multisets of
trees. If multisets are uneven, they are augmented with blank nodes. For multisets Tp and Tq, the
augmenting function σ adds blank trees to equalize their sizes. A blank tree TO has a single node
with a zero vector feature Op ∈ Rs:

σ(Tp, Tq) →
(
Tp ∪ T

max(|Tq|−|Tp|,0)
O , Tq ∪ T

max(|Tp|−|Tq|,0)
O

)
(12)

Let X = {xi}ki=1 and Y = {yi}kj=1 be two data multisets and C ∈ Rk×k be the transportation cost
for each data pair: Cij = d (xi, yj), where d is the distance between xi and yj . The unnormalized
Optimal Transport between X and Y is defined as follows:

OTd(X,Y ) := minγ∈Γ(X,Y )⟨C, γ⟩
Γ(X,Y ) =

{
γ ∈ Rm×m

+ | γ1m = γ⊤1m = 1m

}
.

(13)

Here Γ is the set of transportation plans that satisfies the flow constrain γ1m = γ⊤1m = 1m.
(Chuang & Jegelka, 2022). Now, the distance between two trees Tp and Tq with roots rp and rq is
defined recursively:

TDw (Tp, Tq) :=

{∥∥frp − frq
∥∥+ w(L) ·OTTDw

(
σ
(
Trp , Trq

))
, if L > 1∥∥frp − frq

∥∥ , otherwise
(14)

where L is the maximum depth of Tp and Tq , and w is a depth-dependent weighting function.
Subsequently, the concept of distance from individual trees is extended to entire graphs. For graphs
G1 and G2, multisets TL

G1
and TL

G2
of depth-L computation trees are used to calculate the TMD

value using equation 2).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 GRAPH ADJACENCY AND LAPLACIAN MATRICES

For an undirected graph G = (V,E,w), where V represents the set of nodes (vertices), E represents
the set of edges, and w denotes the associated edge weights, the adjacency matrix A is defined as
follows:

A(i, j) =

{
w(i, j), if (i, j) ∈ E.

0, otherwise.
(15)

Let D denote the diagonal matrix where D(i, i) is equal to the (weighted) degree of node i. The
graph Laplacian matrix is then given by L = D −A. The rank of the Laplacian matrix of a graph G
is n− c(G), where n is the number of nodes and c(G) is the number of connected components in the
graph. For a connected graph, this implies that the rank of the Laplacian matrix is n− 1, meaning
Laplacian matrices are not full-rank (Bondy et al., 1976).

A.4 RIEMANNIAN MANIFOLD

A manifold is a type of topological space that resembles Euclidean space in small, local regions
around each point. In other words, for every point on a manifold, there is a neighborhood that is
similar to a flat multidimensional space. A Riemannian manifold is a type of manifold equipped
with a smoothly varying inner product on the tangent spaces at each point. This means that for every
point on the manifold, the tangent space has a way of measuring distances and angles, and these
measurements change smoothly from point to point (Lee, 2018). In simpler terms, a Riemannian
manifold is a smooth, curved space that locally behaves like Euclidean space but has its own geometric
properties, such as how distances, angles, and volumes are defined. These properties are determined
by a Riemannian metric, which generalizes the concept of measuring lengths and angles in flat space
to curved spaces (Lee, 2018).

A Riemannian manifold can have curvature, unlike a flat space. This curvature allows the study of
geometric shapes ranging from spheres and cylinders to more abstract surfaces. The Riemannian
structure enables us to compute geodesics, volumes, and various types of curvature. This makes
Riemannian manifolds fundamental in fields like differential geometry and physics, and increasingly
important in data science, where curved spaces are used to model complex datasets (You & Park,
2021).

A.5 EFFECTIVE RESISTANCE IN GRAPH THEORY

Effective resistance, also known as resistance distance, is a concept in spectral graph theory that
draws an analogy between electrical networks and graphs, helping to quantify how easily current can
flow between two nodes, where the edges are treated as resistors. The effective resistance between
nodes provides insight into the connectivity between the network. This means two nodes with lower
effective resistance values have higher connectivity (Ellens et al., 2011).

