

000 001 002 003 004 005 006 007 008 009 010 A SPECTRAL FRAMEWORK FOR EVALUATING GEODESIC DISTANCES BETWEEN GRAPHS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 This paper presents a spectral framework for quantifying the differentiation be-
 012 tween graph data samples by introducing a novel metric named Graph Geodesic
 013 Distance (GGD). For two different graphs with the same number of nodes, our
 014 framework leverages a spectral graph matching procedure to find node correspon-
 015 dence so that the geodesic distance between them can be subsequently computed by
 016 solving a generalized eigenvalue problem associated with their Laplacian matrices.
 017 For graphs of different sizes, a resistance-based spectral graph coarsening scheme
 018 is introduced to reduce the size of the larger graph while preserving the original
 019 spectral properties. We show that the proposed GGD metric can effectively quan-
 020 tify dissimilarities between two graphs by encapsulating their differences in key
 021 structural (spectral) properties, such as effective resistances between nodes, cuts,
 022 and the mixing time of random walks. Through extensive experiments comparing
 023 with state-of-the-art metrics, such as the latest Tree-Mover’s Distance (TMD),
 024 the proposed GGD metric demonstrates significantly improved performance for
 025 graph classification, particularly when only partial node features are available.
 026 Furthermore, we extend the application of GGD beyond graph classification to
 027 stability analysis of GNNs and the quantification of distances between datasets,
 028 highlighting its versatility in broader machine learning contexts.

029 1 INTRODUCTION

030 In the era of big data, comparison and distinction between data points are important tasks. A graph is
 031 a specific type of data structure that represents the connections between a group of nodes. Comparing
 032 two graphs often involves using a pairwise distance measure, where a small distance indicates a
 033 high structural similarity and vice versa. To understand the generalization between distribution
 034 shifts, it is important to use an appropriate measure of divergence between data distributions, both
 035 theoretically and experimentally (Chuang et al., 2020). Determining suitable distance metrics for
 036 non-Euclidean data, such as graphs with or without node attributes, remains challenging. These
 037 metrics are fundamental to many graph learning methods, such as graph neural networks (GNNs),
 038 but are not as readily available as those for Euclidean space. The need to develop new analytical
 039 techniques that allow the visualization, comparison, and understanding of different graphs has led to
 040 a rich field of research (Haslbeck & Waldorp, 2018). This study dives into the exploration of a novel
 041 framework for computing geometric distances between graphs, which can be immediately leveraged
 042 for many graph-based machine learning (ML) tasks.

043 Many distance metrics for comparing graphs have previously been proposed (Borgwardt et al., 2020).
 044 Some of them are based only on graph local structures (Tam & Dunson, 2022; Haussler et al., 1999;
 045 Xu et al., 2013; Zhu et al., 2020; Fernández & Valiente, 2001; Bunke & Shearer, 1998), whereas
 046 others exploit both graph structural properties and node attributes (Shervashidze et al., 2011; Morris
 047 et al., 2019). For example, the Graph Edit Distance (GED) has been proposed to measure the distance
 048 between graphs considering the number of changes needed to match one graph to another (Sanfeliu
 049 & Fu, 1983; Gao et al., 2010; Li et al., 2017); Distance metrics based on the graph kernel have also
 050 been investigated (Shervashidze et al., 2011; Vishwanathan et al., 2010), such as the Wasserstein
 051 Weisfeiler-Leman metric (WWL) (Morris et al., 2019) and the Gromov–Wasserstein metric (Mémoli,
 052 2011), which allow computing graph distances based on low-dimensional graph representations or
 053 optimal transport (OT) (Titouan et al., 2019; Chapel et al., 2020), leading to the development of the
 state-of-the-art graph distance metric called TMD (Chuang & Jegelka, 2022).

054 However, existing graph distance metrics have notable limitations. For example, the GED metric can
 055 capture local node or edge changes but struggles with global perturbations (Sanfeliu & Fu, 1983; Gao
 056 et al., 2010; Li et al., 2017); the WWL and TMD metrics heavily rely on node features (attributes) for
 057 calculating the distance between graphs, leading to degraded performance when only partial node
 058 features are available (Rossi et al., 2022; Chen et al., 2022).

059 To address these limitations, we propose the **Graph Geodesic Distance** (GGD) metric, a novel
 060 framework that leverages spectral graph theory, structure-preserving coarsening, and Riemannian
 061 geometry to compute meaningful distances between graphs. Unlike prior SPD-based works (Lim
 062 et al., 2019), our method operates directly on graph inputs, using spectral graph matching to establish
 063 node correspondence before embedding graphs into a Riemannian manifold of modified Laplacian
 064 matrices. This allows GGD to capture key structural (spectral) dissimilarities between graphs, such
 065 as mismatches in Laplacian eigenvalues/eigenvectors, cuts, effective-resistance distances, etc.

066 One distinct advantage of the proposed GGD metric is its capability to compute distances between
 067 graphs based on their spectral (structural) properties, while including node features can further
 068 improve its accuracy. This makes GGD suitable for analyzing real-world graphs with partial or no
 069 node features. Moreover, the proposed framework for computing GGD metric is more computationally
 070 efficient than existing OT-based metrics, such as the TMD metric.

071 Our empirical results show that GGD can effectively measure the dissimilarities between graphs: (1)
 072 support vector classifiers (SVC) using GGDs perform competitively with state-of-the-art GNN models
 073 and graph kernels on graph classification benchmarks; (2) we demonstrate that the GGD metric
 074 allows us to quantify the stability of GNN models for graph classification tasks by checking whether
 075 two graphs with a small GGD will lead to a significant dissimilarity in the GNN output embeddings;
 076 (3) quantify distance between datasets to evaluate the transferability of domain knowledge. We
 077 also show that the GGD metric has a better correlation with established GNN outputs compared
 078 to the state-of-the-art TMD metric (Chuang & Jegelka, 2022) when only partial node features are
 079 available: up to a 10% accuracy gain and a 9 \times runtime speedup have been achieved in various graph
 080 classification tasks. The key contributions of this work can be summarized as:

- We propose Graph Geodesic Distance (GGD), a novel metric combining spectral graph theory and Riemannian geometry.
- We leverage a spectral graph matching method to establish node correspondences to ensure well-defined distance computation in the Riemannian manifold.
- We use a resistance-based spectral coarsening method to compare graphs of different sizes.
- We validate GGD through experiments, demonstrating improved classification accuracy with partial/no features and applications in GNN stability and dataset distance analysis.

090 2 EXISTING GRAPH DISTANCE METRICS

091 **Graph Edit Distance (GED)** For non-attributed graph data, a common and simple distance metric
 092 is GED. (Sanfeliu & Fu, 1983; Gao et al., 2010). Given a set of graph edit operations, also known as
 093 elementary graph operations, the GED between two graphs G_1 and G_2 , can be defined as:

$$094 \text{GED}(G_1, G_2) = \min_{(e_1, \dots, e_k) \in \mathcal{P}(G_1, G_2)} \sum_{i=1}^k c(e_i), \quad (1)$$

095 where $\mathcal{P}(G_1, G_2)$ denotes the set of edit operations transforming G_1 into a graph isomorphism of
 096 G_2 , $c(e_i)$ is the cost of edit operation e_i . The set of elementary graph edit operators typically includes
 097 node insertion, node deletion, node substitution, edge insertion, edge deletion, and edge substitution.

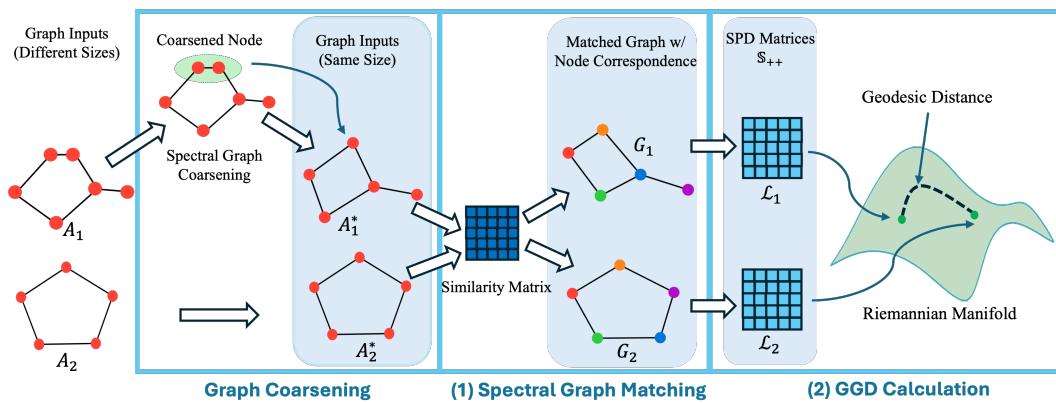
101 **Tree Mover’s Distance (TMD)** TMD is a pseudometric for measuring distances between simple
 102 graphs, extending the concept of WWL to multisets of tree structures (Chuang & Jegelka, 2022).
 103 Graphs are represented by depth- L node computation trees; unequal multiset sizes are equalized via
 104 augmentation function σ . The pairwise tree distance TD_w is defined recursively by combining the
 105 root-feature discrepancy with a depth-weighted OT over subtrees. The TMD between G_1, G_2 is:

$$106 \text{TMD}_w^L(G_1, G_2) = \text{OT}_{\text{TD}_w}(\sigma(\mathbf{T}_{G_1}^L, \mathbf{T}_{G_2}^L)). \quad (2)$$

107 Further details on TMD is described in Appendix A.2.

108 **3 GGD: GEODESIC DISTANCE BETWEEN GRAPHS**
 109

110 **Modified Laplacian matrices on the Riemannian manifold** One way to represent a simple
 111 connected graph is through its Laplacian matrix, which is a Symmetric Positive Semidefinite (SPSD)
 112 matrix. Graph representation using adjacency and Laplacian matrices is briefly discussed in Appendix
 113 A.3. Adding a small positive value to each diagonal element allows us to transform the original
 114 Laplacian matrix into a Symmetric Positive Definite (SPD) matrix, which is referred to as the
 115 **Modified Laplacian Matrix** in this work. In Appendix A.10, we describe the effect of this small
 116 value on the GGD calculation. We can then consider the cone of such modified Laplacian matrices as
 117 a natural Riemannian manifold (Lim et al., 2019), where each modified Laplacian, having the same
 118 dimensions (same number of rows/columns), can be regarded as a data point on this Riemannian
 119 manifold (Vemulapalli & Jacobs, 2015; Pennec et al., 2006). Details about the Riemannian manifold
 120 are provided in Appendix A.4. The geodesic distance is defined as the shortest path on the Riemannian
 121 manifold, providing a more appropriate comparison than Euclidean space (Lim et al., 2019; Crane
 122 et al., 2020; Huang et al., 2015). We will later demonstrate (Section 4.3) that such a geodesic distance
 123 metric can effectively capture structural (spectral) mismatches between graphs.
 124



137 Figure 1: A high-level illustration of the GGD pipeline, including spectral graph coarsening, (Phase
 138 1) spectral graph matching, and (Phase 2) geodesic distance calculation for the Riemannian manifold
 139 of modified Laplacian matrices.
 140

141 **A two-phase spectral framework for computing GGDs** Before computing GGDs, it is necessary to
 142 establish the node-to-node correspondence between two graphs. This can be achieved by leveraging
 143 existing graph-matching techniques (Livi & Rizzi, 2013; Emmert-Streib et al., 2016; Caetano et al.,
 144 2009). The proposed GGD metric can be computed in the following two phases. **Phase 1** consists of
 145 a spectral graph matching step, using combinatorial optimization with the eigenvalues/eigenvectors
 146 of the graph adjacency matrices to identify the approximate node-to-node correspondence. **Phase 2**
 147 computes the GGD between the modified Laplacian matrices of the matched graphs by exploiting
 148 generalized eigenvalues. A high-level overview of the pipeline is illustrated in Figure 1, and a
 149 detailed algorithmic flow is provided in Appendix A.1 to ensure a clear understanding of the process.
 150 The proposed GGD metric differs from previous OT-based graph distance metrics in its ability to
 151 accurately represent structural discrepancies between graphs, enabling us to uncover the topological
 152 variations between them more effectively.
 153

154 **A motivating example** Let’s consider a simple graph G_1 , characterized by an almost
 155 ring-like topology, as shown in Figure 2. We also create two other graphs G_2 and G_3 by
 156 inserting an extra edge into G_1 in different ways. Note that the additional edge in G_3
 157 will have a greater impact on G_1 ’s global structure since it connects two further nodes.
 158

159 We compute the normalized distances (the
 160 largest distance always equals one) between
 161

162 Table 1: Normalized distance between graphs with
 163 simple perturbations.
 164

GRAPH PAIRS	GGD	TMD w/ NF, L = 4	TMD w/o NF, L = 4	GED
G_1, G_2	0.623	0.689	0.970	1.000
G_1, G_3	0.855	0.711	1.000	1.000
G_2, G_3	1.000	1.000	0.333	1.000

162 the aforementioned three graphs using different metrics (GED, TMD, and GGD) and report the
 163 results in Table 1. As observed, G_2 and G_3 have distances similar to G_1 when the TMD metric is
 164 adopted without using node features (NFs). On the other hand, the TMD metric can produce similar
 165 results as the proposed GGD metric when node features are fully utilized. Not surprisingly, the GED
 166 always produces the same distances since only one edge has been added. The above results imply
 167 that the GED and TMD (without using NFs) metrics may not properly capture the dissimilarities in
 168 the spectral properties of the graphs.