A.6 SCALABLE ESTIMATION OF EFFECTIVE RESISTANCES

To address the computational complexity associated with directly computing eigenvalues and eigen-
vectors required for estimating edge effective resistances, we leverage a scalable framework for
approximating the eigenvectors of the graph Laplacian matrix using the Krylov subspace (Saad, 2011).
Let A denote the adjacency matrix of a graph G, consider its order-m Krylov subspace Km(A, x) that
is a vector space spanned by the vectors computed through power iterations x,Ax,A2x, . . . , Am−1x
(Liesen & Strakoš, 2012). By enforcing orthogonality among the above vectors in the Krylov sub-
space, a new set of mutually orthogonal vectors of unit lengths can be constructed for approximating
the original Laplacian eigenvectors in 10, which are denoted as ũ1, ũ2, . . ., ũm. To estimate the
effective resistance between two nodes p and q, we can exploit the approximated eigenvectors:

Reff (p, q) ≈
m∑
i=1

(ũ⊤
i bpq)

2

ũ⊤
i Lũi

, (16)

where ũi represents the approximated eigenvector corresponding to the i-th eigenvalue of L.
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Graph coarsening with node features In order to account for the variation in node features along
with edge resistive distance, we can use the following modified effective resistance formulation:

R∗
eff (p, q) = Reff (p, q) + α∥fp − fq∥, (17)

where fp and fq are node feature vectors of nodes p and q, respectively, while α is a weighting factor
that determines the effect of node feature information in the graph coarsening process. For instance, if
the weight is sufficiently large, the modified effective resistance between nodes with different features
will always exceed that of nodes with similar features, effectively preventing their coarsening.

A.7 DETAILED PROOFS SHOWING GGD IS A METRIC

A.7.1 IDENTITY PROPERTY

Proof. Let the corresponding SPD matrix of the graph G be L ∈ Sn++. From Equation 7, we have:

GGD(G,G) =

[
n∑

i=1

log2(λi(L−1L))

]1/2

=

[
n∑

i=1

log2(λi(I))

]1/2

.

The identity matrix has only one eigenvalue, which is 1. So, GGD(G,G) =
[
log2(1)

]1/2
= 0.

A.7.2 POSITIVITY PROPERTY

Proof. Let the corresponding SPD matrices of the graphs G1 and G2 be L1, L2 ∈ Sn++. Let the
generalized eigenvalues of (L−1

1 L2) be λ1, λ2, λ3, . . . , λn. From Equation 7, we get:

GGD(G1, G2) =
[
log2(λ1) + log2(λ2) + log2(λ3) + . . .+ log2(λn)

]1/2
.

Now, log2(λ1) + log2(λ2) + log2(λ3) + . . .+ log2(λn) ≥ 0, for any values of λi.

We can conclude, GGD(G1, G2) ≥ 0.

A.7.3 SYMMETRY PROPERTY

Proof. Let the corresponding SPD matrices of the graphs G1 and G2 be L1, L2 ∈ Sn++. Let the
generalized eigenvalues of (L−1

1 L2) be λ1, λ2, λ3, . . . , λn. From Equation 7, we get:

GGD(G1, G2) =

[
n∑

i=1

log2(λi)

]1/2

.

Suppose λi is an eigenvalue of L−1
1 L2 with corresponding eigenvector vi, i.e.,

L−1
1 L2vi = λivi.

Multiplying both sides by L1, we get:
L2vi = λiL1vi.

Now multiply both sides by L−1
2 :

vi = λiL−1
2 L1vi.

Rearranging, we obtain:

L−1
2 L1vi =

1

λi
vi.

So, the eigenvalues of L−1
2 L1 are 1

λ1
, 1
λ2
, . . . , 1

λn
, with the same eigenvectors.

GGD(G2, G1) =

[
n∑

i=1

log2(
1

λi
)

]1/2

.

Now, log
(

1
λi

)
= − log(λi); so, log2

(
1
λi

)
= log2(λi).

So, we can conclude GGD(G1, G2) = GGD(G2, G1).
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A.7.4 TRIANGLE INEQUALITY

Proof. Let, L1,L2,L3 ∈ Sn++ are three SPD matrices corresponding to graphs G1, G2, G3.

Now, The Frobenius norm ∥X∥F is the geodesic length at d(expX, I) = ∥X∥F (Bonnabel &
Sepulchre, 2010). Hence at identity, d(L, I) = ∥ logL∥F .

From (Bonnabel & Sepulchre, 2010; You & Park, 2021) we get,

GGD(G1, G2) = GGD
(
G

−1/2
1 G2G

−1/2
1 , I

)
=

∥∥∥log (L−1/2
1 L2L−1/2

1

)∥∥∥
F
=

∥∥log (L−1
1 L2

)∥∥
F
.

(18)
We know,

L−1
1 L3 = L−1

1 (L2L−1
2 )L3 = (L−1

1 L2)(L−1
2 L3).

Now using the Frobenius norm inequality, we get:

∥L−1
1 L3∥ = ∥(L−1

1 L2)(L−1
2 L3)∥ ≤ ∥L−1

1 L2∥∥L−1
2 L3∥.

Now taking logarithms on both sides:

∥ log(L−1
1 L3)∥ ≤ ∥ log(L−1

1 L2)∥+ ∥ log(L−1
2 L3)∥.

Using Equation 7, we conclude:

GGD(G1, G3) ≤ GGD(G1, G2) +GGD(G2, G3).

A.8 GRAPH MATCHING RECOVERY

Given symmetric matrices A1, A2 and Z from the Gaussian Wigner model, where A2π∗ = A1 + σZ,
there exist constants c, c′ > 0 such that if 1/n0.1 ≤ η ≤ c/ logn and σ ≤ c′η, then with probability
at least 1− n−4 for all large n, the matrix X̂ in equation 3 satisfies,

min
i∈[n]

X̂i,π∗(i) > max
i,j∈[n]:j ̸=π∗(i)

X̂ij (19)

and hence, the GRAMPA algorithm correctly recovers the permutation estimation matrix π∗.

Now, this proof is divided into two parts:

Lemma A.1 (Noiseless Setting Diagonal Dominance). In a noiseless situation, means replacing A2

with A1, similarity matrix X̂∗ is defined as:

X̂∗ = X̂(A1, A1) =

n∑
i,j=1

uiu
T
i Juju

T
j

(ζi − ζj)2 + η2
. (20)

For some constants C, c > 0, if 1/n0.1 < η < c/ log n, then with probability at least 1− 5n−5 for
large n, it can be proved that the diagonal components of X̂∗ are dominant by showing (Fan et al.,
2019):

min
i∈[n]

(X̂∗)ii >
1

3η2
(21)

and

max
i,j∈[n]:i̸=j

(X̂∗)ij < C

(√
log n

η3/2
+

log n

η

)
. (22)

Lemma A.2 (Bounding the Noise Impact). The difference between the similarity matrix X in the
presence of noise and the noiseless situation is bounded. If η > 1/n0.1, then for a constant C > 0,
with probability at least 1− 2n−5 for large n, it can be shown (Fan et al., 2019):

max
i,j∈[n]

|X̂ij − (X̂∗)ij | < Cσ

(
1

η3
+

log n

η2

(
1 +

σ

η

))
. (23)
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Figure 6: Generalized eigenvalues and their corresponding cut mismatches

Assuming lemma A.1 and A.2, for some c, c′ > 0 sufficiently small, and by setting η < c/ log n and
σ < c′η, the algorithm ensures that the right sides of both equations 22 and 23 are at most 1/(12η2).
Then when π∗ = id (the identity permutation), these lemmas combine to imply:

min
i∈[n]

X̂ii >
1

4η2
>

1

6η2
> max

i,j∈[n]:i̸=j
X̂ij (24)

with probability at least 1− n−4. So, all diagonal entries of X̂ are larger than all off-diagonal entries,
thereby achieving exact recovery (Fan et al., 2019).