170 4 COMPUTING GGDs BETWEEN GRAPHS OF THE SAME SIZE

172 4.1 PHASE 1: SPECTRAL GRAPH MATCHING FOR FINDING NODE CORRESPONDENCE

174 Computing the GGD metric between two input
 175 graphs requires solving a graph-matching prob-
 176 lem in advance, to ensure the minimum possi-
 177 ble distance between modified Laplacian matri-
 178 ces. In this work, we aim to find the infimum
 179 between two SPD matrices on the Riemannian
 180 manifold, which can be accomplished through
 181 a graph-matching phase. Graph matching tech-
 182 niques can be used to establish node-to-node correspondence by seeking a bijection between node
 183 sets to maximize the alignment of edge sets (Livi & Rizzi, 2013; Emmert-Streib et al., 2016; Caetano
 184 et al., 2009). This combinatorial optimization problem can be cast into a Quadratic Assignment
 185 Problem, which is NP-hard to solve or approximate (Fan et al., 2020; Wang et al., 2020).

186 In this study, we exploit a spectral graph matching method called GRAMPA (GRAph Matching by
 187 Pairwise eigen-Alignments) (Fan et al., 2020) to find the approximate node correspondence between
 188 two graphs. GRAMPA starts with comparing the eigenvectors of the adjacency matrices of the
 189 input graphs. Instead of comparing only the eigenvectors corresponding to the largest eigenvalues, it
 190 considers all pairs of eigenvectors/eigenvalues to generate a similarity matrix. This similarity matrix
 191 can be constructed by summing up the outer products of eigenvector pairs, weighted by a Cauchy
 192 kernel (Fan et al., 2020). Subsequently, a rounding procedure will be performed to determine the
 193 optimal match between nodes employing the similarity matrix.

194 **Definition 4.1** (Similarity Matrix). *Let G_1 and G_2 be two undirected graphs with n nodes, and
 195 let their weighted adjacency matrices be A_1 and A_2 , respectively. The spectral decompositions
 196 of A_1 and A_2 are expressed as follows: $A_1 = \sum_{i=1}^n \zeta_i u_i u_i^\top$ and $A_2 = \sum_{j=1}^n \mu_j v_j v_j^\top$, where
 197 the eigenvalues are ordered such that $\zeta_1 \geq \dots \geq \zeta_n$ and $\mu_1 \geq \dots \geq \mu_n$. The similarity matrix
 $\widehat{X} \in \mathbb{R}^{n \times n}$ is defined as:*

$$198 \widehat{X} = \sum_{i,j=1}^n w(\zeta_i, \mu_j) \cdot u_i u_i^\top \mathbf{J} v_j v_j^\top, \quad w(x, y) = \frac{1}{(x - y)^2 + \eta^2}. \quad (3)$$

201 Here, $\mathbf{J} \in \mathbb{R}^{n \times n}$ denotes an all-one matrix and w is the Cauchy kernel of bandwidth η .

202 The permutation estimate matrix $\widehat{\pi}$ can be obtained by rounding \widehat{X} , typically achieved by solving the
 203 Linear Assignment Problem (LAP):

$$205 \widehat{\pi} = \operatorname{argmax} \sum_{i=1}^n \widehat{X}_{i,\pi(i)}, \quad (4)$$

207 which can be efficiently solved using the Hungarian algorithm (Fan et al., 2020). However, one
 208 simpler rounding procedure was advocated in (Fan et al., 2020) with theoretical results supporting
 209 the rounding procedure, which is given by the following equation:

$$211 \widehat{\pi}(i) = \operatorname{argmax}_j \widehat{X}_{ij}, \quad (5)$$

213 here the permutation estimate matrix is constructed by selecting the largest index from each row.
 214 While LAP provides optimal matching, its computational complexity can become expensive for very
 215 large graphs. By carefully choosing η , the same match recovery holds if rounding is performed using
 216 equation 4 instead of solving the LAP in equation 5 (Fan et al., 2020).

216 **Lemma 4.2** (Graph Matching Recovery). *Given symmetric matrices A_1, A_2 and Z from the Gaussian
 217 Wigner model, where $A_{2\pi^*} = A_1 + \sigma Z$, there exist constants $c, c' > 0$ such that if $1/n^{0.1} \leq \eta \leq$
 218 $c/\log n$ and $\sigma \leq c'\eta$, then with probability at least $1 - n^{-4}$, GRAMPA Algorithm correctly recovers
 219 the permutation matrix π^* from the Similarity matrix \hat{X} (Fan et al., 2020). Its proof can be found in
 220 the supporting documents A.8.*

222 Once $\hat{\pi}$ is obtained, the best-matched mirrors of the input graphs are:

$$224 \quad \text{Best Match to } A_2 = \hat{\pi} A_1 \hat{\pi}^\top, \quad \text{Best Match to } A_1 = \hat{\pi}^\top A_2 \hat{\pi} \quad (6)$$

226 In practice, the graph matching performance is not too sensitive to the choice of tuning parameter
 227 η . For small-sized graphs, such as the MUTAG dataset(Morris et al., 2020), setting $\eta = 0.5$
 228 yields satisfactory results in matching. In A.16, the effect of η for computing GGDs has been
 229 comprehensively analyzed.

231 4.2 PHASE 2: COMPUTING GEODESIC DISTANCES BETWEEN GRAPH LAPLACIANS

233 The GGD metric can be formally defined as the infimum length of geodesics connecting two data
 234 points in the Riemannian manifold formed by the cone of the modified graph Laplacian matrices
 235 (Lim et al., 2019). This distance metric can be imagined as a matrix representation of the geometric
 236 distance $|\log(a/b)|$ between two positive numbers a, b (Bonnabel & Sepulchre, 2010; Shamai &
 237 Kimmel, 2017; Owen & Provan, 2010).

238 **Definition 4.3** (Graph Geodesic Distance). *Let \mathcal{L}_1 and $\mathcal{L}_2 \in \mathbb{S}_{++}^n$ denote two modified Laplacian
 239 matrices corresponding to two matched graphs G_1 and G_2 both having n nodes, then their Graph
 240 Geodesic Distance denoted by $\text{GGD}(G_1, G_2) : \mathbb{S}_{++}^n \times \mathbb{S}_{++}^n \rightarrow \mathbb{R}_+$, is defined as:*

$$242 \quad \text{GGD}(G_1, G_2) = \left[\sum_{i=1}^n \log^2(\lambda_i(\mathcal{L}_1^{-1} \mathcal{L}_2)) \right]^{1/2}, \quad (7)$$

245 where λ_i are the generalized eigenvalues computed with the matrix pencil $(\mathcal{L}_1, \mathcal{L}_2)$.

247 The above GGD formulation for computing distances between SPD matrices is based on an Affine-
 248 Invariant Riemannian Metric (AIRM) (Lim et al., 2019), while another well-known metric, the
 249 Log-Euclidean Riemannian Metric (LERM) (Ilea et al., 2018; Thanwerdas & Pennec, 2023; Chen
 250 et al., 2024) is also discussed in Appendix A.14.

252 4.3 CONNECTION BETWEEN GGD AND GRAPH STRUCTURAL MISMATCHES

254 Consider two graphs, G_1 and G_2 , that have the same node
 255 set V , with a known correspondence between their nodes.
 256 Let L_1 and L_2 be the Laplacian matrices of these graphs,
 257 respectively. Suppose we take a subset of nodes, denoted
 258 by S and its complement, S' . We assign the value 1 to the
 259 nodes in S and the value 0 to those in S' . This defines the
 260 set S as:

$$261 \quad S \stackrel{\text{def}}{=} \{v \in V : x(v) = 1\}.$$

262 For graph G_1 , the cut for the node subset S (which is
 263 the number of edges that cross between S and S') can be
 264 computed as: $\text{cut}_{G_1}(S, S') = x^T L_1 x$.

266 As shown in Figure 3, for a node subset S , six edges cross between S and S' in graph G_1 , whereas
 267 two edges cross in graph G_2 . This ratio of edge counts in the two graphs is referred as a cut mismatch.
 268 The relationship between this cut mismatch and the generalized eigenvalue problem for the matrix
 269 pair (L_1, L_2) can be formalized using the Generalized Courant-Fischer Minimax Theorem (Golub &
 270 Van Loan, 2013; Feng, 2020).

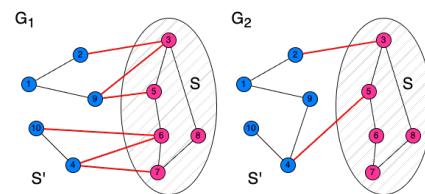


Figure 3: The cut mismatch (for the node set S) between two graphs is $\frac{6}{2} = 3$

270 **Lemma 4.4** (The Generalized Courant-Fischer Minimax Theorem). *Given two Laplacian matrices*
 271 *$L_1, L_2 \in \mathbb{R}^{n \times n}$ such that $\text{null}(L_2) \subseteq \text{null}(L_1)$, the k -th largest generalized eigenvalue of L_1 and*
 272 *L_2 can be computed as follows for $1 \leq k \leq \text{rank}(L_2)$:*

$$273 \quad 274 \quad 275 \quad 276 \quad \lambda_k = \min_{\substack{\dim(U)=k \\ U \perp \text{null}(L_2)}} \max_{x \in U} \frac{x^\top L_1 x}{x^\top L_2 x}. \quad (8)$$

277 This theorem provides a method for bounding the maximum cut mismatch between two graphs by
 278 calculating the largest generalized eigenvalue. Specifically, we can use the following optimization
 279 problem to compute the dominant eigenvalue λ_{\max} (Feng, 2020):

$$280 \quad 281 \quad 282 \quad 283 \quad \lambda_{\max} = \max_{\substack{|x| \neq 0 \\ x^\top x = 0}} \frac{x^\top L_1 x}{x^\top L_2 x} \geq \max_{\substack{|x| \neq 0 \\ x(v) \in \{0,1\}}} \frac{x^\top L_1 x}{x^\top L_2 x} = \max \frac{\text{cut}_{G_1}(S, S')}{\text{cut}_{G_2}(S, S')} \quad (9)$$

284 From equation (9), we can see that the dominant generalized eigenvalue λ_{\max} corresponds to the
 285 most significant cut mismatch between G_1 and G_2 . In particular, $\lambda_1 = \lambda_{\max}$ sets an upper bound on
 286 the cut mismatch between G_1 and G_2 , while $\lambda_n = \lambda_{\min}$ defines the upper bound of the mismatch in
 287 the reverse direction, between G_2 and G_1 . Appendix A.9 illustrates this relationship with practical
 288 examples. Additionally, we illustrate the relationship between the approximate GGD values with
 289 extreme eigenvalues, compared with the accurate GGD values in Appendix A.12.

291 5 COMPUTING GGDs FOR GRAPHS WITH DIFFERENT SIZES

293 **Submatrix selection methods** To calculate geodesic distances between SPD matrices of different
 294 sizes, prior studies have proposed a submatrix adaptation method (Lim et al., 2019). In this approach,
 295 a principle submatrix with the same size as the smaller matrix is obtained from the larger matrix
 296 (Ye & Lim, 2016), and subsequently used to calculate the GGD. Furthermore, this method can be
 297 extended to project the smaller matrix into a larger one with the same size as the larger matrix (Lim
 298 et al., 2019). While these methods are efficient for handling SPD matrices, for our application taking
 299 the submatrix of the modified Laplacian can lose important nodes/edges, compromising critical graph
 300 structural properties.

301 **Graph coarsening methods** Spectral graph coarsening is a widely adopted process (Loukas, 2019;
 302 Aghdaei & Feng, 2022) for reducing graph sizes while preserving key spectral (structural) properties,
 303 such as the Laplacian eigenvalues/eigenvectors. Recent spectral graph coarsening methods aim to
 304 decompose an input graph into many distinct node clusters, so that a reduced graph can be formed
 305 by treating each node cluster as a new node, with a goal of assuring that the reduced graph will
 306 approximately retain the original graph's structure (Loukas, 2019; Han et al., 2024; Aghdaei & Feng,
 307 2022). Therefore, when computing GGDs for graphs of different sizes, we can first adopt spectral
 308 graph coarsening to transform the bigger graph into a smaller one, so that our framework in Section 4
 309 can be subsequently utilized. However, existing state-of-the-art graph coarsening methods do not
 310 allow us to precisely control the size of the reduced graphs.