A.9 RELATION BETWEEN GENERALIZED EIGENVALUES WITH CUT MISMATCH

We selected two graphs from the MUTAG dataset and computed their generalized eigenvalues
following the procedure for calculating the Generalized Graph Distance (GGD), which involves
determining the node-to-node correspondence. Subsequently, we considerd all possible subsets of
nodes and evaluate their corresponding cut mismatches. As shown in Figure 6, each generalized
eigenvalue is closely associated with a cut mismatch. This empirical observation supports our
hypothesis that the GGD between two input graphs is strongly correlated with structural mismatches
in graphs.

A.10 CHOOSING ϵ FOR CONVERTING LAPLACIANS TO SPD MATRICES

Laplacian matrices are symmetric positive semi-definite (SPSD) matrices. To convert these to
symmetric positive definite (SPD) matrices, we added a diagonal matrix with very small values (ϵ).
We used 0.0001 as the small value (ϵ) in our experiments. When working with Laplacian matrices
of a weighted or unweighted graph, values significantly smaller than the edge weights of that graph
have a minimal effect on the transformation. We conducted additional experiments with different
small values and included the results in Tables 4 and 5. In Table 4, we observed that in our specific
case with the MUTAG graph dataset (Morris et al., 2020), where all graphs are unweighted, any value
less than 0.001 has an almost negligible influence on the performance of the graph classification task.
Additionally, when using values equal to or less than 0.001, the GGD value remains almost the same,
as shown in Table 5.

A.11 PARTIAL NODE FEATURES

Cutting-edge graph distance metrics like TMD rely on node attributes to compute the dissimilarity
between graphs, resulting in more accurate outcomes when all attributes are available. However,
acquiring datasets with complete node attributes is often unattainable in real-world scenarios, leading
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Table 4: Classification accuracy using MUTAG dataset with different values of ϵ.

Value of ϵ Classification accuracy Value of ϵ Classification accuracy
0.1 76.38 ± 7.89 1e-4 85.96 ± 5.26
5e-2 79.02 ± 6.58 1e-5 84.21 ± 5.26
1e-2 79.02 ± 5.26 1e-6 85.96 ± 5.26
5e-3 81.57 ± 7.89 1e-7 85.96 ± 7.89
1e-3 81.57 ± 7.89

Table 5: GGD values using MUTAG dataset for different values of ϵ.

Value of Normalized GGD of a random Average normalized
ϵ graph pair (MUTAG[85], MUTAG[103]) GGD of 1000 pairs

0.1 0.712 0.727
5e-2 0.827 0.834
1e-2 0.952 0.959
5e-3 0.978 0.979
1e-3 0.996 0.995
1e-4 0.9996 0.9995
1e-5 0.99995 0.99996
1e-6 0.999996 0.999996
1e-7 1 1

to partially missing features In such scenarios when only partial node features are available, we
compare TMD with GGD to better understand their differences. Table 6 shows that the TMD
metric outperforms GGD at various levels when node features are fully accessible. However, when
node features are randomly removed from the MUTAG dataset, the accuracy of TMD degrades
substantially.

A.12 APPROXIMATE GGD ON SMALL GRAPHS USING EXTREME EIGENVALUES

The largest and the smallest eigenvalues correspond to the most dominant mismatches in graph
cuts and effective resistance distances, contributing the most to the total GGD value. Similarly, the
second largest and smallest eigenvalues correspond to the next significant mismatched cuts. In our
experiment, we obtain approximate GGD values using a few extreme eigenvalue pairs and compare
them with the ground truth. Figure 7 illustrates the relative accuracy of the approximate GGDs, in
which we observe that the top four pairs of extreme eigenvalues contribute 80% of the total GGD
values. In addition, we conduct the SVC classification task and GNN correlation study using GGD
with only 2 and 4 extreme eigenvalue pairs, respectively, and present the associated findings in Table
7.

A.13 SCALABILITY OF GGD APPROXIMATION ON VERY LARGE GRAPHS

For very large graphs, computing the full spectrum of eigenvalues becomes computationally expen-
sive. To address this, we use approximate GGD strategy using only a small fraction of the extreme
eigenvalues. Our results in Table 8 show that even with just 2% of the extreme eigenvalues, the
approximation remains highly correlated with the original GGD value. Moreover, the percentage re-

Table 6: Comparison of correlation with GNN outputs and distance metrics with partial node features.

DIST METRIC 0% 20% 50% 80% 100%

GGD 0.78 0.78 0.77 0.77 0.77
TMD, L = 3 0.84 0.78 0.72 0.63 0.61
TMD, L = 4 0.81 0.77 0.62 0.58 0.57
TMD, L = 5 0.80 0.75 0.65 0.58 0.53
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Table 7: Performance of GGD using extreme eigenvalues only.

Task Number of extreme eigenvalues

2 4 All

Correlation with GNN 0.74 0.76 0.77
Classification accuracy 81.50±6.85 83.87±7.56 86.00±7.50

Figure 7: Percentage of the original GGD using numbers of extreme eigenvalues.

quired decreases with increasing graph size, significantly improving scalability. Table 9 demonstrates
the resulting runtime improvements.

A.14 COMPARISON OF TWO DIFFERENT RIEMANNIAN METRICS FOR SPD MATRICES

The two most commonly used Riemannian metrics on the SPD manifold are the Affine Invariant
Riemannian Metric (AIRM) and the Log-Euclidean Riemannian Metric (LERM) (Ilea et al., 2018;
Thanwerdas & Pennec, 2023; Chen et al., 2024). AIRM is a Riemannian metric that remains invariant
under affine transformations, meaning the metric is unaffected when matrices are transformed by any
invertible operation. The geodesic distance between two SPD matrices, A and B, using AIRM is
given by (You & Park, 2021; Moakher, 2005):

dAIRM(A,B) = ∥ log(A−1B)∥F =

[
n∑

i=1

log2(λi(A
−1B))

]1/2

. (25)

On the other hand, LERM addresses some of the computational complexity challenges associated
with AIRM by mapping SPD matrices to an Euclidean space through the matrix logarithm operation.
In this Euclidean space, computations are simplified. The geodesic distance between two SPD
matrices, A and B, using LERM is defined as (Huang et al., 2014):

dLERM(A,B) = ∥ log(A)− log(B)∥F . (26)

In this paper, we primarily used AIRM to compute geodesics because of its stronger theoretical
foundation and its ability to better explain graph cut mismatches. However, for comparison, we also
conducted experiments using LERM. Figure 8 shows that the Graph Geodesic Distances computed
using the LERM metric are highly correlated with those obtained using AIRM, though the GGD
using AIRM demonstrates better performance overall. A detailed performance comparison of these
two metrics is provided in Table 10.

Table 8: Correlation between GGD values and approximate GGD values using a portion of extreme
eigenvalues for very large graphs, where n represents the number of nodes.

Extreme Eigenvalues Used 0.5% 1% 2% 4% All
Correlation (n ∈ [5000, 5200]) 0.8323 0.9361 0.9772 0.9902 1

Correlation (n ∈ [10000, 10500]) 0.8666 0.9501 0.9808 0.9928 1
Correlation (n ∈ [15000, 16000]) 0.8892 0.9599 0.9879 0.9952 1
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Table 9: Runtime Comparison of Exact vs. Approximate GGD on Very Large Graphs

Node
Numbers

Calculation Time

GGD Aprx GGD (2% Eigs) Aprx GGD (4% Eigs)

n ∈ [5000, 5200] 29.13s 7.11s 7.98s
n ∈ [10000, 10500] 241.33s 55.56s 56.29s
n ∈ [15000, 16000] 920.77s 162.30s 163.64s

Table 10: Comparison between Riemannian metrics for GGD calculation.