311 5.1 OUR APPROACH: SPECTRAL GRAPH COARSENING BY EFFECTIVE RESISTANCES

312 In this work, we exploit a spectral graph coarsening method leveraging effective-resistance clustering
 313 (Aghdaei & Feng, 2022), specifically designed to reduce graph size while preserving key spectral
 314 characteristics. Unlike prior work (Lim et al., 2019), which addresses dimension mismatch directly
 315 in SPD space, our coarsening method operates at the structural level before transformation into SPD
 316 matrices, making it more suitable for computing distances between graphs with unequal sizes. Our
 317 approach begins by estimating the effective resistances of all edges in the original graph. If node
 318 features are available, we also incorporate feature differences as an additional parameter. During
 319 coarsening, edges are ranked by resistance distance, and only the top few edges with the smallest
 320 effective resistances are merged into new nodes. This strategy enables precise control over the size of
 321 the reduced graph while preserving crucial spectral properties, essential for the subsequent spectral
 322 graph matching step (Phase 1 in Section 4.1).

323 Consider a connected, weighted, undirected graph $G = (V, E, w)$ with $|V| = n$. The effective
 324 resistance between nodes $(p, q) \in V$ plays a crucial role in various graph analysis tasks including

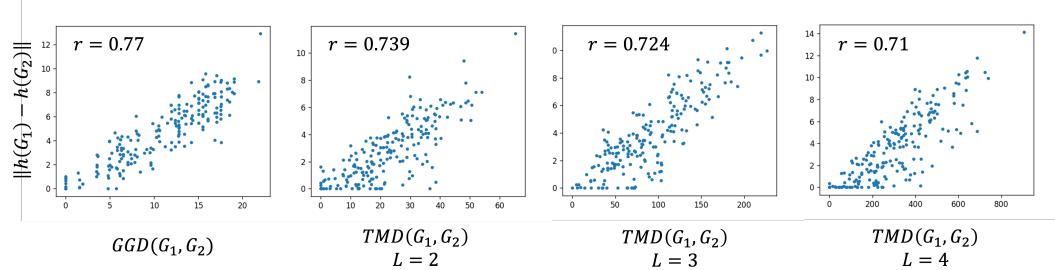


Figure 4: Correlation between graph distance metrics and GNN model outputs.

spectral sparsification algorithms (Spielman & Teng, 2011). The effective resistance distances can be accurately computed using the equation:

$$R_{eff}(p, q) = \sum_{i=2}^n \frac{(u_i^\top b_{pq})^2}{\sigma_i}, \quad (10)$$

where $b_p \in \mathbb{R}^n$ denote the standard basis vector with all zero entries except for the p -th entry being 1, and $b_{pq} = b_p - b_q$. $u_i \in \mathbb{R}^n$ for $i = 1, \dots, n$ denote the unit-length, mutually-orthogonal eigenvectors corresponding to Laplacian eigenvalues σ_i for $i = 1, \dots, n$. Background on effective resistance is presented in Appendix A.5, with its estimation detailed in Appendix A.6.

6 GGD AS A DISTANCE METRIC

Assuming the graph matching problem can always find the exact correspondence between nodes, we prove that the GGD metric (based on AIRM) between any two nonempty graphs is a metric that satisfies the following conditions (Detailed proofs these properties are provided in Appendix A.7.):

- The distance between a graph and itself or between two isomorphic graphs is zero: $GGD(G, G) = 0$.
- (Positivity) The distance between two distinct graphs is positive: $GGD(G_1, G_2) \geq 0$.
- (Symmetry) The distance between G_1 and G_2 is the same of the one between G_2 and G_1 : $GGD(G_1, G_2) = GGD(G_2, G_1)$.
- The triangle inequality: $GGD(G_1, G_3) \leq GGD(G_1, G_2) + GGD(G_2, G_3)$.

7 EXPERIMENTS

7.1 APPLICATION OF GGDs IN GNN STABILITY ANALYSIS

To analyze the stability of GNN models (Bronstein et al., 2017; Garg et al., 2020; Duvenaud et al., 2015), we conducted multiple experiments with the GGD and TMD metrics. GNNs typically operate by a message-passing mechanism (Gilmer et al., 2017), where at each layer, nodes send their feature representations to their neighbors. The feature representation of each node is initialized to its original features and is updated by repeatedly aggregating incoming messages from neighbors. In our experiment, we relate GGD to the Graph Isomorphism Networks (GIN) (Xu et al., 2019), one of the most widely applied and powerful GNNs, utilizing the MUTAG dataset (Morris et al., 2020) as our reference graph dataset. The objective is to analyze the relationship between the input distance $GGD(G_1, G_2)$ and the distance between the output GIN vectors, $\|h(G_1) - h(G_2)\|$ for randomly selected pairs of graphs.

We employed a three-layer GIN network as described in (Xu et al., 2019). This network uses GIN convolutional layers to update tensors of nodes based on their neighboring nodes and then aggregates those outputs in a vector representation, followed by linear layers for classification tasks. Thus it outputs a single vector $h(G)$ for the entire graph G . The result is illustrated in Figure 4.

We observe a strong correlation between GGD and the output distance, as indicated by a high Pearson correlation coefficient. This finding implies the effectiveness of the proposed GGD metric for analyzing the stability of GNN models (Chuang & Jegelka, 2022). To compare GGD with existing

378 Table 2: Classification accuracies for various models on graph datasets.
379

380 DATASET	381 MUTAG	382 PC-3H	383 SW-620H	384 BZR
385 GGD	386 86.24 ± 7.89	387 78.34 ± 1.60	388 77.6 ± 3.50	389 83.23 ± 6.25
390 TMD, L = 2	391 76.19 ± 5.26	392 $-$	393 $-$	394 $-$
395 TMD, L = 3	396 77.34 ± 5.26	397 71.24 ± 2.45	398 70.22 ± 2.29	399 73.43 ± 2.44
400 TMD, L = 4	401 78.20 ± 5.26	402 71.37 ± 1.42	403 70.84 ± 2.29	404 73.96 ± 4.88
405 TMD, L = 5	406 78.20 ± 5.26	407 71.89 ± 2.40	408 71.20 ± 1.88	409 75.13 ± 2.44
410 GCN (KIPF & WELLING, 2017)	411 77.37 ± 3.95	412 70.56 ± 1.66	413 69.44 ± 0.94	414 72.56 ± 3.66
415 GIN (XU ET AL., 2019)	416 82.60 ± 4.60	417 75.34 ± 1.10	418 73.36 ± 2.32	419 77.09 ± 3.66
420 DGCNN (ZHANG ET AL., 2018)	421 76.66 ± 3.19	422 73.79 ± 0.75	423 74.37 ± 1.54	424 72.38 ± 1.08
425 WWL (TOGNINALLI ET AL., 2019)	426 72.39 ± 2.63	427 65.46 ± 1.11	428 68.06 ± 0.86	429 72.37 ± 1.22
430 WL SUBTREE (SHERVASHIDZE ET AL., 2011)	431 76.81 ± 6.30	432 68.43 ± 0.76	433 69.36 ± 1.20	N/A
434 FGW (TITOUAN ET AL., 2019)	435 88.33 ± 5.26	436 61.77 ± 1.11	437 58.28 ± 1.02	438 51.03 ± 2.63

391
392 metrics, we repeat this experiment using TMD without considering node attributes (features). As
393 shown in Figure 4, GGD demonstrates a better correlation with GIN outputs than the TMD metric
394 across different levels. These findings indicate that when dealing with graphs without node features,
395 GGD should be adopted for the stability analysis of graph learning models. The performance of GGD
396 under partially missing node features is further discussed in Appendix A.11.

397 7.2 APPLICATION OF GGDs IN GRAPH CLASSIFICATION TASKS

400 We evaluate whether the GGD metric aligns with graph labels in graph classification tasks using
401 datasets from TUDataset (Morris et al., 2020). We employ a Support Vector Classifier (SVC) ($C = 1$)
402 with an indefinite kernel $e^{-\gamma * GGD(G_1, G_2)}$, which can be viewed as a noisy observation of the true
403 positive semidefinite kernel (Luss & d’Aspremont, 2007). The parameter γ is selected through
404 cross-validation from the set {0.01, 0.05, 0.1}. For comparative analysis with existing methods, we
405 include graph kernels based on graph subtrees: the WL subtree kernel (Shervashidze et al., 2011);
406 and two widely adopted GNNs: graph isomorphism network (GIN) (Xu et al., 2019) and graph
407 convolutional networks (GCN) (Kipf & Welling, 2017).

408 Table 2 presents the mean and standard deviation over five independent trials with a 90%-10%
409 train-test split. For most cases, GGD consistently outperforms the performance of state-of-the-art
410 GNNs, graph kernels, and metrics when node attributes are missing. Additionally, we observe that
411 GGD allows us to obtain better results for larger datasets than smaller ones.

412 7.3 APPLICATION OF GGDs IN DATASET DISTANCE

415 To extend the application of GGD beyond structured graph datasets, we explore its utility in measuring
416 distances between datasets. In transfer learning, finding the distance between datasets helps to quantify
417 how similar or dissimilar the source and target domains are, guiding the adaptation of knowledge
418 from one domain to another (Alvarez-Melis & Fusi, 2020). We calculated this distance by first
419 converting standard datasets into graph representations and then computing distances between these
420 graphs using GGD framework.

421 To construct a graph from a dataset, we treat data points as nodes and establish edges based on a k-
422 nearest neighbor (k-NN) approach. Nodes representing similar data points are connected, forming an
423 initial dense graph. To further refine the structure, we apply a spectral graph sparsification procedure
424 to reduce the number of edges while preserving key connectivity properties. The process of creating
425 graphs from the dataset is further explained in Appendix A.18.

426 Once the graphs are obtained, we apply the GGD framework to compute pairwise distances. These
427 distances are then compared with established dataset distance measures based on Optimal Transport
428 (Alvarez-Melis & Fusi, 2020). We also explore how these distances correlate with dataset *Transferability*,
429 which is the improvement in model performance when pretrained on a source dataset and
430 fine-tuned on a target dataset. Transferability \mathcal{T} of a source domain \mathcal{D}_S to a target domain \mathcal{D}_T is
431 defined as the relative decrease in classification error when adapting compared to training only on the
432 target domain (Alvarez-Melis & Fusi, 2020).

$$432 \quad \mathcal{T}(\mathcal{D}_S \rightarrow \mathcal{D}_T) = 100 \times \frac{\text{error}(\mathcal{D}_S \rightarrow \mathcal{D}_T) - \text{error}(\mathcal{D}_T)}{\text{error}(\mathcal{D}_T)}. \quad (11)$$

$$433$$

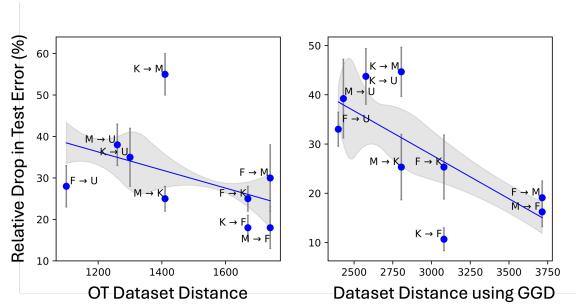
$$434$$

435 Our results indicate that GGD-based dataset distances provide meaningful insights into dataset
 436 relationships and transfer learning ability, matching the performance of conventional distance metrics,
 437 demonstrated in Figure 5.

439 7.4 RUNTIME COMPLEXITY ANALYSIS AND COMPARISON

440 When comparing various graph distance
 441 metrics, a primary consideration is their
 442 computational complexity. Conventional
 443 approaches usually require intricate computa-
 444 tions that frequently have cubic or higher
 445 complexities. For our problem, the spec-
 446 tral graph matching step requires the eigen-
 447 value decomposition of adjacency mat-
 448 rices and solving the linear assignment prob-
 449 lem (LAP). Eigenvalue decomposition of
 450 an $n \times n$ matrix has a complexity of $O(n^3)$
 451 (Borodin & Munro, 1975; Flamary et al.,
 452 2021), while solving the LAP using the
 453 Hungarian algorithm also has a runtime
 454 complexity of $O(n^3)$. Similarly, calculat-
 455 ing the generalized eigenvalue of two SPD
 456 matrices entails a cubic complexity. Conse-
 457 quently, the overall complexity of GGD cal-
 458 culation is $O(n^3)$. On the other hand, TMD is an OT-based distance
 459 metric with a complexity of $O(n^3 \log(n))$ (Chuang & Jegelka, 2022; Flamary et al., 2021). Therefore,
 460 GGD exhibits slightly better (lower) runtime complexity than TMD.

461 To evaluate runtime performance, we com-
 462 pare GGD and TMD on both small graphs
 463 (MUTAG, BZR) and large graphs (PC-3H,
 464 SW-620H) from the TUDataset (Morris et al.,
 465 2020). Table 3 reports the average time (in
 466 seconds) to compute 100 pairwise distances,
 467 averaged over five runs. GGD consistently
 468 outperforms TMD across all datasets, es-
 469 pecially on larger graphs with more nodes.
 470 Since TMD requires deeper levels to capture
 471 structural information, its runtime increases
 472 rapidly. In contrast, GGD is approximately 6-9 times faster, making it significantly more efficient,
 473 particularly on large graphs. More details are provided in Appendix A.20 and Appendix A.13.



474 Figure 5: Dataset distance vs. Adaptation for *NIST
 475 datasets (M: MNIST, K: KMNIST, F: Fashion-MNIST,
 476 U: USPS).

477 Table 3: Runtime comparison for different distance
 478 metrics on various datasets.

	MUTAG	PC-3H	SW-620H	BZR
GGD	4.87s	31.89s	45.37s	5.80s
TMD, L = 3	5.29s	88.60s	98.69s	7.22s
TMD, L = 4	7.90s	112.12s	134.38s	10.34s
TMD, L = 6	11.27s	273.31s	287.92s	14.98s

479 8 CONCLUSION

480 In this work, we introduce Graph Geodesic Distance (GGD), a novel spectral graph distance metric
 481 based on graph matching and the infimum on a Riemannian manifold. GGD captures key structural
 482 mismatches crucial for graph classification tasks, and we demonstrate its effectiveness for analyzing
 483 GNN model stability as well as for graph classification, delivering superior performance even with
 484 partial node features. Additionally, GGD can evaluate transferability by calculating distances between
 485 datasets. Despite some limitations (Appendix A.19), GGD offers a principled and practical tool for
 486 comparing graphs across tasks and domains.

487 LLM USAGE

488 We used LLM-based tools to improve the clarity of a few sentences and to correct grammatical errors.

486 REFERENCES
487

488 Ali Aghdaei and Zhuo Feng. Hyperef: Spectral hypergraph coarsening by effective-resistance
489 clustering. In *Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
490 Design*, pp. 1–9, 2022.

491 David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. *Advances
492 in Neural Information Processing Systems*, 33:21428–21439, 2020.

493 John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. *Graph theory with applications*,
494 volume 290. Macmillan London, 1976.

495 Silvere Bonnabel and Rodolphe Sepulchre. Riemannian metric and geometric mean for positive
496 semidefinite matrices of fixed rank. *SIAM Journal on Matrix Analysis and Applications*, 31(3):
497 1055–1070, 2010.

498 Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian Rieck.
500 Graph kernels: State-of-the-art and future challenges. *Foundations and Trends® in Machine
501 Learning*, 13(5-6):531–712, 2020. ISSN 1935-8237. doi: 10.1561/2200000076.

502 A. Borodin and I. Munro. *The Computational Complexity of Algebraic and Numeric Problems*.
503 Elsevier Computer Science Library, Theory of Computation Series. American Elsevier Publishing
504 Company, 1975. ISBN 9780608163741.

505 Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
506 deep learning: going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42,
507 2017.

508 Horst Bunke and Kim Shearer. A graph distance metric based on the maximal common subgraph.
509 *Pattern recognition letters*, 19(3-4):255–259, 1998.

510 Tibério S Caetano, Julian J McAuley, Li Cheng, Quoc V Le, and Alex J Smola. Learning graph
511 matching. *IEEE transactions on pattern analysis and machine intelligence*, 31(6):1048–1058,
512 2009.

513 Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Partial optimal transport with applications on
514 positive-unlabeled learning. *Advances in Neural Information Processing Systems*, 33:2903–2913,
515 2020.

516 Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor W Tsang. Learning on
517 attribute-missing graphs. *IEEE transactions on pattern analysis and machine intelligence*, 44(2):
518 740–757, 2022.

519 Ziheng Chen, Yue Song, Tianyang Xu, Zhiwu Huang, Xiao-Jun Wu, and Nicu Sebe. Adaptive
520 log-euclidean metrics for spd matrix learning. *IEEE Transactions on Image Processing*, 2024.

521 Wuxinlin Cheng, Chenhui Deng, Ali Aghdaei, Zhiru Zhang, and Zhuo Feng. Sagman: Stability
522 analysis of graph neural networks on the manifolds. *arXiv preprint arXiv:2402.08653*, 2024.

523 Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang. Graph
524 sparsification, spectral sketches, and faster resistance computation via short cycle decompositions.
525 *SIAM Journal on Computing*, 52(6):FOCS18–85, 2020.

526 Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and stability
527 of graph neural networks. *Advances in Neural Information Processing Systems*, 35:2944–2957,
528 2022.

529 Ching-Yao Chuang, Antonio Torralba, and Stefanie Jegelka. Estimating generalization under distri-
530 bution shifts via domain-invariant representations. *International conference on machine learning*,
531 2020.

532 Fan RK Chung. *Spectral graph theory*, volume 92. American Mathematical Soc., 1997.

533 Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng Qin. A survey of algorithms for geodesic
534 paths and distances. *arXiv preprint arXiv:2007.10430*, 2020.

540 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
 541 Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
 542 fingerprints. *Advances in neural information processing systems*, 28, 2015.

543

544 Wendy Ellens, Floske M Spieksma, Piet Van Mieghem, Almerima Jamakovic, and Robert E Kooij.
 545 Effective graph resistance. *Linear algebra and its applications*, 435(10):2491–2506, 2011.

546 Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching, network
 547 alignment and network comparison. *Information sciences*, 346:180–197, 2016.

548

549 Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral graph matching and regularized
 550 quadratic relaxations i: The gaussian model. *arXiv preprint arXiv:1907.08880*, 2019.

551 Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral graph matching and regularized
 552 quadratic relaxations: Algorithm and theory. In *International conference on machine learning*, pp.
 553 2985–2995. PMLR, 2020.

554

555 Zhuo Feng. Grass: Graph spectral sparsification leveraging scalable spectral perturbation analysis.
 556 *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 39(12):4944–
 557 4957, 2020.

558

559 Zhuo Feng. Sgl: Spectral graph learning from measurements. In *2021 58th ACM/IEEE Design
 560 Automation Conference (DAC)*, pp. 727–732. IEEE, 2021.

561

562 Mirtha-Lina Fernández and Gabriel Valiente. A graph distance metric combining maximum common
 563 subgraph and minimum common supergraph. *Pattern Recognition Letters*, 22(6-7):753–758, 2001.

564

565 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas
 566 Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
 567 optimal transport. *Journal of Machine Learning Research*, 22(78):1–8, 2021.

568

569 Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. *Pattern
 570 Analysis and applications*, 13:113–129, 2010.

571

572 Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
 573 graph neural networks. In *International Conference on Machine Learning*, pp. 3419–3430. PMLR,
 574 2020.

575

576 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 577 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 578 1263–1272. PMLR, 2017.

579

580 Gene H Golub and Charles F Van Loan. *Matrix computations*. JHU press, 2013.

581

582 Xiaoxue Han, Zhuo Feng, and Yue Ning. A topology-aware graph coarsening framework for continual
 583 graph learning. *arXiv preprint arXiv:2401.03077*, 2024.

584

585 Jonas MB Haslbeck and Lourens J Waldorp. How well do network models predict observations?
 586 on the importance of predictability in network models. *Behavior research methods*, 50:853–861,
 587 2018.

588

589 David Haussler et al. Convolution kernels on discrete structures. Technical report, Citeseer, 1999.

590

591 Zhiwu Huang, Ruiping Wang, Shiguang Shan, and Xilin Chen. Learning euclidean-to-riemannian
 592 metric for point-to-set classification. In *Proceedings of the IEEE Conference on Computer Vision
 593 and Pattern Recognition*, pp. 1677–1684, 2014.

594

595 Zhiwu Huang, Ruiping Wang, Shiguang Shan, Xianqiu Li, and Xilin Chen. Log-euclidean metric
 596 learning on symmetric positive definite manifold with application to image set classification. In
 597 *International conference on machine learning*, pp. 720–729. PMLR, 2015.

598

599 Ioana Ilea, Lionel Bombrun, Salem Said, and Yannick Berthoumieu. Covariance matrices encoding
 600 based on the log-euclidean and affine invariant riemannian metrics. In *Proceedings of the IEEE
 601 Conference on Computer Vision and Pattern Recognition Workshops*, pp. 393–402, 2018.

594 Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
 595 Networks. In *International Conference on Learning Representations*, 2017.

596

597 John M Lee. *Introduction to Riemannian manifolds*, volume 2. Springer, 2018.

598 Tao Li, Han Dong, Yongtang Shi, and Matthias Dehmer. A comparative analysis of new graph
 599 distance measures and graph edit distance. *Information Sciences*, 403:15–21, 2017.

600

601 Jörg Liesen and Zdeněk Strakoš. Krylov subspace methods: Principles and analysis. *Krylov Subspace
 602 Methods: Principles and Analysis*, 10 2012. doi: 10.1093/acprof:oso/9780199655410.001.0001.

603

604 Lek-Heng Lim, Rodolphe Sepulchre, and Ke Ye. Geometric distance between positive definite
 605 matrices of different dimensions. *IEEE Transactions on Information Theory*, 65(9):5401–5405,
 606 2019.

607

608 Lorenzo Livi and Antonello Rizzi. The graph matching problem. *Pattern Analysis and Applications*,
 609 16:253–283, 2013.

610

611 Andreas Loukas. Graph reduction with spectral and cut guarantees. *J. Mach. Learn. Res.*, 20(116):
 1–42, 2019.

612

613 Ronny Luss and Alexandre d’Aspremont. Support vector machine classification with indefinite
 614 kernels. *Advances in neural information processing systems*, 20, 2007.

615

616 Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching.
 617 *Foundations of computational mathematics*, 11:417–487, 2011.

618

619 Maher Moakher. A differential geometric approach to the geometric mean of symmetric positive-
 620 definite matrices. *SIAM journal on matrix analysis and applications*, 26(3):735–747, 2005.

621

622 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 623 Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
 624 In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 4602–4609, 2019.

625

626 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 627 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. *arXiv preprint
 628 arXiv:2007.08663*, 2020.

629

630 Megan Owen and J Scott Provan. A fast algorithm for computing geodesic distances in tree space.
 631 *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 8(1):2–13, 2010.

632

633 Karl Pearson. The problem of the random walk. *Nature*, 72(1865):294–294, 1905.

634

635 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework for tensor computing.
 636 *International Journal of computer vision*, 66:41–66, 2006.

637

638 Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. In *Proceedings of
 639 the first international workshop on mining graphs, trees and sequences*, pp. 65–74, 2003.

640

641 Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and
 642 Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning on
 643 graphs with missing node features. In *Learning on Graphs Conference*, pp. 11–1. PMLR, 2022.

644

645 Sushmita Roy, Terran Lane, and Margaret Werner-Washburne. Learning structurally consistent
 646 undirected probabilistic graphical models. In *Proceedings of the 26th annual international
 647 conference on machine learning*, pp. 905–912, 2009.

648

649 Yousef Saad. *Numerical methods for large eigenvalue problems: revised edition*. SIAM, 2011.

650

651 Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
 652 pattern recognition. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-13(3):353–362,
 653 1983. doi: 10.1109/TSMC.1983.6313167.

654

655 Gil Shamai and Ron Kimmel. Geodesic distance descriptors. In *Proceedings of the IEEE Conference
 656 on Computer Vision and Pattern Recognition*, pp. 6410–6418, 2017.

648 Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
 649 Borgwardt. Weisfeiler-lehman graph kernels. *Journal of Machine Learning Research*, 12(9), 2011.
 650

651 Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. *SIAM Journal on
 652 Computing*, 40(4):981–1025, 2011.

653 Edric Tam and David Dunson. Multiscale graph comparison via the embedded laplacian discrepancy.
 654 *arXiv preprint arXiv:2201.12064*, 2022.

655

656 Yann Thanwerdas and Xavier Pennec. O (n)-invariant riemannian metrics on spd matrices. *Linear
 657 Algebra and its Applications*, 661:163–201, 2023.

658 Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for structured
 659 data with application on graphs. In *International Conference on Machine Learning*, pp. 6275–6284.
 660 PMLR, 2019.

661

662 Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
 663 Wasserstein weisfeiler-lehman graph kernels. *Advances in neural information processing systems*,
 664 32, 2019.

665 Raviteja Vemulapalli and David W Jacobs. Riemannian metric learning for symmetric positive
 666 definite matrices. *arXiv preprint arXiv:1501.02393*, 2015.