Riemannian metric Correlation with GNN output Classification accuracy
Affine-Invariant 0.7786 86.00±7.50%
Log-Euclidean 0.7634 84.38%

Figure 8: GGD between graph pairs using AI and LE Riemannian metric.
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Table 11: Effect of epsilon in the calculation of GGD using normalized Laplacian matrices.

Value of ϵ 0.01 0.001 0.0001 0.00001
GGD using Laplacian matrices 16.235 16.775 16.832 16.838
GGD using normalized Laplacian matrices 384.097 254.440 188.345 165.332

Figure 9: Classification accuracy vs GRAMPA tuning parameter.

A.15 USING NORMALIZED LAPLACIANS FOR GGD CALCULATION

In many existing studies, the normalized Laplacian matrix is commonly used to study spectral
graph properties (Chung, 1997). The normalized Laplacian matrix of a graph G is defined as:
Lnorm = I −Anorm, where Anorm is the normalized adjacency matrix. The normalized adjacency
matrix is expressed as (Chung, 1997):

Anorm = D−1/2AD−1/2, (27)

where D represents the diagonal degree matrix, and A denotes the adjacency matrix of the graph.

Form equation 27, we can derive:

Lnorm = I −D−1/2AD−1/2 = D−1/2(D −A)D−1/2 = D−1/2LD−1/2. (28)

Similar to the Laplacian matrices of graphs, normalized graph Laplacian matrices are also symmetric
and positive semi-definite. Therefore, it is necessary to add small values to the diagonal elements of
these matrices. However, our experiments reveal that the GGD calculation is highly sensitive to this
small value (ϵ), resulting in significant fluctuations across different values, as demonstrated in Table
11. Additionally, the geodesic distances computed with the modified normalized Laplacian matrices
exhibit poor accuracy in both classification tasks and their correlation with GNN outputs.

A.16 EFFECT OF TUNING PARAMETER η ON GRAPH MATCHING

In the original work, it was suggested that the regularization parameter η needs to be chosen so that
σ ∨ n−0.1 ≲ η ≲ 1/ logn (Fan et al., 2020). It is also mentioned that for practical cases, computing
permutation matrix for different values of η in an iterative way can result in better accuracy. The
GRAMPA uses η = 0.2 for all their experiments (Fan et al., 2020).
We used a few values of η in the classification problem using the MUTAG dataset and got that
the best accuracy is obtained at η = 0.5. In Figure 9, the performance of the tuning parameter is
demonstrated.

A.17 SENSITIVITY OF GGD TO SIMPLE GRAPH PERTURBATIONS

Due to the simplicity and general applicability of the GGD, it can be readily computed between any
pair of undirected graphs. To evaluate the robustness of GGD under simple structural changes, we
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Table 12: Correlation between GGD values before and after applying different perturbation methods
on smaller graphs (20–50 nodes)

Amount of Perturbation 1 2 3 4 5

Nodes Dropped 0.6934 0.6084 0.5896 0.5614 0.5368
Nodes Added 0.9976 0.9959 0.9943 0.9922 0.9900

Edges Removed 0.8375 0.7890 0.6644 0.6537 0.6332
Edges Added 0.9990 0.9982 0.9974 0.9964 0.9954

Table 13: Correlation between GGD values before and after applying different perturbation methods
on larger graphs (200–500 nodes)

Amount of Perturbation 5 10 15 20 25 30

Nodes Dropped 0.8255 0.7734 0.6533 0.6116 0.5736 0.5563
Nodes Added 0.9991 0.9981 0.9963 0.9944 0.9915 0.9884

Edges Removed 0.9137 0.8857 0.8265 0.7989 0.7550 0.7226
Edges Added 0.9996 0.9992 0.9986 0.9979 0.9971 0.9963

conducted a series of experiments involving basic graph perturbations across both small and large
graphs.