667

668 S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
 669 kernels. *The Journal of Machine Learning Research*, 11:1201–1242, 2010.

670 Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and Haibin Ling. Learning combinatorial solver
 671 for graph matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 672 recognition*, pp. 7568–7577, 2020.

673

674 Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
 675 which appears therein. *nti, Series*, 2(9):12–16, 1968.

676

677 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 678 networks? In *International Conference on Learning Representations*, 2019.

679

680 Yunwen Xu, Srinivasa M Salapaka, and Carolyn L Beck. A distance metric between directed weighted
 681 graphs. In *52nd IEEE Conference on Decision and Control*, pp. 6359–6364. IEEE, 2013.

682

683 Ke Ye and Lek-Heng Lim. Schubert varieties and distances between subspaces of different dimensions.
 684 *SIAM Journal on Matrix Analysis and Applications*, 37(3):1176–1197, 2016.

685

686 Kisung You and Hae-Jeong Park. Re-visiting riemannian geometry of symmetric positive definite
 687 matrices for the analysis of functional connectivity. *NeuroImage*, 225:117464, 2021.

688

689 Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
 690 architecture for graph classification. In *Proceedings of the AAAI conference on artificial intelligence*,
 691 volume 32, 2018.

692

693 Yuehua Zhu, Muli Yang, Cheng Deng, and Wei Liu. Fewer is more: A deep graph metric learning
 694 perspective using fewer proxies. *Advances in Neural Information Processing Systems*, 33:17792–
 695 17803, 2020.

696

697

698

699

700

701

702 **A APPENDIX**703 **A.1 ALGORITHM FLOW**704 **Algorithm 1** GGD: Geodesic Graph Distance

```

705
706 1: Input: Graphs  $G_1 = (V_1, E_1, w_1)$ ,  $G_2 = (V_2, E_2, w_2)$ , tuning parameter  $\eta > 0$ , small diagonal value
707    $0 < \epsilon \ll 1$ , node feature weight  $\alpha$ 
708 2: Output: GGD Value
709 3: Compute the adjacency matrices  $A_1, A_2$ 
710 4: if  $\text{shape}(A_1) \neq \text{shape}(A_2)$  then
711   5: Assign the larger graph to  $G_1$ , and the smaller graph to  $G_2$ 
712   6: while  $\text{shape}(A_1) \geq \text{shape}(A_2)$  do
713     7: Compute the effective resistance  $R_{\text{eff}}(p, q)$  of each edge  $(p, q) \in E_1$ 
714     8: Compute the modified effective resistance  $R_{\text{eff}}^*(p, q) = R_{\text{eff}}(p, q) + \alpha \|NF_p - NF_q\|$ 
715     9: Coarsen the edge with the lowest  $R_{\text{eff}}^*(p, q)$ 
716    10: Update  $A_1$ 
717    11: end while
718 12: end if
719 13: Compute eigenvectors  $u_i, v_i$  and eigenvalues  $\zeta_i, \mu_i$  of  $A_1$  and  $A_2$ , respectively
720 14: Compute the similarity matrix  $\hat{X} \in \mathbb{R}^{n \times n}$ 
721 15: Solve Linear Assignment Problem to compute the permutation estimate matrix  $\hat{\pi}$ 
722 16: Update  $A_2$  by multiplying with  $\hat{\pi}$  to get best match with  $A_1$ 
723 17: Derive  $L_1$  and  $L_2$  from  $A_1$  and  $A_2$ 
724 18: Add  $\epsilon$  to diagonal values of  $L_1$  and  $L_2$ 
725 19: Compute GGD value using Equation 7
726 20: return GGD

```

727 **A.2 TREE MOVER'S DISTANCE**

728 By progressively adding neighboring nodes of the graph, to the previous node at each level, one
 729 obtains the computation tree of a node. These tree structures are crucial in graph analysis (Weisfeiler
 730 & Leman, 1968; Pearson, 1905) and graph kernels (Ramon & G  rtner, 2003; Shervashidze et al.,
 731 2011). TMD uses hierarchical optimal transport (OT) to analyze these computational trees from input
 732 graphs. For a graph $G = (V, E)$ with node features $f_v \in \mathbb{R}^s$ for node $v \in V$, let $T_v^1 = v$, and T_v^L
 733 be the depth-L computation tree of node v . The multiset of these trees for G is $T_G^L = \{T_v^L\}_{v \in V}$.
 734 The number and shape of trees must match to calculate optimal transport between two multisets of
 735 trees. If multisets are uneven, they are augmented with blank nodes. For multisets T_p and T_q , the
 736 augmenting function σ adds blank trees to equalize their sizes. A blank tree T_{\emptyset} has a single node
 737 with a zero vector feature $\mathbb{O}_p \in \mathbb{R}^s$:

$$\sigma(T_p, T_q) \rightarrow \left(T_p \cup T_{\emptyset}^{\max(|T_q| - |T_p|, 0)}, T_q \cup T_{\emptyset}^{\max(|T_p| - |T_q|, 0)} \right) \quad (12)$$

738 Let $X = \{x_i\}_{i=1}^k$ and $Y = \{y_j\}_{j=1}^k$ be two data multisets and $C \in \mathbb{R}^{k \times k}$ be the transportation cost
 739 for each data pair: $C_{ij} = d(x_i, y_j)$, where d is the distance between x_i and y_j . The unnormalized
 740 Optimal Transport between X and Y is defined as follows:

$$\begin{aligned} \text{OT}_d(X, Y) &:= \min_{\gamma \in \Gamma(X, Y)} \langle C, \gamma \rangle \\ \Gamma(X, Y) &= \left\{ \gamma \in \mathbb{R}_+^{m \times m} \mid \gamma \mathbb{1}_m = \gamma^\top \mathbb{1}_m = \mathbb{1}_m \right\}. \end{aligned} \quad (13)$$

741 Here Γ is the set of transportation plans that satisfies the flow constrain $\gamma \mathbb{1}_m = \gamma^\top \mathbb{1}_m = \mathbb{1}_m$.
 742 (Chuang & Jegelka, 2022). Now, the distance between two trees T_p and T_q with roots r_p and r_q is
 743 defined recursively:

$$\text{TD}_w(T_p, T_q) := \begin{cases} \|f_{r_p} - f_{r_q}\| + w(L) \cdot \text{OT}_{\text{TD}_w}(\sigma(T_{r_p}, T_{r_q})), & \text{if } L > 1 \\ \|f_{r_p} - f_{r_q}\|, & \text{otherwise} \end{cases} \quad (14)$$

753 where L is the maximum depth of T_p and T_q , and w is a depth-dependent weighting function.

754 Subsequently, the concept of distance from individual trees is extended to entire graphs. For graphs
 755 G_1 and G_2 , multisets $\mathbf{T}_{G_1}^L$ and $\mathbf{T}_{G_2}^L$ of depth-L computation trees are used to calculate the TMD
 756 value using equation 2).

756 A.3 GRAPH ADJACENCY AND LAPLACIAN MATRICES
757758 For an undirected graph $G = (V, E, w)$, where V represents the set of nodes (vertices), E represents
759 the set of edges, and w denotes the associated edge weights, the adjacency matrix A is defined as
760 follows:

761
$$A(i, j) = \begin{cases} w(i, j), & \text{if } (i, j) \in E. \\ 0, & \text{otherwise.} \end{cases} \quad (15)$$

762

763 Let D denote the diagonal matrix where $D(i, i)$ is equal to the (weighted) degree of node i . The
764 graph Laplacian matrix is then given by $L = D - A$. The rank of the Laplacian matrix of a graph G
765 is $n - c(G)$, where n is the number of nodes and $c(G)$ is the number of connected components in the
766 graph. For a connected graph, this implies that the rank of the Laplacian matrix is $n - 1$, meaning
767 Laplacian matrices are not full-rank (Bondy et al., 1976).
768769 A.4 RIEMANNIAN MANIFOLD
770771 A manifold is a type of topological space that resembles Euclidean space in small, local regions
772 around each point. In other words, for every point on a manifold, there is a neighborhood that is
773 similar to a flat multidimensional space. A Riemannian manifold is a type of manifold equipped
774 with a smoothly varying inner product on the tangent spaces at each point. This means that for every
775 point on the manifold, the tangent space has a way of measuring distances and angles, and these
776 measurements change smoothly from point to point (Lee, 2018). In simpler terms, a Riemannian
777 manifold is a smooth, curved space that locally behaves like Euclidean space but has its own geometric
778 properties, such as how distances, angles, and volumes are defined. These properties are determined
779 by a Riemannian metric, which generalizes the concept of measuring lengths and angles in flat space
780 to curved spaces (Lee, 2018).781 A Riemannian manifold can have curvature, unlike a flat space. This curvature allows the study of
782 geometric shapes ranging from spheres and cylinders to more abstract surfaces. The Riemannian
783 structure enables us to compute geodesics, volumes, and various types of curvature. This makes
784 Riemannian manifolds fundamental in fields like differential geometry and physics, and increasingly
785 important in data science, where curved spaces are used to model complex datasets (You & Park,
786 2021).
787788 A.5 EFFECTIVE RESISTANCE IN GRAPH THEORY
789790 Effective resistance, also known as resistance distance, is a concept in spectral graph theory that
791 draws an analogy between electrical networks and graphs, helping to quantify how easily current can
792 flow between two nodes, where the edges are treated as resistors. The effective resistance between
793 nodes provides insight into the connectivity between the network. This means two nodes with lower
794 effective resistance values have higher connectivity (Ellens et al., 2011).
795796 A.6 SCALABLE ESTIMATION OF EFFECTIVE RESISTANCES
797798 To address the computational complexity associated with directly computing eigenvalues and eigen-
799 vectors required for estimating edge effective resistances, we leverage a scalable framework for
800 approximating the eigenvectors of the graph Laplacian matrix using the Krylov subspace (Saad, 2011).
801 Let A denote the adjacency matrix of a graph G , consider its order- m Krylov subspace $\mathbf{K}_m(A, x)$ that
802 is a vector space spanned by the vectors computed through power iterations $x, Ax, A^2x, \dots, A^{m-1}x$
803 (Liesen & Strakoš, 2012). By enforcing orthogonality among the above vectors in the Krylov sub-
804 space, a new set of mutually orthogonal vectors of unit lengths can be constructed for approximating
805 the original Laplacian eigenvectors in 10, which are denoted as $\tilde{u}_1, \tilde{u}_2, \dots, \tilde{u}_m$. To estimate the
806 effective resistance between two nodes p and q , we can exploit the approximated eigenvectors:
807

808
$$R_{eff}(p, q) \approx \sum_{i=1}^m \frac{(\tilde{u}_i^\top b_{pq})^2}{\tilde{u}_i^\top L \tilde{u}_i}, \quad (16)$$

809

810 where \tilde{u}_i represents the approximated eigenvector corresponding to the i -th eigenvalue of L .

810 **Graph coarsening with node features** In order to account for the variation in node features along
 811 with edge resistive distance, we can use the following modified effective resistance formulation:

812
$$R_{eff}^*(p, q) = R_{eff}(p, q) + \alpha \|f_p - f_q\|, \quad (17)$$

813 where f_p and f_q are node feature vectors of nodes p and q , respectively, while α is a weighting factor
 814 that determines the effect of node feature information in the graph coarsening process. For instance, if
 815 the weight is sufficiently large, the modified effective resistance between nodes with different features
 816 will always exceed that of nodes with similar features, effectively preventing their coarsening.

817 **A.7 DETAILED PROOFS SHOWING GGD IS A METRIC**

818 **A.7.1 IDENTITY PROPERTY**

819 *Proof.* Let the corresponding SPD matrix of the graph G be $\mathcal{L} \in \mathbb{S}_{++}^n$. From Equation 7, we have:

820
$$GGD(G, G) = \left[\sum_{i=1}^n \log^2(\lambda_i(\mathcal{L}^{-1}\mathcal{L})) \right]^{1/2} = \left[\sum_{i=1}^n \log^2(\lambda_i(I)) \right]^{1/2}.$$

821 The identity matrix has only one eigenvalue, which is 1. So, $GGD(G, G) = [\log^2(1)]^{1/2} = 0$. \square

822 **A.7.2 POSITIVITY PROPERTY**

823 *Proof.* Let the corresponding SPD matrices of the graphs G_1 and G_2 be $\mathcal{L}_1, \mathcal{L}_2 \in \mathbb{S}_{++}^n$. Let the
 824 generalized eigenvalues of $(\mathcal{L}_1^{-1}\mathcal{L}_2)$ be $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$. From Equation 7, we get:

825
$$GGD(G_1, G_2) = [\log^2(\lambda_1) + \log^2(\lambda_2) + \log^2(\lambda_3) + \dots + \log^2(\lambda_n)]^{1/2}.$$

826 Now, $\log^2(\lambda_1) + \log^2(\lambda_2) + \log^2(\lambda_3) + \dots + \log^2(\lambda_n) \geq 0$, for any values of λ_i .