Our results show that node and edge additions typically have a minimal impact on the GGD values,
suggesting that the metric is largely invariant to the inclusion of redundant elements. In contrast,
node and edge drops exhibit noticeable effect. While a significant portion of these perturbations
still yield GGD values comparable to the original graphs, some cases show some deviations. These
deviations are associated with the removal of structurally important nodes or edges, which alters the
graph topology. The quantitative results of these perturbation experiments are summarized Table 12,
13 and Figure 10, 11, 12, 13, 14, 15, 16, 17.

Figure 10: GGD (x-axis) vs GGD after Node Drop perturbation (y-axis) for smaller graphs.
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Figure 11: GGD (x-axis) vs GGD after Node Drop perturbation (y-axis) for larger graphs.

Figure 12: GGD (x-axis) vs GGD after Node Addition perturbation (y-axis) for smaller graphs.

Figure 13: GGD (x-axis) vs GGD after Node Addition perturbation (y-axis) for larger graphs.

Figure 14: GGD (x-axis) vs GGD after Edge Drop perturbation (y-axis) for smaller graphs.
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Figure 15: GGD (x-axis) vs GGD after Edge Drop perturbation (y-axis) for larger graphs.

Figure 16: GGD (x-axis) vs GGD after Edge Addition perturbation (y-axis) for smaller graphs.

Figure 17: GGD (x-axis) vs GGD after Edge Addition perturbation (y-axis) for larger graphs.

A.18 GRAPH FORMATION FROM DATASET USING PROBABILISTIC GRAPHICAL MODELS

We take similiar type of datasets such as MNIST, Fashion-MNIST, KMNIST, and USPS (Alvarez-
Melis & Fusi, 2020) and convert them into connected graphs. To construct these graph structures, we
use Probabilistic Graphical Models (PGMs), also known as Markov Random Fields (MRFs) (Cheng
et al., 2024). PGMs are powerful tools in machine learning and statistical physics for representing
complex systems with intricate dependency structures (Roy et al., 2009). They encode the conditional
dependencies between random variables through an undirected graph structure. Recent studies have
shown that the graph structure learned via PGMs can exhibit resistance distances that encode the
Euclidean distances between their corresponding data samples (Feng, 2021).

We create a Feature Matrix (FM) U from the dataset, where each row represents a data sample, and
the row Up itself serves as the feature vector of that sample p, on this context- the pixel values. A
dense k-nearest neighbor (k-NN) graph Gdense is initially constructed using the FM. To obtain the
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final dataset graph Gdataset, spectral sparsification is applied by solving the convex optimization
problem (Cheng et al., 2024):

max
Θ

F (Θ) = log det(Θ)− 1

k
Tr

(
U⊤ΘU

)
(29)

where Θ = L + 1
σ2 I . Here, L is the graph Laplacian, Tr(·) denotes the trace of a matrix, I is the

identity matrix, and σ2 > 0 represents the prior feature variance. To solve this the following lemma
is used:
Lemma A.3. Maximizing the objective function in Equation 29 can be achieved in nearly-linear
time via the following edge pruning strategy equivalent to spectral sparsification of the initial dense
nearest-neighbor graph. Specifically, edges with small distance ratios

ρp,q =
Reff(p, q)

deuc(p, q)
= wp,q ·Reff(p, q) (30)

are pruned, where Reff(p, q) denotes the effective resistance distance between nodes p and q,
deuc(p, q) = ∥Up − Uq∥22 represents the data distance between the feature of nodes p and q, and
wp,q = 1

deuc(p,q)
is the weight of edge (p, q) (Cheng et al., 2024).

Computing the edge sampling probability ρp,q for each edge (p, q) becomes computationally expen-
sive for large graphs. To address this, an improved algorithm using a low-resistance-diameter (LRD)
decomposition is proposed, extending the short-cycle decomposition (Chu et al., 2020) to weighted
graphs. The method efficiently computes effective resistance to partition the graph into clusters,
thereby enhancing the sparsification process. This results in a low-dimensional graph Gdataset that
retains important structural properties while reducing dimensionality (Cheng et al., 2024).