827 We can conclude, $GGD(G_1, G_2) \geq 0$. \square

828 **A.7.3 SYMMETRY PROPERTY**

829 *Proof.* Let the corresponding SPD matrices of the graphs G_1 and G_2 be $\mathcal{L}_1, \mathcal{L}_2 \in \mathbb{S}_{++}^n$. Let the
 830 generalized eigenvalues of $(\mathcal{L}_1^{-1}\mathcal{L}_2)$ be $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$. From Equation 7, we get:

831
$$GGD(G_1, G_2) = \left[\sum_{i=1}^n \log^2(\lambda_i) \right]^{1/2}.$$

832 Suppose λ_i is an eigenvalue of $\mathcal{L}_1^{-1}\mathcal{L}_2$ with corresponding eigenvector v_i , i.e.,

833
$$\mathcal{L}_1^{-1}\mathcal{L}_2 v_i = \lambda_i v_i.$$

834 Multiplying both sides by \mathcal{L}_1 , we get:

835
$$\mathcal{L}_2 v_i = \lambda_i \mathcal{L}_1 v_i.$$

836 Now multiply both sides by \mathcal{L}_2^{-1} :

837
$$v_i = \lambda_i \mathcal{L}_2^{-1} \mathcal{L}_1 v_i.$$

838 Rearranging, we obtain:

839
$$\mathcal{L}_2^{-1} \mathcal{L}_1 v_i = \frac{1}{\lambda_i} v_i.$$

840 So, the eigenvalues of $\mathcal{L}_2^{-1} \mathcal{L}_1$ are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$, with the same eigenvectors.

841
$$GGD(G_2, G_1) = \left[\sum_{i=1}^n \log^2\left(\frac{1}{\lambda_i}\right) \right]^{1/2}.$$

842 Now, $\log\left(\frac{1}{\lambda_i}\right) = -\log(\lambda_i)$; so, $\log^2\left(\frac{1}{\lambda_i}\right) = \log^2(\lambda_i)$.

843 So, we can conclude $GGD(G_1, G_2) = GGD(G_2, G_1)$. \square

864 A.7.4 TRIANGLE INEQUALITY
865866 *Proof.* Let, $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3 \in \mathbb{S}_{++}^n$ are three SPD matrices corresponding to graphs G_1, G_2, G_3 .867 Now, The Frobenius norm $\|X\|_F$ is the geodesic length at $d(\exp X, I) = \|X\|_F$ (Bonnabel &
868 Sepulchre, 2010). Hence at identity, $d(\mathcal{L}, I) = \|\log \mathcal{L}\|_F$.

869 From (Bonnabel & Sepulchre, 2010; You & Park, 2021) we get,

870
$$GGD(G_1, G_2) = GGD\left(G_1^{-1/2}G_2G_1^{-1/2}, I\right) = \left\|\log\left(\mathcal{L}_1^{-1/2}\mathcal{L}_2\mathcal{L}_1^{-1/2}\right)\right\|_F = \left\|\log\left(\mathcal{L}_1^{-1}\mathcal{L}_2\right)\right\|_F. \quad (18)$$

871
872

873 We know,

874
$$\mathcal{L}_1^{-1}\mathcal{L}_3 = \mathcal{L}_1^{-1}(\mathcal{L}_2\mathcal{L}_2^{-1})\mathcal{L}_3 = (\mathcal{L}_1^{-1}\mathcal{L}_2)(\mathcal{L}_2^{-1}\mathcal{L}_3).$$

875

876 Now using the Frobenius norm inequality, we get:

877
$$\|\mathcal{L}_1^{-1}\mathcal{L}_3\| = \|(\mathcal{L}_1^{-1}\mathcal{L}_2)(\mathcal{L}_2^{-1}\mathcal{L}_3)\| \leq \|\mathcal{L}_1^{-1}\mathcal{L}_2\| \|\mathcal{L}_2^{-1}\mathcal{L}_3\|.$$

878

879 Now taking logarithms on both sides:

880
$$\|\log(\mathcal{L}_1^{-1}\mathcal{L}_3)\| \leq \|\log(\mathcal{L}_1^{-1}\mathcal{L}_2)\| + \|\log(\mathcal{L}_2^{-1}\mathcal{L}_3)\|.$$

881

882 Using Equation 7, we conclude:

883
$$GGD(G_1, G_3) \leq GGD(G_1, G_2) + GGD(G_2, G_3).$$

884

885 \square
886887 A.8 GRAPH MATCHING RECOVERY
888889 Given symmetric matrices A_1, A_2 and Z from the Gaussian Wigner model, where $A_{2\pi^*} = A_1 + \sigma Z$,
890 there exist constants $c, c' > 0$ such that if $1/n^{0.1} \leq \eta \leq c/\log n$ and $\sigma \leq c'\eta$, then with probability
891 at least $1 - n^{-4}$ for all large n , the matrix \hat{X} in equation 3 satisfies,

892
$$\min_{i \in [n]} \hat{X}_{i, \pi^*(i)} > \max_{i, j \in [n]: j \neq \pi^*(i)} \hat{X}_{ij} \quad (19)$$

893
894

895 and hence, the GRAMPA algorithm correctly recovers the permutation estimation matrix π^* .
896

897 Now, this proof is divided into two parts:

898 **Lemma A.1** (Noiseless Setting Diagonal Dominance). *In a noiseless situation, means replacing A_2
899 with A_1 , similarity matrix \hat{X}^* is defined as:*

900
$$\hat{X}^* = \hat{X}(A_1, A_1) = \sum_{i, j=1}^n \frac{u_i u_i^T \mathbf{J} u_j u_j^T}{(\zeta_i - \zeta_j)^2 + \eta^2}. \quad (20)$$

901
902
903

904 For some constants $C, c > 0$, if $1/n^{0.1} < \eta < c/\log n$, then with probability at least $1 - 5n^{-5}$ for
905 large n , it can be proved that the diagonal components of \hat{X}^* are dominant by showing (Fan et al.,
906 2019):

907
$$\min_{i \in [n]} (\hat{X}^*)_{ii} > \frac{1}{3\eta^2} \quad (21)$$

908
909 and

910
$$\max_{i, j \in [n]: i \neq j} (\hat{X}^*)_{ij} < C \left(\frac{\sqrt{\log n}}{\eta^{3/2}} + \frac{\log n}{\eta} \right). \quad (22)$$

911
912

913 **Lemma A.2** (Bounding the Noise Impact). *The difference between the similarity matrix X in the
914 presence of noise and the noiseless situation is bounded. If $\eta > 1/n^{0.1}$, then for a constant $C > 0$,
915 with probability at least $1 - 2n^{-5}$ for large n , it can be shown (Fan et al., 2019):*

916
$$\max_{i, j \in [n]} |\hat{X}_{ij} - (\hat{X}^*)_{ij}| < C\sigma \left(\frac{1}{\eta^3} + \frac{\log n}{\eta^2} \left(1 + \frac{\sigma}{\eta} \right) \right). \quad (23)$$

917

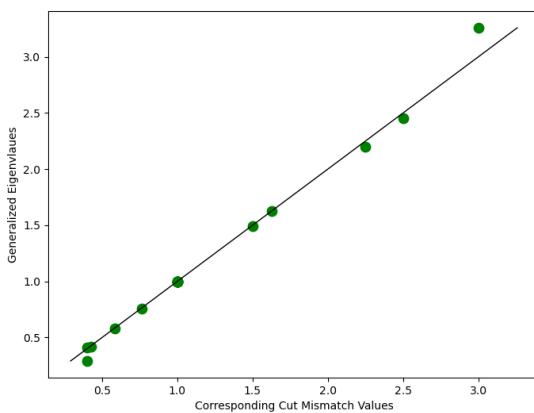


Figure 6: Generalized eigenvalues and their corresponding cut mismatches

Assuming lemma A.1 and A.2, for some $c, c' > 0$ sufficiently small, and by setting $\eta < c/\log n$ and $\sigma < c'\eta$, the algorithm ensures that the right sides of both equations 22 and 23 are at most $1/(12\eta^2)$. Then when $\pi^* = id$ (the identity permutation), these lemmas combine to imply:

$$\min_{i \in [n]} \widehat{X}_{ii} > \frac{1}{4\eta^2} > \frac{1}{6\eta^2} > \max_{i, j \in [n]: i \neq j} \widehat{X}_{ij} \quad (24)$$

with probability at least $1 - n^{-4}$. So, all diagonal entries of \widehat{X} are larger than all off-diagonal entries, thereby achieving exact recovery (Fan et al., 2019).

A.9 RELATION BETWEEN GENERALIZED EIGENVALUES WITH CUT MISMATCH

We selected two graphs from the MUTAG dataset and computed their generalized eigenvalues following the procedure for calculating the Generalized Graph Distance (GGD), which involves determining the node-to-node correspondence. Subsequently, we considered all possible subsets of nodes and evaluate their corresponding cut mismatches. As shown in Figure 6, each generalized eigenvalue is closely associated with a cut mismatch. This empirical observation supports our hypothesis that the GGD between two input graphs is strongly correlated with structural mismatches in graphs.

A.10 CHOOSING ϵ FOR CONVERTING LAPLACIANS TO SPD MATRICES

Laplacian matrices are symmetric positive semi-definite (SPSD) matrices. To convert these to symmetric positive definite (SPD) matrices, we added a diagonal matrix with very small values (ϵ). We used 0.0001 as the small value (ϵ) in our experiments. When working with Laplacian matrices of a weighted or unweighted graph, values significantly smaller than the edge weights of that graph have a minimal effect on the transformation. We conducted additional experiments with different small values and included the results in Tables 4 and 5. In Table 4, we observed that in our specific case with the MUTAG graph dataset (Morris et al., 2020), where all graphs are unweighted, any value less than 0.001 has an almost negligible influence on the performance of the graph classification task. Additionally, when using values equal to or less than 0.001, the GGD value remains almost the same, as shown in Table 5.

A.11 PARTIAL NODE FEATURES

Cutting-edge graph distance metrics like TMD rely on node attributes to compute the dissimilarity between graphs, resulting in more accurate outcomes when all attributes are available. However, acquiring datasets with complete node attributes is often unattainable in real-world scenarios, leading

972
973
974 Table 4: Classification accuracy using MUTAG dataset with different values of ϵ .
975
976
977
978
979

Value of ϵ	Classification accuracy	Value of ϵ	Classification accuracy
0.1	76.38 ± 7.89	1e-4	85.96 ± 5.26
5e-2	79.02 ± 6.58	1e-5	84.21 ± 5.26
1e-2	79.02 ± 5.26	1e-6	85.96 ± 5.26
5e-3	81.57 ± 7.89	1e-7	85.96 ± 7.89
1e-3	81.57 ± 7.89		

980
981 Table 5: GGD values using MUTAG dataset for different values of ϵ .
982
983
984

Value of ϵ	Normalized GGD of a random graph pair (MUTAG[85], MUTAG[103])	Average normalized GGD of 1000 pairs
0.1	0.712	0.727
5e-2	0.827	0.834
1e-2	0.952	0.959
5e-3	0.978	0.979
1e-3	0.996	0.995
1e-4	0.9996	0.9995
1e-5	0.99995	0.99996
1e-6	0.999996	0.999996
1e-7	1	1

994 to partially missing features. In such scenarios when only partial node features are available, we
995 compare TMD with GGD to better understand their differences. Table 6 shows that the TMD
996 metric outperforms GGD at various levels when node features are fully accessible. However, when
997 node features are randomly removed from the MUTAG dataset, the accuracy of TMD degrades
998 substantially.

1000
1001 A.12 APPROXIMATE GGD ON SMALL GRAPHS USING EXTREME EIGENVALUES

1002
1003 The largest and the smallest eigenvalues correspond to the most dominant mismatches in graph
1004 cuts and effective resistance distances, contributing the most to the total GGD value. Similarly, the
1005 second largest and smallest eigenvalues correspond to the next significant mismatched cuts. In our
1006 experiment, we obtain approximate GGD values using a few extreme eigenvalue pairs and compare
1007 them with the ground truth. Figure 7 illustrates the relative accuracy of the approximate GGDs, in
1008 which we observe that the top four pairs of extreme eigenvalues contribute 80% of the total GGD
1009 values. In addition, we conduct the SVC classification task and GNN correlation study using GGD
1010 with only 2 and 4 extreme eigenvalue pairs, respectively, and present the associated findings in Table
1011 7.

1012
1013 A.13 SCALABILITY OF GGD APPROXIMATION ON VERY LARGE GRAPHS

1014
1015 For very large graphs, computing the full spectrum of eigenvalues becomes computationally expen-
1016 sive. To address this, we use approximate GGD strategy using only a small fraction of the extreme
1017 eigenvalues. Our results in Table 8 show that even with just 2% of the extreme eigenvalues, the
1018 approximation remains highly correlated with the original GGD value. Moreover, the percentage re-

1019
1020 Table 6: Comparison of correlation with GNN outputs and distance metrics with partial node features.

DIST METRIC	0%	20%	50%	80%	100%
GGD	0.78	0.78	0.77	0.77	0.77
TMD, L = 3	0.84	0.78	0.72	0.63	0.61
TMD, L = 4	0.81	0.77	0.62	0.58	0.57
TMD, L = 5	0.80	0.75	0.65	0.58	0.53

Table 7: Performance of GGD using extreme eigenvalues only.

Task	Number of extreme eigenvalues		
	2	4	All
Correlation with GNN	0.74	0.76	0.77
Classification accuracy	81.50±6.85	83.87±7.56	86.00±7.50

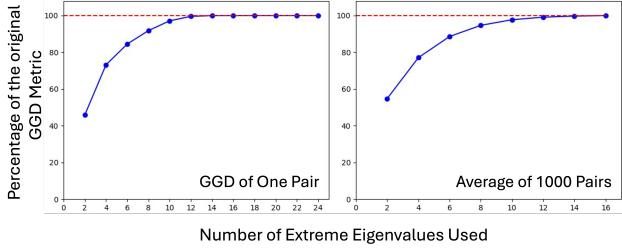


Figure 7: Percentage of the original GGD using numbers of extreme eigenvalues.

quired decreases with increasing graph size, significantly improving scalability. Table 9 demonstrates the resulting runtime improvements.

A.14 COMPARISON OF TWO DIFFERENT RIEMANNIAN METRICS FOR SPD MATRICES

The two most commonly used Riemannian metrics on the SPD manifold are the Affine Invariant Riemannian Metric (AIRM) and the Log-Euclidean Riemannian Metric (LERM) (Ilea et al., 2018; Thanwerdas & Pennec, 2023; Chen et al., 2024). AIRM is a Riemannian metric that remains invariant under affine transformations, meaning the metric is unaffected when matrices are transformed by any invertible operation. The geodesic distance between two SPD matrices, A and B, using AIRM is given by (You & Park, 2021; Moakher, 2005):

$$d_{\text{AIRM}}(A, B) = \|\log(A^{-1}B)\|_F = \left[\sum_{i=1}^n \log^2(\lambda_i(A^{-1}B)) \right]^{1/2}. \quad (25)$$

On the other hand, LERM addresses some of the computational complexity challenges associated with AIRM by mapping SPD matrices to an Euclidean space through the matrix logarithm operation. In this Euclidean space, computations are simplified. The geodesic distance between two SPD matrices, A and B, using LERM is defined as (Huang et al., 2014):

$$d_{\text{LERM}}(A, B) = \|\log(A) - \log(B)\|_F. \quad (26)$$

In this paper, we primarily used AIRM to compute geodesics because of its stronger theoretical foundation and its ability to better explain graph cut mismatches. However, for comparison, we also conducted experiments using LERM. Figure 8 shows that the Graph Geodesic Distances computed using the LERM metric are highly correlated with those obtained using AIRM, though the GGD using AIRM demonstrates better performance overall. A detailed performance comparison of these two metrics is provided in Table 10.

Table 8: Correlation between GGD values and approximate GGD values using a portion of extreme eigenvalues for very large graphs, where n represents the number of nodes.

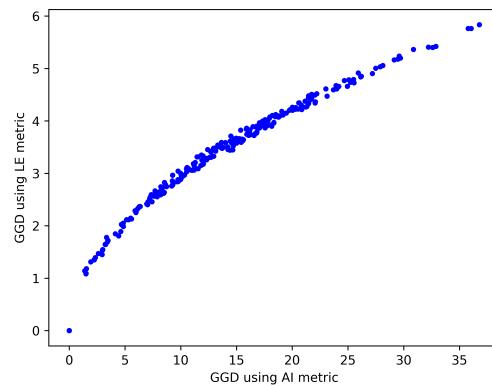
Extreme Eigenvalues Used	0.5%	1%	2%	4%	All
Correlation (n ∈ [5000, 5200])	0.8323	0.9361	0.9772	0.9902	1
Correlation (n ∈ [10000, 10500])	0.8666	0.9501	0.9808	0.9928	1
Correlation (n ∈ [15000, 16000])	0.8892	0.9599	0.9879	0.9952	1

1080
1081
1082
1083
1084 Table 9: Runtime Comparison of Exact vs. Approximate GGD on Very Large Graphs
1085
1086
1087
1088
1089
1090
1091
1092

Node Numbers	Calculation Time		
	GGD	Aprx GGD (2% Eigs)	Aprx GGD (4% Eigs)
$n \in [5000, 5200]$	29.13s	7.11s	7.98s
$n \in [10000, 10500]$	241.33s	55.56s	56.29s
$n \in [15000, 16000]$	920.77s	162.30s	163.64s

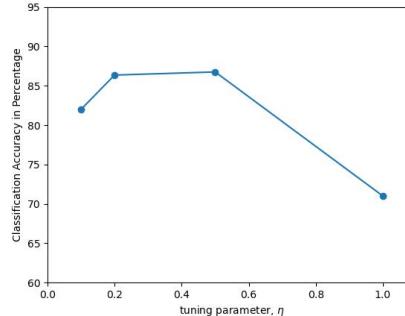
1093
1094
1095
1096
1097
1098
1099
11001101 Table 10: Comparison between Riemannian metrics for GGD calculation.
1102
1103

Riemannian metric	Correlation with GNN output	Classification accuracy
Affine-Invariant	0.7786	86.00±7.50%
Log-Euclidean	0.7634	84.38%

1106
1107
1108
1109
1110
1111
1112
1113
1114
11151116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129 Figure 8: GGD between graph pairs using AI and LE Riemannian metric.
1130
1131
1132
1133

1134 Table 11: Effect of epsilon in the calculation of GGD using normalized Laplacian matrices.
1135

Value of ϵ	0.01	0.001	0.0001	0.00001
GGD using Laplacian matrices	16.235	16.775	16.832	16.838
GGD using normalized Laplacian matrices	384.097	254.440	188.345	165.332

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152 Figure 9: Classification accuracy vs GRAMPA tuning parameter.
1153
1154
1155

A.15 USING NORMALIZED LAPLACIANS FOR GGD CALCULATION

1156 In many existing studies, the normalized Laplacian matrix is commonly used to study spectral
1157 graph properties (Chung, 1997). The normalized Laplacian matrix of a graph G is defined as:
1158 $L_{norm} = I - A_{norm}$, where A_{norm} is the normalized adjacency matrix. The normalized adjacency
1159 matrix is expressed as (Chung, 1997):
1160

$$1161 \quad A_{norm} = D^{-1/2} A D^{-1/2}, \quad (27)$$

1162 where D represents the diagonal degree matrix, and A denotes the adjacency matrix of the graph.
1163

1164 Form equation 27, we can derive:
1165

$$1166 \quad L_{norm} = I - D^{-1/2} A D^{-1/2} = D^{-1/2} (D - A) D^{-1/2} = D^{-1/2} L D^{-1/2}. \quad (28)$$

1167 Similar to the Laplacian matrices of graphs, normalized graph Laplacian matrices are also symmetric
1168 and positive semi-definite. Therefore, it is necessary to add small values to the diagonal elements of
1169 these matrices. However, our experiments reveal that the GGD calculation is highly sensitive to this
1170 small value (ϵ), resulting in significant fluctuations across different values, as demonstrated in Table
1171 11. Additionally, the geodesic distances computed with the modified normalized Laplacian matrices
1172 exhibit poor accuracy in both classification tasks and their correlation with GNN outputs.
1173

A.16 EFFECT OF TUNING PARAMETER η ON GRAPH MATCHING

1174 In the original work, it was suggested that the regularization parameter η needs to be chosen so that
1175 $\sigma \vee n^{-0.1} \lesssim \eta \lesssim 1/\log n$ (Fan et al., 2020). It is also mentioned that for practical cases, computing
1176 permutation matrix for different values of η in an iterative way can result in better accuracy. The
1177 GRAMPA uses $\eta = 0.2$ for all their experiments (Fan et al., 2020).
1178

1179 We used a few values of η in the classification problem using the MUTAG dataset and got that
1180 the best accuracy is obtained at $\eta = 0.5$. In Figure 9, the performance of the tuning parameter is
1181 demonstrated.
1182

A.17 SENSITIVITY OF GGD TO SIMPLE GRAPH PERTURBATIONS

1183 Due to the simplicity and general applicability of the GGD, it can be readily computed between any
1184 pair of undirected graphs. To evaluate the robustness of GGD under simple structural changes, we
1185

1188 Table 12: Correlation between GGD values before and after applying different perturbation methods
 1189 on smaller graphs (20–50 nodes)

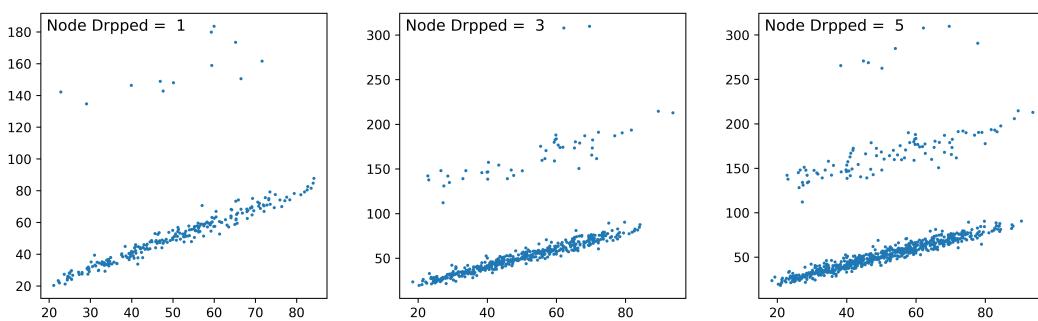
Amount of Perturbation	1	2	3	4	5
Nodes Dropped	0.6934	0.6084	0.5896	0.5614	0.5368
Nodes Added	0.9976	0.9959	0.9943	0.9922	0.9900
Edges Removed	0.8375	0.7890	0.6644	0.6537	0.6332
Edges Added	0.9990	0.9982	0.9974	0.9964	0.9954

1202 Table 13: Correlation between GGD values before and after applying different perturbation methods
 1203 on larger graphs (200–500 nodes)