A.19 LIMITATIONS OF GGD

Our current pipeline has three primary limitations. First, computationally, the end-to-end complexity
is dominated by eigenvalue decomposition and the linear assignment step (both O(n3)). Although
this is comparable to or slightly better than some OT-based alternatives, scaling to very large graphs
remains nontrivial. Appendix A.13 shows that using a small fraction of extreme eigenvalues preserves
a high correlation with exact GGD and greatly reduces computation time, but this remains an
approximation. Second, GGD is most reliable when comparing graphs of comparable size. When
sizes differ dramatically, the size matching via graph coarsening introduces additional approximation
error, though we expect such extreme mismatches to be rare in practical applications. Finally,
like many graph distance metrics, our theory and experiments assume simple, undirected graphs.
Extending GGD to directed, attributed, or higher-order graphs is a valuable direction for future work.
We include these limitations to clarify the intended scope and reliability of GGD in practice and to
guide when approximations or extensions may be required.

A.20 EXPERIMENTAL SETUP

To evaluate the performance of the Graph Geodesic Distance (GGD) metric, we utilized graph
datasets from the TUDataset collection (Morris et al., 2020). For small graphs, we used datasets like
MUTAG and BZR, and for larger graphs, we selected PC-3H and SW-620H, which present more
sizable networks. Detailed information about the datasets used is provided in Table 14.

Table 14: Brief description of graph datasets used.

Dataset name Number of graphs Average number of nodes Average number of edges
MUTAG 188 17.93 19.79
PC-3H 27509 47.20 49.33
SW-620H 40532 26.06 28.09
BZR 405 35.75 38.36

While Classification tasks, each dataset was split into 90% training and 10% testing sets to ensure
an unbiased evaluation process. When assessing the correlation with GNN, we trained a three-layer
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GIN with 90% of all graphs from MUTAG and validated with the rest 10%. For the performance
evaluation using graphs with partial node features, we took each dataset with node features and
randomly removed a certain portion of features.

All experiments have been evaluated on a laptop with an Apple M1 chipset, featuring an eight-core
CPU and a seven-core GPU.

27


	Introduction
	Existing Graph Distance Metrics
	GGD: Geodesic Distance Between Graphs 
	Computing GGDs Between Graphs of the Same Size
	Phase 1: Spectral Graph Matching for Finding Node Correspondence
	Phase 2: Computing Geodesic Distances Between Graph Laplacians
	Connection between GGD and Graph Structural Mismatches

	Computing GGDs for Graphs with Different Sizes
	Our Approach: Spectral Graph Coarsening by Effective Resistances

	GGD as a Distance Metric
	Experiments
	Application of GGDs in GNN Stability Analysis
	Application of GGDs in Graph Classification Tasks
	Application of GGDs in Dataset Distance
	Runtime Complexity Analysis and Comparison

	Conclusion
	Appendix
	Algorithm Flow
	Tree Mover’s Distance
	Graph Adjacency and Laplacian Matrices
	Riemannian Manifold
	Effective Resistance in Graph Theory
	Scalable estimation of effective resistances
	Detailed Proofs Showing GGD is a Metric
	Identity Property
	Positivity Property
	Symmetry Property
	Triangle Inequality

	Graph Matching Recovery
	Relation between Generalized Eigenvalues with Cut Mismatch
	Choosing epsilon for converting Laplacians to SPD matrices
	Partial Node Features
	Approximate GGD on Small Graphs Using Extreme Eigenvalues
	Scalability of GGD Approximation on Very Large Graphs
	Comparison of Two Different Riemannian Metrics for SPD Matrices
	Using Normalized Laplacians for GGD Calculation
	Effect of tuning parameter eta on Graph Matching
	Sensitivity of GGD to Simple Graph Perturbations
	Graph formation from Dataset using Probabilistic Graphical Models
	Limitations of GGD
	Experimental Setup