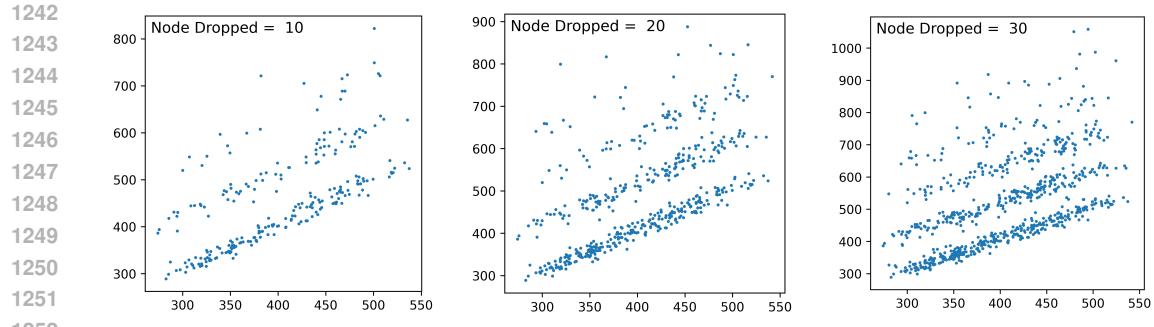
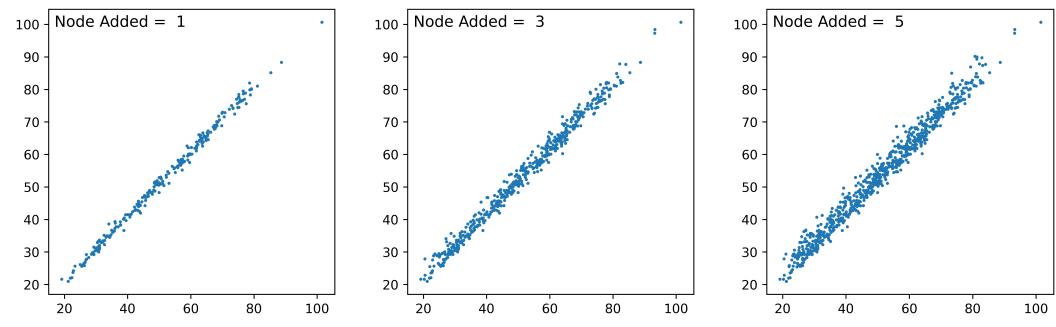
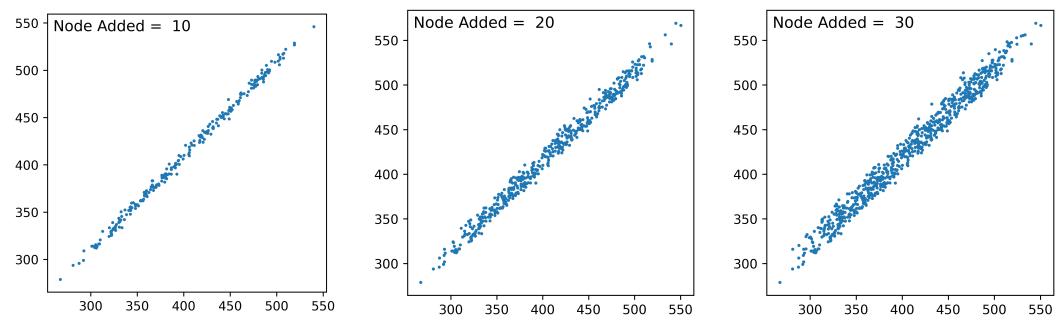
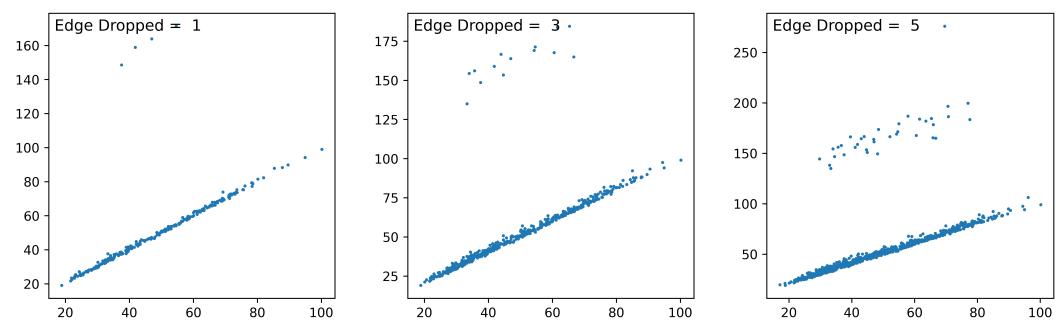
Amount of Perturbation	5	10	15	20	25	30
Nodes Dropped	0.8255	0.7734	0.6533	0.6116	0.5736	0.5563
Nodes Added	0.9991	0.9981	0.9963	0.9944	0.9915	0.9884
Edges Removed	0.9137	0.8857	0.8265	0.7989	0.7550	0.7226
Edges Added	0.9996	0.9992	0.9986	0.9979	0.9971	0.9963

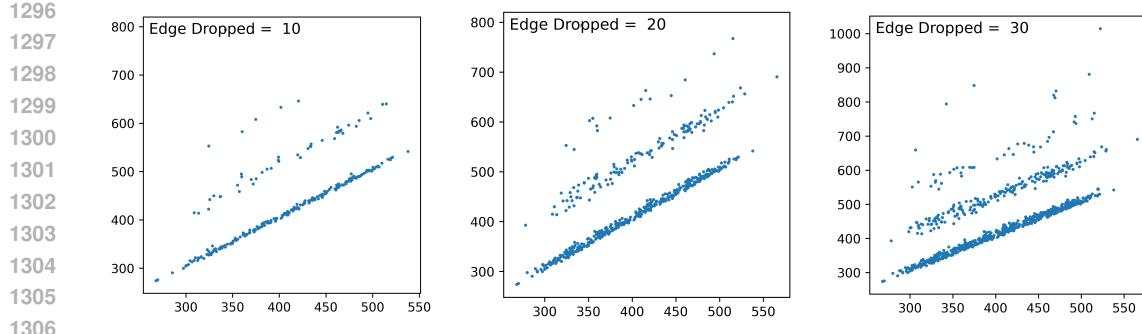
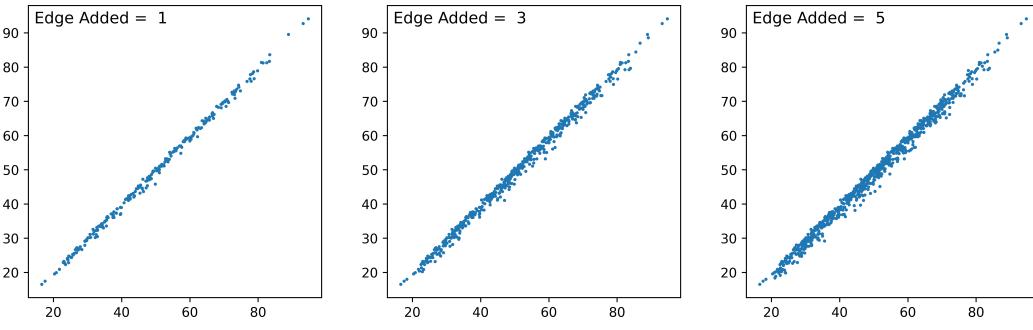
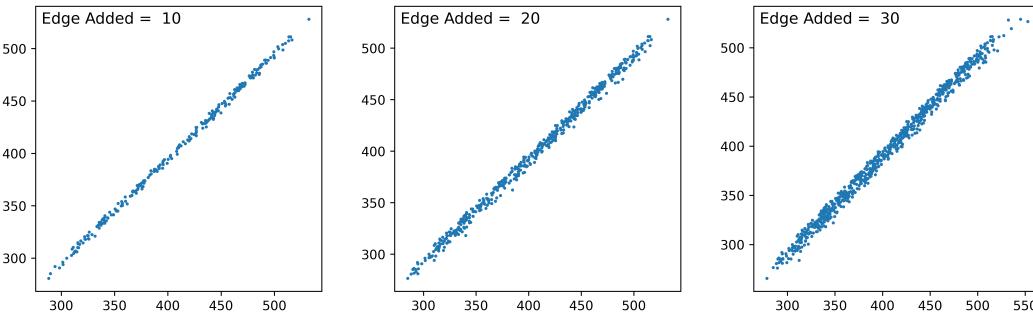
1217 conducted a series of experiments involving basic graph perturbations across both small and large
 1218 graphs.

1219 Our results show that node and edge additions typically have a minimal impact on the GGD values,
 1220 suggesting that the metric is largely invariant to the inclusion of redundant elements. In contrast,
 1221 node and edge drops exhibit noticeable effect. While a significant portion of these perturbations
 1222 still yield GGD values comparable to the original graphs, some cases show some deviations. These
 1223 deviations are associated with the removal of structurally important nodes or edges, which alters the
 1224 graph topology. The quantitative results of these perturbation experiments are summarized Table 12,
 1225 13 and Figure 10, 11, 12, 13, 14, 15, 16, 17.



1241 Figure 10: GGD (x-axis) vs GGD after **Node Drop** perturbation (y-axis) for smaller graphs.

1253 Figure 11: GGD (x-axis) vs GGD after **Node Drop** perturbation (y-axis) for larger graphs.
1254
12551267 Figure 12: GGD (x-axis) vs GGD after **Node Addition** perturbation (y-axis) for smaller graphs.
1268
1269
12701281 Figure 13: GGD (x-axis) vs GGD after **Node Addition** perturbation (y-axis) for larger graphs.
1282
1283
12841296 Figure 14: GGD (x-axis) vs GGD after **Edge Drop** perturbation (y-axis) for smaller graphs.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Figure 15: GGD (x-axis) vs GGD after **Edge Drop** perturbation (y-axis) for larger graphs.1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Figure 16: GGD (x-axis) vs GGD after **Edge Addition** perturbation (y-axis) for smaller graphs.1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Figure 17: GGD (x-axis) vs GGD after **Edge Addition** perturbation (y-axis) for larger graphs.

A.18 GRAPH FORMATION FROM DATASET USING PROBABILISTIC GRAPHICAL MODELS

We take similar type of datasets such as MNIST, Fashion-MNIST, KMNIST, and USPS (Alvarez-Melis & Fusi, 2020) and convert them into connected graphs. To construct these graph structures, we use Probabilistic Graphical Models (PGMs), also known as Markov Random Fields (MRFs) (Cheng et al., 2024). PGMs are powerful tools in machine learning and statistical physics for representing complex systems with intricate dependency structures (Roy et al., 2009). They encode the conditional dependencies between random variables through an undirected graph structure. Recent studies have shown that the graph structure learned via PGMs can exhibit resistance distances that encode the Euclidean distances between their corresponding data samples (Feng, 2021).

We create a Feature Matrix (U) from the dataset, where each row represents a data sample, and the row U_p itself serves as the feature vector of that sample p , on this context- the pixel values. A dense k -nearest neighbor (k-NN) graph G_{dense} is initially constructed using the FM. To obtain the

final dataset graph $G_{dataset}$, spectral sparsification is applied by solving the convex optimization problem (Cheng et al., 2024):

$$\max_{\Theta} F(\Theta) = \log \det(\Theta) - \frac{1}{k} \text{Tr}(U^\top \Theta U) \quad (29)$$

where $\Theta = L + \frac{1}{\sigma^2} I$. Here, L is the graph Laplacian, $\text{Tr}(\cdot)$ denotes the trace of a matrix, I is the identity matrix, and $\sigma^2 > 0$ represents the prior feature variance. To solve this the following lemma is used:

Lemma A.3. *Maximizing the objective function in Equation 29 can be achieved in nearly-linear time via the following edge pruning strategy equivalent to spectral sparsification of the initial dense nearest-neighbor graph. Specifically, edges with small distance ratios*

$$\rho_{p,q} = \frac{R_{\text{eff}}(p,q)}{d_{\text{euc}}(p,q)} = w_{p,q} \cdot R_{\text{eff}}(p,q) \quad (30)$$

are pruned, where $R_{\text{eff}}(p,q)$ denotes the effective resistance distance between nodes p and q , $d_{\text{euc}}(p,q) = \|U_p - U_q\|_2^2$ represents the data distance between the feature of nodes p and q , and $w_{p,q} = \frac{1}{d_{\text{euc}}(p,q)}$ is the weight of edge (p,q) (Cheng et al., 2024).

Computing the edge sampling probability $\rho_{p,q}$ for each edge (p,q) becomes computationally expensive for large graphs. To address this, an improved algorithm using a low-resistance-diameter (LRD) decomposition is proposed, extending the short-cycle decomposition (Chu et al., 2020) to weighted graphs. The method efficiently computes effective resistance to partition the graph into clusters, thereby enhancing the sparsification process. This results in a low-dimensional graph $G_{dataset}$ that retains important structural properties while reducing dimensionality (Cheng et al., 2024).

A.19 LIMITATIONS OF GGD

Our current pipeline has three primary limitations. First, computationally, the end-to-end complexity is dominated by eigenvalue decomposition and the linear assignment step (both $O(n^3)$). Although this is comparable to or slightly better than some OT-based alternatives, scaling to very large graphs remains nontrivial. Appendix A.13 shows that using a small fraction of extreme eigenvalues preserves a high correlation with exact GGD and greatly reduces computation time, but this remains an approximation. Second, GGD is most reliable when comparing graphs of comparable size. When sizes differ dramatically, the size matching via graph coarsening introduces additional approximation error, though we expect such extreme mismatches to be rare in practical applications. Finally, like many graph distance metrics, our theory and experiments assume simple, undirected graphs. Extending GGD to directed, attributed, or higher-order graphs is a valuable direction for future work. We include these limitations to clarify the intended scope and reliability of GGD in practice and to guide when approximations or extensions may be required.

A.20 EXPERIMENTAL SETUP

To evaluate the performance of the Graph Geodesic Distance (GGD) metric, we utilized graph datasets from the TUDataset collection (Morris et al., 2020). For small graphs, we used datasets like MUTAG and BZR, and for larger graphs, we selected PC-3H and SW-620H, which present more sizable networks. Detailed information about the datasets used is provided in Table 14.

Table 14: Brief description of graph datasets used.

Dataset name	Number of graphs	Average number of nodes	Average number of edges
MUTAG	188	17.93	19.79
PC-3H	27509	47.20	49.33
SW-620H	40532	26.06	28.09
BZR	405	35.75	38.36

While Classification tasks, each dataset was split into 90% training and 10% testing sets to ensure an unbiased evaluation process. When assessing the correlation with GNN, we trained a three-layer

1404 GIN with 90% of all graphs from MUTAG and validated with the rest 10%. For the performance
1405 evaluation using graphs with partial node features, we took each dataset with node features and
1406 randomly removed a certain portion of features.

1407 All experiments have been evaluated on a laptop with an Apple M1 chipset, featuring an eight-core
1408 CPU and a seven-core GPU.

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457